The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/fxp/if_fxp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1995, David Greenman
    3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice unmodified, this list of conditions, and the following
   11  *    disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
   29  */
   30 
   31 /*
   32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
   33  */
   34 
   35 #include "opt_ifpoll.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/malloc.h>
   41 #include <sys/kernel.h>
   42 #include <sys/interrupt.h>
   43 #include <sys/socket.h>
   44 #include <sys/sysctl.h>
   45 #include <sys/thread2.h>
   46 
   47 #include <net/if.h>
   48 #include <net/ifq_var.h>
   49 #include <net/if_dl.h>
   50 #include <net/if_media.h>
   51 
   52 #include <net/bpf.h>
   53 #include <sys/sockio.h>
   54 #include <sys/bus.h>
   55 #include <sys/rman.h>
   56 
   57 #include <net/ethernet.h>
   58 #include <net/if_arp.h>
   59 #include <net/if_poll.h>
   60 
   61 #include <vm/vm.h>              /* for vtophys */
   62 #include <vm/pmap.h>            /* for vtophys */
   63 
   64 #include <net/if_types.h>
   65 #include <net/vlan/if_vlan_var.h>
   66 
   67 #include <bus/pci/pcivar.h>
   68 #include <bus/pci/pcireg.h>             /* for PCIM_CMD_xxx */
   69 
   70 #include "../mii_layer/mii.h"
   71 #include "../mii_layer/miivar.h"
   72 
   73 #include "if_fxpreg.h"
   74 #include "if_fxpvar.h"
   75 #include "rcvbundl.h"
   76 
   77 #include "miibus_if.h"
   78 
   79 /*
   80  * NOTE!  On the Alpha, we have an alignment constraint.  The
   81  * card DMAs the packet immediately following the RFA.  However,
   82  * the first thing in the packet is a 14-byte Ethernet header.
   83  * This means that the packet is misaligned.  To compensate,
   84  * we actually offset the RFA 2 bytes into the cluster.  This
   85  * alignes the packet after the Ethernet header at a 32-bit
   86  * boundary.  HOWEVER!  This means that the RFA is misaligned!
   87  */
   88 #define RFA_ALIGNMENT_FUDGE     2
   89 
   90 /*
   91  * Set initial transmit threshold at 64 (512 bytes). This is
   92  * increased by 64 (512 bytes) at a time, to maximum of 192
   93  * (1536 bytes), if an underrun occurs.
   94  */
   95 static int tx_threshold = 64;
   96 
   97 /*
   98  * The configuration byte map has several undefined fields which
   99  * must be one or must be zero.  Set up a template for these bits
  100  * only, (assuming a 82557 chip) leaving the actual configuration
  101  * to fxp_init.
  102  *
  103  * See struct fxp_cb_config for the bit definitions.
  104  */
  105 static u_char fxp_cb_config_template[] = {
  106         0x0, 0x0,               /* cb_status */
  107         0x0, 0x0,               /* cb_command */
  108         0x0, 0x0, 0x0, 0x0,     /* link_addr */
  109         0x0,    /*  0 */
  110         0x0,    /*  1 */
  111         0x0,    /*  2 */
  112         0x0,    /*  3 */
  113         0x0,    /*  4 */
  114         0x0,    /*  5 */
  115         0x32,   /*  6 */
  116         0x0,    /*  7 */
  117         0x0,    /*  8 */
  118         0x0,    /*  9 */
  119         0x6,    /* 10 */
  120         0x0,    /* 11 */
  121         0x0,    /* 12 */
  122         0x0,    /* 13 */
  123         0xf2,   /* 14 */
  124         0x48,   /* 15 */
  125         0x0,    /* 16 */
  126         0x40,   /* 17 */
  127         0xf0,   /* 18 */
  128         0x0,    /* 19 */
  129         0x3f,   /* 20 */
  130         0x5     /* 21 */
  131 };
  132 
  133 struct fxp_ident {
  134         u_int16_t       devid;
  135         int16_t         revid;          /* -1 matches anything */
  136         char            *name;
  137 };
  138 
  139 /*
  140  * Claim various Intel PCI device identifiers for this driver.  The
  141  * sub-vendor and sub-device field are extensively used to identify
  142  * particular variants, but we don't currently differentiate between
  143  * them.
  144  */
  145 static struct fxp_ident fxp_ident_table[] = {
  146      { 0x1029,  -1,     "Intel 82559 PCI/CardBus Pro/100" },
  147      { 0x1030,  -1,     "Intel 82559 Pro/100 Ethernet" },
  148      { 0x1031,  -1,     "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
  149      { 0x1032,  -1,     "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
  150      { 0x1033,  -1,     "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
  151      { 0x1034,  -1,     "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
  152      { 0x1035,  -1,     "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
  153      { 0x1036,  -1,     "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
  154      { 0x1037,  -1,     "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
  155      { 0x1038,  -1,     "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
  156      { 0x1039,  -1,     "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
  157      { 0x103A,  -1,     "Intel 82801DB (ICH4) Pro/100 Ethernet" },
  158      { 0x103B,  -1,     "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
  159      { 0x103C,  -1,     "Intel 82801DB (ICH4) Pro/100 Ethernet" },
  160      { 0x103D,  -1,     "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
  161      { 0x103E,  -1,     "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
  162      { 0x1050,  -1,     "Intel 82801BA (D865) Pro/100 VE Ethernet" },
  163      { 0x1051,  -1,     "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
  164      { 0x1059,  -1,     "Intel 82551QM Pro/100 M Mobile Connection" },
  165      { 0x1064,  -1,     "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
  166      { 0x1065,  -1,     "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
  167      { 0x1068,  -1,     "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
  168      { 0x1069,  -1,     "Intel 82562EM/EX/GX Pro/100 Ethernet" },
  169      { 0x1091,  -1,     "Intel 82562GX Pro/100 Ethernet" },
  170      { 0x1092,  -1,     "Intel Pro/100 VE Network Connection" },
  171      { 0x1093,  -1,     "Intel Pro/100 VM Network Connection" },
  172      { 0x1094,  -1,     "Intel Pro/100 946GZ (ICH7) Network Connection" },
  173      { 0x1209,  -1,     "Intel 82559ER Embedded 10/100 Ethernet" },
  174      { 0x1229,  0x01,   "Intel 82557 Pro/100 Ethernet" },
  175      { 0x1229,  0x02,   "Intel 82557 Pro/100 Ethernet" },
  176      { 0x1229,  0x03,   "Intel 82557 Pro/100 Ethernet" },
  177      { 0x1229,  0x04,   "Intel 82558 Pro/100 Ethernet" },
  178      { 0x1229,  0x05,   "Intel 82558 Pro/100 Ethernet" },
  179      { 0x1229,  0x06,   "Intel 82559 Pro/100 Ethernet" },
  180      { 0x1229,  0x07,   "Intel 82559 Pro/100 Ethernet" },
  181      { 0x1229,  0x08,   "Intel 82559 Pro/100 Ethernet" },
  182      { 0x1229,  0x09,   "Intel 82559ER Pro/100 Ethernet" },
  183      { 0x1229,  0x0c,   "Intel 82550 Pro/100 Ethernet" },
  184      { 0x1229,  0x0d,   "Intel 82550 Pro/100 Ethernet" },
  185      { 0x1229,  0x0e,   "Intel 82550 Pro/100 Ethernet" },
  186      { 0x1229,  0x0f,   "Intel 82551 Pro/100 Ethernet" },
  187      { 0x1229,  0x10,   "Intel 82551 Pro/100 Ethernet" },
  188      { 0x1229,  -1,     "Intel 82557/8/9 Pro/100 Ethernet" },
  189      { 0x2449,  -1,     "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
  190      { 0x27dc,  -1,     "Intel 82801GB (ICH7) 10/100 Ethernet" },
  191      { 0,       -1,     NULL },
  192 };
  193 
  194 static int              fxp_probe(device_t dev);
  195 static int              fxp_attach(device_t dev);
  196 static int              fxp_detach(device_t dev);
  197 static int              fxp_shutdown(device_t dev);
  198 static int              fxp_suspend(device_t dev);
  199 static int              fxp_resume(device_t dev);
  200 
  201 static void             fxp_intr(void *xsc);
  202 static void             fxp_intr_body(struct fxp_softc *sc,
  203                                 u_int8_t statack, int count);
  204 
  205 static void             fxp_init(void *xsc);
  206 static void             fxp_tick(void *xsc);
  207 static void             fxp_powerstate_d0(device_t dev);
  208 static void             fxp_start(struct ifnet *ifp, struct ifaltq_subque *);
  209 static void             fxp_stop(struct fxp_softc *sc);
  210 static void             fxp_release(device_t dev);
  211 static int              fxp_ioctl(struct ifnet *ifp, u_long command,
  212                             caddr_t data, struct ucred *);
  213 static void             fxp_watchdog(struct ifnet *ifp);
  214 static int              fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
  215 static int              fxp_mc_addrs(struct fxp_softc *sc);
  216 static void             fxp_mc_setup(struct fxp_softc *sc);
  217 static u_int16_t        fxp_eeprom_getword(struct fxp_softc *sc, int offset,
  218                             int autosize);
  219 static void             fxp_eeprom_putword(struct fxp_softc *sc, int offset,
  220                             u_int16_t data);
  221 static void             fxp_autosize_eeprom(struct fxp_softc *sc);
  222 static void             fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
  223                             int offset, int words);
  224 static void             fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
  225                             int offset, int words);
  226 static int              fxp_ifmedia_upd(struct ifnet *ifp);
  227 static void             fxp_ifmedia_sts(struct ifnet *ifp,
  228                             struct ifmediareq *ifmr);
  229 static int              fxp_serial_ifmedia_upd(struct ifnet *ifp);
  230 static void             fxp_serial_ifmedia_sts(struct ifnet *ifp,
  231                             struct ifmediareq *ifmr);
  232 static int              fxp_miibus_readreg(device_t dev, int phy, int reg);
  233 static void             fxp_miibus_writereg(device_t dev, int phy, int reg,
  234                             int value);
  235 static void             fxp_load_ucode(struct fxp_softc *sc);
  236 static int              sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
  237 static int              sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
  238 #ifdef IFPOLL_ENABLE
  239 static void             fxp_npoll(struct ifnet *, struct ifpoll_info *);
  240 static void             fxp_npoll_compat(struct ifnet *, void *, int);
  241 #endif
  242 
  243 static void             fxp_lwcopy(volatile u_int32_t *src,
  244                             volatile u_int32_t *dst);
  245 static void             fxp_scb_wait(struct fxp_softc *sc);
  246 static void             fxp_scb_cmd(struct fxp_softc *sc, int cmd);
  247 static void             fxp_dma_wait(volatile u_int16_t *status,
  248                             struct fxp_softc *sc);
  249 
  250 static device_method_t fxp_methods[] = {
  251         /* Device interface */
  252         DEVMETHOD(device_probe,         fxp_probe),
  253         DEVMETHOD(device_attach,        fxp_attach),
  254         DEVMETHOD(device_detach,        fxp_detach),
  255         DEVMETHOD(device_shutdown,      fxp_shutdown),
  256         DEVMETHOD(device_suspend,       fxp_suspend),
  257         DEVMETHOD(device_resume,        fxp_resume),
  258 
  259         /* MII interface */
  260         DEVMETHOD(miibus_readreg,       fxp_miibus_readreg),
  261         DEVMETHOD(miibus_writereg,      fxp_miibus_writereg),
  262 
  263         DEVMETHOD_END
  264 };
  265 
  266 static driver_t fxp_driver = {
  267         "fxp",
  268         fxp_methods,
  269         sizeof(struct fxp_softc),
  270 };
  271 
  272 static devclass_t fxp_devclass;
  273 
  274 DECLARE_DUMMY_MODULE(if_fxp);
  275 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
  276 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, NULL, NULL);
  277 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, NULL, NULL);
  278 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
  279 
  280 static int fxp_rnr;
  281 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
  282 
  283 /*
  284  * Copy a 16-bit aligned 32-bit quantity.
  285  */
  286 static void
  287 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
  288 {
  289 #ifdef __i386__
  290         *dst = *src;
  291 #else
  292         volatile u_int16_t *a = (volatile u_int16_t *)src;
  293         volatile u_int16_t *b = (volatile u_int16_t *)dst;
  294 
  295         b[0] = a[0];
  296         b[1] = a[1];
  297 #endif
  298 }
  299 
  300 /*
  301  * Wait for the previous command to be accepted (but not necessarily
  302  * completed).
  303  */
  304 static void
  305 fxp_scb_wait(struct fxp_softc *sc)
  306 {
  307         int i = 10000;
  308 
  309         while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
  310                 DELAY(2);
  311         if (i == 0) {
  312                 if_printf(&sc->arpcom.ac_if,
  313                     "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
  314                     CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
  315                     CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
  316                     CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
  317                     CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
  318         }
  319 }
  320 
  321 static void
  322 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
  323 {
  324 
  325         if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
  326                 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
  327                 fxp_scb_wait(sc);
  328         }
  329         CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
  330 }
  331 
  332 static void
  333 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
  334 {
  335         int i = 10000;
  336 
  337         while (!(*status & FXP_CB_STATUS_C) && --i)
  338                 DELAY(2);
  339         if (i == 0)
  340                 if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
  341 }
  342 
  343 /*
  344  * Return identification string if this is device is ours.
  345  */
  346 static int
  347 fxp_probe(device_t dev)
  348 {
  349         u_int16_t devid;
  350         u_int8_t revid;
  351         struct fxp_ident *ident;
  352 
  353         if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
  354                 devid = pci_get_device(dev);
  355                 revid = pci_get_revid(dev);
  356                 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
  357                         if (ident->devid == devid &&
  358                             (ident->revid == revid || ident->revid == -1)) {
  359                                 device_set_desc(dev, ident->name);
  360                                 return (0);
  361                         }
  362                 }
  363         }
  364         return (ENXIO);
  365 }
  366 
  367 static void
  368 fxp_powerstate_d0(device_t dev)
  369 {
  370         u_int32_t iobase, membase, irq;
  371 
  372         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  373                 /* Save important PCI config data. */
  374                 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
  375                 membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
  376                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
  377 
  378                 /* Reset the power state. */
  379                 device_printf(dev, "chip is in D%d power mode "
  380                     "-- setting to D0\n", pci_get_powerstate(dev));
  381 
  382                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  383 
  384                 /* Restore PCI config data. */
  385                 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
  386                 pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
  387                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
  388         }
  389 }
  390 
  391 static int
  392 fxp_attach(device_t dev)
  393 {
  394         int error = 0;
  395         struct fxp_softc *sc = device_get_softc(dev);
  396         struct ifnet *ifp;
  397         u_int32_t val;
  398         u_int16_t data;
  399         int i, rid, m1, m2, prefer_iomap;
  400 
  401         callout_init(&sc->fxp_stat_timer);
  402         sysctl_ctx_init(&sc->sysctl_ctx);
  403 
  404         /*
  405          * Enable bus mastering. Enable memory space too, in case
  406          * BIOS/Prom forgot about it.
  407          */
  408         pci_enable_busmaster(dev);
  409         pci_enable_io(dev, SYS_RES_MEMORY);
  410         val = pci_read_config(dev, PCIR_COMMAND, 2);
  411 
  412         fxp_powerstate_d0(dev);
  413 
  414         /*
  415          * Figure out which we should try first - memory mapping or i/o mapping?
  416          * We default to memory mapping. Then we accept an override from the
  417          * command line. Then we check to see which one is enabled.
  418          */
  419         m1 = PCIM_CMD_MEMEN;
  420         m2 = PCIM_CMD_PORTEN;
  421         prefer_iomap = 0;
  422         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
  423             "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
  424                 m1 = PCIM_CMD_PORTEN;
  425                 m2 = PCIM_CMD_MEMEN;
  426         }
  427 
  428         if (val & m1) {
  429                 sc->rtp =
  430                     (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
  431                 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
  432                 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
  433                     RF_ACTIVE);
  434         }
  435         if (sc->mem == NULL && (val & m2)) {
  436                 sc->rtp =
  437                     (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
  438                 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
  439                 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
  440                     RF_ACTIVE);
  441         }
  442 
  443         if (!sc->mem) {
  444                 device_printf(dev, "could not map device registers\n");
  445                 error = ENXIO;
  446                 goto fail;
  447         }
  448         if (bootverbose) {
  449                 device_printf(dev, "using %s space register mapping\n",
  450                    sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
  451         }
  452 
  453         sc->sc_st = rman_get_bustag(sc->mem);
  454         sc->sc_sh = rman_get_bushandle(sc->mem);
  455 
  456         /*
  457          * Allocate our interrupt.
  458          */
  459         rid = 0;
  460         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  461             RF_SHAREABLE | RF_ACTIVE);
  462         if (sc->irq == NULL) {
  463                 device_printf(dev, "could not map interrupt\n");
  464                 error = ENXIO;
  465                 goto fail;
  466         }
  467 
  468         /*
  469          * Reset to a stable state.
  470          */
  471         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
  472         DELAY(10);
  473 
  474         sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
  475             M_DEVBUF, M_WAITOK | M_ZERO);
  476 
  477         sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
  478             M_WAITOK | M_ZERO);
  479 
  480         sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
  481 
  482         /*
  483          * Pre-allocate our receive buffers.
  484          */
  485         for (i = 0; i < FXP_NRFABUFS; i++) {
  486                 if (fxp_add_rfabuf(sc, NULL) != 0) {
  487                         goto failmem;
  488                 }
  489         }
  490 
  491         /*
  492          * Find out how large of an SEEPROM we have.
  493          */
  494         fxp_autosize_eeprom(sc);
  495 
  496         /*
  497          * Determine whether we must use the 503 serial interface.
  498          */
  499         fxp_read_eeprom(sc, &data, 6, 1);
  500         if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
  501             (data & FXP_PHY_SERIAL_ONLY))
  502                 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
  503 
  504         /*
  505          * Create the sysctl tree
  506          */
  507         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
  508             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
  509             device_get_nameunit(dev), CTLFLAG_RD, 0, "");
  510         if (sc->sysctl_tree == NULL)
  511                 goto fail;
  512         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
  513             OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
  514             &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
  515             "FXP driver receive interrupt microcode bundling delay");
  516         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
  517             OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
  518             &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
  519             "FXP driver receive interrupt microcode bundle size limit");
  520 
  521         /*
  522          * Pull in device tunables.
  523          */
  524         sc->tunable_int_delay = TUNABLE_INT_DELAY;
  525         sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
  526         resource_int_value(device_get_name(dev), device_get_unit(dev),
  527             "int_delay", &sc->tunable_int_delay);
  528         resource_int_value(device_get_name(dev), device_get_unit(dev),
  529             "bundle_max", &sc->tunable_bundle_max);
  530 
  531         /*
  532          * Find out the chip revision; lump all 82557 revs together.
  533          */
  534         fxp_read_eeprom(sc, &data, 5, 1);
  535         if ((data >> 8) == 1)
  536                 sc->revision = FXP_REV_82557;
  537         else
  538                 sc->revision = pci_get_revid(dev);
  539 
  540         /*
  541          * Enable workarounds for certain chip revision deficiencies.
  542          *
  543          * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
  544          * some systems based a normal 82559 design, have a defect where
  545          * the chip can cause a PCI protocol violation if it receives
  546          * a CU_RESUME command when it is entering the IDLE state.  The 
  547          * workaround is to disable Dynamic Standby Mode, so the chip never
  548          * deasserts CLKRUN#, and always remains in an active state.
  549          *
  550          * See Intel 82801BA/82801BAM Specification Update, Errata #30.
  551          */
  552         i = pci_get_device(dev);
  553         if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
  554             sc->revision >= FXP_REV_82559_A0) {
  555                 fxp_read_eeprom(sc, &data, 10, 1);
  556                 if (data & 0x02) {                      /* STB enable */
  557                         u_int16_t cksum;
  558                         int i;
  559 
  560                         device_printf(dev,
  561                             "Disabling dynamic standby mode in EEPROM\n");
  562                         data &= ~0x02;
  563                         fxp_write_eeprom(sc, &data, 10, 1);
  564                         device_printf(dev, "New EEPROM ID: 0x%x\n", data);
  565                         cksum = 0;
  566                         for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
  567                                 fxp_read_eeprom(sc, &data, i, 1);
  568                                 cksum += data;
  569                         }
  570                         i = (1 << sc->eeprom_size) - 1;
  571                         cksum = 0xBABA - cksum;
  572                         fxp_read_eeprom(sc, &data, i, 1);
  573                         fxp_write_eeprom(sc, &cksum, i, 1);
  574                         device_printf(dev,
  575                             "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
  576                             i, data, cksum);
  577 #if 1
  578                         /*
  579                          * If the user elects to continue, try the software
  580                          * workaround, as it is better than nothing.
  581                          */
  582                         sc->flags |= FXP_FLAG_CU_RESUME_BUG;
  583 #endif
  584                 }
  585         }
  586 
  587         /*
  588          * If we are not a 82557 chip, we can enable extended features.
  589          */
  590         if (sc->revision != FXP_REV_82557) {
  591                 /*
  592                  * If MWI is enabled in the PCI configuration, and there
  593                  * is a valid cacheline size (8 or 16 dwords), then tell
  594                  * the board to turn on MWI.
  595                  */
  596                 if (val & PCIM_CMD_MWRICEN &&
  597                     pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
  598                         sc->flags |= FXP_FLAG_MWI_ENABLE;
  599 
  600                 /* turn on the extended TxCB feature */
  601                 sc->flags |= FXP_FLAG_EXT_TXCB;
  602 
  603                 /* enable reception of long frames for VLAN */
  604                 sc->flags |= FXP_FLAG_LONG_PKT_EN;
  605         }
  606 
  607         /*
  608          * Read MAC address.
  609          */
  610         fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
  611         if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
  612                 device_printf(dev, "10Mbps\n");
  613         if (bootverbose) {
  614                 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
  615                     pci_get_vendor(dev), pci_get_device(dev),
  616                     pci_get_subvendor(dev), pci_get_subdevice(dev),
  617                     pci_get_revid(dev));
  618                 fxp_read_eeprom(sc, &data, 10, 1);
  619                 device_printf(dev, "Dynamic Standby mode is %s\n",
  620                     data & 0x02 ? "enabled" : "disabled");
  621         }
  622 
  623         /*
  624          * If this is only a 10Mbps device, then there is no MII, and
  625          * the PHY will use a serial interface instead.
  626          *
  627          * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
  628          * doesn't have a programming interface of any sort.  The
  629          * media is sensed automatically based on how the link partner
  630          * is configured.  This is, in essence, manual configuration.
  631          */
  632         if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
  633                 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
  634                     fxp_serial_ifmedia_sts);
  635                 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
  636                 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
  637         } else {
  638                 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
  639                     fxp_ifmedia_sts)) {
  640                         device_printf(dev, "MII without any PHY!\n");
  641                         error = ENXIO;
  642                         goto fail;
  643                 }
  644         }
  645 
  646         ifp = &sc->arpcom.ac_if;
  647         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  648         ifp->if_baudrate = 100000000;
  649         ifp->if_init = fxp_init;
  650         ifp->if_softc = sc;
  651         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  652         ifp->if_ioctl = fxp_ioctl;
  653         ifp->if_start = fxp_start;
  654 #ifdef IFPOLL_ENABLE
  655         ifp->if_npoll = fxp_npoll;
  656 #endif
  657         ifp->if_watchdog = fxp_watchdog;
  658 
  659         /*
  660          * Attach the interface.
  661          */
  662         ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
  663 
  664 #ifdef IFPOLL_ENABLE
  665         ifpoll_compat_setup(&sc->fxp_npoll,
  666             &sc->sysctl_ctx, sc->sysctl_tree, device_get_unit(dev),
  667             ifp->if_serializer);
  668 #endif
  669 
  670         /*
  671          * Tell the upper layer(s) we support long frames.
  672          */
  673         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  674 
  675         /*
  676          * Let the system queue as many packets as we have available
  677          * TX descriptors.
  678          */
  679         ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
  680         ifq_set_ready(&ifp->if_snd);
  681 
  682         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
  683 
  684         error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
  685                                fxp_intr, sc, &sc->ih, 
  686                                ifp->if_serializer);
  687         if (error) {
  688                 ether_ifdetach(ifp);
  689                 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
  690                         ifmedia_removeall(&sc->sc_media);
  691                 device_printf(dev, "could not setup irq\n");
  692                 goto fail;
  693         }
  694 
  695         return (0);
  696 
  697 failmem:
  698         device_printf(dev, "Failed to malloc memory\n");
  699         error = ENOMEM;
  700 fail:
  701         fxp_release(dev);
  702         return (error);
  703 }
  704 
  705 /*
  706  * release all resources
  707  */
  708 static void
  709 fxp_release(device_t dev)
  710 {
  711         struct fxp_softc *sc = device_get_softc(dev);
  712 
  713         if (sc->miibus)
  714                 device_delete_child(dev, sc->miibus);
  715         bus_generic_detach(dev);
  716 
  717         if (sc->cbl_base)
  718                 kfree(sc->cbl_base, M_DEVBUF);
  719         if (sc->fxp_stats)
  720                 kfree(sc->fxp_stats, M_DEVBUF);
  721         if (sc->mcsp)
  722                 kfree(sc->mcsp, M_DEVBUF);
  723         if (sc->rfa_headm)
  724                 m_freem(sc->rfa_headm);
  725 
  726         if (sc->irq)
  727                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
  728         if (sc->mem)
  729                 bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
  730 
  731         sysctl_ctx_free(&sc->sysctl_ctx);
  732 }
  733 
  734 /*
  735  * Detach interface.
  736  */
  737 static int
  738 fxp_detach(device_t dev)
  739 {
  740         struct fxp_softc *sc = device_get_softc(dev);
  741 
  742         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
  743 
  744         /*
  745          * Stop DMA and drop transmit queue.
  746          */
  747         fxp_stop(sc);
  748 
  749         /*
  750          * Disable interrupts.
  751          *
  752          * NOTE: This should be done after fxp_stop(), because software
  753          * resetting in fxp_stop() may leave interrupts turned on.
  754          */
  755         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
  756 
  757         /*
  758          * Free all media structures.
  759          */
  760         if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
  761                 ifmedia_removeall(&sc->sc_media);
  762 
  763         if (sc->ih)
  764                 bus_teardown_intr(dev, sc->irq, sc->ih);
  765 
  766         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
  767 
  768         /*
  769          * Close down routes etc.
  770          */
  771         ether_ifdetach(&sc->arpcom.ac_if);
  772 
  773         /* Release our allocated resources. */
  774         fxp_release(dev);
  775 
  776         return (0);
  777 }
  778 
  779 /*
  780  * Device shutdown routine. Called at system shutdown after sync. The
  781  * main purpose of this routine is to shut off receiver DMA so that
  782  * kernel memory doesn't get clobbered during warmboot.
  783  */
  784 static int
  785 fxp_shutdown(device_t dev)
  786 {
  787         struct fxp_softc *sc = device_get_softc(dev);
  788         struct ifnet *ifp = &sc->arpcom.ac_if;
  789 
  790         lwkt_serialize_enter(ifp->if_serializer);
  791         /*
  792          * Make sure that DMA is disabled prior to reboot. Not doing
  793          * do could allow DMA to corrupt kernel memory during the
  794          * reboot before the driver initializes.
  795          */
  796         fxp_stop(sc);
  797         lwkt_serialize_exit(ifp->if_serializer);
  798         return (0);
  799 }
  800 
  801 /*
  802  * Device suspend routine.  Stop the interface and save some PCI
  803  * settings in case the BIOS doesn't restore them properly on
  804  * resume.
  805  */
  806 static int
  807 fxp_suspend(device_t dev)
  808 {
  809         struct fxp_softc *sc = device_get_softc(dev);
  810         int i;
  811 
  812         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
  813 
  814         fxp_stop(sc);
  815         
  816         for (i = 0; i < 5; i++)
  817                 sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
  818         sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
  819         sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
  820         sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
  821         sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
  822 
  823         sc->suspended = 1;
  824 
  825         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
  826         return (0);
  827 }
  828 
  829 /*
  830  * Device resume routine.  Restore some PCI settings in case the BIOS
  831  * doesn't, re-enable busmastering, and restart the interface if
  832  * appropriate.
  833  */
  834 static int
  835 fxp_resume(device_t dev)
  836 {
  837         struct fxp_softc *sc = device_get_softc(dev);
  838         struct ifnet *ifp = &sc->arpcom.ac_if;
  839         int i;
  840 
  841         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
  842 
  843         fxp_powerstate_d0(dev);
  844 
  845         /* better way to do this? */
  846         for (i = 0; i < 5; i++)
  847                 pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
  848         pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
  849         pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
  850         pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
  851         pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
  852 
  853         /* reenable busmastering and memory space */
  854         pci_enable_busmaster(dev);
  855         pci_enable_io(dev, SYS_RES_MEMORY);
  856 
  857         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
  858         DELAY(10);
  859 
  860         /* reinitialize interface if necessary */
  861         if (ifp->if_flags & IFF_UP)
  862                 fxp_init(sc);
  863 
  864         sc->suspended = 0;
  865 
  866         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
  867         return (0);
  868 }
  869 
  870 static void 
  871 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
  872 {
  873         u_int16_t reg;
  874         int x;
  875 
  876         /*
  877          * Shift in data.
  878          */
  879         for (x = 1 << (length - 1); x; x >>= 1) {
  880                 if (data & x)
  881                         reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
  882                 else
  883                         reg = FXP_EEPROM_EECS;
  884                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  885                 DELAY(1);
  886                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
  887                 DELAY(1);
  888                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  889                 DELAY(1);
  890         }
  891 }
  892 
  893 /*
  894  * Read from the serial EEPROM. Basically, you manually shift in
  895  * the read opcode (one bit at a time) and then shift in the address,
  896  * and then you shift out the data (all of this one bit at a time).
  897  * The word size is 16 bits, so you have to provide the address for
  898  * every 16 bits of data.
  899  */
  900 static u_int16_t
  901 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
  902 {
  903         u_int16_t reg, data;
  904         int x;
  905 
  906         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  907         /*
  908          * Shift in read opcode.
  909          */
  910         fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
  911         /*
  912          * Shift in address.
  913          */
  914         data = 0;
  915         for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
  916                 if (offset & x)
  917                         reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
  918                 else
  919                         reg = FXP_EEPROM_EECS;
  920                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  921                 DELAY(1);
  922                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
  923                 DELAY(1);
  924                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  925                 DELAY(1);
  926                 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
  927                 data++;
  928                 if (autosize && reg == 0) {
  929                         sc->eeprom_size = data;
  930                         break;
  931                 }
  932         }
  933         /*
  934          * Shift out data.
  935          */
  936         data = 0;
  937         reg = FXP_EEPROM_EECS;
  938         for (x = 1 << 15; x; x >>= 1) {
  939                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
  940                 DELAY(1);
  941                 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
  942                         data |= x;
  943                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  944                 DELAY(1);
  945         }
  946         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  947         DELAY(1);
  948 
  949         return (data);
  950 }
  951 
  952 static void
  953 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
  954 {
  955         int i;
  956 
  957         /*
  958          * Erase/write enable.
  959          */
  960         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  961         fxp_eeprom_shiftin(sc, 0x4, 3);
  962         fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
  963         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  964         DELAY(1);
  965         /*
  966          * Shift in write opcode, address, data.
  967          */
  968         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  969         fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
  970         fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
  971         fxp_eeprom_shiftin(sc, data, 16);
  972         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  973         DELAY(1);
  974         /*
  975          * Wait for EEPROM to finish up.
  976          */
  977         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  978         DELAY(1);
  979         for (i = 0; i < 1000; i++) {
  980                 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
  981                         break;
  982                 DELAY(50);
  983         }
  984         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  985         DELAY(1);
  986         /*
  987          * Erase/write disable.
  988          */
  989         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  990         fxp_eeprom_shiftin(sc, 0x4, 3);
  991         fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
  992         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  993         DELAY(1);
  994 }
  995 
  996 /*
  997  * From NetBSD:
  998  *
  999  * Figure out EEPROM size.
 1000  *
 1001  * 559's can have either 64-word or 256-word EEPROMs, the 558
 1002  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
 1003  * talks about the existance of 16 to 256 word EEPROMs.
 1004  *
 1005  * The only known sizes are 64 and 256, where the 256 version is used
 1006  * by CardBus cards to store CIS information.
 1007  *
 1008  * The address is shifted in msb-to-lsb, and after the last
 1009  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
 1010  * after which follows the actual data. We try to detect this zero, by
 1011  * probing the data-out bit in the EEPROM control register just after
 1012  * having shifted in a bit. If the bit is zero, we assume we've
 1013  * shifted enough address bits. The data-out should be tri-state,
 1014  * before this, which should translate to a logical one.
 1015  */
 1016 static void
 1017 fxp_autosize_eeprom(struct fxp_softc *sc)
 1018 {
 1019 
 1020         /* guess maximum size of 256 words */
 1021         sc->eeprom_size = 8;
 1022 
 1023         /* autosize */
 1024         fxp_eeprom_getword(sc, 0, 1);
 1025 }
 1026 
 1027 static void
 1028 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
 1029 {
 1030         int i;
 1031 
 1032         for (i = 0; i < words; i++)
 1033                 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
 1034 }
 1035 
 1036 static void
 1037 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
 1038 {
 1039         int i;
 1040 
 1041         for (i = 0; i < words; i++)
 1042                 fxp_eeprom_putword(sc, offset + i, data[i]);
 1043 }
 1044 
 1045 /*
 1046  * Start packet transmission on the interface.
 1047  */
 1048 static void
 1049 fxp_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 1050 {
 1051         struct fxp_softc *sc = ifp->if_softc;
 1052         struct fxp_cb_tx *txp;
 1053 
 1054         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 1055         ASSERT_SERIALIZED(ifp->if_serializer);
 1056 
 1057         /*
 1058          * See if we need to suspend xmit until the multicast filter
 1059          * has been reprogrammed (which can only be done at the head
 1060          * of the command chain).
 1061          */
 1062         if (sc->need_mcsetup) {
 1063                 ifq_purge(&ifp->if_snd);
 1064                 return;
 1065         }
 1066 
 1067         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
 1068                 return;
 1069 
 1070         txp = NULL;
 1071 
 1072         /*
 1073          * We're finished if there is nothing more to add to the list or if
 1074          * we're all filled up with buffers to transmit.
 1075          * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
 1076          *       a NOP command when needed.
 1077          */
 1078         while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
 1079                 struct mbuf *m, *mb_head;
 1080                 int segment, ntries = 0;
 1081 
 1082                 /*
 1083                  * Grab a packet to transmit.
 1084                  */
 1085                 mb_head = ifq_dequeue(&ifp->if_snd);
 1086                 if (mb_head == NULL)
 1087                         break;
 1088 tbdinit:
 1089                 /*
 1090                  * Make sure that the packet fits into one TX desc
 1091                  */
 1092                 segment = 0;
 1093                 for (m = mb_head; m != NULL; m = m->m_next) {
 1094                         if (m->m_len != 0) {
 1095                                 ++segment;
 1096                                 if (segment >= FXP_NTXSEG)
 1097                                         break;
 1098                         }
 1099                 }
 1100                 if (segment >= FXP_NTXSEG) {
 1101                         struct mbuf *mn;
 1102 
 1103                         if (ntries) {
 1104                                 /*
 1105                                  * Packet is excessively fragmented,
 1106                                  * and will never fit into one TX
 1107                                  * desc.  Give it up.
 1108                                  */
 1109                                 m_freem(mb_head);
 1110                                 IFNET_STAT_INC(ifp, oerrors, 1);
 1111                                 continue;
 1112                         }
 1113 
 1114                         mn = m_dup(mb_head, MB_DONTWAIT);
 1115                         if (mn == NULL) {
 1116                                 m_freem(mb_head);
 1117                                 IFNET_STAT_INC(ifp, oerrors, 1);
 1118                                 continue;
 1119                         }
 1120 
 1121                         m_freem(mb_head);
 1122                         mb_head = mn;
 1123                         ntries = 1;
 1124                         goto tbdinit;
 1125                 }
 1126 
 1127                 /*
 1128                  * Get pointer to next available tx desc.
 1129                  */
 1130                 txp = sc->cbl_last->next;
 1131 
 1132                 /*
 1133                  * Go through each of the mbufs in the chain and initialize
 1134                  * the transmit buffer descriptors with the physical address
 1135                  * and size of the mbuf.
 1136                  */
 1137                 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
 1138                         if (m->m_len != 0) {
 1139                                 KKASSERT(segment < FXP_NTXSEG);
 1140 
 1141                                 txp->tbd[segment].tb_addr =
 1142                                     vtophys(mtod(m, vm_offset_t));
 1143                                 txp->tbd[segment].tb_size = m->m_len;
 1144                                 segment++;
 1145                         }
 1146                 }
 1147                 KKASSERT(m == NULL);
 1148 
 1149                 txp->tbd_number = segment;
 1150                 txp->mb_head = mb_head;
 1151                 txp->cb_status = 0;
 1152                 if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
 1153                         txp->cb_command =
 1154                             FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
 1155                             FXP_CB_COMMAND_S;
 1156                 } else {
 1157                         txp->cb_command =
 1158                             FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
 1159                             FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
 1160                 }
 1161                 txp->tx_threshold = tx_threshold;
 1162 
 1163                 /*
 1164                  * Advance the end of list forward.
 1165                  */
 1166                 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
 1167                 sc->cbl_last = txp;
 1168 
 1169                 /*
 1170                  * Advance the beginning of the list forward if there are
 1171                  * no other packets queued (when nothing is queued, cbl_first
 1172                  * sits on the last TxCB that was sent out).
 1173                  */
 1174                 if (sc->tx_queued == 0)
 1175                         sc->cbl_first = txp;
 1176 
 1177                 sc->tx_queued++;
 1178                 /*
 1179                  * Set a 5 second timer just in case we don't hear
 1180                  * from the card again.
 1181                  */
 1182                 ifp->if_timer = 5;
 1183 
 1184                 BPF_MTAP(ifp, mb_head);
 1185         }
 1186 
 1187         if (sc->tx_queued >= FXP_USABLE_TXCB)
 1188                 ifq_set_oactive(&ifp->if_snd);
 1189 
 1190         /*
 1191          * We're finished. If we added to the list, issue a RESUME to get DMA
 1192          * going again if suspended.
 1193          */
 1194         if (txp != NULL) {
 1195                 fxp_scb_wait(sc);
 1196                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
 1197         }
 1198 }
 1199 
 1200 #ifdef IFPOLL_ENABLE
 1201 
 1202 static void
 1203 fxp_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
 1204 {
 1205         struct fxp_softc *sc = ifp->if_softc;
 1206         u_int8_t statack;
 1207 
 1208         ASSERT_SERIALIZED(ifp->if_serializer);
 1209 
 1210         statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
 1211                   FXP_SCB_STATACK_FR;
 1212         if (sc->fxp_npoll.ifpc_stcount-- == 0) {
 1213                 u_int8_t tmp;
 1214 
 1215                 sc->fxp_npoll.ifpc_stcount = sc->fxp_npoll.ifpc_stfrac;
 1216 
 1217                 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
 1218                 if (tmp == 0xff || tmp == 0)
 1219                         return; /* nothing to do */
 1220                 tmp &= ~statack;
 1221                 /* ack what we can */
 1222                 if (tmp != 0)
 1223                         CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
 1224                 statack |= tmp;
 1225         }
 1226         fxp_intr_body(sc, statack, count);
 1227 }
 1228 
 1229 static void
 1230 fxp_npoll(struct ifnet *ifp, struct ifpoll_info *info)
 1231 {
 1232         struct fxp_softc *sc = ifp->if_softc;
 1233 
 1234         ASSERT_SERIALIZED(ifp->if_serializer);
 1235 
 1236         if (info != NULL) {
 1237                 int cpuid = sc->fxp_npoll.ifpc_cpuid;
 1238 
 1239                 info->ifpi_rx[cpuid].poll_func = fxp_npoll_compat;
 1240                 info->ifpi_rx[cpuid].arg = NULL;
 1241                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
 1242 
 1243                 if (ifp->if_flags & IFF_RUNNING) {
 1244                         /* disable interrupts */
 1245                         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
 1246                             FXP_SCB_INTR_DISABLE);
 1247                         sc->fxp_npoll.ifpc_stcount = 0;
 1248                 }
 1249                 ifq_set_cpuid(&ifp->if_snd, cpuid);
 1250         } else {
 1251                 if (ifp->if_flags & IFF_RUNNING) {
 1252                         /* enable interrupts */
 1253                         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
 1254                 }
 1255                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
 1256         }
 1257 }
 1258 
 1259 #endif /* IFPOLL_ENABLE */
 1260 
 1261 /*
 1262  * Process interface interrupts.
 1263  */
 1264 static void
 1265 fxp_intr(void *xsc)
 1266 {
 1267         struct fxp_softc *sc = xsc;
 1268         u_int8_t statack;
 1269 
 1270         ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
 1271 
 1272         if (sc->suspended) {
 1273                 return;
 1274         }
 1275 
 1276         while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
 1277                 /*
 1278                  * It should not be possible to have all bits set; the
 1279                  * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If 
 1280                  * all bits are set, this may indicate that the card has
 1281                  * been physically ejected, so ignore it.
 1282                  */  
 1283                 if (statack == 0xff) 
 1284                         return;
 1285 
 1286                 /*
 1287                  * First ACK all the interrupts in this pass.
 1288                  */
 1289                 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
 1290                 fxp_intr_body(sc, statack, -1);
 1291         }
 1292 }
 1293 
 1294 static void
 1295 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
 1296 {
 1297         struct ifnet *ifp = &sc->arpcom.ac_if;
 1298         struct mbuf *m;
 1299         struct fxp_rfa *rfa;
 1300         int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
 1301 
 1302         if (rnr)
 1303                 fxp_rnr++;
 1304 #ifdef IFPOLL_ENABLE
 1305         /* Pick up a deferred RNR condition if `count' ran out last time. */
 1306         if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
 1307                 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
 1308                 rnr = 1;
 1309         }
 1310 #endif
 1311 
 1312         /*
 1313          * Free any finished transmit mbuf chains.
 1314          *
 1315          * Handle the CNA event likt a CXTNO event. It used to
 1316          * be that this event (control unit not ready) was not
 1317          * encountered, but it is now with the SMPng modifications.
 1318          * The exact sequence of events that occur when the interface
 1319          * is brought up are different now, and if this event
 1320          * goes unhandled, the configuration/rxfilter setup sequence
 1321          * can stall for several seconds. The result is that no
 1322          * packets go out onto the wire for about 5 to 10 seconds
 1323          * after the interface is ifconfig'ed for the first time.
 1324          */
 1325         if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
 1326                 struct fxp_cb_tx *txp;
 1327 
 1328                 for (txp = sc->cbl_first; sc->tx_queued &&
 1329                     (txp->cb_status & FXP_CB_STATUS_C) != 0;
 1330                     txp = txp->next) {
 1331                         if ((m = txp->mb_head) != NULL) {
 1332                                 txp->mb_head = NULL;
 1333                                 sc->tx_queued--;
 1334                                 m_freem(m);
 1335                         } else {
 1336                                 sc->tx_queued--;
 1337                         }
 1338                 }
 1339                 sc->cbl_first = txp;
 1340 
 1341                 if (sc->tx_queued < FXP_USABLE_TXCB)
 1342                         ifq_clr_oactive(&ifp->if_snd);
 1343 
 1344                 if (sc->tx_queued == 0) {
 1345                         ifp->if_timer = 0;
 1346                         if (sc->need_mcsetup)
 1347                                 fxp_mc_setup(sc);
 1348                 }
 1349 
 1350                 /*
 1351                  * Try to start more packets transmitting.
 1352                  */
 1353                 if (!ifq_is_empty(&ifp->if_snd))
 1354                         if_devstart(ifp);
 1355         }
 1356 
 1357         /*
 1358          * Just return if nothing happened on the receive side.
 1359          */
 1360         if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
 1361                 return;
 1362 
 1363         /*
 1364          * Process receiver interrupts. If a no-resource (RNR)
 1365          * condition exists, get whatever packets we can and
 1366          * re-start the receiver.
 1367          *
 1368          * When using polling, we do not process the list to completion,
 1369          * so when we get an RNR interrupt we must defer the restart
 1370          * until we hit the last buffer with the C bit set.
 1371          * If we run out of cycles and rfa_headm has the C bit set,
 1372          * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
 1373          * that the info will be used in the subsequent polling cycle.
 1374          */
 1375         for (;;) {
 1376                 m = sc->rfa_headm;
 1377                 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
 1378                                          RFA_ALIGNMENT_FUDGE);
 1379 
 1380 #ifdef IFPOLL_ENABLE /* loop at most count times if count >=0 */
 1381                 if (count >= 0 && count-- == 0) {
 1382                         if (rnr) {
 1383                                 /* Defer RNR processing until the next time. */
 1384                                 sc->flags |= FXP_FLAG_DEFERRED_RNR;
 1385                                 rnr = 0;
 1386                         }
 1387                         break;
 1388                 }
 1389 #endif /* IFPOLL_ENABLE */
 1390 
 1391                 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
 1392                         break;
 1393 
 1394                 /*
 1395                  * Remove first packet from the chain.
 1396                  */
 1397                 sc->rfa_headm = m->m_next;
 1398                 if (sc->rfa_headm == NULL)
 1399                         sc->rfa_tailm = NULL;
 1400                 m->m_next = NULL;
 1401 
 1402                 /*
 1403                  * Add a new buffer to the receive chain.
 1404                  * If this fails, the old buffer is recycled
 1405                  * instead.
 1406                  */
 1407                 if (fxp_add_rfabuf(sc, m) == 0) {
 1408                         int total_len;
 1409 
 1410                         /*
 1411                          * Fetch packet length (the top 2 bits of
 1412                          * actual_size are flags set by the controller
 1413                          * upon completion), and drop the packet in case
 1414                          * of bogus length or CRC errors.
 1415                          */
 1416                         total_len = rfa->actual_size & 0x3fff;
 1417                         if (total_len < sizeof(struct ether_header) ||
 1418                             total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
 1419                                         sizeof(struct fxp_rfa) ||
 1420                             (rfa->rfa_status & FXP_RFA_STATUS_CRC)) {
 1421                                 m_freem(m);
 1422                                 continue;
 1423                         }
 1424                         m->m_pkthdr.len = m->m_len = total_len;
 1425                         ifp->if_input(ifp, m);
 1426                 }
 1427         }
 1428 
 1429         if (rnr) {
 1430                 fxp_scb_wait(sc);
 1431                 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
 1432                     vtophys(sc->rfa_headm->m_ext.ext_buf) +
 1433                     RFA_ALIGNMENT_FUDGE);
 1434                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
 1435         }
 1436 }
 1437 
 1438 /*
 1439  * Update packet in/out/collision statistics. The i82557 doesn't
 1440  * allow you to access these counters without doing a fairly
 1441  * expensive DMA to get _all_ of the statistics it maintains, so
 1442  * we do this operation here only once per second. The statistics
 1443  * counters in the kernel are updated from the previous dump-stats
 1444  * DMA and then a new dump-stats DMA is started. The on-chip
 1445  * counters are zeroed when the DMA completes. If we can't start
 1446  * the DMA immediately, we don't wait - we just prepare to read
 1447  * them again next time.
 1448  */
 1449 static void
 1450 fxp_tick(void *xsc)
 1451 {
 1452         struct fxp_softc *sc = xsc;
 1453         struct ifnet *ifp = &sc->arpcom.ac_if;
 1454         struct fxp_stats *sp = sc->fxp_stats;
 1455         struct fxp_cb_tx *txp;
 1456         struct mbuf *m;
 1457 
 1458         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
 1459 
 1460         IFNET_STAT_INC(ifp, opackets, sp->tx_good);
 1461         IFNET_STAT_INC(ifp, collisions, sp->tx_total_collisions);
 1462         if (sp->rx_good) {
 1463                 IFNET_STAT_INC(ifp, ipackets, sp->rx_good);
 1464                 sc->rx_idle_secs = 0;
 1465         } else {
 1466                 /*
 1467                  * Receiver's been idle for another second.
 1468                  */
 1469                 sc->rx_idle_secs++;
 1470         }
 1471         IFNET_STAT_INC(ifp, ierrors,
 1472             sp->rx_crc_errors +
 1473             sp->rx_alignment_errors +
 1474             sp->rx_rnr_errors +
 1475             sp->rx_overrun_errors);
 1476         /*
 1477          * If any transmit underruns occured, bump up the transmit
 1478          * threshold by another 512 bytes (64 * 8).
 1479          */
 1480         if (sp->tx_underruns) {
 1481                 IFNET_STAT_INC(ifp, oerrors, sp->tx_underruns);
 1482                 if (tx_threshold < 192)
 1483                         tx_threshold += 64;
 1484         }
 1485 
 1486         /*
 1487          * Release any xmit buffers that have completed DMA. This isn't
 1488          * strictly necessary to do here, but it's advantagous for mbufs
 1489          * with external storage to be released in a timely manner rather
 1490          * than being defered for a potentially long time. This limits
 1491          * the delay to a maximum of one second.
 1492          */
 1493         for (txp = sc->cbl_first; sc->tx_queued &&
 1494             (txp->cb_status & FXP_CB_STATUS_C) != 0;
 1495             txp = txp->next) {
 1496                 if ((m = txp->mb_head) != NULL) {
 1497                         txp->mb_head = NULL;
 1498                         sc->tx_queued--;
 1499                         m_freem(m);
 1500                 } else {
 1501                         sc->tx_queued--;
 1502                 }
 1503         }
 1504         sc->cbl_first = txp;
 1505 
 1506         if (sc->tx_queued < FXP_USABLE_TXCB)
 1507                 ifq_clr_oactive(&ifp->if_snd);
 1508         if (sc->tx_queued == 0)
 1509                 ifp->if_timer = 0;
 1510 
 1511         /*
 1512          * Try to start more packets transmitting.
 1513          */
 1514         if (!ifq_is_empty(&ifp->if_snd))
 1515                 if_devstart(ifp);
 1516 
 1517         /*
 1518          * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
 1519          * then assume the receiver has locked up and attempt to clear
 1520          * the condition by reprogramming the multicast filter. This is
 1521          * a work-around for a bug in the 82557 where the receiver locks
 1522          * up if it gets certain types of garbage in the syncronization
 1523          * bits prior to the packet header. This bug is supposed to only
 1524          * occur in 10Mbps mode, but has been seen to occur in 100Mbps
 1525          * mode as well (perhaps due to a 10/100 speed transition).
 1526          */
 1527         if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
 1528                 sc->rx_idle_secs = 0;
 1529                 fxp_mc_setup(sc);
 1530         }
 1531         /*
 1532          * If there is no pending command, start another stats
 1533          * dump. Otherwise punt for now.
 1534          */
 1535         if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
 1536                 /*
 1537                  * Start another stats dump.
 1538                  */
 1539                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
 1540         } else {
 1541                 /*
 1542                  * A previous command is still waiting to be accepted.
 1543                  * Just zero our copy of the stats and wait for the
 1544                  * next timer event to update them.
 1545                  */
 1546                 sp->tx_good = 0;
 1547                 sp->tx_underruns = 0;
 1548                 sp->tx_total_collisions = 0;
 1549 
 1550                 sp->rx_good = 0;
 1551                 sp->rx_crc_errors = 0;
 1552                 sp->rx_alignment_errors = 0;
 1553                 sp->rx_rnr_errors = 0;
 1554                 sp->rx_overrun_errors = 0;
 1555         }
 1556         if (sc->miibus != NULL)
 1557                 mii_tick(device_get_softc(sc->miibus));
 1558         /*
 1559          * Schedule another timeout one second from now.
 1560          */
 1561         callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
 1562 
 1563         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
 1564 }
 1565 
 1566 /*
 1567  * Stop the interface. Cancels the statistics updater and resets
 1568  * the interface.
 1569  */
 1570 static void
 1571 fxp_stop(struct fxp_softc *sc)
 1572 {
 1573         struct ifnet *ifp = &sc->arpcom.ac_if;
 1574         struct fxp_cb_tx *txp;
 1575         int i;
 1576 
 1577         ASSERT_SERIALIZED(ifp->if_serializer);
 1578 
 1579         ifp->if_flags &= ~IFF_RUNNING;
 1580         ifq_clr_oactive(&ifp->if_snd);
 1581         ifp->if_timer = 0;
 1582 
 1583         /*
 1584          * Cancel stats updater.
 1585          */
 1586         callout_stop(&sc->fxp_stat_timer);
 1587 
 1588         /*
 1589          * Issue software reset, which also unloads the microcode.
 1590          */
 1591         sc->flags &= ~FXP_FLAG_UCODE;
 1592         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
 1593         DELAY(50);
 1594 
 1595         /*
 1596          * Release any xmit buffers.
 1597          */
 1598         txp = sc->cbl_base;
 1599         if (txp != NULL) {
 1600                 for (i = 0; i < FXP_NTXCB; i++) {
 1601                         if (txp[i].mb_head != NULL) {
 1602                                 m_freem(txp[i].mb_head);
 1603                                 txp[i].mb_head = NULL;
 1604                         }
 1605                 }
 1606         }
 1607         sc->tx_queued = 0;
 1608 
 1609         /*
 1610          * Free all the receive buffers then reallocate/reinitialize
 1611          */
 1612         if (sc->rfa_headm != NULL)
 1613                 m_freem(sc->rfa_headm);
 1614         sc->rfa_headm = NULL;
 1615         sc->rfa_tailm = NULL;
 1616         for (i = 0; i < FXP_NRFABUFS; i++) {
 1617                 if (fxp_add_rfabuf(sc, NULL) != 0) {
 1618                         /*
 1619                          * This "can't happen" - we're at splimp()
 1620                          * and we just freed all the buffers we need
 1621                          * above.
 1622                          */
 1623                         panic("fxp_stop: no buffers!");
 1624                 }
 1625         }
 1626 }
 1627 
 1628 /*
 1629  * Watchdog/transmission transmit timeout handler. Called when a
 1630  * transmission is started on the interface, but no interrupt is
 1631  * received before the timeout. This usually indicates that the
 1632  * card has wedged for some reason.
 1633  */
 1634 static void
 1635 fxp_watchdog(struct ifnet *ifp)
 1636 {
 1637         ASSERT_SERIALIZED(ifp->if_serializer);
 1638 
 1639         if_printf(ifp, "device timeout\n");
 1640         IFNET_STAT_INC(ifp, oerrors, 1);
 1641         fxp_init(ifp->if_softc);
 1642 }
 1643 
 1644 static void
 1645 fxp_init(void *xsc)
 1646 {
 1647         struct fxp_softc *sc = xsc;
 1648         struct ifnet *ifp = &sc->arpcom.ac_if;
 1649         struct fxp_cb_config *cbp;
 1650         struct fxp_cb_ias *cb_ias;
 1651         struct fxp_cb_tx *txp;
 1652         struct fxp_cb_mcs *mcsp;
 1653         int i, prm;
 1654 
 1655         ASSERT_SERIALIZED(ifp->if_serializer);
 1656 
 1657         /*
 1658          * Cancel any pending I/O
 1659          */
 1660         fxp_stop(sc);
 1661 
 1662         prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
 1663 
 1664         /*
 1665          * Initialize base of CBL and RFA memory. Loading with zero
 1666          * sets it up for regular linear addressing.
 1667          */
 1668         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
 1669         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
 1670 
 1671         fxp_scb_wait(sc);
 1672         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
 1673 
 1674         /*
 1675          * Initialize base of dump-stats buffer.
 1676          */
 1677         fxp_scb_wait(sc);
 1678         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
 1679         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
 1680 
 1681         /*
 1682          * Attempt to load microcode if requested.
 1683          */
 1684         if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
 1685                 fxp_load_ucode(sc);
 1686 
 1687         /*
 1688          * Initialize the multicast address list.
 1689          */
 1690         if (fxp_mc_addrs(sc)) {
 1691                 mcsp = sc->mcsp;
 1692                 mcsp->cb_status = 0;
 1693                 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
 1694                 mcsp->link_addr = -1;
 1695                 /*
 1696                  * Start the multicast setup command.
 1697                  */
 1698                 fxp_scb_wait(sc);
 1699                 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
 1700                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1701                 /* ...and wait for it to complete. */
 1702                 fxp_dma_wait(&mcsp->cb_status, sc);
 1703         }
 1704 
 1705         /*
 1706          * We temporarily use memory that contains the TxCB list to
 1707          * construct the config CB. The TxCB list memory is rebuilt
 1708          * later.
 1709          */
 1710         cbp = (struct fxp_cb_config *) sc->cbl_base;
 1711 
 1712         /*
 1713          * This bcopy is kind of disgusting, but there are a bunch of must be
 1714          * zero and must be one bits in this structure and this is the easiest
 1715          * way to initialize them all to proper values.
 1716          */
 1717         bcopy(fxp_cb_config_template,
 1718                 (void *)(uintptr_t)(volatile void *)&cbp->cb_status,
 1719                 sizeof(fxp_cb_config_template));
 1720 
 1721         cbp->cb_status =        0;
 1722         cbp->cb_command =       FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
 1723         cbp->link_addr =        -1;     /* (no) next command */
 1724         cbp->byte_count =       22;     /* (22) bytes to config */
 1725         cbp->rx_fifo_limit =    8;      /* rx fifo threshold (32 bytes) */
 1726         cbp->tx_fifo_limit =    0;      /* tx fifo threshold (0 bytes) */
 1727         cbp->adaptive_ifs =     0;      /* (no) adaptive interframe spacing */
 1728         cbp->mwi_enable =       sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
 1729         cbp->type_enable =      0;      /* actually reserved */
 1730         cbp->read_align_en =    sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
 1731         cbp->end_wr_on_cl =     sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
 1732         cbp->rx_dma_bytecount = 0;      /* (no) rx DMA max */
 1733         cbp->tx_dma_bytecount = 0;      /* (no) tx DMA max */
 1734         cbp->dma_mbce =         0;      /* (disable) dma max counters */
 1735         cbp->late_scb =         0;      /* (don't) defer SCB update */
 1736         cbp->direct_dma_dis =   1;      /* disable direct rcv dma mode */
 1737         cbp->tno_int_or_tco_en =0;      /* (disable) tx not okay interrupt */
 1738         cbp->ci_int =           1;      /* interrupt on CU idle */
 1739         cbp->ext_txcb_dis =     sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
 1740         cbp->ext_stats_dis =    1;      /* disable extended counters */
 1741         cbp->keep_overrun_rx =  0;      /* don't pass overrun frames to host */
 1742         cbp->save_bf =          sc->revision == FXP_REV_82557 ? 1 : prm;
 1743         cbp->disc_short_rx =    !prm;   /* discard short packets */
 1744         cbp->underrun_retry =   1;      /* retry mode (once) on DMA underrun */
 1745         cbp->two_frames =       0;      /* do not limit FIFO to 2 frames */
 1746         cbp->dyn_tbd =          0;      /* (no) dynamic TBD mode */
 1747         cbp->mediatype =        sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
 1748         cbp->csma_dis =         0;      /* (don't) disable link */
 1749         cbp->tcp_udp_cksum =    0;      /* (don't) enable checksum */
 1750         cbp->vlan_tco =         0;      /* (don't) enable vlan wakeup */
 1751         cbp->link_wake_en =     0;      /* (don't) assert PME# on link change */
 1752         cbp->arp_wake_en =      0;      /* (don't) assert PME# on arp */
 1753         cbp->mc_wake_en =       0;      /* (don't) enable PME# on mcmatch */
 1754         cbp->nsai =             1;      /* (don't) disable source addr insert */
 1755         cbp->preamble_length =  2;      /* (7 byte) preamble */
 1756         cbp->loopback =         0;      /* (don't) loopback */
 1757         cbp->linear_priority =  0;      /* (normal CSMA/CD operation) */
 1758         cbp->linear_pri_mode =  0;      /* (wait after xmit only) */
 1759         cbp->interfrm_spacing = 6;      /* (96 bits of) interframe spacing */
 1760         cbp->promiscuous =      prm;    /* promiscuous mode */
 1761         cbp->bcast_disable =    0;      /* (don't) disable broadcasts */
 1762         cbp->wait_after_win =   0;      /* (don't) enable modified backoff alg*/
 1763         cbp->ignore_ul =        0;      /* consider U/L bit in IA matching */
 1764         cbp->crc16_en =         0;      /* (don't) enable crc-16 algorithm */
 1765         cbp->crscdt =           sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
 1766 
 1767         cbp->stripping =        !prm;   /* truncate rx packet to byte count */
 1768         cbp->padding =          1;      /* (do) pad short tx packets */
 1769         cbp->rcv_crc_xfer =     0;      /* (don't) xfer CRC to host */
 1770         cbp->long_rx_en =       sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
 1771         cbp->ia_wake_en =       0;      /* (don't) wake up on address match */
 1772         cbp->magic_pkt_dis =    0;      /* (don't) disable magic packet */
 1773                                         /* must set wake_en in PMCSR also */
 1774         cbp->force_fdx =        0;      /* (don't) force full duplex */
 1775         cbp->fdx_pin_en =       1;      /* (enable) FDX# pin */
 1776         cbp->multi_ia =         0;      /* (don't) accept multiple IAs */
 1777         cbp->mc_all =           sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
 1778 
 1779         if (sc->revision == FXP_REV_82557) {
 1780                 /*
 1781                  * The 82557 has no hardware flow control, the values
 1782                  * below are the defaults for the chip.
 1783                  */
 1784                 cbp->fc_delay_lsb =     0;
 1785                 cbp->fc_delay_msb =     0x40;
 1786                 cbp->pri_fc_thresh =    3;
 1787                 cbp->tx_fc_dis =        0;
 1788                 cbp->rx_fc_restop =     0;
 1789                 cbp->rx_fc_restart =    0;
 1790                 cbp->fc_filter =        0;
 1791                 cbp->pri_fc_loc =       1;
 1792         } else {
 1793                 cbp->fc_delay_lsb =     0x1f;
 1794                 cbp->fc_delay_msb =     0x01;
 1795                 cbp->pri_fc_thresh =    3;
 1796                 cbp->tx_fc_dis =        0;      /* enable transmit FC */
 1797                 cbp->rx_fc_restop =     1;      /* enable FC restop frames */
 1798                 cbp->rx_fc_restart =    1;      /* enable FC restart frames */
 1799                 cbp->fc_filter =        !prm;   /* drop FC frames to host */
 1800                 cbp->pri_fc_loc =       1;      /* FC pri location (byte31) */
 1801         }
 1802 
 1803         /*
 1804          * Start the config command/DMA.
 1805          */
 1806         fxp_scb_wait(sc);
 1807         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
 1808         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1809         /* ...and wait for it to complete. */
 1810         fxp_dma_wait(&cbp->cb_status, sc);
 1811 
 1812         /*
 1813          * Now initialize the station address. Temporarily use the TxCB
 1814          * memory area like we did above for the config CB.
 1815          */
 1816         cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
 1817         cb_ias->cb_status = 0;
 1818         cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
 1819         cb_ias->link_addr = -1;
 1820         bcopy(sc->arpcom.ac_enaddr,
 1821             (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
 1822             sizeof(sc->arpcom.ac_enaddr));
 1823 
 1824         /*
 1825          * Start the IAS (Individual Address Setup) command/DMA.
 1826          */
 1827         fxp_scb_wait(sc);
 1828         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1829         /* ...and wait for it to complete. */
 1830         fxp_dma_wait(&cb_ias->cb_status, sc);
 1831 
 1832         /*
 1833          * Initialize transmit control block (TxCB) list.
 1834          */
 1835 
 1836         txp = sc->cbl_base;
 1837         bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
 1838         for (i = 0; i < FXP_NTXCB; i++) {
 1839                 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
 1840                 txp[i].cb_command = FXP_CB_COMMAND_NOP;
 1841                 txp[i].link_addr =
 1842                     vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
 1843                 if (sc->flags & FXP_FLAG_EXT_TXCB)
 1844                         txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
 1845                 else
 1846                         txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
 1847                 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
 1848         }
 1849         /*
 1850          * Set the suspend flag on the first TxCB and start the control
 1851          * unit. It will execute the NOP and then suspend.
 1852          */
 1853         txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
 1854         sc->cbl_first = sc->cbl_last = txp;
 1855         sc->tx_queued = 1;
 1856 
 1857         fxp_scb_wait(sc);
 1858         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1859 
 1860         /*
 1861          * Initialize receiver buffer area - RFA.
 1862          */
 1863         fxp_scb_wait(sc);
 1864         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
 1865             vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
 1866         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
 1867 
 1868         /*
 1869          * Set current media.
 1870          */
 1871         if (sc->miibus != NULL)
 1872                 mii_mediachg(device_get_softc(sc->miibus));
 1873 
 1874         ifp->if_flags |= IFF_RUNNING;
 1875         ifq_clr_oactive(&ifp->if_snd);
 1876 
 1877         /*
 1878          * Enable interrupts.
 1879          */
 1880 #ifdef IFPOLL_ENABLE
 1881         /*
 1882          * ... but only do that if we are not polling. And because (presumably)
 1883          * the default is interrupts on, we need to disable them explicitly!
 1884          */
 1885         if (ifp->if_flags & IFF_NPOLLING) {
 1886                 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
 1887                 sc->fxp_npoll.ifpc_stcount = 0;
 1888         } else
 1889 #endif /* IFPOLL_ENABLE */
 1890         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
 1891 
 1892         /*
 1893          * Start stats updater.
 1894          */
 1895         callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
 1896 }
 1897 
 1898 static int
 1899 fxp_serial_ifmedia_upd(struct ifnet *ifp)
 1900 {
 1901         ASSERT_SERIALIZED(ifp->if_serializer);
 1902         return (0);
 1903 }
 1904 
 1905 static void
 1906 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1907 {
 1908         ASSERT_SERIALIZED(ifp->if_serializer);
 1909         ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
 1910 }
 1911 
 1912 /*
 1913  * Change media according to request.
 1914  */
 1915 static int
 1916 fxp_ifmedia_upd(struct ifnet *ifp)
 1917 {
 1918         struct fxp_softc *sc = ifp->if_softc;
 1919         struct mii_data *mii;
 1920 
 1921         ASSERT_SERIALIZED(ifp->if_serializer);
 1922 
 1923         mii = device_get_softc(sc->miibus);
 1924         mii_mediachg(mii);
 1925         return (0);
 1926 }
 1927 
 1928 /*
 1929  * Notify the world which media we're using.
 1930  */
 1931 static void
 1932 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1933 {
 1934         struct fxp_softc *sc = ifp->if_softc;
 1935         struct mii_data *mii;
 1936 
 1937         ASSERT_SERIALIZED(ifp->if_serializer);
 1938 
 1939         mii = device_get_softc(sc->miibus);
 1940         mii_pollstat(mii);
 1941         ifmr->ifm_active = mii->mii_media_active;
 1942         ifmr->ifm_status = mii->mii_media_status;
 1943 
 1944         if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
 1945                 sc->cu_resume_bug = 1;
 1946         else
 1947                 sc->cu_resume_bug = 0;
 1948 }
 1949 
 1950 /*
 1951  * Add a buffer to the end of the RFA buffer list.
 1952  * Return 0 if successful, 1 for failure. A failure results in
 1953  * adding the 'oldm' (if non-NULL) on to the end of the list -
 1954  * tossing out its old contents and recycling it.
 1955  * The RFA struct is stuck at the beginning of mbuf cluster and the
 1956  * data pointer is fixed up to point just past it.
 1957  */
 1958 static int
 1959 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
 1960 {
 1961         u_int32_t v;
 1962         struct mbuf *m;
 1963         struct fxp_rfa *rfa, *p_rfa;
 1964 
 1965         m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
 1966         if (m == NULL) { /* try to recycle the old mbuf instead */
 1967                 if (oldm == NULL)
 1968                         return 1;
 1969                 m = oldm;
 1970                 m->m_data = m->m_ext.ext_buf;
 1971         }
 1972 
 1973         /*
 1974          * Move the data pointer up so that the incoming data packet
 1975          * will be 32-bit aligned.
 1976          */
 1977         m->m_data += RFA_ALIGNMENT_FUDGE;
 1978 
 1979         /*
 1980          * Get a pointer to the base of the mbuf cluster and move
 1981          * data start past it.
 1982          */
 1983         rfa = mtod(m, struct fxp_rfa *);
 1984         m->m_data += sizeof(struct fxp_rfa);
 1985         rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) -
 1986                                 RFA_ALIGNMENT_FUDGE);
 1987 
 1988         /*
 1989          * Initialize the rest of the RFA.  Note that since the RFA
 1990          * is misaligned, we cannot store values directly.  Instead,
 1991          * we use an optimized, inline copy.
 1992          */
 1993 
 1994         rfa->rfa_status = 0;
 1995         rfa->rfa_control = FXP_RFA_CONTROL_EL;
 1996         rfa->actual_size = 0;
 1997 
 1998         v = -1;
 1999         fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
 2000         fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
 2001 
 2002         /*
 2003          * If there are other buffers already on the list, attach this
 2004          * one to the end by fixing up the tail to point to this one.
 2005          */
 2006         if (sc->rfa_headm != NULL) {
 2007                 p_rfa = (struct fxp_rfa *)(sc->rfa_tailm->m_ext.ext_buf +
 2008                                            RFA_ALIGNMENT_FUDGE);
 2009                 sc->rfa_tailm->m_next = m;
 2010                 v = vtophys(rfa);
 2011                 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
 2012                 p_rfa->rfa_control = 0;
 2013         } else {
 2014                 sc->rfa_headm = m;
 2015         }
 2016         sc->rfa_tailm = m;
 2017 
 2018         return (m == oldm);
 2019 }
 2020 
 2021 static int
 2022 fxp_miibus_readreg(device_t dev, int phy, int reg)
 2023 {
 2024         struct fxp_softc *sc = device_get_softc(dev);
 2025         int count = 10000;
 2026         int value;
 2027 
 2028         CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
 2029             (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
 2030 
 2031         while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
 2032             && count--)
 2033                 DELAY(10);
 2034 
 2035         if (count <= 0)
 2036                 device_printf(dev, "fxp_miibus_readreg: timed out\n");
 2037 
 2038         return (value & 0xffff);
 2039 }
 2040 
 2041 static void
 2042 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
 2043 {
 2044         struct fxp_softc *sc = device_get_softc(dev);
 2045         int count = 10000;
 2046 
 2047         CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
 2048             (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
 2049             (value & 0xffff));
 2050 
 2051         while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
 2052             count--)
 2053                 DELAY(10);
 2054 
 2055         if (count <= 0)
 2056                 device_printf(dev, "fxp_miibus_writereg: timed out\n");
 2057 }
 2058 
 2059 static int
 2060 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
 2061 {
 2062         struct fxp_softc *sc = ifp->if_softc;
 2063         struct ifreq *ifr = (struct ifreq *)data;
 2064         struct mii_data *mii;
 2065         int error = 0;
 2066 
 2067         ASSERT_SERIALIZED(ifp->if_serializer);
 2068 
 2069         switch (command) {
 2070 
 2071         case SIOCSIFFLAGS:
 2072                 if (ifp->if_flags & IFF_ALLMULTI)
 2073                         sc->flags |= FXP_FLAG_ALL_MCAST;
 2074                 else
 2075                         sc->flags &= ~FXP_FLAG_ALL_MCAST;
 2076 
 2077                 /*
 2078                  * If interface is marked up and not running, then start it.
 2079                  * If it is marked down and running, stop it.
 2080                  * XXX If it's up then re-initialize it. This is so flags
 2081                  * such as IFF_PROMISC are handled.
 2082                  */
 2083                 if (ifp->if_flags & IFF_UP) {
 2084                         fxp_init(sc);
 2085                 } else {
 2086                         if (ifp->if_flags & IFF_RUNNING)
 2087                                 fxp_stop(sc);
 2088                 }
 2089                 break;
 2090 
 2091         case SIOCADDMULTI:
 2092         case SIOCDELMULTI:
 2093                 if (ifp->if_flags & IFF_ALLMULTI)
 2094                         sc->flags |= FXP_FLAG_ALL_MCAST;
 2095                 else
 2096                         sc->flags &= ~FXP_FLAG_ALL_MCAST;
 2097                 /*
 2098                  * Multicast list has changed; set the hardware filter
 2099                  * accordingly.
 2100                  */
 2101                 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
 2102                         fxp_mc_setup(sc);
 2103                 /*
 2104                  * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
 2105                  * again rather than else {}.
 2106                  */
 2107                 if (sc->flags & FXP_FLAG_ALL_MCAST)
 2108                         fxp_init(sc);
 2109                 error = 0;
 2110                 break;
 2111 
 2112         case SIOCSIFMEDIA:
 2113         case SIOCGIFMEDIA:
 2114                 if (sc->miibus != NULL) {
 2115                         mii = device_get_softc(sc->miibus);
 2116                         error = ifmedia_ioctl(ifp, ifr,
 2117                             &mii->mii_media, command);
 2118                 } else {
 2119                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
 2120                 }
 2121                 break;
 2122 
 2123         default:
 2124                 error = ether_ioctl(ifp, command, data);
 2125                 break;
 2126         }
 2127         return (error);
 2128 }
 2129 
 2130 /*
 2131  * Fill in the multicast address list and return number of entries.
 2132  */
 2133 static int
 2134 fxp_mc_addrs(struct fxp_softc *sc)
 2135 {
 2136         struct fxp_cb_mcs *mcsp = sc->mcsp;
 2137         struct ifnet *ifp = &sc->arpcom.ac_if;
 2138         struct ifmultiaddr *ifma;
 2139         int nmcasts;
 2140 
 2141         nmcasts = 0;
 2142         if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
 2143                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 2144                         if (ifma->ifma_addr->sa_family != AF_LINK)
 2145                                 continue;
 2146                         if (nmcasts >= MAXMCADDR) {
 2147                                 sc->flags |= FXP_FLAG_ALL_MCAST;
 2148                                 nmcasts = 0;
 2149                                 break;
 2150                         }
 2151                         bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
 2152                             (void *)(uintptr_t)(volatile void *)
 2153                                 &sc->mcsp->mc_addr[nmcasts][0], 6);
 2154                         nmcasts++;
 2155                 }
 2156         }
 2157         mcsp->mc_cnt = nmcasts * 6;
 2158         return (nmcasts);
 2159 }
 2160 
 2161 /*
 2162  * Program the multicast filter.
 2163  *
 2164  * We have an artificial restriction that the multicast setup command
 2165  * must be the first command in the chain, so we take steps to ensure
 2166  * this. By requiring this, it allows us to keep up the performance of
 2167  * the pre-initialized command ring (esp. link pointers) by not actually
 2168  * inserting the mcsetup command in the ring - i.e. its link pointer
 2169  * points to the TxCB ring, but the mcsetup descriptor itself is not part
 2170  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
 2171  * lead into the regular TxCB ring when it completes.
 2172  *
 2173  * This function must be called at splimp.
 2174  */
 2175 static void
 2176 fxp_mc_setup(struct fxp_softc *sc)
 2177 {
 2178         struct fxp_cb_mcs *mcsp = sc->mcsp;
 2179         struct ifnet *ifp = &sc->arpcom.ac_if;
 2180         int count;
 2181 
 2182         /*
 2183          * If there are queued commands, we must wait until they are all
 2184          * completed. If we are already waiting, then add a NOP command
 2185          * with interrupt option so that we're notified when all commands
 2186          * have been completed - fxp_start() ensures that no additional
 2187          * TX commands will be added when need_mcsetup is true.
 2188          */
 2189         if (sc->tx_queued) {
 2190                 struct fxp_cb_tx *txp;
 2191 
 2192                 /*
 2193                  * need_mcsetup will be true if we are already waiting for the
 2194                  * NOP command to be completed (see below). In this case, bail.
 2195                  */
 2196                 if (sc->need_mcsetup)
 2197                         return;
 2198                 sc->need_mcsetup = 1;
 2199 
 2200                 /*
 2201                  * Add a NOP command with interrupt so that we are notified
 2202                  * when all TX commands have been processed.
 2203                  */
 2204                 txp = sc->cbl_last->next;
 2205                 txp->mb_head = NULL;
 2206                 txp->cb_status = 0;
 2207                 txp->cb_command = FXP_CB_COMMAND_NOP |
 2208                     FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
 2209                 /*
 2210                  * Advance the end of list forward.
 2211                  */
 2212                 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
 2213                 sc->cbl_last = txp;
 2214                 sc->tx_queued++;
 2215                 /*
 2216                  * Issue a resume in case the CU has just suspended.
 2217                  */
 2218                 fxp_scb_wait(sc);
 2219                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
 2220                 /*
 2221                  * Set a 5 second timer just in case we don't hear from the
 2222                  * card again.
 2223                  */
 2224                 ifp->if_timer = 5;
 2225 
 2226                 return;
 2227         }
 2228         sc->need_mcsetup = 0;
 2229 
 2230         /*
 2231          * Initialize multicast setup descriptor.
 2232          */
 2233         mcsp->next = sc->cbl_base;
 2234         mcsp->mb_head = NULL;
 2235         mcsp->cb_status = 0;
 2236         mcsp->cb_command = FXP_CB_COMMAND_MCAS |
 2237             FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
 2238         mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
 2239         fxp_mc_addrs(sc);
 2240         sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
 2241         sc->tx_queued = 1;
 2242 
 2243         /*
 2244          * Wait until command unit is not active. This should never
 2245          * be the case when nothing is queued, but make sure anyway.
 2246          */
 2247         count = 100;
 2248         while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
 2249             FXP_SCB_CUS_ACTIVE && --count)
 2250                 DELAY(10);
 2251         if (count == 0) {
 2252                 if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
 2253                 return;
 2254         }
 2255 
 2256         /*
 2257          * Start the multicast setup command.
 2258          */
 2259         fxp_scb_wait(sc);
 2260         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
 2261         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2262 
 2263         ifp->if_timer = 2;
 2264         return;
 2265 }
 2266 
 2267 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
 2268 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
 2269 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
 2270 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
 2271 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
 2272 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
 2273 
 2274 #define UCODE(x)        x, sizeof(x)
 2275 
 2276 struct ucode {
 2277         u_int32_t       revision;
 2278         u_int32_t       *ucode;
 2279         int             length;
 2280         u_short         int_delay_offset;
 2281         u_short         bundle_max_offset;
 2282 } ucode_table[] = {
 2283         { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
 2284         { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
 2285         { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
 2286             D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
 2287         { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
 2288             D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
 2289         { FXP_REV_82550, UCODE(fxp_ucode_d102),
 2290             D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
 2291         { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
 2292             D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
 2293         { 0, NULL, 0, 0, 0 }
 2294 };
 2295 
 2296 static void
 2297 fxp_load_ucode(struct fxp_softc *sc)
 2298 {
 2299         struct ucode *uc;
 2300         struct fxp_cb_ucode *cbp;
 2301 
 2302         for (uc = ucode_table; uc->ucode != NULL; uc++)
 2303                 if (sc->revision == uc->revision)
 2304                         break;
 2305         if (uc->ucode == NULL)
 2306                 return;
 2307         cbp = (struct fxp_cb_ucode *)sc->cbl_base;
 2308         cbp->cb_status = 0;
 2309         cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
 2310         cbp->link_addr = -1;            /* (no) next command */
 2311         memcpy(cbp->ucode, uc->ucode, uc->length);
 2312         if (uc->int_delay_offset)
 2313                 *(u_short *)&cbp->ucode[uc->int_delay_offset] =
 2314                     sc->tunable_int_delay + sc->tunable_int_delay / 2;
 2315         if (uc->bundle_max_offset)
 2316                 *(u_short *)&cbp->ucode[uc->bundle_max_offset] =
 2317                     sc->tunable_bundle_max;
 2318         /*
 2319          * Download the ucode to the chip.
 2320          */
 2321         fxp_scb_wait(sc);
 2322         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
 2323         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2324         /* ...and wait for it to complete. */
 2325         fxp_dma_wait(&cbp->cb_status, sc);
 2326         if_printf(&sc->arpcom.ac_if,
 2327             "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
 2328             sc->tunable_int_delay, 
 2329             uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
 2330         sc->flags |= FXP_FLAG_UCODE;
 2331 }
 2332 
 2333 /*
 2334  * Interrupt delay is expressed in microseconds, a multiplier is used
 2335  * to convert this to the appropriate clock ticks before using. 
 2336  */
 2337 static int
 2338 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
 2339 {
 2340         return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
 2341 }
 2342 
 2343 static int
 2344 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
 2345 {
 2346         return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
 2347 }

Cache object: ac19699bcd00be92d1bd077722f2d8ac


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.