The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/ig_hal/e1000_82543.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2 
    3   Copyright (c) 2001-2012, Intel Corporation 
    4   All rights reserved.
    5   
    6   Redistribution and use in source and binary forms, with or without 
    7   modification, are permitted provided that the following conditions are met:
    8   
    9    1. Redistributions of source code must retain the above copyright notice, 
   10       this list of conditions and the following disclaimer.
   11   
   12    2. Redistributions in binary form must reproduce the above copyright 
   13       notice, this list of conditions and the following disclaimer in the 
   14       documentation and/or other materials provided with the distribution.
   15   
   16    3. Neither the name of the Intel Corporation nor the names of its 
   17       contributors may be used to endorse or promote products derived from 
   18       this software without specific prior written permission.
   19   
   20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
   23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
   24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
   25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
   26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
   27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
   28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30   POSSIBILITY OF SUCH DAMAGE.
   31 
   32 ******************************************************************************/
   33 /*$FreeBSD:$*/
   34 
   35 /*
   36  * 82543GC Gigabit Ethernet Controller (Fiber)
   37  * 82543GC Gigabit Ethernet Controller (Copper)
   38  * 82544EI Gigabit Ethernet Controller (Copper)
   39  * 82544EI Gigabit Ethernet Controller (Fiber)
   40  * 82544GC Gigabit Ethernet Controller (Copper)
   41  * 82544GC Gigabit Ethernet Controller (LOM)
   42  */
   43 
   44 #include "e1000_api.h"
   45 
   46 static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
   47 static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
   48 static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
   49 static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
   50                                      u16 *data);
   51 static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
   52                                       u16 data);
   53 static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
   54 static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
   55 static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
   56 static s32  e1000_init_hw_82543(struct e1000_hw *hw);
   57 static s32  e1000_setup_link_82543(struct e1000_hw *hw);
   58 static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
   59 static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
   60 static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
   61 static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
   62 static s32  e1000_led_on_82543(struct e1000_hw *hw);
   63 static s32  e1000_led_off_82543(struct e1000_hw *hw);
   64 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
   65                                    u32 value);
   66 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
   67 static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
   68 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
   69 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
   70 static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
   71 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
   72 static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
   73 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
   74                                            u16 count);
   75 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
   76 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
   77 
   78 /**
   79  *  e1000_init_phy_params_82543 - Init PHY func ptrs.
   80  *  @hw: pointer to the HW structure
   81  **/
   82 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
   83 {
   84         struct e1000_phy_info *phy = &hw->phy;
   85         s32 ret_val = E1000_SUCCESS;
   86 
   87         DEBUGFUNC("e1000_init_phy_params_82543");
   88 
   89         if (hw->phy.media_type != e1000_media_type_copper) {
   90                 phy->type = e1000_phy_none;
   91                 goto out;
   92         } else {
   93                 phy->ops.power_up = e1000_power_up_phy_copper;
   94                 phy->ops.power_down = e1000_power_down_phy_copper;
   95         }
   96 
   97         phy->addr               = 1;
   98         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
   99         phy->reset_delay_us     = 10000;
  100         phy->type               = e1000_phy_m88;
  101 
  102         /* Function Pointers */
  103         phy->ops.check_polarity = e1000_check_polarity_m88;
  104         phy->ops.commit         = e1000_phy_sw_reset_generic;
  105         phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
  106         phy->ops.get_cable_length = e1000_get_cable_length_m88;
  107         phy->ops.get_cfg_done   = e1000_get_cfg_done_generic;
  108         phy->ops.read_reg       = (hw->mac.type == e1000_82543)
  109                                   ? e1000_read_phy_reg_82543
  110                                   : e1000_read_phy_reg_m88;
  111         phy->ops.reset          = (hw->mac.type == e1000_82543)
  112                                   ? e1000_phy_hw_reset_82543
  113                                   : e1000_phy_hw_reset_generic;
  114         phy->ops.write_reg      = (hw->mac.type == e1000_82543)
  115                                   ? e1000_write_phy_reg_82543
  116                                   : e1000_write_phy_reg_m88;
  117         phy->ops.get_info       = e1000_get_phy_info_m88;
  118 
  119         /*
  120          * The external PHY of the 82543 can be in a funky state.
  121          * Resetting helps us read the PHY registers for acquiring
  122          * the PHY ID.
  123          */
  124         if (!e1000_init_phy_disabled_82543(hw)) {
  125                 ret_val = phy->ops.reset(hw);
  126                 if (ret_val) {
  127                         DEBUGOUT("Resetting PHY during init failed.\n");
  128                         goto out;
  129                 }
  130                 msec_delay(20);
  131         }
  132 
  133         ret_val = e1000_get_phy_id(hw);
  134         if (ret_val)
  135                 goto out;
  136 
  137         /* Verify phy id */
  138         switch (hw->mac.type) {
  139         case e1000_82543:
  140                 if (phy->id != M88E1000_E_PHY_ID) {
  141                         ret_val = -E1000_ERR_PHY;
  142                         goto out;
  143                 }
  144                 break;
  145         case e1000_82544:
  146                 if (phy->id != M88E1000_I_PHY_ID) {
  147                         ret_val = -E1000_ERR_PHY;
  148                         goto out;
  149                 }
  150                 break;
  151         default:
  152                 ret_val = -E1000_ERR_PHY;
  153                 goto out;
  154                 break;
  155         }
  156 
  157 out:
  158         return ret_val;
  159 }
  160 
  161 /**
  162  *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
  163  *  @hw: pointer to the HW structure
  164  **/
  165 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
  166 {
  167         struct e1000_nvm_info *nvm = &hw->nvm;
  168 
  169         DEBUGFUNC("e1000_init_nvm_params_82543");
  170 
  171         nvm->type               = e1000_nvm_eeprom_microwire;
  172         nvm->word_size          = 64;
  173         nvm->delay_usec         = 50;
  174         nvm->address_bits       =  6;
  175         nvm->opcode_bits        =  3;
  176 
  177         /* Function Pointers */
  178         nvm->ops.read           = e1000_read_nvm_microwire;
  179         nvm->ops.update         = e1000_update_nvm_checksum_generic;
  180         nvm->ops.valid_led_default = e1000_valid_led_default_generic;
  181         nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
  182         nvm->ops.write          = e1000_write_nvm_microwire;
  183 
  184         return E1000_SUCCESS;
  185 }
  186 
  187 /**
  188  *  e1000_init_mac_params_82543 - Init MAC func ptrs.
  189  *  @hw: pointer to the HW structure
  190  **/
  191 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
  192 {
  193         struct e1000_mac_info *mac = &hw->mac;
  194 
  195         DEBUGFUNC("e1000_init_mac_params_82543");
  196 
  197         /* Set media type */
  198         switch (hw->device_id) {
  199         case E1000_DEV_ID_82543GC_FIBER:
  200         case E1000_DEV_ID_82544EI_FIBER:
  201                 hw->phy.media_type = e1000_media_type_fiber;
  202                 break;
  203         default:
  204                 hw->phy.media_type = e1000_media_type_copper;
  205                 break;
  206         }
  207 
  208         /* Set mta register count */
  209         mac->mta_reg_count = 128;
  210         /* Set rar entry count */
  211         mac->rar_entry_count = E1000_RAR_ENTRIES;
  212 
  213         /* Function pointers */
  214 
  215         /* bus type/speed/width */
  216         mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
  217         /* function id */
  218         mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
  219         /* reset */
  220         mac->ops.reset_hw = e1000_reset_hw_82543;
  221         /* hw initialization */
  222         mac->ops.init_hw = e1000_init_hw_82543;
  223         /* link setup */
  224         mac->ops.setup_link = e1000_setup_link_82543;
  225         /* physical interface setup */
  226         mac->ops.setup_physical_interface =
  227                 (hw->phy.media_type == e1000_media_type_copper)
  228                  ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
  229         /* check for link */
  230         mac->ops.check_for_link =
  231                 (hw->phy.media_type == e1000_media_type_copper)
  232                  ? e1000_check_for_copper_link_82543
  233                  : e1000_check_for_fiber_link_82543;
  234         /* link info */
  235         mac->ops.get_link_up_info =
  236                 (hw->phy.media_type == e1000_media_type_copper)
  237                  ? e1000_get_speed_and_duplex_copper_generic
  238                  : e1000_get_speed_and_duplex_fiber_serdes_generic;
  239         /* multicast address update */
  240         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
  241         /* writing VFTA */
  242         mac->ops.write_vfta = e1000_write_vfta_82543;
  243         /* clearing VFTA */
  244         mac->ops.clear_vfta = e1000_clear_vfta_generic;
  245         /* turn on/off LED */
  246         mac->ops.led_on = e1000_led_on_82543;
  247         mac->ops.led_off = e1000_led_off_82543;
  248         /* clear hardware counters */
  249         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
  250 
  251         /* Set tbi compatibility */
  252         if ((hw->mac.type != e1000_82543) ||
  253             (hw->phy.media_type == e1000_media_type_fiber))
  254                 e1000_set_tbi_compatibility_82543(hw, FALSE);
  255 
  256         return E1000_SUCCESS;
  257 }
  258 
  259 /**
  260  *  e1000_init_function_pointers_82543 - Init func ptrs.
  261  *  @hw: pointer to the HW structure
  262  *
  263  *  Called to initialize all function pointers and parameters.
  264  **/
  265 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
  266 {
  267         DEBUGFUNC("e1000_init_function_pointers_82543");
  268 
  269         hw->mac.ops.init_params = e1000_init_mac_params_82543;
  270         hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
  271         hw->phy.ops.init_params = e1000_init_phy_params_82543;
  272 }
  273 
  274 /**
  275  *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
  276  *  @hw: pointer to the HW structure
  277  *
  278  *  Returns the current status of 10-bit Interface (TBI) compatibility
  279  *  (enabled/disabled).
  280  **/
  281 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
  282 {
  283         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  284         bool state = FALSE;
  285 
  286         DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
  287 
  288         if (hw->mac.type != e1000_82543) {
  289                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  290                 goto out;
  291         }
  292 
  293         state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
  294 
  295 out:
  296         return state;
  297 }
  298 
  299 /**
  300  *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
  301  *  @hw: pointer to the HW structure
  302  *  @state: enable/disable TBI compatibility
  303  *
  304  *  Enables or disabled 10-bit Interface (TBI) compatibility.
  305  **/
  306 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
  307 {
  308         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  309 
  310         DEBUGFUNC("e1000_set_tbi_compatibility_82543");
  311 
  312         if (hw->mac.type != e1000_82543) {
  313                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  314                 goto out;
  315         }
  316 
  317         if (state)
  318                 dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
  319         else
  320                 dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
  321 
  322 out:
  323         return;
  324 }
  325 
  326 /**
  327  *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
  328  *  @hw: pointer to the HW structure
  329  *
  330  *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
  331  *  (enabled/disabled).
  332  **/
  333 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
  334 {
  335         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  336         bool state = FALSE;
  337 
  338         DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
  339 
  340         if (hw->mac.type != e1000_82543) {
  341                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  342                 goto out;
  343         }
  344 
  345         state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
  346 
  347 out:
  348         return state;
  349 }
  350 
  351 /**
  352  *  e1000_set_tbi_sbp_82543 - Set TBI SBP
  353  *  @hw: pointer to the HW structure
  354  *  @state: enable/disable TBI store bad packet
  355  *
  356  *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
  357  **/
  358 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
  359 {
  360         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  361 
  362         DEBUGFUNC("e1000_set_tbi_sbp_82543");
  363 
  364         if (state && e1000_tbi_compatibility_enabled_82543(hw))
  365                 dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
  366         else
  367                 dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
  368 
  369         return;
  370 }
  371 
  372 /**
  373  *  e1000_init_phy_disabled_82543 - Returns init PHY status
  374  *  @hw: pointer to the HW structure
  375  *
  376  *  Returns the current status of whether PHY initialization is disabled.
  377  *  True if PHY initialization is disabled else FALSE.
  378  **/
  379 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
  380 {
  381         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  382         bool ret_val;
  383 
  384         DEBUGFUNC("e1000_init_phy_disabled_82543");
  385 
  386         if (hw->mac.type != e1000_82543) {
  387                 ret_val = FALSE;
  388                 goto out;
  389         }
  390 
  391         ret_val = dev_spec->init_phy_disabled;
  392 
  393 out:
  394         return ret_val;
  395 }
  396 
  397 /**
  398  *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
  399  *  @hw: pointer to the HW structure
  400  *  @stats: Struct containing statistic register values
  401  *  @frame_len: The length of the frame in question
  402  *  @mac_addr: The Ethernet destination address of the frame in question
  403  *  @max_frame_size: The maximum frame size
  404  *
  405  *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
  406  **/
  407 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
  408                                   struct e1000_hw_stats *stats, u32 frame_len,
  409                                   u8 *mac_addr, u32 max_frame_size)
  410 {
  411         if (!(e1000_tbi_sbp_enabled_82543(hw)))
  412                 goto out;
  413 
  414         /* First adjust the frame length. */
  415         frame_len--;
  416         /*
  417          * We need to adjust the statistics counters, since the hardware
  418          * counters overcount this packet as a CRC error and undercount
  419          * the packet as a good packet
  420          */
  421         /* This packet should not be counted as a CRC error. */
  422         stats->crcerrs--;
  423         /* This packet does count as a Good Packet Received. */
  424         stats->gprc++;
  425 
  426         /* Adjust the Good Octets received counters */
  427         stats->gorc += frame_len;
  428 
  429         /*
  430          * Is this a broadcast or multicast?  Check broadcast first,
  431          * since the test for a multicast frame will test positive on
  432          * a broadcast frame.
  433          */
  434         if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
  435                 /* Broadcast packet */
  436                 stats->bprc++;
  437         else if (*mac_addr & 0x01)
  438                 /* Multicast packet */
  439                 stats->mprc++;
  440 
  441         /*
  442          * In this case, the hardware has over counted the number of
  443          * oversize frames.
  444          */
  445         if ((frame_len == max_frame_size) && (stats->roc > 0))
  446                 stats->roc--;
  447 
  448         /*
  449          * Adjust the bin counters when the extra byte put the frame in the
  450          * wrong bin. Remember that the frame_len was adjusted above.
  451          */
  452         if (frame_len == 64) {
  453                 stats->prc64++;
  454                 stats->prc127--;
  455         } else if (frame_len == 127) {
  456                 stats->prc127++;
  457                 stats->prc255--;
  458         } else if (frame_len == 255) {
  459                 stats->prc255++;
  460                 stats->prc511--;
  461         } else if (frame_len == 511) {
  462                 stats->prc511++;
  463                 stats->prc1023--;
  464         } else if (frame_len == 1023) {
  465                 stats->prc1023++;
  466                 stats->prc1522--;
  467         } else if (frame_len == 1522) {
  468                 stats->prc1522++;
  469         }
  470 
  471 out:
  472         return;
  473 }
  474 
  475 /**
  476  *  e1000_read_phy_reg_82543 - Read PHY register
  477  *  @hw: pointer to the HW structure
  478  *  @offset: register offset to be read
  479  *  @data: pointer to the read data
  480  *
  481  *  Reads the PHY at offset and stores the information read to data.
  482  **/
  483 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
  484 {
  485         u32 mdic;
  486         s32 ret_val = E1000_SUCCESS;
  487 
  488         DEBUGFUNC("e1000_read_phy_reg_82543");
  489 
  490         if (offset > MAX_PHY_REG_ADDRESS) {
  491                 DEBUGOUT1("PHY Address %d is out of range\n", offset);
  492                 ret_val = -E1000_ERR_PARAM;
  493                 goto out;
  494         }
  495 
  496         /*
  497          * We must first send a preamble through the MDIO pin to signal the
  498          * beginning of an MII instruction.  This is done by sending 32
  499          * consecutive "1" bits.
  500          */
  501         e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
  502 
  503         /*
  504          * Now combine the next few fields that are required for a read
  505          * operation.  We use this method instead of calling the
  506          * e1000_shift_out_mdi_bits routine five different times.  The format
  507          * of an MII read instruction consists of a shift out of 14 bits and
  508          * is defined as follows:
  509          *         <Preamble><SOF><Op Code><Phy Addr><Offset>
  510          * followed by a shift in of 18 bits.  This first two bits shifted in
  511          * are TurnAround bits used to avoid contention on the MDIO pin when a
  512          * READ operation is performed.  These two bits are thrown away
  513          * followed by a shift in of 16 bits which contains the desired data.
  514          */
  515         mdic = (offset | (hw->phy.addr << 5) |
  516                 (PHY_OP_READ << 10) | (PHY_SOF << 12));
  517 
  518         e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
  519 
  520         /*
  521          * Now that we've shifted out the read command to the MII, we need to
  522          * "shift in" the 16-bit value (18 total bits) of the requested PHY
  523          * register address.
  524          */
  525         *data = e1000_shift_in_mdi_bits_82543(hw);
  526 
  527 out:
  528         return ret_val;
  529 }
  530 
  531 /**
  532  *  e1000_write_phy_reg_82543 - Write PHY register
  533  *  @hw: pointer to the HW structure
  534  *  @offset: register offset to be written
  535  *  @data: pointer to the data to be written at offset
  536  *
  537  *  Writes data to the PHY at offset.
  538  **/
  539 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
  540 {
  541         u32 mdic;
  542         s32 ret_val = E1000_SUCCESS;
  543 
  544         DEBUGFUNC("e1000_write_phy_reg_82543");
  545 
  546         if (offset > MAX_PHY_REG_ADDRESS) {
  547                 DEBUGOUT1("PHY Address %d is out of range\n", offset);
  548                 ret_val = -E1000_ERR_PARAM;
  549                 goto out;
  550         }
  551 
  552         /*
  553          * We'll need to use the SW defined pins to shift the write command
  554          * out to the PHY. We first send a preamble to the PHY to signal the
  555          * beginning of the MII instruction.  This is done by sending 32
  556          * consecutive "1" bits.
  557          */
  558         e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
  559 
  560         /*
  561          * Now combine the remaining required fields that will indicate a
  562          * write operation. We use this method instead of calling the
  563          * e1000_shift_out_mdi_bits routine for each field in the command. The
  564          * format of a MII write instruction is as follows:
  565          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
  566          */
  567         mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
  568                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
  569         mdic <<= 16;
  570         mdic |= (u32)data;
  571 
  572         e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
  573 
  574 out:
  575         return ret_val;
  576 }
  577 
  578 /**
  579  *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
  580  *  @hw: pointer to the HW structure
  581  *  @ctrl: pointer to the control register
  582  *
  583  *  Raise the management data input clock by setting the MDC bit in the control
  584  *  register.
  585  **/
  586 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
  587 {
  588         /*
  589          * Raise the clock input to the Management Data Clock (by setting the
  590          * MDC bit), and then delay a sufficient amount of time.
  591          */
  592         E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
  593         E1000_WRITE_FLUSH(hw);
  594         usec_delay(10);
  595 }
  596 
  597 /**
  598  *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
  599  *  @hw: pointer to the HW structure
  600  *  @ctrl: pointer to the control register
  601  *
  602  *  Lower the management data input clock by clearing the MDC bit in the
  603  *  control register.
  604  **/
  605 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
  606 {
  607         /*
  608          * Lower the clock input to the Management Data Clock (by clearing the
  609          * MDC bit), and then delay a sufficient amount of time.
  610          */
  611         E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
  612         E1000_WRITE_FLUSH(hw);
  613         usec_delay(10);
  614 }
  615 
  616 /**
  617  *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
  618  *  @hw: pointer to the HW structure
  619  *  @data: data to send to the PHY
  620  *  @count: number of bits to shift out
  621  *
  622  *  We need to shift 'count' bits out to the PHY.  So, the value in the
  623  *  "data" parameter will be shifted out to the PHY one bit at a time.
  624  *  In order to do this, "data" must be broken down into bits.
  625  **/
  626 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
  627                                            u16 count)
  628 {
  629         u32 ctrl, mask;
  630 
  631         /*
  632          * We need to shift "count" number of bits out to the PHY.  So, the
  633          * value in the "data" parameter will be shifted out to the PHY one
  634          * bit at a time.  In order to do this, "data" must be broken down
  635          * into bits.
  636          */
  637         mask = 0x01;
  638         mask <<= (count - 1);
  639 
  640         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  641 
  642         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
  643         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
  644 
  645         while (mask) {
  646                 /*
  647                  * A "1" is shifted out to the PHY by setting the MDIO bit to
  648                  * "1" and then raising and lowering the Management Data Clock.
  649                  * A "" is shifted out to the PHY by setting the MDIO bit to
  650                  * "" and then raising and lowering the clock.
  651                  */
  652                 if (data & mask)
  653                         ctrl |= E1000_CTRL_MDIO;
  654                 else
  655                         ctrl &= ~E1000_CTRL_MDIO;
  656 
  657                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
  658                 E1000_WRITE_FLUSH(hw);
  659 
  660                 usec_delay(10);
  661 
  662                 e1000_raise_mdi_clk_82543(hw, &ctrl);
  663                 e1000_lower_mdi_clk_82543(hw, &ctrl);
  664 
  665                 mask >>= 1;
  666         }
  667 }
  668 
  669 /**
  670  *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
  671  *  @hw: pointer to the HW structure
  672  *
  673  *  In order to read a register from the PHY, we need to shift 18 bits
  674  *  in from the PHY.  Bits are "shifted in" by raising the clock input to
  675  *  the PHY (setting the MDC bit), and then reading the value of the data out
  676  *  MDIO bit.
  677  **/
  678 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
  679 {
  680         u32 ctrl;
  681         u16 data = 0;
  682         u8 i;
  683 
  684         /*
  685          * In order to read a register from the PHY, we need to shift in a
  686          * total of 18 bits from the PHY.  The first two bit (turnaround)
  687          * times are used to avoid contention on the MDIO pin when a read
  688          * operation is performed.  These two bits are ignored by us and
  689          * thrown away.  Bits are "shifted in" by raising the input to the
  690          * Management Data Clock (setting the MDC bit) and then reading the
  691          * value of the MDIO bit.
  692          */
  693         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  694 
  695         /*
  696          * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
  697          * input.
  698          */
  699         ctrl &= ~E1000_CTRL_MDIO_DIR;
  700         ctrl &= ~E1000_CTRL_MDIO;
  701 
  702         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
  703         E1000_WRITE_FLUSH(hw);
  704 
  705         /*
  706          * Raise and lower the clock before reading in the data.  This accounts
  707          * for the turnaround bits.  The first clock occurred when we clocked
  708          * out the last bit of the Register Address.
  709          */
  710         e1000_raise_mdi_clk_82543(hw, &ctrl);
  711         e1000_lower_mdi_clk_82543(hw, &ctrl);
  712 
  713         for (data = 0, i = 0; i < 16; i++) {
  714                 data <<= 1;
  715                 e1000_raise_mdi_clk_82543(hw, &ctrl);
  716                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
  717                 /* Check to see if we shifted in a "1". */
  718                 if (ctrl & E1000_CTRL_MDIO)
  719                         data |= 1;
  720                 e1000_lower_mdi_clk_82543(hw, &ctrl);
  721         }
  722 
  723         e1000_raise_mdi_clk_82543(hw, &ctrl);
  724         e1000_lower_mdi_clk_82543(hw, &ctrl);
  725 
  726         return data;
  727 }
  728 
  729 /**
  730  *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
  731  *  @hw: pointer to the HW structure
  732  *
  733  *  Calls the function to force speed and duplex for the m88 PHY, and
  734  *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
  735  *  then call the function for polarity reversal workaround.
  736  **/
  737 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
  738 {
  739         s32 ret_val;
  740 
  741         DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
  742 
  743         ret_val = e1000_phy_force_speed_duplex_m88(hw);
  744         if (ret_val)
  745                 goto out;
  746 
  747         if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
  748             E1000_ALL_10_SPEED))
  749                 ret_val = e1000_polarity_reversal_workaround_82543(hw);
  750 
  751 out:
  752         return ret_val;
  753 }
  754 
  755 /**
  756  *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
  757  *  @hw: pointer to the HW structure
  758  *
  759  *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
  760  *  inadvertently.  To workaround the issue, we disable the transmitter on
  761  *  the PHY until we have established the link partner's link parameters.
  762  **/
  763 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
  764 {
  765         s32 ret_val = E1000_SUCCESS;
  766         u16 mii_status_reg;
  767         u16 i;
  768         bool link;
  769 
  770         if (!(hw->phy.ops.write_reg))
  771                 goto out;
  772 
  773         /* Polarity reversal workaround for forced 10F/10H links. */
  774 
  775         /* Disable the transmitter on the PHY */
  776 
  777         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
  778         if (ret_val)
  779                 goto out;
  780         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
  781         if (ret_val)
  782                 goto out;
  783 
  784         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
  785         if (ret_val)
  786                 goto out;
  787 
  788         /*
  789          * This loop will early-out if the NO link condition has been met.
  790          * In other words, DO NOT use e1000_phy_has_link_generic() here.
  791          */
  792         for (i = PHY_FORCE_TIME; i > 0; i--) {
  793                 /*
  794                  * Read the MII Status Register and wait for Link Status bit
  795                  * to be clear.
  796                  */
  797 
  798                 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
  799                 if (ret_val)
  800                         goto out;
  801 
  802                 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
  803                 if (ret_val)
  804                         goto out;
  805 
  806                 if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
  807                         break;
  808                 msec_delay_irq(100);
  809         }
  810 
  811         /* Recommended delay time after link has been lost */
  812         msec_delay_irq(1000);
  813 
  814         /* Now we will re-enable the transmitter on the PHY */
  815 
  816         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
  817         if (ret_val)
  818                 goto out;
  819         msec_delay_irq(50);
  820         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
  821         if (ret_val)
  822                 goto out;
  823         msec_delay_irq(50);
  824         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
  825         if (ret_val)
  826                 goto out;
  827         msec_delay_irq(50);
  828         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
  829         if (ret_val)
  830                 goto out;
  831 
  832         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
  833         if (ret_val)
  834                 goto out;
  835 
  836         /*
  837          * Read the MII Status Register and wait for Link Status bit
  838          * to be set.
  839          */
  840         ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
  841         if (ret_val)
  842                 goto out;
  843 
  844 out:
  845         return ret_val;
  846 }
  847 
  848 /**
  849  *  e1000_phy_hw_reset_82543 - PHY hardware reset
  850  *  @hw: pointer to the HW structure
  851  *
  852  *  Sets the PHY_RESET_DIR bit in the extended device control register
  853  *  to put the PHY into a reset and waits for completion.  Once the reset
  854  *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
  855  *  of reset.
  856  **/
  857 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
  858 {
  859         u32 ctrl_ext;
  860         s32 ret_val;
  861 
  862         DEBUGFUNC("e1000_phy_hw_reset_82543");
  863 
  864         /*
  865          * Read the Extended Device Control Register, assert the PHY_RESET_DIR
  866          * bit to put the PHY into reset...
  867          */
  868         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
  869         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
  870         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
  871         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
  872         E1000_WRITE_FLUSH(hw);
  873 
  874         msec_delay(10);
  875 
  876         /* ...then take it out of reset. */
  877         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
  878         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
  879         E1000_WRITE_FLUSH(hw);
  880 
  881         usec_delay(150);
  882 
  883         if (!(hw->phy.ops.get_cfg_done))
  884                 return E1000_SUCCESS;
  885 
  886         ret_val = hw->phy.ops.get_cfg_done(hw);
  887 
  888         return ret_val;
  889 }
  890 
  891 /**
  892  *  e1000_reset_hw_82543 - Reset hardware
  893  *  @hw: pointer to the HW structure
  894  *
  895  *  This resets the hardware into a known state.
  896  **/
  897 static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
  898 {
  899         u32 ctrl;
  900         s32 ret_val = E1000_SUCCESS;
  901 
  902         DEBUGFUNC("e1000_reset_hw_82543");
  903 
  904         DEBUGOUT("Masking off all interrupts\n");
  905         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
  906 
  907         E1000_WRITE_REG(hw, E1000_RCTL, 0);
  908         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
  909         E1000_WRITE_FLUSH(hw);
  910 
  911         e1000_set_tbi_sbp_82543(hw, FALSE);
  912 
  913         /*
  914          * Delay to allow any outstanding PCI transactions to complete before
  915          * resetting the device
  916          */
  917         msec_delay(10);
  918 
  919         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  920 
  921         DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
  922         if (hw->mac.type == e1000_82543) {
  923                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  924         } else {
  925                 /*
  926                  * The 82544 can't ACK the 64-bit write when issuing the
  927                  * reset, so use IO-mapping as a workaround.
  928                  */
  929                 E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  930         }
  931 
  932         /*
  933          * After MAC reset, force reload of NVM to restore power-on
  934          * settings to device.
  935          */
  936         hw->nvm.ops.reload(hw);
  937         msec_delay(2);
  938 
  939         /* Masking off and clearing any pending interrupts */
  940         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
  941         E1000_READ_REG(hw, E1000_ICR);
  942 
  943         return ret_val;
  944 }
  945 
  946 /**
  947  *  e1000_init_hw_82543 - Initialize hardware
  948  *  @hw: pointer to the HW structure
  949  *
  950  *  This inits the hardware readying it for operation.
  951  **/
  952 static s32 e1000_init_hw_82543(struct e1000_hw *hw)
  953 {
  954         struct e1000_mac_info *mac = &hw->mac;
  955         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  956         u32 ctrl;
  957         s32 ret_val;
  958         u16 i;
  959 
  960         DEBUGFUNC("e1000_init_hw_82543");
  961 
  962         /* Disabling VLAN filtering */
  963         E1000_WRITE_REG(hw, E1000_VET, 0);
  964         mac->ops.clear_vfta(hw);
  965 
  966         /* Setup the receive address. */
  967         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
  968 
  969         /* Zero out the Multicast HASH table */
  970         DEBUGOUT("Zeroing the MTA\n");
  971         for (i = 0; i < mac->mta_reg_count; i++) {
  972                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
  973                 E1000_WRITE_FLUSH(hw);
  974         }
  975 
  976         /*
  977          * Set the PCI priority bit correctly in the CTRL register.  This
  978          * determines if the adapter gives priority to receives, or if it
  979          * gives equal priority to transmits and receives.
  980          */
  981         if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
  982                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
  983                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
  984         }
  985 
  986         e1000_pcix_mmrbc_workaround_generic(hw);
  987 
  988         /* Setup link and flow control */
  989         ret_val = mac->ops.setup_link(hw);
  990 
  991         /*
  992          * Clear all of the statistics registers (clear on read).  It is
  993          * important that we do this after we have tried to establish link
  994          * because the symbol error count will increment wildly if there
  995          * is no link.
  996          */
  997         e1000_clear_hw_cntrs_82543(hw);
  998 
  999         return ret_val;
 1000 }
 1001 
 1002 /**
 1003  *  e1000_setup_link_82543 - Setup flow control and link settings
 1004  *  @hw: pointer to the HW structure
 1005  *
 1006  *  Read the EEPROM to determine the initial polarity value and write the
 1007  *  extended device control register with the information before calling
 1008  *  the generic setup link function, which does the following:
 1009  *  Determines which flow control settings to use, then configures flow
 1010  *  control.  Calls the appropriate media-specific link configuration
 1011  *  function.  Assuming the adapter has a valid link partner, a valid link
 1012  *  should be established.  Assumes the hardware has previously been reset
 1013  *  and the transmitter and receiver are not enabled.
 1014  **/
 1015 static s32 e1000_setup_link_82543(struct e1000_hw *hw)
 1016 {
 1017         u32 ctrl_ext;
 1018         s32  ret_val;
 1019         u16 data;
 1020 
 1021         DEBUGFUNC("e1000_setup_link_82543");
 1022 
 1023         /*
 1024          * Take the 4 bits from NVM word 0xF that determine the initial
 1025          * polarity value for the SW controlled pins, and setup the
 1026          * Extended Device Control reg with that info.
 1027          * This is needed because one of the SW controlled pins is used for
 1028          * signal detection.  So this should be done before phy setup.
 1029          */
 1030         if (hw->mac.type == e1000_82543) {
 1031                 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
 1032                 if (ret_val) {
 1033                         DEBUGOUT("NVM Read Error\n");
 1034                         ret_val = -E1000_ERR_NVM;
 1035                         goto out;
 1036                 }
 1037                 ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
 1038                             NVM_SWDPIO_EXT_SHIFT);
 1039                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
 1040         }
 1041 
 1042         ret_val = e1000_setup_link_generic(hw);
 1043 
 1044 out:
 1045         return ret_val;
 1046 }
 1047 
 1048 /**
 1049  *  e1000_setup_copper_link_82543 - Configure copper link settings
 1050  *  @hw: pointer to the HW structure
 1051  *
 1052  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 1053  *  for link, once link is established calls to configure collision distance
 1054  *  and flow control are called.
 1055  **/
 1056 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
 1057 {
 1058         u32 ctrl;
 1059         s32 ret_val;
 1060         bool link;
 1061 
 1062         DEBUGFUNC("e1000_setup_copper_link_82543");
 1063 
 1064         ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
 1065         /*
 1066          * With 82543, we need to force speed and duplex on the MAC
 1067          * equal to what the PHY speed and duplex configuration is.
 1068          * In addition, we need to perform a hardware reset on the
 1069          * PHY to take it out of reset.
 1070          */
 1071         if (hw->mac.type == e1000_82543) {
 1072                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1073                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1074                 ret_val = hw->phy.ops.reset(hw);
 1075                 if (ret_val)
 1076                         goto out;
 1077         } else {
 1078                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1079                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1080         }
 1081 
 1082         /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
 1083         ret_val = e1000_copper_link_setup_m88(hw);
 1084         if (ret_val)
 1085                 goto out;
 1086 
 1087         if (hw->mac.autoneg) {
 1088                 /*
 1089                  * Setup autoneg and flow control advertisement and perform
 1090                  * autonegotiation.
 1091                  */
 1092                 ret_val = e1000_copper_link_autoneg(hw);
 1093                 if (ret_val)
 1094                         goto out;
 1095         } else {
 1096                 /*
 1097                  * PHY will be set to 10H, 10F, 100H or 100F
 1098                  * depending on user settings.
 1099                  */
 1100                 DEBUGOUT("Forcing Speed and Duplex\n");
 1101                 ret_val = e1000_phy_force_speed_duplex_82543(hw);
 1102                 if (ret_val) {
 1103                         DEBUGOUT("Error Forcing Speed and Duplex\n");
 1104                         goto out;
 1105                 }
 1106         }
 1107 
 1108         /*
 1109          * Check link status. Wait up to 100 microseconds for link to become
 1110          * valid.
 1111          */
 1112         ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
 1113                                              &link);
 1114         if (ret_val)
 1115                 goto out;
 1116 
 1117 
 1118         if (link) {
 1119                 DEBUGOUT("Valid link established!!!\n");
 1120                 /* Config the MAC and PHY after link is up */
 1121                 if (hw->mac.type == e1000_82544) {
 1122                         hw->mac.ops.config_collision_dist(hw);
 1123                 } else {
 1124                         ret_val = e1000_config_mac_to_phy_82543(hw);
 1125                         if (ret_val)
 1126                                 goto out;
 1127                 }
 1128                 ret_val = e1000_config_fc_after_link_up_generic(hw);
 1129         } else {
 1130                 DEBUGOUT("Unable to establish link!!!\n");
 1131         }
 1132 
 1133 out:
 1134         return ret_val;
 1135 }
 1136 
 1137 /**
 1138  *  e1000_setup_fiber_link_82543 - Setup link for fiber
 1139  *  @hw: pointer to the HW structure
 1140  *
 1141  *  Configures collision distance and flow control for fiber links.  Upon
 1142  *  successful setup, poll for link.
 1143  **/
 1144 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
 1145 {
 1146         u32 ctrl;
 1147         s32 ret_val;
 1148 
 1149         DEBUGFUNC("e1000_setup_fiber_link_82543");
 1150 
 1151         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1152 
 1153         /* Take the link out of reset */
 1154         ctrl &= ~E1000_CTRL_LRST;
 1155 
 1156         hw->mac.ops.config_collision_dist(hw);
 1157 
 1158         ret_val = e1000_commit_fc_settings_generic(hw);
 1159         if (ret_val)
 1160                 goto out;
 1161 
 1162         DEBUGOUT("Auto-negotiation enabled\n");
 1163 
 1164         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1165         E1000_WRITE_FLUSH(hw);
 1166         msec_delay(1);
 1167 
 1168         /*
 1169          * For these adapters, the SW definable pin 1 is cleared when the
 1170          * optics detect a signal.  If we have a signal, then poll for a
 1171          * "Link-Up" indication.
 1172          */
 1173         if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
 1174                 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 1175         else
 1176                 DEBUGOUT("No signal detected\n");
 1177 
 1178 out:
 1179         return ret_val;
 1180 }
 1181 
 1182 /**
 1183  *  e1000_check_for_copper_link_82543 - Check for link (Copper)
 1184  *  @hw: pointer to the HW structure
 1185  *
 1186  *  Checks the phy for link, if link exists, do the following:
 1187  *   - check for downshift
 1188  *   - do polarity workaround (if necessary)
 1189  *   - configure collision distance
 1190  *   - configure flow control after link up
 1191  *   - configure tbi compatibility
 1192  **/
 1193 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
 1194 {
 1195         struct e1000_mac_info *mac = &hw->mac;
 1196         u32 icr, rctl;
 1197         s32 ret_val;
 1198         u16 speed, duplex;
 1199         bool link;
 1200 
 1201         DEBUGFUNC("e1000_check_for_copper_link_82543");
 1202 
 1203         if (!mac->get_link_status) {
 1204                 ret_val = E1000_SUCCESS;
 1205                 goto out;
 1206         }
 1207 
 1208         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
 1209         if (ret_val)
 1210                 goto out;
 1211 
 1212         if (!link)
 1213                 goto out; /* No link detected */
 1214 
 1215         mac->get_link_status = FALSE;
 1216 
 1217         e1000_check_downshift_generic(hw);
 1218 
 1219         /*
 1220          * If we are forcing speed/duplex, then we can return since
 1221          * we have already determined whether we have link or not.
 1222          */
 1223         if (!mac->autoneg) {
 1224                 /*
 1225                  * If speed and duplex are forced to 10H or 10F, then we will
 1226                  * implement the polarity reversal workaround.  We disable
 1227                  * interrupts first, and upon returning, place the devices
 1228                  * interrupt state to its previous value except for the link
 1229                  * status change interrupt which will happened due to the
 1230                  * execution of this workaround.
 1231                  */
 1232                 if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
 1233                         E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
 1234                         ret_val = e1000_polarity_reversal_workaround_82543(hw);
 1235                         icr = E1000_READ_REG(hw, E1000_ICR);
 1236                         E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
 1237                         E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
 1238                 }
 1239 
 1240                 ret_val = -E1000_ERR_CONFIG;
 1241                 goto out;
 1242         }
 1243 
 1244         /*
 1245          * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
 1246          * have Si on board that is 82544 or newer, Auto
 1247          * Speed Detection takes care of MAC speed/duplex
 1248          * configuration.  So we only need to configure Collision
 1249          * Distance in the MAC.  Otherwise, we need to force
 1250          * speed/duplex on the MAC to the current PHY speed/duplex
 1251          * settings.
 1252          */
 1253         if (mac->type == e1000_82544)
 1254                 hw->mac.ops.config_collision_dist(hw);
 1255         else {
 1256                 ret_val = e1000_config_mac_to_phy_82543(hw);
 1257                 if (ret_val) {
 1258                         DEBUGOUT("Error configuring MAC to PHY settings\n");
 1259                         goto out;
 1260                 }
 1261         }
 1262 
 1263         /*
 1264          * Configure Flow Control now that Auto-Neg has completed.
 1265          * First, we need to restore the desired flow control
 1266          * settings because we may have had to re-autoneg with a
 1267          * different link partner.
 1268          */
 1269         ret_val = e1000_config_fc_after_link_up_generic(hw);
 1270         if (ret_val)
 1271                 DEBUGOUT("Error configuring flow control\n");
 1272 
 1273         /*
 1274          * At this point we know that we are on copper and we have
 1275          * auto-negotiated link.  These are conditions for checking the link
 1276          * partner capability register.  We use the link speed to determine if
 1277          * TBI compatibility needs to be turned on or off.  If the link is not
 1278          * at gigabit speed, then TBI compatibility is not needed.  If we are
 1279          * at gigabit speed, we turn on TBI compatibility.
 1280          */
 1281         if (e1000_tbi_compatibility_enabled_82543(hw)) {
 1282                 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
 1283                 if (ret_val) {
 1284                         DEBUGOUT("Error getting link speed and duplex\n");
 1285                         return ret_val;
 1286                 }
 1287                 if (speed != SPEED_1000) {
 1288                         /*
 1289                          * If link speed is not set to gigabit speed,
 1290                          * we do not need to enable TBI compatibility.
 1291                          */
 1292                         if (e1000_tbi_sbp_enabled_82543(hw)) {
 1293                                 /*
 1294                                  * If we previously were in the mode,
 1295                                  * turn it off.
 1296                                  */
 1297                                 e1000_set_tbi_sbp_82543(hw, FALSE);
 1298                                 rctl = E1000_READ_REG(hw, E1000_RCTL);
 1299                                 rctl &= ~E1000_RCTL_SBP;
 1300                                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
 1301                         }
 1302                 } else {
 1303                         /*
 1304                          * If TBI compatibility is was previously off,
 1305                          * turn it on. For compatibility with a TBI link
 1306                          * partner, we will store bad packets. Some
 1307                          * frames have an additional byte on the end and
 1308                          * will look like CRC errors to to the hardware.
 1309                          */
 1310                         if (!e1000_tbi_sbp_enabled_82543(hw)) {
 1311                                 e1000_set_tbi_sbp_82543(hw, TRUE);
 1312                                 rctl = E1000_READ_REG(hw, E1000_RCTL);
 1313                                 rctl |= E1000_RCTL_SBP;
 1314                                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
 1315                         }
 1316                 }
 1317         }
 1318 out:
 1319         return ret_val;
 1320 }
 1321 
 1322 /**
 1323  *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
 1324  *  @hw: pointer to the HW structure
 1325  *
 1326  *  Checks for link up on the hardware.  If link is not up and we have
 1327  *  a signal, then we need to force link up.
 1328  **/
 1329 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
 1330 {
 1331         struct e1000_mac_info *mac = &hw->mac;
 1332         u32 rxcw, ctrl, status;
 1333         s32 ret_val = E1000_SUCCESS;
 1334 
 1335         DEBUGFUNC("e1000_check_for_fiber_link_82543");
 1336 
 1337         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1338         status = E1000_READ_REG(hw, E1000_STATUS);
 1339         rxcw = E1000_READ_REG(hw, E1000_RXCW);
 1340 
 1341         /*
 1342          * If we don't have link (auto-negotiation failed or link partner
 1343          * cannot auto-negotiate), the cable is plugged in (we have signal),
 1344          * and our link partner is not trying to auto-negotiate with us (we
 1345          * are receiving idles or data), we need to force link up. We also
 1346          * need to give auto-negotiation time to complete, in case the cable
 1347          * was just plugged in. The autoneg_failed flag does this.
 1348          */
 1349         /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
 1350         if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
 1351             (!(status & E1000_STATUS_LU)) &&
 1352             (!(rxcw & E1000_RXCW_C))) {
 1353                 if (!mac->autoneg_failed) {
 1354                         mac->autoneg_failed = TRUE;
 1355                         ret_val = 0;
 1356                         goto out;
 1357                 }
 1358                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
 1359 
 1360                 /* Disable auto-negotiation in the TXCW register */
 1361                 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 1362 
 1363                 /* Force link-up and also force full-duplex. */
 1364                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1365                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 1366                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1367 
 1368                 /* Configure Flow Control after forcing link up. */
 1369                 ret_val = e1000_config_fc_after_link_up_generic(hw);
 1370                 if (ret_val) {
 1371                         DEBUGOUT("Error configuring flow control\n");
 1372                         goto out;
 1373                 }
 1374         } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 1375                 /*
 1376                  * If we are forcing link and we are receiving /C/ ordered
 1377                  * sets, re-enable auto-negotiation in the TXCW register
 1378                  * and disable forced link in the Device Control register
 1379                  * in an attempt to auto-negotiate with our link partner.
 1380                  */
 1381                 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
 1382                 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
 1383                 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
 1384 
 1385                 mac->serdes_has_link = TRUE;
 1386         }
 1387 
 1388 out:
 1389         return ret_val;
 1390 }
 1391 
 1392 /**
 1393  *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
 1394  *  @hw: pointer to the HW structure
 1395  *
 1396  *  For the 82543 silicon, we need to set the MAC to match the settings
 1397  *  of the PHY, even if the PHY is auto-negotiating.
 1398  **/
 1399 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
 1400 {
 1401         u32 ctrl;
 1402         s32 ret_val = E1000_SUCCESS;
 1403         u16 phy_data;
 1404 
 1405         DEBUGFUNC("e1000_config_mac_to_phy_82543");
 1406 
 1407         if (!(hw->phy.ops.read_reg))
 1408                 goto out;
 1409 
 1410         /* Set the bits to force speed and duplex */
 1411         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1412         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1413         ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
 1414 
 1415         /*
 1416          * Set up duplex in the Device Control and Transmit Control
 1417          * registers depending on negotiated values.
 1418          */
 1419         ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 1420         if (ret_val)
 1421                 goto out;
 1422 
 1423         ctrl &= ~E1000_CTRL_FD;
 1424         if (phy_data & M88E1000_PSSR_DPLX)
 1425                 ctrl |= E1000_CTRL_FD;
 1426 
 1427         hw->mac.ops.config_collision_dist(hw);
 1428 
 1429         /*
 1430          * Set up speed in the Device Control register depending on
 1431          * negotiated values.
 1432          */
 1433         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
 1434                 ctrl |= E1000_CTRL_SPD_1000;
 1435         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
 1436                 ctrl |= E1000_CTRL_SPD_100;
 1437 
 1438         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1439 
 1440 out:
 1441         return ret_val;
 1442 }
 1443 
 1444 /**
 1445  *  e1000_write_vfta_82543 - Write value to VLAN filter table
 1446  *  @hw: pointer to the HW structure
 1447  *  @offset: the 32-bit offset in which to write the value to.
 1448  *  @value: the 32-bit value to write at location offset.
 1449  *
 1450  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
 1451  *  table.
 1452  **/
 1453 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
 1454 {
 1455         u32 temp;
 1456 
 1457         DEBUGFUNC("e1000_write_vfta_82543");
 1458 
 1459         if ((hw->mac.type == e1000_82544) && (offset & 1)) {
 1460                 temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
 1461                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 1462                 E1000_WRITE_FLUSH(hw);
 1463                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
 1464                 E1000_WRITE_FLUSH(hw);
 1465         } else {
 1466                 e1000_write_vfta_generic(hw, offset, value);
 1467         }
 1468 }
 1469 
 1470 /**
 1471  *  e1000_led_on_82543 - Turn on SW controllable LED
 1472  *  @hw: pointer to the HW structure
 1473  *
 1474  *  Turns the SW defined LED on.
 1475  **/
 1476 static s32 e1000_led_on_82543(struct e1000_hw *hw)
 1477 {
 1478         u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1479 
 1480         DEBUGFUNC("e1000_led_on_82543");
 1481 
 1482         if (hw->mac.type == e1000_82544 &&
 1483             hw->phy.media_type == e1000_media_type_copper) {
 1484                 /* Clear SW-definable Pin 0 to turn on the LED */
 1485                 ctrl &= ~E1000_CTRL_SWDPIN0;
 1486                 ctrl |= E1000_CTRL_SWDPIO0;
 1487         } else {
 1488                 /* Fiber 82544 and all 82543 use this method */
 1489                 ctrl |= E1000_CTRL_SWDPIN0;
 1490                 ctrl |= E1000_CTRL_SWDPIO0;
 1491         }
 1492         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1493 
 1494         return E1000_SUCCESS;
 1495 }
 1496 
 1497 /**
 1498  *  e1000_led_off_82543 - Turn off SW controllable LED
 1499  *  @hw: pointer to the HW structure
 1500  *
 1501  *  Turns the SW defined LED off.
 1502  **/
 1503 static s32 e1000_led_off_82543(struct e1000_hw *hw)
 1504 {
 1505         u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1506 
 1507         DEBUGFUNC("e1000_led_off_82543");
 1508 
 1509         if (hw->mac.type == e1000_82544 &&
 1510             hw->phy.media_type == e1000_media_type_copper) {
 1511                 /* Set SW-definable Pin 0 to turn off the LED */
 1512                 ctrl |= E1000_CTRL_SWDPIN0;
 1513                 ctrl |= E1000_CTRL_SWDPIO0;
 1514         } else {
 1515                 ctrl &= ~E1000_CTRL_SWDPIN0;
 1516                 ctrl |= E1000_CTRL_SWDPIO0;
 1517         }
 1518         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1519 
 1520         return E1000_SUCCESS;
 1521 }
 1522 
 1523 /**
 1524  *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
 1525  *  @hw: pointer to the HW structure
 1526  *
 1527  *  Clears the hardware counters by reading the counter registers.
 1528  **/
 1529 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
 1530 {
 1531         DEBUGFUNC("e1000_clear_hw_cntrs_82543");
 1532 
 1533         e1000_clear_hw_cntrs_base_generic(hw);
 1534 
 1535         E1000_READ_REG(hw, E1000_PRC64);
 1536         E1000_READ_REG(hw, E1000_PRC127);
 1537         E1000_READ_REG(hw, E1000_PRC255);
 1538         E1000_READ_REG(hw, E1000_PRC511);
 1539         E1000_READ_REG(hw, E1000_PRC1023);
 1540         E1000_READ_REG(hw, E1000_PRC1522);
 1541         E1000_READ_REG(hw, E1000_PTC64);
 1542         E1000_READ_REG(hw, E1000_PTC127);
 1543         E1000_READ_REG(hw, E1000_PTC255);
 1544         E1000_READ_REG(hw, E1000_PTC511);
 1545         E1000_READ_REG(hw, E1000_PTC1023);
 1546         E1000_READ_REG(hw, E1000_PTC1522);
 1547 
 1548         E1000_READ_REG(hw, E1000_ALGNERRC);
 1549         E1000_READ_REG(hw, E1000_RXERRC);
 1550         E1000_READ_REG(hw, E1000_TNCRS);
 1551         E1000_READ_REG(hw, E1000_CEXTERR);
 1552         E1000_READ_REG(hw, E1000_TSCTC);
 1553         E1000_READ_REG(hw, E1000_TSCTFC);
 1554 }

Cache object: 44556c4ddcf9c5653bd8edf3be3016e9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.