The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/ig_hal/e1000_i210.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2 
    3   Copyright (c) 2001-2011, Intel Corporation 
    4   All rights reserved.
    5   
    6   Redistribution and use in source and binary forms, with or without 
    7   modification, are permitted provided that the following conditions are met:
    8   
    9    1. Redistributions of source code must retain the above copyright notice, 
   10       this list of conditions and the following disclaimer.
   11   
   12    2. Redistributions in binary form must reproduce the above copyright 
   13       notice, this list of conditions and the following disclaimer in the 
   14       documentation and/or other materials provided with the distribution.
   15   
   16    3. Neither the name of the Intel Corporation nor the names of its 
   17       contributors may be used to endorse or promote products derived from 
   18       this software without specific prior written permission.
   19   
   20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
   23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
   24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
   25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
   26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
   27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
   28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30   POSSIBILITY OF SUCH DAMAGE.
   31 
   32 ******************************************************************************/
   33 /*$FreeBSD$*/
   34 
   35 #include "e1000_api.h"
   36 
   37 
   38 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
   39 static void e1000_release_nvm_i210(struct e1000_hw *hw);
   40 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
   41 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
   42                                 u16 *data);
   43 static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
   44 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
   45 
   46 /**
   47  *  e1000_acquire_nvm_i210 - Request for access to EEPROM
   48  *  @hw: pointer to the HW structure
   49  *
   50  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
   51  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
   52  *  Return successful if access grant bit set, else clear the request for
   53  *  EEPROM access and return -E1000_ERR_NVM (-1).
   54  **/
   55 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
   56 {
   57         s32 ret_val;
   58 
   59         DEBUGFUNC("e1000_acquire_nvm_i210");
   60 
   61         ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
   62 
   63         return ret_val;
   64 }
   65 
   66 /**
   67  *  e1000_release_nvm_i210 - Release exclusive access to EEPROM
   68  *  @hw: pointer to the HW structure
   69  *
   70  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
   71  *  then release the semaphores acquired.
   72  **/
   73 static void e1000_release_nvm_i210(struct e1000_hw *hw)
   74 {
   75         DEBUGFUNC("e1000_release_nvm_i210");
   76 
   77         e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
   78 }
   79 
   80 /**
   81  *  e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
   82  *  @hw: pointer to the HW structure
   83  *  @mask: specifies which semaphore to acquire
   84  *
   85  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
   86  *  will also specify which port we're acquiring the lock for.
   87  **/
   88 s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
   89 {
   90         u32 swfw_sync;
   91         u32 swmask = mask;
   92         u32 fwmask = mask << 16;
   93         s32 ret_val = E1000_SUCCESS;
   94         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
   95 
   96         DEBUGFUNC("e1000_acquire_swfw_sync_i210");
   97 
   98         while (i < timeout) {
   99                 if (e1000_get_hw_semaphore_i210(hw)) {
  100                         ret_val = -E1000_ERR_SWFW_SYNC;
  101                         goto out;
  102                 }
  103 
  104                 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
  105                 if (!(swfw_sync & (fwmask | swmask)))
  106                         break;
  107 
  108                 /*
  109                  * Firmware currently using resource (fwmask)
  110                  * or other software thread using resource (swmask)
  111                  */
  112                 e1000_put_hw_semaphore_generic(hw);
  113                 msec_delay_irq(5);
  114                 i++;
  115         }
  116 
  117         if (i == timeout) {
  118                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
  119                 ret_val = -E1000_ERR_SWFW_SYNC;
  120                 goto out;
  121         }
  122 
  123         swfw_sync |= swmask;
  124         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
  125 
  126         e1000_put_hw_semaphore_generic(hw);
  127 
  128 out:
  129         return ret_val;
  130 }
  131 
  132 /**
  133  *  e1000_release_swfw_sync_i210 - Release SW/FW semaphore
  134  *  @hw: pointer to the HW structure
  135  *  @mask: specifies which semaphore to acquire
  136  *
  137  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
  138  *  will also specify which port we're releasing the lock for.
  139  **/
  140 void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
  141 {
  142         u32 swfw_sync;
  143 
  144         DEBUGFUNC("e1000_release_swfw_sync_i210");
  145 
  146         while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
  147                 ; /* Empty */
  148 
  149         swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
  150         swfw_sync &= ~mask;
  151         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
  152 
  153         e1000_put_hw_semaphore_generic(hw);
  154 }
  155 
  156 /**
  157  *  e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
  158  *  @hw: pointer to the HW structure
  159  *
  160  *  Acquire the HW semaphore to access the PHY or NVM
  161  **/
  162 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
  163 {
  164         u32 swsm;
  165         s32 timeout = hw->nvm.word_size + 1;
  166         s32 i = 0;
  167 
  168         DEBUGFUNC("e1000_get_hw_semaphore_i210");
  169 
  170         /* Get the SW semaphore */
  171         while (i < timeout) {
  172                 swsm = E1000_READ_REG(hw, E1000_SWSM);
  173                 if (!(swsm & E1000_SWSM_SMBI))
  174                         break;
  175 
  176                 usec_delay(50);
  177                 i++;
  178         }
  179 
  180         if (i == timeout) {
  181                 /* In rare circumstances, the SW semaphore may already be held
  182                  * unintentionally. Clear the semaphore once before giving up.
  183                  */
  184                 if (hw->dev_spec._82575.clear_semaphore_once) {
  185                         hw->dev_spec._82575.clear_semaphore_once = FALSE;
  186                         e1000_put_hw_semaphore_generic(hw);
  187                         for (i = 0; i < timeout; i++) {
  188                                 swsm = E1000_READ_REG(hw, E1000_SWSM);
  189                                 if (!(swsm & E1000_SWSM_SMBI))
  190                                         break;
  191 
  192                                 usec_delay(50);
  193                         }
  194                 }
  195 
  196                 /* If we do not have the semaphore here, we have to give up. */
  197                 if (i == timeout) {
  198                         DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
  199                         return -E1000_ERR_NVM;
  200                 }
  201         }
  202 
  203         /* Get the FW semaphore. */
  204         for (i = 0; i < timeout; i++) {
  205                 swsm = E1000_READ_REG(hw, E1000_SWSM);
  206                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
  207 
  208                 /* Semaphore acquired if bit latched */
  209                 if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
  210                         break;
  211 
  212                 usec_delay(50);
  213         }
  214 
  215         if (i == timeout) {
  216                 /* Release semaphores */
  217                 e1000_put_hw_semaphore_generic(hw);
  218                 DEBUGOUT("Driver can't access the NVM\n");
  219                 return -E1000_ERR_NVM;
  220         }
  221 
  222         return E1000_SUCCESS;
  223 }
  224 
  225 /**
  226  *  e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
  227  *  @hw: pointer to the HW structure
  228  *  @offset: offset of word in the Shadow Ram to read
  229  *  @words: number of words to read
  230  *  @data: word read from the Shadow Ram
  231  *
  232  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
  233  *  Uses necessary synchronization semaphores.
  234  **/
  235 s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
  236                              u16 *data)
  237 {
  238         s32 status = E1000_SUCCESS;
  239         u16 i, count;
  240 
  241         DEBUGFUNC("e1000_read_nvm_srrd_i210");
  242 
  243         /* We cannot hold synchronization semaphores for too long,
  244          * because of forceful takeover procedure. However it is more efficient
  245          * to read in bursts than synchronizing access for each word. */
  246         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
  247                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
  248                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
  249                 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
  250                         status = e1000_read_nvm_eerd(hw, offset, count,
  251                                                      data + i);
  252                         hw->nvm.ops.release(hw);
  253                 } else {
  254                         status = E1000_ERR_SWFW_SYNC;
  255                 }
  256 
  257                 if (status != E1000_SUCCESS)
  258                         break;
  259         }
  260 
  261         return status;
  262 }
  263 
  264 /**
  265  *  e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
  266  *  @hw: pointer to the HW structure
  267  *  @offset: offset within the Shadow RAM to be written to
  268  *  @words: number of words to write
  269  *  @data: 16 bit word(s) to be written to the Shadow RAM
  270  *
  271  *  Writes data to Shadow RAM at offset using EEWR register.
  272  *
  273  *  If e1000_update_nvm_checksum is not called after this function , the
  274  *  data will not be committed to FLASH and also Shadow RAM will most likely
  275  *  contain an invalid checksum.
  276  *
  277  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
  278  *  partially written.
  279  **/
  280 s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
  281                               u16 *data)
  282 {
  283         s32 status = E1000_SUCCESS;
  284         u16 i, count;
  285 
  286         DEBUGFUNC("e1000_write_nvm_srwr_i210");
  287 
  288         /* We cannot hold synchronization semaphores for too long,
  289          * because of forceful takeover procedure. However it is more efficient
  290          * to write in bursts than synchronizing access for each word. */
  291         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
  292                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
  293                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
  294                 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
  295                         status = e1000_write_nvm_srwr(hw, offset, count,
  296                                                       data + i);
  297                         hw->nvm.ops.release(hw);
  298                 } else {
  299                         status = E1000_ERR_SWFW_SYNC;
  300                 }
  301 
  302                 if (status != E1000_SUCCESS)
  303                         break;
  304         }
  305 
  306         return status;
  307 }
  308 
  309 /**
  310  *  e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
  311  *  @hw: pointer to the HW structure
  312  *  @offset: offset within the Shadow Ram to be written to
  313  *  @words: number of words to write
  314  *  @data: 16 bit word(s) to be written to the Shadow Ram
  315  *
  316  *  Writes data to Shadow Ram at offset using EEWR register.
  317  *
  318  *  If e1000_update_nvm_checksum is not called after this function , the
  319  *  Shadow Ram will most likely contain an invalid checksum.
  320  **/
  321 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
  322                                 u16 *data)
  323 {
  324         struct e1000_nvm_info *nvm = &hw->nvm;
  325         u32 i, k, eewr = 0;
  326         u32 attempts = 100000;
  327         s32 ret_val = E1000_SUCCESS;
  328 
  329         DEBUGFUNC("e1000_write_nvm_srwr");
  330 
  331         /*
  332          * A check for invalid values:  offset too large, too many words,
  333          * too many words for the offset, and not enough words.
  334          */
  335         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
  336             (words == 0)) {
  337                 DEBUGOUT("nvm parameter(s) out of bounds\n");
  338                 ret_val = -E1000_ERR_NVM;
  339                 goto out;
  340         }
  341 
  342         for (i = 0; i < words; i++) {
  343                 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
  344                         (data[i] << E1000_NVM_RW_REG_DATA) |
  345                         E1000_NVM_RW_REG_START;
  346 
  347                 E1000_WRITE_REG(hw, E1000_SRWR, eewr);
  348 
  349                 for (k = 0; k < attempts; k++) {
  350                         if (E1000_NVM_RW_REG_DONE &
  351                             E1000_READ_REG(hw, E1000_SRWR)) {
  352                                 ret_val = E1000_SUCCESS;
  353                                 break;
  354                         }
  355                         usec_delay(5);
  356                 }
  357 
  358                 if (ret_val != E1000_SUCCESS) {
  359                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
  360                         break;
  361                 }
  362         }
  363 
  364 out:
  365         return ret_val;
  366 }
  367 
  368 /** e1000_read_invm_word_i210 - Reads OTP
  369  *  @hw: pointer to the HW structure
  370  *  @address: the word address (aka eeprom offset) to read
  371  *  @data: pointer to the data read
  372  *
  373  *  Reads 16-bit words from the OTP. Return error when the word is not
  374  *  stored in OTP.
  375  **/
  376 static s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
  377 {
  378         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
  379         u32 invm_dword;
  380         u16 i;
  381         u8 record_type, word_address;
  382 
  383         DEBUGFUNC("e1000_read_invm_word_i210");
  384 
  385         for (i = 0; i < E1000_INVM_SIZE; i++) {
  386                 invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
  387                 /* Get record type */
  388                 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
  389                 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
  390                         break;
  391                 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
  392                         i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
  393                 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
  394                         i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
  395                 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
  396                         word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
  397                         if (word_address == address) {
  398                                 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
  399                                 DEBUGOUT2("Read INVM Word 0x%02x = %x",
  400                                           address, *data);
  401                                 status = E1000_SUCCESS;
  402                                 break;
  403                         }
  404                 }
  405         }
  406         if (status != E1000_SUCCESS)
  407                 DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
  408         return status;
  409 }
  410 
  411 /** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
  412  *  @hw: pointer to the HW structure
  413  *  @address: the word address (aka eeprom offset) to read
  414  *  @data: pointer to the data read
  415  *
  416  *  Wrapper function to return data formerly found in the NVM.
  417  **/
  418 static s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
  419                                 u16 E1000_UNUSEDARG words, u16 *data)
  420 {
  421         s32 ret_val = E1000_SUCCESS;
  422 
  423         DEBUGFUNC("e1000_read_invm_i210");
  424 
  425         /* Only the MAC addr is required to be present in the iNVM */
  426         switch (offset) {
  427         case NVM_MAC_ADDR:
  428                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
  429                 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
  430                                                      &data[1]);
  431                 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
  432                                                      &data[2]);
  433                 if (ret_val != E1000_SUCCESS)
  434                         DEBUGOUT("MAC Addr not found in iNVM\n");
  435                 break;
  436         case NVM_INIT_CTRL_2:
  437                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
  438                 if (ret_val != E1000_SUCCESS) {
  439                         *data = NVM_INIT_CTRL_2_DEFAULT_I211;
  440                         ret_val = E1000_SUCCESS;
  441                 }
  442                 break;
  443         case NVM_INIT_CTRL_4:
  444                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
  445                 if (ret_val != E1000_SUCCESS) {
  446                         *data = NVM_INIT_CTRL_4_DEFAULT_I211;
  447                         ret_val = E1000_SUCCESS;
  448                 }
  449                 break;
  450         case NVM_LED_1_CFG:
  451                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
  452                 if (ret_val != E1000_SUCCESS) {
  453                         *data = NVM_LED_1_CFG_DEFAULT_I211;
  454                         ret_val = E1000_SUCCESS;
  455                 }
  456                 break;
  457         case NVM_LED_0_2_CFG:
  458                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
  459                 if (ret_val != E1000_SUCCESS) {
  460                         *data = NVM_LED_0_2_CFG_DEFAULT_I211;
  461                         ret_val = E1000_SUCCESS;
  462                 }
  463                 break;
  464         case NVM_ID_LED_SETTINGS:
  465                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
  466                 if (ret_val != E1000_SUCCESS) {
  467                         *data = ID_LED_RESERVED_FFFF;
  468                         ret_val = E1000_SUCCESS;
  469                 }
  470                 break;
  471         case NVM_SUB_DEV_ID:
  472                 *data = hw->subsystem_device_id;
  473                 break;
  474         case NVM_SUB_VEN_ID:
  475                 *data = hw->subsystem_vendor_id;
  476                 break;
  477         case NVM_DEV_ID:
  478                 *data = hw->device_id;
  479                 break;
  480         case NVM_VEN_ID:
  481                 *data = hw->vendor_id;
  482                 break;
  483         default:
  484                 DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
  485                 *data = NVM_RESERVED_WORD;
  486                 break;
  487         }
  488         return ret_val;
  489 }
  490 
  491 /**
  492  *  e1000_read_invm_version - Reads iNVM version and image type
  493  *  @hw: pointer to the HW structure
  494  *  @invm_ver: version structure for the version read
  495  *
  496  *  Reads iNVM version and image type.
  497  **/
  498 s32 e1000_read_invm_version(struct e1000_hw *hw,
  499                             struct e1000_fw_version *invm_ver)
  500 {
  501         u32 *record = NULL;
  502         u32 *next_record = NULL;
  503         u32 i = 0;
  504         u32 invm_dword = 0;
  505         u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
  506                                              E1000_INVM_RECORD_SIZE_IN_BYTES);
  507         u32 buffer[E1000_INVM_SIZE];
  508         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
  509         u16 version = 0;
  510 
  511         DEBUGFUNC("e1000_read_invm_version");
  512 
  513         /* Read iNVM memory */
  514         for (i = 0; i < E1000_INVM_SIZE; i++) {
  515                 invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
  516                 buffer[i] = invm_dword;
  517         }
  518 
  519         /* Read version number */
  520         for (i = 1; i < invm_blocks; i++) {
  521                 record = &buffer[invm_blocks - i];
  522                 next_record = &buffer[invm_blocks - i + 1];
  523 
  524                 /* Check if we have first version location used */
  525                 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
  526                         version = 0;
  527                         status = E1000_SUCCESS;
  528                         break;
  529                 }
  530                 /* Check if we have second version location used */
  531                 else if ((i == 1) &&
  532                          ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
  533                         version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
  534                         status = E1000_SUCCESS;
  535                         break;
  536                 }
  537                 /*
  538                  * Check if we have odd version location
  539                  * used and it is the last one used
  540                  */
  541                 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
  542                          ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
  543                          (i != 1))) {
  544                         version = (*next_record & E1000_INVM_VER_FIELD_TWO)
  545                                   >> 13;
  546                         status = E1000_SUCCESS;
  547                         break;
  548                 }
  549                 /*
  550                  * Check if we have even version location
  551                  * used and it is the last one used
  552                  */
  553                 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
  554                          ((*record & 0x3) == 0)) {
  555                         version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
  556                         status = E1000_SUCCESS;
  557                         break;
  558                 }
  559         }
  560 
  561         if (status == E1000_SUCCESS) {
  562                 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
  563                                         >> E1000_INVM_MAJOR_SHIFT;
  564                 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
  565         }
  566         /* Read Image Type */
  567         for (i = 1; i < invm_blocks; i++) {
  568                 record = &buffer[invm_blocks - i];
  569                 next_record = &buffer[invm_blocks - i + 1];
  570 
  571                 /* Check if we have image type in first location used */
  572                 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
  573                         invm_ver->invm_img_type = 0;
  574                         status = E1000_SUCCESS;
  575                         break;
  576                 }
  577                 /* Check if we have image type in first location used */
  578                 else if ((((*record & 0x3) == 0) &&
  579                          ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
  580                          ((((*record & 0x3) != 0) && (i != 1)))) {
  581                         invm_ver->invm_img_type =
  582                                 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
  583                         status = E1000_SUCCESS;
  584                         break;
  585                 }
  586         }
  587         return status;
  588 }
  589 
  590 /**
  591  *  e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
  592  *  @hw: pointer to the HW structure
  593  *
  594  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
  595  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
  596  **/
  597 s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
  598 {
  599         s32 status = E1000_SUCCESS;
  600         s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
  601 
  602         DEBUGFUNC("e1000_validate_nvm_checksum_i210");
  603 
  604         if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
  605 
  606                 /*
  607                  * Replace the read function with semaphore grabbing with
  608                  * the one that skips this for a while.
  609                  * We have semaphore taken already here.
  610                  */
  611                 read_op_ptr = hw->nvm.ops.read;
  612                 hw->nvm.ops.read = e1000_read_nvm_eerd;
  613 
  614                 status = e1000_validate_nvm_checksum_generic(hw);
  615 
  616                 /* Revert original read operation. */
  617                 hw->nvm.ops.read = read_op_ptr;
  618 
  619                 hw->nvm.ops.release(hw);
  620         } else {
  621                 status = E1000_ERR_SWFW_SYNC;
  622         }
  623 
  624         return status;
  625 }
  626 
  627 
  628 /**
  629  *  e1000_update_nvm_checksum_i210 - Update EEPROM checksum
  630  *  @hw: pointer to the HW structure
  631  *
  632  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
  633  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
  634  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
  635  **/
  636 s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
  637 {
  638         s32 ret_val = E1000_SUCCESS;
  639         u16 checksum = 0;
  640         u16 i, nvm_data;
  641 
  642         DEBUGFUNC("e1000_update_nvm_checksum_i210");
  643 
  644         /*
  645          * Read the first word from the EEPROM. If this times out or fails, do
  646          * not continue or we could be in for a very long wait while every
  647          * EEPROM read fails
  648          */
  649         ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
  650         if (ret_val != E1000_SUCCESS) {
  651                 DEBUGOUT("EEPROM read failed\n");
  652                 goto out;
  653         }
  654 
  655         if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
  656                 /*
  657                  * Do not use hw->nvm.ops.write, hw->nvm.ops.read
  658                  * because we do not want to take the synchronization
  659                  * semaphores twice here.
  660                  */
  661 
  662                 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
  663                         ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
  664                         if (ret_val) {
  665                                 hw->nvm.ops.release(hw);
  666                                 DEBUGOUT("NVM Read Error while updating checksum.\n");
  667                                 goto out;
  668                         }
  669                         checksum += nvm_data;
  670                 }
  671                 checksum = (u16) NVM_SUM - checksum;
  672                 ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
  673                                                 &checksum);
  674                 if (ret_val != E1000_SUCCESS) {
  675                         hw->nvm.ops.release(hw);
  676                         DEBUGOUT("NVM Write Error while updating checksum.\n");
  677                         goto out;
  678                 }
  679 
  680                 hw->nvm.ops.release(hw);
  681 
  682                 ret_val = e1000_update_flash_i210(hw);
  683         } else {
  684                 ret_val = E1000_ERR_SWFW_SYNC;
  685         }
  686 out:
  687         return ret_val;
  688 }
  689 
  690 /**
  691  *  e1000_get_flash_presence_i210 - Check if flash device is detected.
  692  *  @hw: pointer to the HW structure
  693  *
  694  **/
  695 bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
  696 {
  697         u32 eec = 0;
  698         bool ret_val = FALSE;
  699 
  700         DEBUGFUNC("e1000_get_flash_presence_i210");
  701 
  702         eec = E1000_READ_REG(hw, E1000_EECD);
  703 
  704         if (eec & E1000_EECD_FLASH_DETECTED_I210)
  705                 ret_val = TRUE;
  706 
  707         return ret_val;
  708 }
  709 
  710 /**
  711  *  e1000_update_flash_i210 - Commit EEPROM to the flash
  712  *  @hw: pointer to the HW structure
  713  *
  714  **/
  715 s32 e1000_update_flash_i210(struct e1000_hw *hw)
  716 {
  717         s32 ret_val = E1000_SUCCESS;
  718         u32 flup;
  719 
  720         DEBUGFUNC("e1000_update_flash_i210");
  721 
  722         ret_val = e1000_pool_flash_update_done_i210(hw);
  723         if (ret_val == -E1000_ERR_NVM) {
  724                 DEBUGOUT("Flash update time out\n");
  725                 goto out;
  726         }
  727 
  728         flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
  729         E1000_WRITE_REG(hw, E1000_EECD, flup);
  730 
  731         ret_val = e1000_pool_flash_update_done_i210(hw);
  732         if (ret_val == E1000_SUCCESS)
  733                 DEBUGOUT("Flash update complete\n");
  734         else
  735                 DEBUGOUT("Flash update time out\n");
  736 
  737 out:
  738         return ret_val;
  739 }
  740 
  741 /**
  742  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
  743  *  @hw: pointer to the HW structure
  744  *
  745  **/
  746 s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
  747 {
  748         s32 ret_val = -E1000_ERR_NVM;
  749         u32 i, reg;
  750 
  751         DEBUGFUNC("e1000_pool_flash_update_done_i210");
  752 
  753         for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
  754                 reg = E1000_READ_REG(hw, E1000_EECD);
  755                 if (reg & E1000_EECD_FLUDONE_I210) {
  756                         ret_val = E1000_SUCCESS;
  757                         break;
  758                 }
  759                 usec_delay(5);
  760         }
  761 
  762         return ret_val;
  763 }
  764 
  765 /**
  766  *  e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
  767  *  @hw: pointer to the HW structure
  768  *
  769  *  Initialize the i210/i211 NVM parameters and function pointers.
  770  **/
  771 static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
  772 {
  773         s32 ret_val = E1000_SUCCESS;
  774         struct e1000_nvm_info *nvm = &hw->nvm;
  775 
  776         DEBUGFUNC("e1000_init_nvm_params_i210");
  777 
  778         ret_val = e1000_init_nvm_params_82575(hw);
  779         nvm->ops.acquire = e1000_acquire_nvm_i210;
  780         nvm->ops.release = e1000_release_nvm_i210;
  781         nvm->ops.valid_led_default = e1000_valid_led_default_i210;
  782         if (e1000_get_flash_presence_i210(hw)) {
  783                 hw->nvm.type = e1000_nvm_flash_hw;
  784                 nvm->ops.read    = e1000_read_nvm_srrd_i210;
  785                 nvm->ops.write   = e1000_write_nvm_srwr_i210;
  786                 nvm->ops.validate = e1000_validate_nvm_checksum_i210;
  787                 nvm->ops.update   = e1000_update_nvm_checksum_i210;
  788         } else {
  789                 hw->nvm.type = e1000_nvm_invm;
  790                 nvm->ops.read     = e1000_read_invm_i210;
  791                 nvm->ops.write    = e1000_null_write_nvm;
  792                 nvm->ops.validate = e1000_null_ops_generic;
  793                 nvm->ops.update   = e1000_null_ops_generic;
  794         }
  795         return ret_val;
  796 }
  797 
  798 /**
  799  *  e1000_init_function_pointers_i210 - Init func ptrs.
  800  *  @hw: pointer to the HW structure
  801  *
  802  *  Called to initialize all function pointers and parameters.
  803  **/
  804 void e1000_init_function_pointers_i210(struct e1000_hw *hw)
  805 {
  806         e1000_init_function_pointers_82575(hw);
  807         hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
  808 
  809         return;
  810 }
  811 
  812 /**
  813  *  e1000_valid_led_default_i210 - Verify a valid default LED config
  814  *  @hw: pointer to the HW structure
  815  *  @data: pointer to the NVM (EEPROM)
  816  *
  817  *  Read the EEPROM for the current default LED configuration.  If the
  818  *  LED configuration is not valid, set to a valid LED configuration.
  819  **/
  820 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
  821 {
  822         s32 ret_val;
  823 
  824         DEBUGFUNC("e1000_valid_led_default_i210");
  825 
  826         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
  827         if (ret_val) {
  828                 DEBUGOUT("NVM Read Error\n");
  829                 goto out;
  830         }
  831 
  832         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
  833                 switch (hw->phy.media_type) {
  834                 case e1000_media_type_internal_serdes:
  835                         *data = ID_LED_DEFAULT_I210_SERDES;
  836                         break;
  837                 case e1000_media_type_copper:
  838                 default:
  839                         *data = ID_LED_DEFAULT_I210;
  840                         break;
  841                 }
  842         }
  843 out:
  844         return ret_val;
  845 }
  846 
  847 /**
  848  *  __e1000_access_xmdio_reg - Read/write XMDIO register
  849  *  @hw: pointer to the HW structure
  850  *  @address: XMDIO address to program
  851  *  @dev_addr: device address to program
  852  *  @data: pointer to value to read/write from/to the XMDIO address
  853  *  @read: boolean flag to indicate read or write
  854  **/
  855 static s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
  856                                     u8 dev_addr, u16 *data, bool read)
  857 {
  858         s32 ret_val = E1000_SUCCESS;
  859 
  860         DEBUGFUNC("__e1000_access_xmdio_reg");
  861 
  862         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
  863         if (ret_val)
  864                 return ret_val;
  865 
  866         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
  867         if (ret_val)
  868                 return ret_val;
  869 
  870         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
  871                                                          dev_addr);
  872         if (ret_val)
  873                 return ret_val;
  874 
  875         if (read)
  876                 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
  877         else
  878                 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
  879         if (ret_val)
  880                 return ret_val;
  881 
  882         /* Recalibrate the device back to 0 */
  883         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
  884         if (ret_val)
  885                 return ret_val;
  886 
  887         return ret_val;
  888 }
  889 
  890 /**
  891  *  e1000_read_xmdio_reg - Read XMDIO register
  892  *  @hw: pointer to the HW structure
  893  *  @addr: XMDIO address to program
  894  *  @dev_addr: device address to program
  895  *  @data: value to be read from the EMI address
  896  **/
  897 s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
  898 {
  899         DEBUGFUNC("e1000_read_xmdio_reg");
  900 
  901         return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, TRUE);
  902 }
  903 
  904 /**
  905  *  e1000_write_xmdio_reg - Write XMDIO register
  906  *  @hw: pointer to the HW structure
  907  *  @addr: XMDIO address to program
  908  *  @dev_addr: device address to program
  909  *  @data: value to be written to the XMDIO address
  910  **/
  911 s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
  912 {
  913         DEBUGFUNC("e1000_read_xmdio_reg");
  914 
  915         return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, FALSE);
  916 }

Cache object: a6b741866bbbae9945996adce83483fa


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.