The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/ig_hal/e1000_vf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2 
    3   Copyright (c) 2001-2011, Intel Corporation 
    4   All rights reserved.
    5   
    6   Redistribution and use in source and binary forms, with or without 
    7   modification, are permitted provided that the following conditions are met:
    8   
    9    1. Redistributions of source code must retain the above copyright notice, 
   10       this list of conditions and the following disclaimer.
   11   
   12    2. Redistributions in binary form must reproduce the above copyright 
   13       notice, this list of conditions and the following disclaimer in the 
   14       documentation and/or other materials provided with the distribution.
   15   
   16    3. Neither the name of the Intel Corporation nor the names of its 
   17       contributors may be used to endorse or promote products derived from 
   18       this software without specific prior written permission.
   19   
   20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
   23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
   24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
   25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
   26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
   27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
   28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30   POSSIBILITY OF SUCH DAMAGE.
   31 
   32 ******************************************************************************/
   33 /*$FreeBSD$*/
   34 
   35 
   36 #include "e1000_api.h"
   37 
   38 
   39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
   40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
   41 static void e1000_release_vf(struct e1000_hw *hw);
   42 static s32 e1000_acquire_vf(struct e1000_hw *hw);
   43 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
   44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
   45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
   46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
   47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
   48                                      u16 *duplex);
   49 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
   50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
   51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
   52 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
   53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
   54 
   55 /**
   56  *  e1000_init_phy_params_vf - Inits PHY params
   57  *  @hw: pointer to the HW structure
   58  *
   59  *  Doesn't do much - there's no PHY available to the VF.
   60  **/
   61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
   62 {
   63         DEBUGFUNC("e1000_init_phy_params_vf");
   64         hw->phy.type = e1000_phy_vf;
   65         hw->phy.ops.acquire = e1000_acquire_vf;
   66         hw->phy.ops.release = e1000_release_vf;
   67 
   68         return E1000_SUCCESS;
   69 }
   70 
   71 /**
   72  *  e1000_init_nvm_params_vf - Inits NVM params
   73  *  @hw: pointer to the HW structure
   74  *
   75  *  Doesn't do much - there's no NVM available to the VF.
   76  **/
   77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
   78 {
   79         DEBUGFUNC("e1000_init_nvm_params_vf");
   80         hw->nvm.type = e1000_nvm_none;
   81         hw->nvm.ops.acquire = e1000_acquire_vf;
   82         hw->nvm.ops.release = e1000_release_vf;
   83 
   84         return E1000_SUCCESS;
   85 }
   86 
   87 /**
   88  *  e1000_init_mac_params_vf - Inits MAC params
   89  *  @hw: pointer to the HW structure
   90  **/
   91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
   92 {
   93         struct e1000_mac_info *mac = &hw->mac;
   94 
   95         DEBUGFUNC("e1000_init_mac_params_vf");
   96 
   97         /* Set media type */
   98         /*
   99          * Virtual functions don't care what they're media type is as they
  100          * have no direct access to the PHY, or the media.  That is handled
  101          * by the physical function driver.
  102          */
  103         hw->phy.media_type = e1000_media_type_unknown;
  104 
  105         /* No ASF features for the VF driver */
  106         mac->asf_firmware_present = FALSE;
  107         /* ARC subsystem not supported */
  108         mac->arc_subsystem_valid = FALSE;
  109         /* Disable adaptive IFS mode so the generic funcs don't do anything */
  110         mac->adaptive_ifs = FALSE;
  111         /* VF's have no MTA Registers - PF feature only */
  112         mac->mta_reg_count = 128;
  113         /* VF's have no access to RAR entries  */
  114         mac->rar_entry_count = 1;
  115 
  116         /* Function pointers */
  117         /* link setup */
  118         mac->ops.setup_link = e1000_setup_link_vf;
  119         /* bus type/speed/width */
  120         mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
  121         /* reset */
  122         mac->ops.reset_hw = e1000_reset_hw_vf;
  123         /* hw initialization */
  124         mac->ops.init_hw = e1000_init_hw_vf;
  125         /* check for link */
  126         mac->ops.check_for_link = e1000_check_for_link_vf;
  127         /* link info */
  128         mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
  129         /* multicast address update */
  130         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
  131         /* set mac address */
  132         mac->ops.rar_set = e1000_rar_set_vf;
  133         /* read mac address */
  134         mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
  135 
  136 
  137         return E1000_SUCCESS;
  138 }
  139 
  140 /**
  141  *  e1000_init_function_pointers_vf - Inits function pointers
  142  *  @hw: pointer to the HW structure
  143  **/
  144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
  145 {
  146         DEBUGFUNC("e1000_init_function_pointers_vf");
  147 
  148         hw->mac.ops.init_params = e1000_init_mac_params_vf;
  149         hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
  150         hw->phy.ops.init_params = e1000_init_phy_params_vf;
  151         hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
  152 }
  153 
  154 /**
  155  *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
  156  *  @hw: pointer to the HW structure
  157  *
  158  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
  159  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
  160  *  even want any SW to attempt to use them.
  161  **/
  162 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  163 {
  164         return -E1000_ERR_PHY;
  165 }
  166 
  167 /**
  168  *  e1000_release_vf - Release PHY or NVM
  169  *  @hw: pointer to the HW structure
  170  *
  171  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
  172  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
  173  *  even want any SW to attempt to use them.
  174  **/
  175 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  176 {
  177         return;
  178 }
  179 
  180 /**
  181  *  e1000_setup_link_vf - Sets up link.
  182  *  @hw: pointer to the HW structure
  183  *
  184  *  Virtual functions cannot change link.
  185  **/
  186 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  187 {
  188         DEBUGFUNC("e1000_setup_link_vf");
  189 
  190         return E1000_SUCCESS;
  191 }
  192 
  193 /**
  194  *  e1000_get_bus_info_pcie_vf - Gets the bus info.
  195  *  @hw: pointer to the HW structure
  196  *
  197  *  Virtual functions are not really on their own bus.
  198  **/
  199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
  200 {
  201         struct e1000_bus_info *bus = &hw->bus;
  202 
  203         DEBUGFUNC("e1000_get_bus_info_pcie_vf");
  204 
  205         /* Do not set type PCI-E because we don't want disable master to run */
  206         bus->type = e1000_bus_type_reserved;
  207         bus->speed = e1000_bus_speed_2500;
  208 
  209         return 0;
  210 }
  211 
  212 /**
  213  *  e1000_get_link_up_info_vf - Gets link info.
  214  *  @hw: pointer to the HW structure
  215  *  @speed: pointer to 16 bit value to store link speed.
  216  *  @duplex: pointer to 16 bit value to store duplex.
  217  *
  218  *  Since we cannot read the PHY and get accurate link info, we must rely upon
  219  *  the status register's data which is often stale and inaccurate.
  220  **/
  221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
  222                                      u16 *duplex)
  223 {
  224         s32 status;
  225 
  226         DEBUGFUNC("e1000_get_link_up_info_vf");
  227 
  228         status = E1000_READ_REG(hw, E1000_STATUS);
  229         if (status & E1000_STATUS_SPEED_1000) {
  230                 *speed = SPEED_1000;
  231                 DEBUGOUT("1000 Mbs, ");
  232         } else if (status & E1000_STATUS_SPEED_100) {
  233                 *speed = SPEED_100;
  234                 DEBUGOUT("100 Mbs, ");
  235         } else {
  236                 *speed = SPEED_10;
  237                 DEBUGOUT("10 Mbs, ");
  238         }
  239 
  240         if (status & E1000_STATUS_FD) {
  241                 *duplex = FULL_DUPLEX;
  242                 DEBUGOUT("Full Duplex\n");
  243         } else {
  244                 *duplex = HALF_DUPLEX;
  245                 DEBUGOUT("Half Duplex\n");
  246         }
  247 
  248         return E1000_SUCCESS;
  249 }
  250 
  251 /**
  252  *  e1000_reset_hw_vf - Resets the HW
  253  *  @hw: pointer to the HW structure
  254  *
  255  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
  256  *  This is all the reset we can perform on a VF.
  257  **/
  258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
  259 {
  260         struct e1000_mbx_info *mbx = &hw->mbx;
  261         u32 timeout = E1000_VF_INIT_TIMEOUT;
  262         s32 ret_val = -E1000_ERR_MAC_INIT;
  263         u32 ctrl, msgbuf[3];
  264         u8 *addr = (u8 *)(&msgbuf[1]);
  265 
  266         DEBUGFUNC("e1000_reset_hw_vf");
  267 
  268         DEBUGOUT("Issuing a function level reset to MAC\n");
  269         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  270         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  271 
  272         /* we cannot reset while the RSTI / RSTD bits are asserted */
  273         while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
  274                 timeout--;
  275                 usec_delay(5);
  276         }
  277 
  278         if (timeout) {
  279                 /* mailbox timeout can now become active */
  280                 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
  281 
  282                 msgbuf[0] = E1000_VF_RESET;
  283                 mbx->ops.write_posted(hw, msgbuf, 1, 0);
  284 
  285                 msec_delay(10);
  286 
  287                 /* set our "perm_addr" based on info provided by PF */
  288                 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
  289                 if (!ret_val) {
  290                         if (msgbuf[0] == (E1000_VF_RESET |
  291                             E1000_VT_MSGTYPE_ACK))
  292                                 memcpy(hw->mac.perm_addr, addr, 6);
  293                         else
  294                                 ret_val = -E1000_ERR_MAC_INIT;
  295                 }
  296         }
  297 
  298         return ret_val;
  299 }
  300 
  301 /**
  302  *  e1000_init_hw_vf - Inits the HW
  303  *  @hw: pointer to the HW structure
  304  *
  305  *  Not much to do here except clear the PF Reset indication if there is one.
  306  **/
  307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
  308 {
  309         DEBUGFUNC("e1000_init_hw_vf");
  310 
  311         /* attempt to set and restore our mac address */
  312         e1000_rar_set_vf(hw, hw->mac.addr, 0);
  313 
  314         return E1000_SUCCESS;
  315 }
  316 
  317 /**
  318  *  e1000_rar_set_vf - set device MAC address
  319  *  @hw: pointer to the HW structure
  320  *  @addr: pointer to the receive address
  321  *  @index receive address array register
  322  **/
  323 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
  324                              u32 E1000_UNUSEDARG index)
  325 {
  326         struct e1000_mbx_info *mbx = &hw->mbx;
  327         u32 msgbuf[3];
  328         u8 *msg_addr = (u8 *)(&msgbuf[1]);
  329         s32 ret_val;
  330 
  331         memset(msgbuf, 0, 12);
  332         msgbuf[0] = E1000_VF_SET_MAC_ADDR;
  333         memcpy(msg_addr, addr, 6);
  334         ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
  335 
  336         if (!ret_val)
  337                 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
  338 
  339         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
  340 
  341         /* if nacked the address was rejected, use "perm_addr" */
  342         if (!ret_val &&
  343             (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
  344                 e1000_read_mac_addr_vf(hw);
  345 }
  346 
  347 /**
  348  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
  349  *  @hw: pointer to the HW structure
  350  *  @mc_addr: pointer to a multicast address
  351  *
  352  *  Generates a multicast address hash value which is used to determine
  353  *  the multicast filter table array address and new table value.
  354  **/
  355 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
  356 {
  357         u32 hash_value, hash_mask;
  358         u8 bit_shift = 0;
  359 
  360         DEBUGFUNC("e1000_hash_mc_addr_generic");
  361 
  362         /* Register count multiplied by bits per register */
  363         hash_mask = (hw->mac.mta_reg_count * 32) - 1;
  364 
  365         /*
  366          * The bit_shift is the number of left-shifts
  367          * where 0xFF would still fall within the hash mask.
  368          */
  369         while (hash_mask >> bit_shift != 0xFF)
  370                 bit_shift++;
  371 
  372         hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
  373                                   (((u16) mc_addr[5]) << bit_shift)));
  374 
  375         return hash_value;
  376 }
  377 
  378 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
  379                                      u32 *msg, u16 size)
  380 {
  381         struct e1000_mbx_info *mbx = &hw->mbx;
  382         u32 retmsg[E1000_VFMAILBOX_SIZE];
  383         s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
  384 
  385         if (!retval)
  386                 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
  387 }
  388 
  389 /**
  390  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
  391  *  @hw: pointer to the HW structure
  392  *  @mc_addr_list: array of multicast addresses to program
  393  *  @mc_addr_count: number of multicast addresses to program
  394  *
  395  *  Updates the Multicast Table Array.
  396  *  The caller must have a packed mc_addr_list of multicast addresses.
  397  **/
  398 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
  399                                   u8 *mc_addr_list, u32 mc_addr_count)
  400 {
  401         u32 msgbuf[E1000_VFMAILBOX_SIZE];
  402         u16 *hash_list = (u16 *)&msgbuf[1];
  403         u32 hash_value;
  404         u32 i;
  405 
  406         DEBUGFUNC("e1000_update_mc_addr_list_vf");
  407 
  408         /* Each entry in the list uses 1 16 bit word.  We have 30
  409          * 16 bit words available in our HW msg buffer (minus 1 for the
  410          * msg type).  That's 30 hash values if we pack 'em right.  If
  411          * there are more than 30 MC addresses to add then punt the
  412          * extras for now and then add code to handle more than 30 later.
  413          * It would be unusual for a server to request that many multi-cast
  414          * addresses except for in large enterprise network environments.
  415          */
  416 
  417         DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
  418 
  419         if (mc_addr_count > 30) {
  420                 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
  421                 mc_addr_count = 30;
  422         }
  423 
  424         msgbuf[0] = E1000_VF_SET_MULTICAST;
  425         msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
  426 
  427         for (i = 0; i < mc_addr_count; i++) {
  428                 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
  429                 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
  430                 hash_list[i] = hash_value & 0x0FFF;
  431                 mc_addr_list += ETH_ADDR_LEN;
  432         }
  433 
  434         e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
  435 }
  436 
  437 /**
  438  *  e1000_vfta_set_vf - Set/Unset vlan filter table address
  439  *  @hw: pointer to the HW structure
  440  *  @vid: determines the vfta register and bit to set/unset
  441  *  @set: if TRUE then set bit, else clear bit
  442  **/
  443 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
  444 {
  445         u32 msgbuf[2];
  446 
  447         msgbuf[0] = E1000_VF_SET_VLAN;
  448         msgbuf[1] = vid;
  449         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
  450         if (set)
  451                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
  452 
  453         e1000_write_msg_read_ack(hw, msgbuf, 2);
  454 }
  455 
  456 /** e1000_rlpml_set_vf - Set the maximum receive packet length
  457  *  @hw: pointer to the HW structure
  458  *  @max_size: value to assign to max frame size
  459  **/
  460 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
  461 {
  462         u32 msgbuf[2];
  463 
  464         msgbuf[0] = E1000_VF_SET_LPE;
  465         msgbuf[1] = max_size;
  466 
  467         e1000_write_msg_read_ack(hw, msgbuf, 2);
  468 }
  469 
  470 /**
  471  *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
  472  *  @hw: pointer to the HW structure
  473  *  @uni: boolean indicating unicast promisc status
  474  *  @multi: boolean indicating multicast promisc status
  475  **/
  476 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
  477 {
  478         struct e1000_mbx_info *mbx = &hw->mbx;
  479         u32 msgbuf = E1000_VF_SET_PROMISC;
  480         s32 ret_val;
  481 
  482         switch (type) {
  483         case e1000_promisc_multicast:
  484                 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
  485                 break;
  486         case e1000_promisc_enabled:
  487                 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
  488         case e1000_promisc_unicast:
  489                 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
  490         case e1000_promisc_disabled:
  491                 break;
  492         default:
  493                 return -E1000_ERR_MAC_INIT;
  494         }
  495 
  496          ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
  497 
  498         if (!ret_val)
  499                 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
  500 
  501         if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
  502                 ret_val = -E1000_ERR_MAC_INIT;
  503 
  504         return ret_val;
  505 }
  506 
  507 /**
  508  *  e1000_read_mac_addr_vf - Read device MAC address
  509  *  @hw: pointer to the HW structure
  510  **/
  511 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
  512 {
  513         int i;
  514 
  515         for (i = 0; i < ETH_ADDR_LEN; i++)
  516                 hw->mac.addr[i] = hw->mac.perm_addr[i];
  517 
  518         return E1000_SUCCESS;
  519 }
  520 
  521 /**
  522  *  e1000_check_for_link_vf - Check for link for a virtual interface
  523  *  @hw: pointer to the HW structure
  524  *
  525  *  Checks to see if the underlying PF is still talking to the VF and
  526  *  if it is then it reports the link state to the hardware, otherwise
  527  *  it reports link down and returns an error.
  528  **/
  529 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
  530 {
  531         struct e1000_mbx_info *mbx = &hw->mbx;
  532         struct e1000_mac_info *mac = &hw->mac;
  533         s32 ret_val = E1000_SUCCESS;
  534         u32 in_msg = 0;
  535 
  536         DEBUGFUNC("e1000_check_for_link_vf");
  537 
  538         /*
  539          * We only want to run this if there has been a rst asserted.
  540          * in this case that could mean a link change, device reset,
  541          * or a virtual function reset
  542          */
  543 
  544         /* If we were hit with a reset or timeout drop the link */
  545         if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
  546                 mac->get_link_status = TRUE;
  547 
  548         if (!mac->get_link_status)
  549                 goto out;
  550 
  551         /* if link status is down no point in checking to see if pf is up */
  552         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
  553                 goto out;
  554 
  555         /* if the read failed it could just be a mailbox collision, best wait
  556          * until we are called again and don't report an error */
  557         if (mbx->ops.read(hw, &in_msg, 1, 0))
  558                 goto out;
  559 
  560         /* if incoming message isn't clear to send we are waiting on response */
  561         if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
  562                 /* message is not CTS and is NACK we have lost CTS status */
  563                 if (in_msg & E1000_VT_MSGTYPE_NACK)
  564                         ret_val = -E1000_ERR_MAC_INIT;
  565                 goto out;
  566         }
  567 
  568         /* at this point we know the PF is talking to us, check and see if
  569          * we are still accepting timeout or if we had a timeout failure.
  570          * if we failed then we will need to reinit */
  571         if (!mbx->timeout) {
  572                 ret_val = -E1000_ERR_MAC_INIT;
  573                 goto out;
  574         }
  575 
  576         /* if we passed all the tests above then the link is up and we no
  577          * longer need to check for link */
  578         mac->get_link_status = FALSE;
  579 
  580 out:
  581         return ret_val;
  582 }
  583 

Cache object: 4f69ee9e309f8fb76a4d96c9f97beda7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.