The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/nfe/if_nfe.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $OpenBSD: if_nfe.c,v 1.63 2006/06/17 18:00:43 brad Exp $        */
    2 
    3 /*
    4  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
    5  * 
    6  * This code is derived from software contributed to The DragonFly Project
    7  * by Sepherosa Ziehau <sepherosa@gmail.com> and
    8  * Matthew Dillon <dillon@apollo.backplane.com>
    9  * 
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in
   18  *    the documentation and/or other materials provided with the
   19  *    distribution.
   20  * 3. Neither the name of The DragonFly Project nor the names of its
   21  *    contributors may be used to endorse or promote products derived
   22  *    from this software without specific, prior written permission.
   23  * 
   24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  */
   37 
   38 /*
   39  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
   40  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
   41  *
   42  * Permission to use, copy, modify, and distribute this software for any
   43  * purpose with or without fee is hereby granted, provided that the above
   44  * copyright notice and this permission notice appear in all copies.
   45  *
   46  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   47  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   48  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   49  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   50  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   51  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   52  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   53  */
   54 
   55 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
   56 
   57 #include "opt_ifpoll.h"
   58 
   59 #include <sys/param.h>
   60 #include <sys/endian.h>
   61 #include <sys/kernel.h>
   62 #include <sys/bus.h>
   63 #include <sys/interrupt.h>
   64 #include <sys/proc.h>
   65 #include <sys/rman.h>
   66 #include <sys/serialize.h>
   67 #include <sys/socket.h>
   68 #include <sys/sockio.h>
   69 #include <sys/sysctl.h>
   70 
   71 #include <net/ethernet.h>
   72 #include <net/if.h>
   73 #include <net/bpf.h>
   74 #include <net/if_arp.h>
   75 #include <net/if_dl.h>
   76 #include <net/if_media.h>
   77 #include <net/if_poll.h>
   78 #include <net/ifq_var.h>
   79 #include <net/if_types.h>
   80 #include <net/if_var.h>
   81 #include <net/vlan/if_vlan_var.h>
   82 #include <net/vlan/if_vlan_ether.h>
   83 
   84 #include <bus/pci/pcireg.h>
   85 #include <bus/pci/pcivar.h>
   86 #include "pcidevs.h"
   87 
   88 #include <dev/netif/mii_layer/mii.h>
   89 #include <dev/netif/mii_layer/miivar.h>
   90 
   91 #include "miibus_if.h"
   92 
   93 #include <dev/netif/nfe/if_nfereg.h>
   94 #include <dev/netif/nfe/if_nfevar.h>
   95 
   96 #define NFE_CSUM
   97 #define NFE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
   98 
   99 static int      nfe_probe(device_t);
  100 static int      nfe_attach(device_t);
  101 static int      nfe_detach(device_t);
  102 static void     nfe_shutdown(device_t);
  103 static int      nfe_resume(device_t);
  104 static int      nfe_suspend(device_t);
  105 
  106 static int      nfe_miibus_readreg(device_t, int, int);
  107 static void     nfe_miibus_writereg(device_t, int, int, int);
  108 static void     nfe_miibus_statchg(device_t);
  109 
  110 #ifdef IFPOLL_ENABLE
  111 static void     nfe_npoll(struct ifnet *, struct ifpoll_info *);
  112 static void     nfe_npoll_compat(struct ifnet *, void *, int);
  113 static void     nfe_disable_intrs(struct nfe_softc *);
  114 #endif
  115 static void     nfe_intr(void *);
  116 static int      nfe_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
  117 static int      nfe_rxeof(struct nfe_softc *);
  118 static int      nfe_txeof(struct nfe_softc *, int);
  119 static int      nfe_encap(struct nfe_softc *, struct nfe_tx_ring *,
  120                           struct mbuf *);
  121 static void     nfe_start(struct ifnet *, struct ifaltq_subque *);
  122 static void     nfe_watchdog(struct ifnet *);
  123 static void     nfe_init(void *);
  124 static void     nfe_stop(struct nfe_softc *);
  125 static struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
  126 static void     nfe_jfree(void *);
  127 static void     nfe_jref(void *);
  128 static int      nfe_jpool_alloc(struct nfe_softc *, struct nfe_rx_ring *);
  129 static void     nfe_jpool_free(struct nfe_softc *, struct nfe_rx_ring *);
  130 static int      nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
  131 static void     nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
  132 static int      nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
  133 static void     nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
  134 static int      nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
  135 static void     nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
  136 static int      nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
  137 static void     nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
  138 static int      nfe_ifmedia_upd(struct ifnet *);
  139 static void     nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  140 static void     nfe_setmulti(struct nfe_softc *);
  141 static void     nfe_get_macaddr(struct nfe_softc *, uint8_t *);
  142 static void     nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
  143 static void     nfe_powerup(device_t);
  144 static void     nfe_mac_reset(struct nfe_softc *);
  145 static void     nfe_tick(void *);
  146 static void     nfe_set_paddr_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
  147                                      int, bus_addr_t);
  148 static void     nfe_set_ready_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
  149                                      int);
  150 static int      nfe_newbuf_std(struct nfe_softc *, struct nfe_rx_ring *, int,
  151                                int);
  152 static int      nfe_newbuf_jumbo(struct nfe_softc *, struct nfe_rx_ring *, int,
  153                                  int);
  154 static void     nfe_enable_intrs(struct nfe_softc *);
  155 
  156 static int      nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS);
  157 
  158 #define NFE_DEBUG
  159 #ifdef NFE_DEBUG
  160 
  161 static int      nfe_debug = 0;
  162 static int      nfe_rx_ring_count = NFE_RX_RING_DEF_COUNT;
  163 static int      nfe_tx_ring_count = NFE_TX_RING_DEF_COUNT;
  164 /*
  165  * hw timer simulated interrupt moderation @4000Hz.  Negative values
  166  * disable the timer when the discrete interrupt rate falls below
  167  * the moderation rate.
  168  *
  169  * XXX 8000Hz might be better but if the interrupt is shared it can
  170  *     blow out the cpu.
  171  */
  172 static int      nfe_imtime = -250;      /* uS */
  173 
  174 TUNABLE_INT("hw.nfe.rx_ring_count", &nfe_rx_ring_count);
  175 TUNABLE_INT("hw.nfe.tx_ring_count", &nfe_tx_ring_count);
  176 TUNABLE_INT("hw.nfe.imtimer", &nfe_imtime);
  177 TUNABLE_INT("hw.nfe.debug", &nfe_debug);
  178 
  179 #define DPRINTF(sc, fmt, ...) do {              \
  180         if ((sc)->sc_debug) {                   \
  181                 if_printf(&(sc)->arpcom.ac_if,  \
  182                           fmt, __VA_ARGS__);    \
  183         }                                       \
  184 } while (0)
  185 
  186 #define DPRINTFN(sc, lv, fmt, ...) do {         \
  187         if ((sc)->sc_debug >= (lv)) {           \
  188                 if_printf(&(sc)->arpcom.ac_if,  \
  189                           fmt, __VA_ARGS__);    \
  190         }                                       \
  191 } while (0)
  192 
  193 #else   /* !NFE_DEBUG */
  194 
  195 #define DPRINTF(sc, fmt, ...)
  196 #define DPRINTFN(sc, lv, fmt, ...)
  197 
  198 #endif  /* NFE_DEBUG */
  199 
  200 static const struct nfe_dev {
  201         uint16_t        vid;
  202         uint16_t        did;
  203         const char      *desc;
  204 } nfe_devices[] = {
  205         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
  206           "NVIDIA nForce Fast Ethernet" },
  207 
  208         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
  209           "NVIDIA nForce2 Fast Ethernet" },
  210 
  211         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
  212           "NVIDIA nForce3 Gigabit Ethernet" },
  213 
  214         /* XXX TGEN the next chip can also be found in the nForce2 Ultra 400Gb
  215            chipset, and possibly also the 400R; it might be both nForce2- and
  216            nForce3-based boards can use the same MCPs (= southbridges) */
  217         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2,
  218           "NVIDIA nForce3 Gigabit Ethernet" },
  219 
  220         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3,
  221           "NVIDIA nForce3 Gigabit Ethernet" },
  222 
  223         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
  224           "NVIDIA nForce3 Gigabit Ethernet" },
  225 
  226         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5,
  227           "NVIDIA nForce3 Gigabit Ethernet" },
  228 
  229         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1,
  230           "NVIDIA CK804 Gigabit Ethernet" },
  231 
  232         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2,
  233           "NVIDIA CK804 Gigabit Ethernet" },
  234 
  235         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
  236           "NVIDIA MCP04 Gigabit Ethernet" },
  237 
  238         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
  239           "NVIDIA MCP04 Gigabit Ethernet" },
  240 
  241         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1,
  242           "NVIDIA MCP51 Gigabit Ethernet" },
  243 
  244         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2,
  245           "NVIDIA MCP51 Gigabit Ethernet" },
  246 
  247         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
  248           "NVIDIA MCP55 Gigabit Ethernet" },
  249 
  250         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
  251           "NVIDIA MCP55 Gigabit Ethernet" },
  252 
  253         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
  254           "NVIDIA MCP61 Gigabit Ethernet" },
  255 
  256         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
  257           "NVIDIA MCP61 Gigabit Ethernet" },
  258 
  259         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
  260           "NVIDIA MCP61 Gigabit Ethernet" },
  261 
  262         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
  263           "NVIDIA MCP61 Gigabit Ethernet" },
  264 
  265         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
  266           "NVIDIA MCP65 Gigabit Ethernet" },
  267 
  268         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
  269           "NVIDIA MCP65 Gigabit Ethernet" },
  270 
  271         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
  272           "NVIDIA MCP65 Gigabit Ethernet" },
  273 
  274         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
  275           "NVIDIA MCP65 Gigabit Ethernet" },
  276 
  277         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
  278           "NVIDIA MCP67 Gigabit Ethernet" },
  279 
  280         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
  281           "NVIDIA MCP67 Gigabit Ethernet" },
  282 
  283         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
  284           "NVIDIA MCP67 Gigabit Ethernet" },
  285 
  286         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
  287           "NVIDIA MCP67 Gigabit Ethernet" },
  288 
  289         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
  290           "NVIDIA MCP73 Gigabit Ethernet" },
  291 
  292         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
  293           "NVIDIA MCP73 Gigabit Ethernet" },
  294 
  295         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
  296           "NVIDIA MCP73 Gigabit Ethernet" },
  297 
  298         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
  299           "NVIDIA MCP73 Gigabit Ethernet" },
  300 
  301         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
  302           "NVIDIA MCP77 Gigabit Ethernet" },
  303 
  304         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
  305           "NVIDIA MCP77 Gigabit Ethernet" },
  306 
  307         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
  308           "NVIDIA MCP77 Gigabit Ethernet" },
  309 
  310         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
  311           "NVIDIA MCP77 Gigabit Ethernet" },
  312 
  313         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
  314           "NVIDIA MCP79 Gigabit Ethernet" },
  315 
  316         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
  317           "NVIDIA MCP79 Gigabit Ethernet" },
  318 
  319         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
  320           "NVIDIA MCP79 Gigabit Ethernet" },
  321 
  322         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
  323           "NVIDIA MCP79 Gigabit Ethernet" },
  324 
  325         { 0, 0, NULL }
  326 };
  327 
  328 static device_method_t nfe_methods[] = {
  329         /* Device interface */
  330         DEVMETHOD(device_probe,         nfe_probe),
  331         DEVMETHOD(device_attach,        nfe_attach),
  332         DEVMETHOD(device_detach,        nfe_detach),
  333         DEVMETHOD(device_suspend,       nfe_suspend),
  334         DEVMETHOD(device_resume,        nfe_resume),
  335         DEVMETHOD(device_shutdown,      nfe_shutdown),
  336 
  337         /* Bus interface */
  338         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  339         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  340 
  341         /* MII interface */
  342         DEVMETHOD(miibus_readreg,       nfe_miibus_readreg),
  343         DEVMETHOD(miibus_writereg,      nfe_miibus_writereg),
  344         DEVMETHOD(miibus_statchg,       nfe_miibus_statchg),
  345 
  346         DEVMETHOD_END
  347 };
  348 
  349 static driver_t nfe_driver = {
  350         "nfe",
  351         nfe_methods,
  352         sizeof(struct nfe_softc)
  353 };
  354 
  355 static devclass_t       nfe_devclass;
  356 
  357 DECLARE_DUMMY_MODULE(if_nfe);
  358 MODULE_DEPEND(if_nfe, miibus, 1, 1, 1);
  359 DRIVER_MODULE(if_nfe, pci, nfe_driver, nfe_devclass, NULL, NULL);
  360 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, NULL, NULL);
  361 
  362 /*
  363  * NOTE: NFE_WORDALIGN support is guesswork right now.
  364  */
  365 static int
  366 nfe_probe(device_t dev)
  367 {
  368         const struct nfe_dev *n;
  369         uint16_t vid, did;
  370 
  371         vid = pci_get_vendor(dev);
  372         did = pci_get_device(dev);
  373         for (n = nfe_devices; n->desc != NULL; ++n) {
  374                 if (vid == n->vid && did == n->did) {
  375                         struct nfe_softc *sc = device_get_softc(dev);
  376 
  377                         switch (did) {
  378                         case PCI_PRODUCT_NVIDIA_NFORCE_LAN:
  379                         case PCI_PRODUCT_NVIDIA_NFORCE2_LAN:
  380                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN1:
  381                                 sc->sc_caps = NFE_NO_PWRCTL |
  382                                               NFE_FIX_EADDR;
  383                                 break;
  384                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
  385                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
  386                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
  387                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
  388                                 sc->sc_caps = NFE_JUMBO_SUP |
  389                                               NFE_HW_CSUM |
  390                                               NFE_NO_PWRCTL |
  391                                               NFE_FIX_EADDR;
  392                                 break;
  393                         case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
  394                         case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
  395                                 sc->sc_caps = NFE_FIX_EADDR;
  396                                 /* FALL THROUGH */
  397                         case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
  398                         case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
  399                         case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
  400                         case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
  401                         case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
  402                         case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
  403                         case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
  404                         case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
  405                         case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
  406                         case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
  407                         case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
  408                         case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
  409                                 sc->sc_caps |= NFE_40BIT_ADDR;
  410                                 break;
  411                         case PCI_PRODUCT_NVIDIA_CK804_LAN1:
  412                         case PCI_PRODUCT_NVIDIA_CK804_LAN2:
  413                         case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
  414                         case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
  415                                 sc->sc_caps = NFE_JUMBO_SUP |
  416                                               NFE_40BIT_ADDR |
  417                                               NFE_HW_CSUM |
  418                                               NFE_NO_PWRCTL |
  419                                               NFE_FIX_EADDR;
  420                                 break;
  421                         case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
  422                         case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
  423                         case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
  424                         case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
  425                                 sc->sc_caps = NFE_JUMBO_SUP |
  426                                               NFE_40BIT_ADDR;
  427                                 break;
  428                         case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
  429                         case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
  430                                 sc->sc_caps = NFE_JUMBO_SUP |
  431                                               NFE_40BIT_ADDR |
  432                                               NFE_HW_CSUM |
  433                                               NFE_HW_VLAN |
  434                                               NFE_FIX_EADDR;
  435                                 break;
  436                         case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
  437                         case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
  438                         case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
  439                         case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
  440                         case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
  441                         case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
  442                         case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
  443                         case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
  444                                 sc->sc_caps = NFE_40BIT_ADDR |
  445                                               NFE_HW_CSUM |
  446                                               NFE_WORDALIGN;
  447                                 break;
  448                         }
  449 
  450                         device_set_desc(dev, n->desc);
  451                         device_set_async_attach(dev, TRUE);
  452                         return 0;
  453                 }
  454         }
  455         return ENXIO;
  456 }
  457 
  458 static int
  459 nfe_attach(device_t dev)
  460 {
  461         struct nfe_softc *sc = device_get_softc(dev);
  462         struct ifnet *ifp = &sc->arpcom.ac_if;
  463         uint8_t eaddr[ETHER_ADDR_LEN];
  464         bus_addr_t lowaddr;
  465         int error;
  466 
  467         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  468         lwkt_serialize_init(&sc->sc_jbuf_serializer);
  469 
  470         /*
  471          * Initialize sysctl variables
  472          */
  473         sc->sc_rx_ring_count = nfe_rx_ring_count;
  474         sc->sc_tx_ring_count = nfe_tx_ring_count;
  475         sc->sc_debug = nfe_debug;
  476         if (nfe_imtime < 0) {
  477                 sc->sc_flags |= NFE_F_DYN_IM;
  478                 sc->sc_imtime = -nfe_imtime;
  479         } else {
  480                 sc->sc_imtime = nfe_imtime;
  481         }
  482         sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
  483 
  484         sc->sc_mem_rid = PCIR_BAR(0);
  485 
  486         if (sc->sc_caps & NFE_40BIT_ADDR)
  487                 sc->rxtxctl_desc = NFE_RXTX_DESC_V3;
  488         else if (sc->sc_caps & NFE_JUMBO_SUP)
  489                 sc->rxtxctl_desc = NFE_RXTX_DESC_V2;
  490 
  491 #ifndef BURN_BRIDGES
  492         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  493                 uint32_t mem, irq;
  494 
  495                 mem = pci_read_config(dev, sc->sc_mem_rid, 4);
  496                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
  497 
  498                 device_printf(dev, "chip is in D%d power mode "
  499                     "-- setting to D0\n", pci_get_powerstate(dev));
  500 
  501                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  502 
  503                 pci_write_config(dev, sc->sc_mem_rid, mem, 4);
  504                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
  505         }
  506 #endif  /* !BURN_BRIDGE */
  507 
  508         /* Enable bus mastering */
  509         pci_enable_busmaster(dev);
  510 
  511         /* Allocate IO memory */
  512         sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  513                                                 &sc->sc_mem_rid, RF_ACTIVE);
  514         if (sc->sc_mem_res == NULL) {
  515                 device_printf(dev, "could not allocate io memory\n");
  516                 return ENXIO;
  517         }
  518         sc->sc_memh = rman_get_bushandle(sc->sc_mem_res);
  519         sc->sc_memt = rman_get_bustag(sc->sc_mem_res);
  520 
  521         /* Allocate IRQ */
  522         sc->sc_irq_rid = 0;
  523         sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
  524                                                 &sc->sc_irq_rid,
  525                                                 RF_SHAREABLE | RF_ACTIVE);
  526         if (sc->sc_irq_res == NULL) {
  527                 device_printf(dev, "could not allocate irq\n");
  528                 error = ENXIO;
  529                 goto fail;
  530         }
  531 
  532         /* Disable WOL */
  533         NFE_WRITE(sc, NFE_WOL_CTL, 0);
  534 
  535         if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
  536                 nfe_powerup(dev);
  537 
  538         nfe_get_macaddr(sc, eaddr);
  539 
  540         /*
  541          * Allocate top level DMA tag
  542          */
  543         if (sc->sc_caps & NFE_40BIT_ADDR)
  544                 lowaddr = NFE_BUS_SPACE_MAXADDR;
  545         else
  546                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
  547         error = bus_dma_tag_create(NULL,        /* parent */
  548                         1, 0,                   /* alignment, boundary */
  549                         lowaddr,                /* lowaddr */
  550                         BUS_SPACE_MAXADDR,      /* highaddr */
  551                         NULL, NULL,             /* filter, filterarg */
  552                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
  553                         0,                      /* nsegments */
  554                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
  555                         0,                      /* flags */
  556                         &sc->sc_dtag);
  557         if (error) {
  558                 device_printf(dev, "could not allocate parent dma tag\n");
  559                 goto fail;
  560         }
  561 
  562         /*
  563          * Allocate Tx and Rx rings.
  564          */
  565         error = nfe_alloc_tx_ring(sc, &sc->txq);
  566         if (error) {
  567                 device_printf(dev, "could not allocate Tx ring\n");
  568                 goto fail;
  569         }
  570 
  571         error = nfe_alloc_rx_ring(sc, &sc->rxq);
  572         if (error) {
  573                 device_printf(dev, "could not allocate Rx ring\n");
  574                 goto fail;
  575         }
  576 
  577         /*
  578          * Create sysctl tree
  579          */
  580         sysctl_ctx_init(&sc->sc_sysctl_ctx);
  581         sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
  582                                              SYSCTL_STATIC_CHILDREN(_hw),
  583                                              OID_AUTO,
  584                                              device_get_nameunit(dev),
  585                                              CTLFLAG_RD, 0, "");
  586         if (sc->sc_sysctl_tree == NULL) {
  587                 device_printf(dev, "can't add sysctl node\n");
  588                 error = ENXIO;
  589                 goto fail;
  590         }
  591         SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
  592                         SYSCTL_CHILDREN(sc->sc_sysctl_tree),
  593                         OID_AUTO, "imtimer", CTLTYPE_INT | CTLFLAG_RW,
  594                         sc, 0, nfe_sysctl_imtime, "I",
  595                         "Interrupt moderation time (usec).  "
  596                         "0 to disable interrupt moderation.");
  597         SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
  598                        SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
  599                        "rx_ring_count", CTLFLAG_RD, &sc->sc_rx_ring_count,
  600                        0, "RX ring count");
  601         SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
  602                        SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
  603                        "tx_ring_count", CTLFLAG_RD, &sc->sc_tx_ring_count,
  604                        0, "TX ring count");
  605         SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
  606                        SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
  607                        "debug", CTLFLAG_RW, &sc->sc_debug,
  608                        0, "control debugging printfs");
  609 
  610         error = mii_phy_probe(dev, &sc->sc_miibus, nfe_ifmedia_upd,
  611                               nfe_ifmedia_sts);
  612         if (error) {
  613                 device_printf(dev, "MII without any phy\n");
  614                 goto fail;
  615         }
  616 
  617         ifp->if_softc = sc;
  618         ifp->if_mtu = ETHERMTU;
  619         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  620         ifp->if_ioctl = nfe_ioctl;
  621         ifp->if_start = nfe_start;
  622 #ifdef IFPOLL_ENABLE
  623         ifp->if_npoll = nfe_npoll;
  624 #endif
  625         ifp->if_watchdog = nfe_watchdog;
  626         ifp->if_init = nfe_init;
  627         ifq_set_maxlen(&ifp->if_snd, sc->sc_tx_ring_count);
  628         ifq_set_ready(&ifp->if_snd);
  629 
  630         ifp->if_capabilities = IFCAP_VLAN_MTU;
  631 
  632         if (sc->sc_caps & NFE_HW_VLAN)
  633                 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
  634 
  635 #ifdef NFE_CSUM
  636         if (sc->sc_caps & NFE_HW_CSUM) {
  637                 ifp->if_capabilities |= IFCAP_HWCSUM;
  638                 ifp->if_hwassist = NFE_CSUM_FEATURES;
  639         }
  640 #else
  641         sc->sc_caps &= ~NFE_HW_CSUM;
  642 #endif
  643         ifp->if_capenable = ifp->if_capabilities;
  644 
  645         callout_init(&sc->sc_tick_ch);
  646 
  647         ether_ifattach(ifp, eaddr, NULL);
  648 
  649         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sc_irq_res));
  650 
  651 #ifdef IFPOLL_ENABLE
  652         ifpoll_compat_setup(&sc->sc_npoll,
  653             &sc->sc_sysctl_ctx, sc->sc_sysctl_tree, device_get_unit(dev),
  654             ifp->if_serializer);
  655 #endif
  656 
  657         error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, nfe_intr, sc,
  658                                &sc->sc_ih, ifp->if_serializer);
  659         if (error) {
  660                 device_printf(dev, "could not setup intr\n");
  661                 ether_ifdetach(ifp);
  662                 goto fail;
  663         }
  664 
  665         return 0;
  666 fail:
  667         nfe_detach(dev);
  668         return error;
  669 }
  670 
  671 static int
  672 nfe_detach(device_t dev)
  673 {
  674         struct nfe_softc *sc = device_get_softc(dev);
  675 
  676         if (device_is_attached(dev)) {
  677                 struct ifnet *ifp = &sc->arpcom.ac_if;
  678 
  679                 lwkt_serialize_enter(ifp->if_serializer);
  680                 nfe_stop(sc);
  681                 bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_ih);
  682                 lwkt_serialize_exit(ifp->if_serializer);
  683 
  684                 ether_ifdetach(ifp);
  685         }
  686 
  687         if (sc->sc_miibus != NULL)
  688                 device_delete_child(dev, sc->sc_miibus);
  689         bus_generic_detach(dev);
  690 
  691         if (sc->sc_sysctl_tree != NULL)
  692                 sysctl_ctx_free(&sc->sc_sysctl_ctx);
  693 
  694         if (sc->sc_irq_res != NULL) {
  695                 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
  696                                      sc->sc_irq_res);
  697         }
  698 
  699         if (sc->sc_mem_res != NULL) {
  700                 bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
  701                                      sc->sc_mem_res);
  702         }
  703 
  704         nfe_free_tx_ring(sc, &sc->txq);
  705         nfe_free_rx_ring(sc, &sc->rxq);
  706         if (sc->sc_dtag != NULL)
  707                 bus_dma_tag_destroy(sc->sc_dtag);
  708 
  709         return 0;
  710 }
  711 
  712 static void
  713 nfe_shutdown(device_t dev)
  714 {
  715         struct nfe_softc *sc = device_get_softc(dev);
  716         struct ifnet *ifp = &sc->arpcom.ac_if;
  717 
  718         lwkt_serialize_enter(ifp->if_serializer);
  719         nfe_stop(sc);
  720         lwkt_serialize_exit(ifp->if_serializer);
  721 }
  722 
  723 static int
  724 nfe_suspend(device_t dev)
  725 {
  726         struct nfe_softc *sc = device_get_softc(dev);
  727         struct ifnet *ifp = &sc->arpcom.ac_if;
  728 
  729         lwkt_serialize_enter(ifp->if_serializer);
  730         nfe_stop(sc);
  731         lwkt_serialize_exit(ifp->if_serializer);
  732 
  733         return 0;
  734 }
  735 
  736 static int
  737 nfe_resume(device_t dev)
  738 {
  739         struct nfe_softc *sc = device_get_softc(dev);
  740         struct ifnet *ifp = &sc->arpcom.ac_if;
  741 
  742         lwkt_serialize_enter(ifp->if_serializer);
  743         if (ifp->if_flags & IFF_UP)
  744                 nfe_init(sc);
  745         lwkt_serialize_exit(ifp->if_serializer);
  746 
  747         return 0;
  748 }
  749 
  750 static void
  751 nfe_miibus_statchg(device_t dev)
  752 {
  753         struct nfe_softc *sc = device_get_softc(dev);
  754         struct mii_data *mii = device_get_softc(sc->sc_miibus);
  755         uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
  756 
  757         ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
  758 
  759         phy = NFE_READ(sc, NFE_PHY_IFACE);
  760         phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
  761 
  762         seed = NFE_READ(sc, NFE_RNDSEED);
  763         seed &= ~NFE_SEED_MASK;
  764 
  765         if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
  766                 phy  |= NFE_PHY_HDX;    /* half-duplex */
  767                 misc |= NFE_MISC1_HDX;
  768         }
  769 
  770         switch (IFM_SUBTYPE(mii->mii_media_active)) {
  771         case IFM_1000_T:        /* full-duplex only */
  772                 link |= NFE_MEDIA_1000T;
  773                 seed |= NFE_SEED_1000T;
  774                 phy  |= NFE_PHY_1000T;
  775                 break;
  776         case IFM_100_TX:
  777                 link |= NFE_MEDIA_100TX;
  778                 seed |= NFE_SEED_100TX;
  779                 phy  |= NFE_PHY_100TX;
  780                 break;
  781         case IFM_10_T:
  782                 link |= NFE_MEDIA_10T;
  783                 seed |= NFE_SEED_10T;
  784                 break;
  785         }
  786 
  787         NFE_WRITE(sc, NFE_RNDSEED, seed);       /* XXX: gigabit NICs only? */
  788 
  789         NFE_WRITE(sc, NFE_PHY_IFACE, phy);
  790         NFE_WRITE(sc, NFE_MISC1, misc);
  791         NFE_WRITE(sc, NFE_LINKSPEED, link);
  792 }
  793 
  794 static int
  795 nfe_miibus_readreg(device_t dev, int phy, int reg)
  796 {
  797         struct nfe_softc *sc = device_get_softc(dev);
  798         uint32_t val;
  799         int ntries;
  800 
  801         NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
  802 
  803         if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
  804                 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
  805                 DELAY(100);
  806         }
  807 
  808         NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
  809 
  810         for (ntries = 0; ntries < 1000; ntries++) {
  811                 DELAY(100);
  812                 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
  813                         break;
  814         }
  815         if (ntries == 1000) {
  816                 DPRINTFN(sc, 2, "timeout waiting for PHY %s\n", "");
  817                 return 0;
  818         }
  819 
  820         if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
  821                 DPRINTFN(sc, 2, "could not read PHY %s\n", "");
  822                 return 0;
  823         }
  824 
  825         val = NFE_READ(sc, NFE_PHY_DATA);
  826         if (val != 0xffffffff && val != 0)
  827                 sc->mii_phyaddr = phy;
  828 
  829         DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
  830 
  831         return val;
  832 }
  833 
  834 static void
  835 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
  836 {
  837         struct nfe_softc *sc = device_get_softc(dev);
  838         uint32_t ctl;
  839         int ntries;
  840 
  841         NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
  842 
  843         if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
  844                 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
  845                 DELAY(100);
  846         }
  847 
  848         NFE_WRITE(sc, NFE_PHY_DATA, val);
  849         ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
  850         NFE_WRITE(sc, NFE_PHY_CTL, ctl);
  851 
  852         for (ntries = 0; ntries < 1000; ntries++) {
  853                 DELAY(100);
  854                 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
  855                         break;
  856         }
  857 
  858 #ifdef NFE_DEBUG
  859         if (ntries == 1000)
  860                 DPRINTFN(sc, 2, "could not write to PHY %s\n", "");
  861 #endif
  862 }
  863 
  864 #ifdef IFPOLL_ENABLE
  865 
  866 static void
  867 nfe_npoll_compat(struct ifnet *ifp, void *arg __unused, int count __unused)
  868 {
  869         struct nfe_softc *sc = ifp->if_softc;
  870 
  871         ASSERT_SERIALIZED(ifp->if_serializer);
  872 
  873         nfe_rxeof(sc);
  874         nfe_txeof(sc, 1);
  875 }
  876 
  877 static void
  878 nfe_disable_intrs(struct nfe_softc *sc)
  879 {
  880         /* Disable interrupts */
  881         NFE_WRITE(sc, NFE_IRQ_MASK, 0);
  882         sc->sc_flags &= ~NFE_F_IRQ_TIMER;
  883         sc->sc_npoll.ifpc_stcount = 0;
  884 }
  885 
  886 static void
  887 nfe_npoll(struct ifnet *ifp, struct ifpoll_info *info)
  888 {
  889         struct nfe_softc *sc = ifp->if_softc;
  890 
  891         ASSERT_SERIALIZED(ifp->if_serializer);
  892 
  893         if (info != NULL) {
  894                 int cpuid = sc->sc_npoll.ifpc_cpuid;
  895 
  896                 info->ifpi_rx[cpuid].poll_func = nfe_npoll_compat;
  897                 info->ifpi_rx[cpuid].arg = NULL;
  898                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
  899 
  900                 if (ifp->if_flags & IFF_RUNNING)
  901                         nfe_disable_intrs(sc);
  902                 ifq_set_cpuid(&ifp->if_snd, cpuid);
  903         } else {
  904                 if (ifp->if_flags & IFF_RUNNING)
  905                         nfe_enable_intrs(sc);
  906                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sc_irq_res));
  907         }
  908 }
  909 
  910 #endif  /* IFPOLL_ENABLE */
  911 
  912 static void
  913 nfe_intr(void *arg)
  914 {
  915         struct nfe_softc *sc = arg;
  916         struct ifnet *ifp = &sc->arpcom.ac_if;
  917         uint32_t r;
  918 
  919         r = NFE_READ(sc, NFE_IRQ_STATUS);
  920         if (r == 0)
  921                 return; /* not for us */
  922         NFE_WRITE(sc, NFE_IRQ_STATUS, r);
  923 
  924         if (sc->sc_rate_second != time_uptime) {
  925                 /*
  926                  * Calculate sc_rate_avg - interrupts per second.
  927                  */
  928                 sc->sc_rate_second = time_uptime;
  929                 if (sc->sc_rate_avg < sc->sc_rate_acc)
  930                         sc->sc_rate_avg = sc->sc_rate_acc;
  931                 else
  932                         sc->sc_rate_avg = (sc->sc_rate_avg * 3 +
  933                                            sc->sc_rate_acc) / 4;
  934                 sc->sc_rate_acc = 0;
  935         } else if (sc->sc_rate_avg < sc->sc_rate_acc) {
  936                 /*
  937                  * Don't wait for a tick to roll over if we are taking
  938                  * a lot of interrupts.
  939                  */
  940                 sc->sc_rate_avg = sc->sc_rate_acc;
  941         }
  942 
  943         DPRINTFN(sc, 5, "%s: interrupt register %x\n", __func__, r);
  944 
  945         if (r & NFE_IRQ_LINK) {
  946                 NFE_READ(sc, NFE_PHY_STATUS);
  947                 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
  948                 DPRINTF(sc, "link state changed %s\n", "");
  949         }
  950 
  951         if (ifp->if_flags & IFF_RUNNING) {
  952                 int ret;
  953                 int rate;
  954 
  955                 /* check Rx ring */
  956                 ret = nfe_rxeof(sc);
  957 
  958                 /* check Tx ring */
  959                 ret |= nfe_txeof(sc, 1);
  960 
  961                 /* update the rate accumulator */
  962                 if (ret)
  963                         ++sc->sc_rate_acc;
  964 
  965                 if (sc->sc_flags & NFE_F_DYN_IM) {
  966                         rate = 1000000 / sc->sc_imtime;
  967                         if ((sc->sc_flags & NFE_F_IRQ_TIMER) == 0 &&
  968                             sc->sc_rate_avg > rate) {
  969                                 /*
  970                                  * Use the hardware timer to reduce the
  971                                  * interrupt rate if the discrete interrupt
  972                                  * rate has exceeded our threshold.
  973                                  */
  974                                 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_IMTIMER);
  975                                 sc->sc_flags |= NFE_F_IRQ_TIMER;
  976                         } else if ((sc->sc_flags & NFE_F_IRQ_TIMER) &&
  977                                    sc->sc_rate_avg <= rate) {
  978                                 /*
  979                                  * Use discrete TX/RX interrupts if the rate
  980                                  * has fallen below our threshold.
  981                                  */
  982                                 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_NOIMTIMER);
  983                                 sc->sc_flags &= ~NFE_F_IRQ_TIMER;
  984 
  985                                 /*
  986                                  * Recollect, mainly to avoid the possible race
  987                                  * introduced by changing interrupt masks.
  988                                  */
  989                                 nfe_rxeof(sc);
  990                                 nfe_txeof(sc, 1);
  991                         }
  992                 }
  993         }
  994 }
  995 
  996 static int
  997 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
  998 {
  999         struct nfe_softc *sc = ifp->if_softc;
 1000         struct ifreq *ifr = (struct ifreq *)data;
 1001         struct mii_data *mii;
 1002         int error = 0, mask, jumbo_cap;
 1003 
 1004         ASSERT_SERIALIZED(ifp->if_serializer);
 1005 
 1006         switch (cmd) {
 1007         case SIOCSIFMTU:
 1008                 if ((sc->sc_caps & NFE_JUMBO_SUP) && sc->rxq.jbuf != NULL)
 1009                         jumbo_cap = 1;
 1010                 else
 1011                         jumbo_cap = 0;
 1012 
 1013                 if ((jumbo_cap && ifr->ifr_mtu > NFE_JUMBO_MTU) ||
 1014                     (!jumbo_cap && ifr->ifr_mtu > ETHERMTU)) {
 1015                         return EINVAL;
 1016                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
 1017                         ifp->if_mtu = ifr->ifr_mtu;
 1018                         if (ifp->if_flags & IFF_RUNNING)
 1019                                 nfe_init(sc);
 1020                 }
 1021                 break;
 1022         case SIOCSIFFLAGS:
 1023                 if (ifp->if_flags & IFF_UP) {
 1024                         /*
 1025                          * If only the PROMISC or ALLMULTI flag changes, then
 1026                          * don't do a full re-init of the chip, just update
 1027                          * the Rx filter.
 1028                          */
 1029                         if ((ifp->if_flags & IFF_RUNNING) &&
 1030                             ((ifp->if_flags ^ sc->sc_if_flags) &
 1031                              (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
 1032                                 nfe_setmulti(sc);
 1033                         } else {
 1034                                 if (!(ifp->if_flags & IFF_RUNNING))
 1035                                         nfe_init(sc);
 1036                         }
 1037                 } else {
 1038                         if (ifp->if_flags & IFF_RUNNING)
 1039                                 nfe_stop(sc);
 1040                 }
 1041                 sc->sc_if_flags = ifp->if_flags;
 1042                 break;
 1043         case SIOCADDMULTI:
 1044         case SIOCDELMULTI:
 1045                 if (ifp->if_flags & IFF_RUNNING)
 1046                         nfe_setmulti(sc);
 1047                 break;
 1048         case SIOCSIFMEDIA:
 1049         case SIOCGIFMEDIA:
 1050                 mii = device_get_softc(sc->sc_miibus);
 1051                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1052                 break;
 1053         case SIOCSIFCAP:
 1054                 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) & IFCAP_HWCSUM;
 1055                 if (mask && (ifp->if_capabilities & IFCAP_HWCSUM)) {
 1056                         ifp->if_capenable ^= mask;
 1057                         if (IFCAP_TXCSUM & ifp->if_capenable)
 1058                                 ifp->if_hwassist = NFE_CSUM_FEATURES;
 1059                         else
 1060                                 ifp->if_hwassist = 0;
 1061 
 1062                         if (ifp->if_flags & IFF_RUNNING)
 1063                                 nfe_init(sc);
 1064                 }
 1065                 break;
 1066         default:
 1067                 error = ether_ioctl(ifp, cmd, data);
 1068                 break;
 1069         }
 1070         return error;
 1071 }
 1072 
 1073 static int
 1074 nfe_rxeof(struct nfe_softc *sc)
 1075 {
 1076         struct ifnet *ifp = &sc->arpcom.ac_if;
 1077         struct nfe_rx_ring *ring = &sc->rxq;
 1078         int reap;
 1079 
 1080         reap = 0;
 1081         for (;;) {
 1082                 struct nfe_rx_data *data = &ring->data[ring->cur];
 1083                 struct mbuf *m;
 1084                 uint16_t flags;
 1085                 int len, error;
 1086 
 1087                 if (sc->sc_caps & NFE_40BIT_ADDR) {
 1088                         struct nfe_desc64 *desc64 = &ring->desc64[ring->cur];
 1089 
 1090                         flags = le16toh(desc64->flags);
 1091                         len = le16toh(desc64->length) & 0x3fff;
 1092                 } else {
 1093                         struct nfe_desc32 *desc32 = &ring->desc32[ring->cur];
 1094 
 1095                         flags = le16toh(desc32->flags);
 1096                         len = le16toh(desc32->length) & 0x3fff;
 1097                 }
 1098 
 1099                 if (flags & NFE_RX_READY)
 1100                         break;
 1101 
 1102                 reap = 1;
 1103 
 1104                 if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
 1105                         if (!(flags & NFE_RX_VALID_V1))
 1106                                 goto skip;
 1107 
 1108                         if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
 1109                                 flags &= ~NFE_RX_ERROR;
 1110                                 len--;  /* fix buffer length */
 1111                         }
 1112                 } else {
 1113                         if (!(flags & NFE_RX_VALID_V2))
 1114                                 goto skip;
 1115 
 1116                         if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
 1117                                 flags &= ~NFE_RX_ERROR;
 1118                                 len--;  /* fix buffer length */
 1119                         }
 1120                 }
 1121 
 1122                 if (flags & NFE_RX_ERROR) {
 1123                         IFNET_STAT_INC(ifp, ierrors, 1);
 1124                         goto skip;
 1125                 }
 1126 
 1127                 m = data->m;
 1128 
 1129                 if (sc->sc_flags & NFE_F_USE_JUMBO)
 1130                         error = nfe_newbuf_jumbo(sc, ring, ring->cur, 0);
 1131                 else
 1132                         error = nfe_newbuf_std(sc, ring, ring->cur, 0);
 1133                 if (error) {
 1134                         IFNET_STAT_INC(ifp, ierrors, 1);
 1135                         goto skip;
 1136                 }
 1137 
 1138                 /* finalize mbuf */
 1139                 m->m_pkthdr.len = m->m_len = len;
 1140                 m->m_pkthdr.rcvif = ifp;
 1141 
 1142                 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
 1143                     (flags & NFE_RX_CSUMOK)) {
 1144                         if (flags & NFE_RX_IP_CSUMOK_V2) {
 1145                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
 1146                                                           CSUM_IP_VALID;
 1147                         }
 1148 
 1149                         if (flags &
 1150                             (NFE_RX_UDP_CSUMOK_V2 | NFE_RX_TCP_CSUMOK_V2)) {
 1151                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 1152                                                           CSUM_PSEUDO_HDR |
 1153                                                           CSUM_FRAG_NOT_CHECKED;
 1154                                 m->m_pkthdr.csum_data = 0xffff;
 1155                         }
 1156                 }
 1157 
 1158                 IFNET_STAT_INC(ifp, ipackets, 1);
 1159                 ifp->if_input(ifp, m);
 1160 skip:
 1161                 nfe_set_ready_rxdesc(sc, ring, ring->cur);
 1162                 sc->rxq.cur = (sc->rxq.cur + 1) % sc->sc_rx_ring_count;
 1163         }
 1164         return reap;
 1165 }
 1166 
 1167 static int
 1168 nfe_txeof(struct nfe_softc *sc, int start)
 1169 {
 1170         struct ifnet *ifp = &sc->arpcom.ac_if;
 1171         struct nfe_tx_ring *ring = &sc->txq;
 1172         struct nfe_tx_data *data = NULL;
 1173 
 1174         while (ring->next != ring->cur) {
 1175                 uint16_t flags;
 1176 
 1177                 if (sc->sc_caps & NFE_40BIT_ADDR)
 1178                         flags = le16toh(ring->desc64[ring->next].flags);
 1179                 else
 1180                         flags = le16toh(ring->desc32[ring->next].flags);
 1181 
 1182                 if (flags & NFE_TX_VALID)
 1183                         break;
 1184 
 1185                 data = &ring->data[ring->next];
 1186 
 1187                 if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
 1188                         if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
 1189                                 goto skip;
 1190 
 1191                         if ((flags & NFE_TX_ERROR_V1) != 0) {
 1192                                 if_printf(ifp, "tx v1 error 0x%4b\n", flags,
 1193                                           NFE_V1_TXERR);
 1194                                 IFNET_STAT_INC(ifp, oerrors, 1);
 1195                         } else {
 1196                                 IFNET_STAT_INC(ifp, opackets, 1);
 1197                         }
 1198                 } else {
 1199                         if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
 1200                                 goto skip;
 1201 
 1202                         if ((flags & NFE_TX_ERROR_V2) != 0) {
 1203                                 if_printf(ifp, "tx v2 error 0x%4b\n", flags,
 1204                                           NFE_V2_TXERR);
 1205                                 IFNET_STAT_INC(ifp, oerrors, 1);
 1206                         } else {
 1207                                 IFNET_STAT_INC(ifp, opackets, 1);
 1208                         }
 1209                 }
 1210 
 1211                 if (data->m == NULL) {  /* should not get there */
 1212                         if_printf(ifp,
 1213                                   "last fragment bit w/o associated mbuf!\n");
 1214                         goto skip;
 1215                 }
 1216 
 1217                 /* last fragment of the mbuf chain transmitted */
 1218                 bus_dmamap_unload(ring->data_tag, data->map);
 1219                 m_freem(data->m);
 1220                 data->m = NULL;
 1221 skip:
 1222                 ring->queued--;
 1223                 KKASSERT(ring->queued >= 0);
 1224                 ring->next = (ring->next + 1) % sc->sc_tx_ring_count;
 1225         }
 1226 
 1227         if (sc->sc_tx_ring_count - ring->queued >=
 1228             sc->sc_tx_spare + NFE_NSEG_RSVD)
 1229                 ifq_clr_oactive(&ifp->if_snd);
 1230 
 1231         if (ring->queued == 0)
 1232                 ifp->if_timer = 0;
 1233 
 1234         if (start && !ifq_is_empty(&ifp->if_snd))
 1235                 if_devstart(ifp);
 1236 
 1237         if (data != NULL)
 1238                 return 1;
 1239         else
 1240                 return 0;
 1241 }
 1242 
 1243 static int
 1244 nfe_encap(struct nfe_softc *sc, struct nfe_tx_ring *ring, struct mbuf *m0)
 1245 {
 1246         bus_dma_segment_t segs[NFE_MAX_SCATTER];
 1247         struct nfe_tx_data *data, *data_map;
 1248         bus_dmamap_t map;
 1249         struct nfe_desc64 *desc64 = NULL;
 1250         struct nfe_desc32 *desc32 = NULL;
 1251         uint16_t flags = 0;
 1252         uint32_t vtag = 0;
 1253         int error, i, j, maxsegs, nsegs;
 1254 
 1255         data = &ring->data[ring->cur];
 1256         map = data->map;
 1257         data_map = data;        /* Remember who owns the DMA map */
 1258 
 1259         maxsegs = (sc->sc_tx_ring_count - ring->queued) - NFE_NSEG_RSVD;
 1260         if (maxsegs > NFE_MAX_SCATTER)
 1261                 maxsegs = NFE_MAX_SCATTER;
 1262         KASSERT(maxsegs >= sc->sc_tx_spare,
 1263                 ("not enough segments %d,%d", maxsegs, sc->sc_tx_spare));
 1264 
 1265         error = bus_dmamap_load_mbuf_defrag(ring->data_tag, map, &m0,
 1266                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
 1267         if (error)
 1268                 goto back;
 1269         bus_dmamap_sync(ring->data_tag, map, BUS_DMASYNC_PREWRITE);
 1270 
 1271         error = 0;
 1272 
 1273         /* setup h/w VLAN tagging */
 1274         if (m0->m_flags & M_VLANTAG)
 1275                 vtag = m0->m_pkthdr.ether_vlantag;
 1276 
 1277         if (sc->arpcom.ac_if.if_capenable & IFCAP_TXCSUM) {
 1278                 if (m0->m_pkthdr.csum_flags & CSUM_IP)
 1279                         flags |= NFE_TX_IP_CSUM;
 1280                 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
 1281                         flags |= NFE_TX_TCP_CSUM;
 1282         }
 1283 
 1284         /*
 1285          * XXX urm. somebody is unaware of how hardware works.  You 
 1286          * absolutely CANNOT set NFE_TX_VALID on the next descriptor in
 1287          * the ring until the entire chain is actually *VALID*.  Otherwise
 1288          * the hardware may encounter a partially initialized chain that
 1289          * is marked as being ready to go when it in fact is not ready to
 1290          * go.
 1291          */
 1292 
 1293         for (i = 0; i < nsegs; i++) {
 1294                 j = (ring->cur + i) % sc->sc_tx_ring_count;
 1295                 data = &ring->data[j];
 1296 
 1297                 if (sc->sc_caps & NFE_40BIT_ADDR) {
 1298                         desc64 = &ring->desc64[j];
 1299                         desc64->physaddr[0] =
 1300                             htole32(NFE_ADDR_HI(segs[i].ds_addr));
 1301                         desc64->physaddr[1] =
 1302                             htole32(NFE_ADDR_LO(segs[i].ds_addr));
 1303                         desc64->length = htole16(segs[i].ds_len - 1);
 1304                         desc64->vtag = htole32(vtag);
 1305                         desc64->flags = htole16(flags);
 1306                 } else {
 1307                         desc32 = &ring->desc32[j];
 1308                         desc32->physaddr = htole32(segs[i].ds_addr);
 1309                         desc32->length = htole16(segs[i].ds_len - 1);
 1310                         desc32->flags = htole16(flags);
 1311                 }
 1312 
 1313                 /* csum flags and vtag belong to the first fragment only */
 1314                 flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
 1315                 vtag = 0;
 1316 
 1317                 ring->queued++;
 1318                 KKASSERT(ring->queued <= sc->sc_tx_ring_count);
 1319         }
 1320 
 1321         /* the whole mbuf chain has been DMA mapped, fix last descriptor */
 1322         if (sc->sc_caps & NFE_40BIT_ADDR) {
 1323                 desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
 1324         } else {
 1325                 if (sc->sc_caps & NFE_JUMBO_SUP)
 1326                         flags = NFE_TX_LASTFRAG_V2;
 1327                 else
 1328                         flags = NFE_TX_LASTFRAG_V1;
 1329                 desc32->flags |= htole16(flags);
 1330         }
 1331 
 1332         /*
 1333          * Set NFE_TX_VALID backwards so the hardware doesn't see the
 1334          * whole mess until the first descriptor in the map is flagged.
 1335          */
 1336         for (i = nsegs - 1; i >= 0; --i) {
 1337                 j = (ring->cur + i) % sc->sc_tx_ring_count;
 1338                 if (sc->sc_caps & NFE_40BIT_ADDR) {
 1339                         desc64 = &ring->desc64[j];
 1340                         desc64->flags |= htole16(NFE_TX_VALID);
 1341                 } else {
 1342                         desc32 = &ring->desc32[j];
 1343                         desc32->flags |= htole16(NFE_TX_VALID);
 1344                 }
 1345         }
 1346         ring->cur = (ring->cur + nsegs) % sc->sc_tx_ring_count;
 1347 
 1348         /* Exchange DMA map */
 1349         data_map->map = data->map;
 1350         data->map = map;
 1351         data->m = m0;
 1352 back:
 1353         if (error)
 1354                 m_freem(m0);
 1355         return error;
 1356 }
 1357 
 1358 static void
 1359 nfe_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 1360 {
 1361         struct nfe_softc *sc = ifp->if_softc;
 1362         struct nfe_tx_ring *ring = &sc->txq;
 1363         int count = 0, oactive = 0;
 1364         struct mbuf *m0;
 1365 
 1366         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 1367         ASSERT_SERIALIZED(ifp->if_serializer);
 1368 
 1369         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
 1370                 return;
 1371 
 1372         for (;;) {
 1373                 int error;
 1374 
 1375                 if (sc->sc_tx_ring_count - ring->queued <
 1376                     sc->sc_tx_spare + NFE_NSEG_RSVD) {
 1377                         if (oactive) {
 1378                                 ifq_set_oactive(&ifp->if_snd);
 1379                                 break;
 1380                         }
 1381 
 1382                         nfe_txeof(sc, 0);
 1383                         oactive = 1;
 1384                         continue;
 1385                 }
 1386 
 1387                 m0 = ifq_dequeue(&ifp->if_snd);
 1388                 if (m0 == NULL)
 1389                         break;
 1390 
 1391                 ETHER_BPF_MTAP(ifp, m0);
 1392 
 1393                 error = nfe_encap(sc, ring, m0);
 1394                 if (error) {
 1395                         IFNET_STAT_INC(ifp, oerrors, 1);
 1396                         if (error == EFBIG) {
 1397                                 if (oactive) {
 1398                                         ifq_set_oactive(&ifp->if_snd);
 1399                                         break;
 1400                                 }
 1401                                 nfe_txeof(sc, 0);
 1402                                 oactive = 1;
 1403                         }
 1404                         continue;
 1405                 } else {
 1406                         oactive = 0;
 1407                 }
 1408                 ++count;
 1409 
 1410                 /*
 1411                  * NOTE:
 1412                  * `m0' may be freed in nfe_encap(), so
 1413                  * it should not be touched any more.
 1414                  */
 1415         }
 1416 
 1417         if (count == 0) /* nothing sent */
 1418                 return;
 1419 
 1420         /* Kick Tx */
 1421         NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
 1422 
 1423         /*
 1424          * Set a timeout in case the chip goes out to lunch.
 1425          */
 1426         ifp->if_timer = 5;
 1427 }
 1428 
 1429 static void
 1430 nfe_watchdog(struct ifnet *ifp)
 1431 {
 1432         struct nfe_softc *sc = ifp->if_softc;
 1433 
 1434         ASSERT_SERIALIZED(ifp->if_serializer);
 1435 
 1436         if (ifp->if_flags & IFF_RUNNING) {
 1437                 if_printf(ifp, "watchdog timeout - lost interrupt recovered\n");
 1438                 nfe_txeof(sc, 1);
 1439                 return;
 1440         }
 1441 
 1442         if_printf(ifp, "watchdog timeout\n");
 1443 
 1444         nfe_init(ifp->if_softc);
 1445 
 1446         IFNET_STAT_INC(ifp, oerrors, 1);
 1447 }
 1448 
 1449 static void
 1450 nfe_init(void *xsc)
 1451 {
 1452         struct nfe_softc *sc = xsc;
 1453         struct ifnet *ifp = &sc->arpcom.ac_if;
 1454         uint32_t tmp;
 1455         int error;
 1456 
 1457         ASSERT_SERIALIZED(ifp->if_serializer);
 1458 
 1459         nfe_stop(sc);
 1460 
 1461         if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
 1462                 nfe_mac_reset(sc);
 1463 
 1464         /*
 1465          * NOTE:
 1466          * Switching between jumbo frames and normal frames should
 1467          * be done _after_ nfe_stop() but _before_ nfe_init_rx_ring().
 1468          */
 1469         if (ifp->if_mtu > ETHERMTU) {
 1470                 sc->sc_flags |= NFE_F_USE_JUMBO;
 1471                 sc->rxq.bufsz = NFE_JBYTES;
 1472                 sc->sc_tx_spare = NFE_NSEG_SPARE_JUMBO;
 1473                 if (bootverbose)
 1474                         if_printf(ifp, "use jumbo frames\n");
 1475         } else {
 1476                 sc->sc_flags &= ~NFE_F_USE_JUMBO;
 1477                 sc->rxq.bufsz = MCLBYTES;
 1478                 sc->sc_tx_spare = NFE_NSEG_SPARE;
 1479                 if (bootverbose)
 1480                         if_printf(ifp, "use non-jumbo frames\n");
 1481         }
 1482 
 1483         error = nfe_init_tx_ring(sc, &sc->txq);
 1484         if (error) {
 1485                 nfe_stop(sc);
 1486                 return;
 1487         }
 1488 
 1489         error = nfe_init_rx_ring(sc, &sc->rxq);
 1490         if (error) {
 1491                 nfe_stop(sc);
 1492                 return;
 1493         }
 1494 
 1495         NFE_WRITE(sc, NFE_TX_POLL, 0);
 1496         NFE_WRITE(sc, NFE_STATUS, 0);
 1497 
 1498         sc->rxtxctl = NFE_RXTX_BIT2 | sc->rxtxctl_desc;
 1499 
 1500         if (ifp->if_capenable & IFCAP_RXCSUM)
 1501                 sc->rxtxctl |= NFE_RXTX_RXCSUM;
 1502 
 1503         /*
 1504          * Although the adapter is capable of stripping VLAN tags from received
 1505          * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
 1506          * purpose.  This will be done in software by our network stack.
 1507          */
 1508         if (sc->sc_caps & NFE_HW_VLAN)
 1509                 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
 1510 
 1511         NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
 1512         DELAY(10);
 1513         NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
 1514 
 1515         if (sc->sc_caps & NFE_HW_VLAN)
 1516                 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
 1517 
 1518         NFE_WRITE(sc, NFE_SETUP_R6, 0);
 1519 
 1520         /* set MAC address */
 1521         nfe_set_macaddr(sc, sc->arpcom.ac_enaddr);
 1522 
 1523         /* tell MAC where rings are in memory */
 1524         if (sc->sc_caps & NFE_40BIT_ADDR) {
 1525                 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
 1526                           NFE_ADDR_HI(sc->rxq.physaddr));
 1527         }
 1528         NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, NFE_ADDR_LO(sc->rxq.physaddr));
 1529 
 1530         if (sc->sc_caps & NFE_40BIT_ADDR) {
 1531                 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI,
 1532                           NFE_ADDR_HI(sc->txq.physaddr));
 1533         }
 1534         NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
 1535 
 1536         NFE_WRITE(sc, NFE_RING_SIZE,
 1537             (sc->sc_rx_ring_count - 1) << 16 |
 1538             (sc->sc_tx_ring_count - 1));
 1539 
 1540         NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
 1541 
 1542         /* force MAC to wakeup */
 1543         tmp = NFE_READ(sc, NFE_PWR_STATE);
 1544         NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
 1545         DELAY(10);
 1546         tmp = NFE_READ(sc, NFE_PWR_STATE);
 1547         NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
 1548 
 1549         NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
 1550         NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
 1551         NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
 1552 
 1553         /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
 1554         NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
 1555 
 1556         NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
 1557 
 1558         sc->rxtxctl &= ~NFE_RXTX_BIT2;
 1559         NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
 1560         DELAY(10);
 1561         NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
 1562 
 1563         /* set Rx filter */
 1564         nfe_setmulti(sc);
 1565 
 1566         nfe_ifmedia_upd(ifp);
 1567 
 1568         /* enable Rx */
 1569         NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
 1570 
 1571         /* enable Tx */
 1572         NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
 1573 
 1574         NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
 1575 
 1576 #ifdef IFPOLL_ENABLE
 1577         if (ifp->if_flags & IFF_NPOLLING)
 1578                 nfe_disable_intrs(sc);
 1579         else
 1580 #endif
 1581         nfe_enable_intrs(sc);
 1582 
 1583         callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
 1584 
 1585         ifp->if_flags |= IFF_RUNNING;
 1586         ifq_clr_oactive(&ifp->if_snd);
 1587 
 1588         /*
 1589          * If we had stuff in the tx ring before its all cleaned out now
 1590          * so we are not going to get an interrupt, jump-start any pending
 1591          * output.
 1592          */
 1593         if (!ifq_is_empty(&ifp->if_snd))
 1594                 if_devstart(ifp);
 1595 }
 1596 
 1597 static void
 1598 nfe_stop(struct nfe_softc *sc)
 1599 {
 1600         struct ifnet *ifp = &sc->arpcom.ac_if;
 1601         uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
 1602         int i;
 1603 
 1604         ASSERT_SERIALIZED(ifp->if_serializer);
 1605 
 1606         callout_stop(&sc->sc_tick_ch);
 1607 
 1608         ifp->if_timer = 0;
 1609         ifp->if_flags &= ~IFF_RUNNING;
 1610         ifq_clr_oactive(&ifp->if_snd);
 1611         sc->sc_flags &= ~NFE_F_IRQ_TIMER;
 1612 
 1613 #define WAITMAX 50000
 1614 
 1615         /*
 1616          * Abort Tx
 1617          */
 1618         NFE_WRITE(sc, NFE_TX_CTL, 0);
 1619         for (i = 0; i < WAITMAX; ++i) {
 1620                 DELAY(100);
 1621                 if ((NFE_READ(sc, NFE_TX_STATUS) & NFE_TX_STATUS_BUSY) == 0)
 1622                         break;
 1623         }
 1624         if (i == WAITMAX)
 1625                 if_printf(ifp, "can't stop TX\n");
 1626         DELAY(100);
 1627 
 1628         /*
 1629          * Disable Rx
 1630          */
 1631         NFE_WRITE(sc, NFE_RX_CTL, 0);
 1632         for (i = 0; i < WAITMAX; ++i) {
 1633                 DELAY(100);
 1634                 if ((NFE_READ(sc, NFE_RX_STATUS) & NFE_RX_STATUS_BUSY) == 0)
 1635                         break;
 1636         }
 1637         if (i == WAITMAX)
 1638                 if_printf(ifp, "can't stop RX\n");
 1639         DELAY(100);
 1640 
 1641 #undef WAITMAX
 1642 
 1643         NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
 1644         DELAY(10);
 1645         NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
 1646 
 1647         /* Disable interrupts */
 1648         NFE_WRITE(sc, NFE_IRQ_MASK, 0);
 1649 
 1650         /* Reset Tx and Rx rings */
 1651         nfe_reset_tx_ring(sc, &sc->txq);
 1652         nfe_reset_rx_ring(sc, &sc->rxq);
 1653 }
 1654 
 1655 static int
 1656 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
 1657 {
 1658         int i, j, error, descsize;
 1659         bus_dmamem_t dmem;
 1660         void **desc;
 1661 
 1662         if (sc->sc_caps & NFE_40BIT_ADDR) {
 1663                 desc = (void *)&ring->desc64;
 1664                 descsize = sizeof(struct nfe_desc64);
 1665         } else {
 1666                 desc = (void *)&ring->desc32;
 1667                 descsize = sizeof(struct nfe_desc32);
 1668         }
 1669 
 1670         ring->bufsz = MCLBYTES;
 1671         ring->cur = ring->next = 0;
 1672 
 1673         error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
 1674                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1675                                     sc->sc_rx_ring_count * descsize,
 1676                                     BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
 1677         if (error) {
 1678                 if_printf(&sc->arpcom.ac_if,
 1679                           "could not create RX desc ring\n");
 1680                 return error;
 1681         }
 1682         ring->tag = dmem.dmem_tag;
 1683         ring->map = dmem.dmem_map;
 1684         *desc = dmem.dmem_addr;
 1685         ring->physaddr = dmem.dmem_busaddr;
 1686 
 1687         if (sc->sc_caps & NFE_JUMBO_SUP) {
 1688                 ring->jbuf =
 1689                 kmalloc(sizeof(struct nfe_jbuf) * NFE_JPOOL_COUNT(sc),
 1690                         M_DEVBUF, M_WAITOK | M_ZERO);
 1691 
 1692                 error = nfe_jpool_alloc(sc, ring);
 1693                 if (error) {
 1694                         if_printf(&sc->arpcom.ac_if,
 1695                                   "could not allocate jumbo frames\n");
 1696                         kfree(ring->jbuf, M_DEVBUF);
 1697                         ring->jbuf = NULL;
 1698                         /* Allow jumbo frame allocation to fail */
 1699                 }
 1700         }
 1701 
 1702         ring->data = kmalloc(sizeof(struct nfe_rx_data) * sc->sc_rx_ring_count,
 1703                              M_DEVBUF, M_WAITOK | M_ZERO);
 1704 
 1705         error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
 1706                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1707                                    NULL, NULL,
 1708                                    MCLBYTES, 1, MCLBYTES,
 1709                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
 1710                                    &ring->data_tag);
 1711         if (error) {
 1712                 if_printf(&sc->arpcom.ac_if,
 1713                           "could not create RX mbuf DMA tag\n");
 1714                 return error;
 1715         }
 1716 
 1717         /* Create a spare RX mbuf DMA map */
 1718         error = bus_dmamap_create(ring->data_tag, BUS_DMA_WAITOK,
 1719                                   &ring->data_tmpmap);
 1720         if (error) {
 1721                 if_printf(&sc->arpcom.ac_if,
 1722                           "could not create spare RX mbuf DMA map\n");
 1723                 bus_dma_tag_destroy(ring->data_tag);
 1724                 ring->data_tag = NULL;
 1725                 return error;
 1726         }
 1727 
 1728         for (i = 0; i < sc->sc_rx_ring_count; i++) {
 1729                 error = bus_dmamap_create(ring->data_tag, BUS_DMA_WAITOK,
 1730                                           &ring->data[i].map);
 1731                 if (error) {
 1732                         if_printf(&sc->arpcom.ac_if,
 1733                                   "could not create %dth RX mbuf DMA mapn", i);
 1734                         goto fail;
 1735                 }
 1736         }
 1737         return 0;
 1738 fail:
 1739         for (j = 0; j < i; ++j)
 1740                 bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
 1741         bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
 1742         bus_dma_tag_destroy(ring->data_tag);
 1743         ring->data_tag = NULL;
 1744         return error;
 1745 }
 1746 
 1747 static void
 1748 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
 1749 {
 1750         int i;
 1751 
 1752         for (i = 0; i < sc->sc_rx_ring_count; i++) {
 1753                 struct nfe_rx_data *data = &ring->data[i];
 1754 
 1755                 if (data->m != NULL) {
 1756                         if ((sc->sc_flags & NFE_F_USE_JUMBO) == 0)
 1757                                 bus_dmamap_unload(ring->data_tag, data->map);
 1758                         m_freem(data->m);
 1759                         data->m = NULL;
 1760                 }
 1761         }
 1762 
 1763         ring->cur = ring->next = 0;
 1764 }
 1765 
 1766 static int
 1767 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
 1768 {
 1769         int i;
 1770 
 1771         for (i = 0; i < sc->sc_rx_ring_count; ++i) {
 1772                 int error;
 1773 
 1774                 /* XXX should use a function pointer */
 1775                 if (sc->sc_flags & NFE_F_USE_JUMBO)
 1776                         error = nfe_newbuf_jumbo(sc, ring, i, 1);
 1777                 else
 1778                         error = nfe_newbuf_std(sc, ring, i, 1);
 1779                 if (error) {
 1780                         if_printf(&sc->arpcom.ac_if,
 1781                                   "could not allocate RX buffer\n");
 1782                         return error;
 1783                 }
 1784                 nfe_set_ready_rxdesc(sc, ring, i);
 1785         }
 1786         return 0;
 1787 }
 1788 
 1789 static void
 1790 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
 1791 {
 1792         if (ring->data_tag != NULL) {
 1793                 struct nfe_rx_data *data;
 1794                 int i;
 1795 
 1796                 for (i = 0; i < sc->sc_rx_ring_count; i++) {
 1797                         data = &ring->data[i];
 1798 
 1799                         if (data->m != NULL) {
 1800                                 bus_dmamap_unload(ring->data_tag, data->map);
 1801                                 m_freem(data->m);
 1802                         }
 1803                         bus_dmamap_destroy(ring->data_tag, data->map);
 1804                 }
 1805                 bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
 1806                 bus_dma_tag_destroy(ring->data_tag);
 1807         }
 1808 
 1809         nfe_jpool_free(sc, ring);
 1810 
 1811         if (ring->jbuf != NULL)
 1812                 kfree(ring->jbuf, M_DEVBUF);
 1813         if (ring->data != NULL)
 1814                 kfree(ring->data, M_DEVBUF);
 1815 
 1816         if (ring->tag != NULL) {
 1817                 void *desc;
 1818 
 1819                 if (sc->sc_caps & NFE_40BIT_ADDR)
 1820                         desc = ring->desc64;
 1821                 else
 1822                         desc = ring->desc32;
 1823 
 1824                 bus_dmamap_unload(ring->tag, ring->map);
 1825                 bus_dmamem_free(ring->tag, desc, ring->map);
 1826                 bus_dma_tag_destroy(ring->tag);
 1827         }
 1828 }
 1829 
 1830 static struct nfe_jbuf *
 1831 nfe_jalloc(struct nfe_softc *sc)
 1832 {
 1833         struct ifnet *ifp = &sc->arpcom.ac_if;
 1834         struct nfe_jbuf *jbuf;
 1835 
 1836         lwkt_serialize_enter(&sc->sc_jbuf_serializer);
 1837 
 1838         jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
 1839         if (jbuf != NULL) {
 1840                 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
 1841                 jbuf->inuse = 1;
 1842         } else {
 1843                 if_printf(ifp, "no free jumbo buffer\n");
 1844         }
 1845 
 1846         lwkt_serialize_exit(&sc->sc_jbuf_serializer);
 1847 
 1848         return jbuf;
 1849 }
 1850 
 1851 static void
 1852 nfe_jfree(void *arg)
 1853 {
 1854         struct nfe_jbuf *jbuf = arg;
 1855         struct nfe_softc *sc = jbuf->sc;
 1856         struct nfe_rx_ring *ring = jbuf->ring;
 1857 
 1858         if (&ring->jbuf[jbuf->slot] != jbuf)
 1859                 panic("%s: free wrong jumbo buffer", __func__);
 1860         else if (jbuf->inuse == 0)
 1861                 panic("%s: jumbo buffer already freed", __func__);
 1862 
 1863         lwkt_serialize_enter(&sc->sc_jbuf_serializer);
 1864         atomic_subtract_int(&jbuf->inuse, 1);
 1865         if (jbuf->inuse == 0)
 1866                 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
 1867         lwkt_serialize_exit(&sc->sc_jbuf_serializer);
 1868 }
 1869 
 1870 static void
 1871 nfe_jref(void *arg)
 1872 {
 1873         struct nfe_jbuf *jbuf = arg;
 1874         struct nfe_rx_ring *ring = jbuf->ring;
 1875 
 1876         if (&ring->jbuf[jbuf->slot] != jbuf)
 1877                 panic("%s: ref wrong jumbo buffer", __func__);
 1878         else if (jbuf->inuse == 0)
 1879                 panic("%s: jumbo buffer already freed", __func__);
 1880 
 1881         atomic_add_int(&jbuf->inuse, 1);
 1882 }
 1883 
 1884 static int
 1885 nfe_jpool_alloc(struct nfe_softc *sc, struct nfe_rx_ring *ring)
 1886 {
 1887         struct nfe_jbuf *jbuf;
 1888         bus_dmamem_t dmem;
 1889         bus_addr_t physaddr;
 1890         caddr_t buf;
 1891         int i, error;
 1892 
 1893         /*
 1894          * Allocate a big chunk of DMA'able memory.
 1895          */
 1896         error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
 1897                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1898                                     NFE_JPOOL_SIZE(sc),
 1899                                     BUS_DMA_WAITOK, &dmem);
 1900         if (error) {
 1901                 if_printf(&sc->arpcom.ac_if,
 1902                           "could not create jumbo buffer\n");
 1903                 return error;
 1904         }
 1905         ring->jtag = dmem.dmem_tag;
 1906         ring->jmap = dmem.dmem_map;
 1907         ring->jpool = dmem.dmem_addr;
 1908         physaddr = dmem.dmem_busaddr;
 1909 
 1910         /* ..and split it into 9KB chunks */
 1911         SLIST_INIT(&ring->jfreelist);
 1912 
 1913         buf = ring->jpool;
 1914         for (i = 0; i < NFE_JPOOL_COUNT(sc); i++) {
 1915                 jbuf = &ring->jbuf[i];
 1916 
 1917                 jbuf->sc = sc;
 1918                 jbuf->ring = ring;
 1919                 jbuf->inuse = 0;
 1920                 jbuf->slot = i;
 1921                 jbuf->buf = buf;
 1922                 jbuf->physaddr = physaddr;
 1923 
 1924                 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
 1925 
 1926                 buf += NFE_JBYTES;
 1927                 physaddr += NFE_JBYTES;
 1928         }
 1929 
 1930         return 0;
 1931 }
 1932 
 1933 static void
 1934 nfe_jpool_free(struct nfe_softc *sc, struct nfe_rx_ring *ring)
 1935 {
 1936         if (ring->jtag != NULL) {
 1937                 bus_dmamap_unload(ring->jtag, ring->jmap);
 1938                 bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
 1939                 bus_dma_tag_destroy(ring->jtag);
 1940         }
 1941 }
 1942 
 1943 static int
 1944 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
 1945 {
 1946         int i, j, error, descsize;
 1947         bus_dmamem_t dmem;
 1948         void **desc;
 1949 
 1950         if (sc->sc_caps & NFE_40BIT_ADDR) {
 1951                 desc = (void *)&ring->desc64;
 1952                 descsize = sizeof(struct nfe_desc64);
 1953         } else {
 1954                 desc = (void *)&ring->desc32;
 1955                 descsize = sizeof(struct nfe_desc32);
 1956         }
 1957 
 1958         ring->queued = 0;
 1959         ring->cur = ring->next = 0;
 1960 
 1961         error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
 1962                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1963                                     sc->sc_tx_ring_count * descsize,
 1964                                     BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
 1965         if (error) {
 1966                 if_printf(&sc->arpcom.ac_if,
 1967                           "could not create TX desc ring\n");
 1968                 return error;
 1969         }
 1970         ring->tag = dmem.dmem_tag;
 1971         ring->map = dmem.dmem_map;
 1972         *desc = dmem.dmem_addr;
 1973         ring->physaddr = dmem.dmem_busaddr;
 1974 
 1975         ring->data = kmalloc(sizeof(struct nfe_tx_data) * sc->sc_tx_ring_count,
 1976                              M_DEVBUF, M_WAITOK | M_ZERO);
 1977 
 1978         error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
 1979                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1980                         NULL, NULL,
 1981                         NFE_JBYTES, NFE_MAX_SCATTER, MCLBYTES,
 1982                         BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
 1983                         &ring->data_tag);
 1984         if (error) {
 1985                 if_printf(&sc->arpcom.ac_if,
 1986                           "could not create TX buf DMA tag\n");
 1987                 return error;
 1988         }
 1989 
 1990         for (i = 0; i < sc->sc_tx_ring_count; i++) {
 1991                 error = bus_dmamap_create(ring->data_tag,
 1992                                 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
 1993                                 &ring->data[i].map);
 1994                 if (error) {
 1995                         if_printf(&sc->arpcom.ac_if,
 1996                                   "could not create %dth TX buf DMA map\n", i);
 1997                         goto fail;
 1998                 }
 1999         }
 2000 
 2001         return 0;
 2002 fail:
 2003         for (j = 0; j < i; ++j)
 2004                 bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
 2005         bus_dma_tag_destroy(ring->data_tag);
 2006         ring->data_tag = NULL;
 2007         return error;
 2008 }
 2009 
 2010 static void
 2011 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
 2012 {
 2013         int i;
 2014 
 2015         for (i = 0; i < sc->sc_tx_ring_count; i++) {
 2016                 struct nfe_tx_data *data = &ring->data[i];
 2017 
 2018                 if (sc->sc_caps & NFE_40BIT_ADDR)
 2019                         ring->desc64[i].flags = 0;
 2020                 else
 2021                         ring->desc32[i].flags = 0;
 2022 
 2023                 if (data->m != NULL) {
 2024                         bus_dmamap_unload(ring->data_tag, data->map);
 2025                         m_freem(data->m);
 2026                         data->m = NULL;
 2027                 }
 2028         }
 2029 
 2030         ring->queued = 0;
 2031         ring->cur = ring->next = 0;
 2032 }
 2033 
 2034 static int
 2035 nfe_init_tx_ring(struct nfe_softc *sc __unused,
 2036                  struct nfe_tx_ring *ring __unused)
 2037 {
 2038         return 0;
 2039 }
 2040 
 2041 static void
 2042 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
 2043 {
 2044         if (ring->data_tag != NULL) {
 2045                 struct nfe_tx_data *data;
 2046                 int i;
 2047 
 2048                 for (i = 0; i < sc->sc_tx_ring_count; ++i) {
 2049                         data = &ring->data[i];
 2050 
 2051                         if (data->m != NULL) {
 2052                                 bus_dmamap_unload(ring->data_tag, data->map);
 2053                                 m_freem(data->m);
 2054                         }
 2055                         bus_dmamap_destroy(ring->data_tag, data->map);
 2056                 }
 2057 
 2058                 bus_dma_tag_destroy(ring->data_tag);
 2059         }
 2060 
 2061         if (ring->data != NULL)
 2062                 kfree(ring->data, M_DEVBUF);
 2063 
 2064         if (ring->tag != NULL) {
 2065                 void *desc;
 2066 
 2067                 if (sc->sc_caps & NFE_40BIT_ADDR)
 2068                         desc = ring->desc64;
 2069                 else
 2070                         desc = ring->desc32;
 2071 
 2072                 bus_dmamap_unload(ring->tag, ring->map);
 2073                 bus_dmamem_free(ring->tag, desc, ring->map);
 2074                 bus_dma_tag_destroy(ring->tag);
 2075         }
 2076 }
 2077 
 2078 static int
 2079 nfe_ifmedia_upd(struct ifnet *ifp)
 2080 {
 2081         struct nfe_softc *sc = ifp->if_softc;
 2082         struct mii_data *mii = device_get_softc(sc->sc_miibus);
 2083 
 2084         ASSERT_SERIALIZED(ifp->if_serializer);
 2085 
 2086         if (mii->mii_instance != 0) {
 2087                 struct mii_softc *miisc;
 2088 
 2089                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 2090                         mii_phy_reset(miisc);
 2091         }
 2092         mii_mediachg(mii);
 2093 
 2094         return 0;
 2095 }
 2096 
 2097 static void
 2098 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 2099 {
 2100         struct nfe_softc *sc = ifp->if_softc;
 2101         struct mii_data *mii = device_get_softc(sc->sc_miibus);
 2102 
 2103         ASSERT_SERIALIZED(ifp->if_serializer);
 2104 
 2105         mii_pollstat(mii);
 2106         ifmr->ifm_status = mii->mii_media_status;
 2107         ifmr->ifm_active = mii->mii_media_active;
 2108 }
 2109 
 2110 static void
 2111 nfe_setmulti(struct nfe_softc *sc)
 2112 {
 2113         struct ifnet *ifp = &sc->arpcom.ac_if;
 2114         struct ifmultiaddr *ifma;
 2115         uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
 2116         uint32_t filter = NFE_RXFILTER_MAGIC;
 2117         int i;
 2118 
 2119         if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
 2120                 bzero(addr, ETHER_ADDR_LEN);
 2121                 bzero(mask, ETHER_ADDR_LEN);
 2122                 goto done;
 2123         }
 2124 
 2125         bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
 2126         bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
 2127 
 2128         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 2129                 caddr_t maddr;
 2130 
 2131                 if (ifma->ifma_addr->sa_family != AF_LINK)
 2132                         continue;
 2133 
 2134                 maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
 2135                 for (i = 0; i < ETHER_ADDR_LEN; i++) {
 2136                         addr[i] &= maddr[i];
 2137                         mask[i] &= ~maddr[i];
 2138                 }
 2139         }
 2140 
 2141         for (i = 0; i < ETHER_ADDR_LEN; i++)
 2142                 mask[i] |= addr[i];
 2143 
 2144 done:
 2145         addr[0] |= 0x01;        /* make sure multicast bit is set */
 2146 
 2147         NFE_WRITE(sc, NFE_MULTIADDR_HI,
 2148             addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
 2149         NFE_WRITE(sc, NFE_MULTIADDR_LO,
 2150             addr[5] <<  8 | addr[4]);
 2151         NFE_WRITE(sc, NFE_MULTIMASK_HI,
 2152             mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
 2153         NFE_WRITE(sc, NFE_MULTIMASK_LO,
 2154             mask[5] <<  8 | mask[4]);
 2155 
 2156         filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
 2157         NFE_WRITE(sc, NFE_RXFILTER, filter);
 2158 }
 2159 
 2160 static void
 2161 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
 2162 {
 2163         uint32_t lo, hi;
 2164 
 2165         lo = NFE_READ(sc, NFE_MACADDR_LO);
 2166         hi = NFE_READ(sc, NFE_MACADDR_HI);
 2167         if (sc->sc_caps & NFE_FIX_EADDR) {
 2168                 addr[0] = (lo >> 8) & 0xff;
 2169                 addr[1] = (lo & 0xff);
 2170 
 2171                 addr[2] = (hi >> 24) & 0xff;
 2172                 addr[3] = (hi >> 16) & 0xff;
 2173                 addr[4] = (hi >>  8) & 0xff;
 2174                 addr[5] = (hi & 0xff);
 2175         } else {
 2176                 addr[0] = (hi & 0xff);
 2177                 addr[1] = (hi >>  8) & 0xff;
 2178                 addr[2] = (hi >> 16) & 0xff;
 2179                 addr[3] = (hi >> 24) & 0xff;
 2180 
 2181                 addr[4] = (lo & 0xff);
 2182                 addr[5] = (lo >>  8) & 0xff;
 2183         }
 2184 }
 2185 
 2186 static void
 2187 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
 2188 {
 2189         NFE_WRITE(sc, NFE_MACADDR_LO,
 2190             addr[5] <<  8 | addr[4]);
 2191         NFE_WRITE(sc, NFE_MACADDR_HI,
 2192             addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
 2193 }
 2194 
 2195 static void
 2196 nfe_tick(void *arg)
 2197 {
 2198         struct nfe_softc *sc = arg;
 2199         struct ifnet *ifp = &sc->arpcom.ac_if;
 2200         struct mii_data *mii = device_get_softc(sc->sc_miibus);
 2201 
 2202         lwkt_serialize_enter(ifp->if_serializer);
 2203 
 2204         mii_tick(mii);
 2205         callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
 2206 
 2207         lwkt_serialize_exit(ifp->if_serializer);
 2208 }
 2209 
 2210 static int
 2211 nfe_newbuf_std(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
 2212                int wait)
 2213 {
 2214         struct nfe_rx_data *data = &ring->data[idx];
 2215         bus_dma_segment_t seg;
 2216         bus_dmamap_t map;
 2217         struct mbuf *m;
 2218         int nsegs, error;
 2219 
 2220         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
 2221         if (m == NULL)
 2222                 return ENOBUFS;
 2223         m->m_len = m->m_pkthdr.len = MCLBYTES;
 2224 
 2225         /*
 2226          * Aligning the payload improves access times.
 2227          */
 2228         if (sc->sc_caps & NFE_WORDALIGN)
 2229                 m_adj(m, ETHER_ALIGN);
 2230 
 2231         error = bus_dmamap_load_mbuf_segment(ring->data_tag, ring->data_tmpmap,
 2232                         m, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
 2233         if (error) {
 2234                 m_freem(m);
 2235                 if (wait) {
 2236                         if_printf(&sc->arpcom.ac_if,
 2237                                   "could map RX mbuf %d\n", error);
 2238                 }
 2239                 return error;
 2240         }
 2241 
 2242         if (data->m != NULL) {
 2243                 /* Sync and unload originally mapped mbuf */
 2244                 bus_dmamap_sync(ring->data_tag, data->map,
 2245                                 BUS_DMASYNC_POSTREAD);
 2246                 bus_dmamap_unload(ring->data_tag, data->map);
 2247         }
 2248 
 2249         /* Swap this DMA map with tmp DMA map */
 2250         map = data->map;
 2251         data->map = ring->data_tmpmap;
 2252         ring->data_tmpmap = map;
 2253 
 2254         /* Caller is assumed to have collected the old mbuf */
 2255         data->m = m;
 2256 
 2257         nfe_set_paddr_rxdesc(sc, ring, idx, seg.ds_addr);
 2258         return 0;
 2259 }
 2260 
 2261 static int
 2262 nfe_newbuf_jumbo(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
 2263                  int wait)
 2264 {
 2265         struct nfe_rx_data *data = &ring->data[idx];
 2266         struct nfe_jbuf *jbuf;
 2267         struct mbuf *m;
 2268 
 2269         MGETHDR(m, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
 2270         if (m == NULL)
 2271                 return ENOBUFS;
 2272 
 2273         jbuf = nfe_jalloc(sc);
 2274         if (jbuf == NULL) {
 2275                 m_freem(m);
 2276                 if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
 2277                     "-- packet dropped!\n");
 2278                 return ENOBUFS;
 2279         }
 2280 
 2281         m->m_ext.ext_arg = jbuf;
 2282         m->m_ext.ext_buf = jbuf->buf;
 2283         m->m_ext.ext_free = nfe_jfree;
 2284         m->m_ext.ext_ref = nfe_jref;
 2285         m->m_ext.ext_size = NFE_JBYTES;
 2286 
 2287         m->m_data = m->m_ext.ext_buf;
 2288         m->m_flags |= M_EXT;
 2289         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
 2290 
 2291         /*
 2292          * Aligning the payload improves access times.
 2293          */
 2294         if (sc->sc_caps & NFE_WORDALIGN)
 2295                 m_adj(m, ETHER_ALIGN);
 2296 
 2297         /* Caller is assumed to have collected the old mbuf */
 2298         data->m = m;
 2299 
 2300         nfe_set_paddr_rxdesc(sc, ring, idx, jbuf->physaddr);
 2301         return 0;
 2302 }
 2303 
 2304 static void
 2305 nfe_set_paddr_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
 2306                      bus_addr_t physaddr)
 2307 {
 2308         if (sc->sc_caps & NFE_40BIT_ADDR) {
 2309                 struct nfe_desc64 *desc64 = &ring->desc64[idx];
 2310 
 2311                 desc64->physaddr[0] = htole32(NFE_ADDR_HI(physaddr));
 2312                 desc64->physaddr[1] = htole32(NFE_ADDR_LO(physaddr));
 2313         } else {
 2314                 struct nfe_desc32 *desc32 = &ring->desc32[idx];
 2315 
 2316                 desc32->physaddr = htole32(physaddr);
 2317         }
 2318 }
 2319 
 2320 static void
 2321 nfe_set_ready_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx)
 2322 {
 2323         if (sc->sc_caps & NFE_40BIT_ADDR) {
 2324                 struct nfe_desc64 *desc64 = &ring->desc64[idx];
 2325 
 2326                 desc64->length = htole16(ring->bufsz);
 2327                 desc64->flags = htole16(NFE_RX_READY);
 2328         } else {
 2329                 struct nfe_desc32 *desc32 = &ring->desc32[idx];
 2330 
 2331                 desc32->length = htole16(ring->bufsz);
 2332                 desc32->flags = htole16(NFE_RX_READY);
 2333         }
 2334 }
 2335 
 2336 static int
 2337 nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS)
 2338 {
 2339         struct nfe_softc *sc = arg1;
 2340         struct ifnet *ifp = &sc->arpcom.ac_if;
 2341         uint32_t flags;
 2342         int error, v;
 2343 
 2344         lwkt_serialize_enter(ifp->if_serializer);
 2345 
 2346         flags = sc->sc_flags & ~NFE_F_DYN_IM;
 2347         v = sc->sc_imtime;
 2348         if (sc->sc_flags & NFE_F_DYN_IM)
 2349                 v = -v;
 2350 
 2351         error = sysctl_handle_int(oidp, &v, 0, req);
 2352         if (error || req->newptr == NULL)
 2353                 goto back;
 2354 
 2355         if (v < 0) {
 2356                 flags |= NFE_F_DYN_IM;
 2357                 v = -v;
 2358         }
 2359 
 2360         if (v != sc->sc_imtime || (flags ^ sc->sc_flags)) {
 2361                 if (NFE_IMTIME(v) == 0)
 2362                         v = 0;
 2363                 sc->sc_imtime = v;
 2364                 sc->sc_flags = flags;
 2365                 sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
 2366 
 2367                 if ((ifp->if_flags & (IFF_NPOLLING | IFF_RUNNING))
 2368                     == IFF_RUNNING) {
 2369                         nfe_enable_intrs(sc);
 2370                 }
 2371         }
 2372 back:
 2373         lwkt_serialize_exit(ifp->if_serializer);
 2374         return error;
 2375 }
 2376 
 2377 static void
 2378 nfe_powerup(device_t dev)
 2379 {
 2380         struct nfe_softc *sc = device_get_softc(dev);
 2381         uint32_t pwr_state;
 2382         uint16_t did;
 2383 
 2384         /*
 2385          * Bring MAC and PHY out of low power state
 2386          */
 2387 
 2388         pwr_state = NFE_READ(sc, NFE_PWR_STATE2) & ~NFE_PWRUP_MASK;
 2389 
 2390         did = pci_get_device(dev);
 2391         if ((did == PCI_PRODUCT_NVIDIA_MCP51_LAN1 ||
 2392              did == PCI_PRODUCT_NVIDIA_MCP51_LAN2) &&
 2393             pci_get_revid(dev) >= 0xa3)
 2394                 pwr_state |= NFE_PWRUP_REV_A3;
 2395 
 2396         NFE_WRITE(sc, NFE_PWR_STATE2, pwr_state);
 2397 }
 2398 
 2399 static void
 2400 nfe_mac_reset(struct nfe_softc *sc)
 2401 {
 2402         uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
 2403         uint32_t macaddr_hi, macaddr_lo, tx_poll;
 2404 
 2405         NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
 2406 
 2407         /* Save several registers for later restoration */
 2408         macaddr_hi = NFE_READ(sc, NFE_MACADDR_HI);
 2409         macaddr_lo = NFE_READ(sc, NFE_MACADDR_LO);
 2410         tx_poll = NFE_READ(sc, NFE_TX_POLL);
 2411 
 2412         NFE_WRITE(sc, NFE_MAC_RESET, NFE_RESET_ASSERT);
 2413         DELAY(100);
 2414 
 2415         NFE_WRITE(sc, NFE_MAC_RESET, 0);
 2416         DELAY(100);
 2417 
 2418         /* Restore saved registers */
 2419         NFE_WRITE(sc, NFE_MACADDR_HI, macaddr_hi);
 2420         NFE_WRITE(sc, NFE_MACADDR_LO, macaddr_lo);
 2421         NFE_WRITE(sc, NFE_TX_POLL, tx_poll);
 2422 
 2423         NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
 2424 }
 2425 
 2426 static void
 2427 nfe_enable_intrs(struct nfe_softc *sc)
 2428 {
 2429         /*
 2430          * NFE_IMTIMER generates a periodic interrupt via NFE_IRQ_TIMER.
 2431          * It is unclear how wide the timer is.  Base programming does
 2432          * not seem to effect NFE_IRQ_TX_DONE or NFE_IRQ_RX_DONE so
 2433          * we don't get any interrupt moderation.  TX moderation is
 2434          * possible by using the timer interrupt instead of TX_DONE.
 2435          *
 2436          * It is unclear whether there are other bits that can be
 2437          * set to make the NFE device actually do interrupt moderation
 2438          * on the RX side.
 2439          *
 2440          * For now set a 128uS interval as a placemark, but don't use
 2441          * the timer.
 2442          */
 2443         if (sc->sc_imtime == 0)
 2444                 NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME_DEFAULT);
 2445         else
 2446                 NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME(sc->sc_imtime));
 2447 
 2448         /* Enable interrupts */
 2449         NFE_WRITE(sc, NFE_IRQ_MASK, sc->sc_irq_enable);
 2450 
 2451         if (sc->sc_irq_enable & NFE_IRQ_TIMER)
 2452                 sc->sc_flags |= NFE_F_IRQ_TIMER;
 2453         else
 2454                 sc->sc_flags &= ~NFE_F_IRQ_TIMER;
 2455 }

Cache object: 1eea6d28862d5b1428d2dfb553662952


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.