The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/re/if_re.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2004
    3  *      Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
    4  *
    5  * Copyright (c) 1997, 1998-2003
    6  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by Bill Paul.
   19  * 4. Neither the name of the author nor the names of any co-contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   33  * THE POSSIBILITY OF SUCH DAMAGE.
   34  *
   35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
   36  */
   37 
   38 /*
   39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
   40  *
   41  * Written by Bill Paul <wpaul@windriver.com>
   42  * Senior Networking Software Engineer
   43  * Wind River Systems
   44  */
   45 
   46 /*
   47  * This driver is designed to support RealTek's next generation of
   48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
   49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
   50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
   51  *
   52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
   53  * with the older 8139 family, however it also supports a special
   54  * C+ mode of operation that provides several new performance enhancing
   55  * features. These include:
   56  *
   57  *      o Descriptor based DMA mechanism. Each descriptor represents
   58  *        a single packet fragment. Data buffers may be aligned on
   59  *        any byte boundary.
   60  *
   61  *      o 64-bit DMA
   62  *
   63  *      o TCP/IP checksum offload for both RX and TX
   64  *
   65  *      o High and normal priority transmit DMA rings
   66  *
   67  *      o VLAN tag insertion and extraction
   68  *
   69  *      o TCP large send (segmentation offload)
   70  *
   71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
   72  * programming API is fairly straightforward. The RX filtering, EEPROM
   73  * access and PHY access is the same as it is on the older 8139 series
   74  * chips.
   75  *
   76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
   77  * same programming API and feature set as the 8139C+ with the following
   78  * differences and additions:
   79  *
   80  *      o 1000Mbps mode
   81  *
   82  *      o Jumbo frames
   83  *
   84  *      o GMII and TBI ports/registers for interfacing with copper
   85  *        or fiber PHYs
   86  *
   87  *      o RX and TX DMA rings can have up to 1024 descriptors
   88  *        (the 8139C+ allows a maximum of 64)
   89  *
   90  *      o Slight differences in register layout from the 8139C+
   91  *
   92  * The TX start and timer interrupt registers are at different locations
   93  * on the 8169 than they are on the 8139C+. Also, the status word in the
   94  * RX descriptor has a slightly different bit layout. The 8169 does not
   95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
   96  * copper gigE PHY.
   97  *
   98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
   99  * (the 'S' stands for 'single-chip'). These devices have the same
  100  * programming API as the older 8169, but also have some vendor-specific
  101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
  102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
  103  * 
  104  * This driver takes advantage of the RX and TX checksum offload and
  105  * VLAN tag insertion/extraction features. It also implements TX
  106  * interrupt moderation using the timer interrupt registers, which
  107  * significantly reduces TX interrupt load. There is also support
  108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
  109  * jumbo frames larger than 7440, so the max MTU possible with this
  110  * driver is 7422 bytes.
  111  */
  112 
  113 #define _IP_VHL
  114 
  115 #include "opt_ifpoll.h"
  116 
  117 #include <sys/param.h>
  118 #include <sys/bus.h>
  119 #include <sys/endian.h>
  120 #include <sys/kernel.h>
  121 #include <sys/in_cksum.h>
  122 #include <sys/interrupt.h>
  123 #include <sys/malloc.h>
  124 #include <sys/mbuf.h>
  125 #include <sys/rman.h>
  126 #include <sys/serialize.h>
  127 #include <sys/socket.h>
  128 #include <sys/sockio.h>
  129 #include <sys/sysctl.h>
  130 
  131 #include <net/bpf.h>
  132 #include <net/ethernet.h>
  133 #include <net/if.h>
  134 #include <net/ifq_var.h>
  135 #include <net/if_arp.h>
  136 #include <net/if_dl.h>
  137 #include <net/if_media.h>
  138 #include <net/if_poll.h>
  139 #include <net/if_types.h>
  140 #include <net/vlan/if_vlan_var.h>
  141 #include <net/vlan/if_vlan_ether.h>
  142 
  143 #include <netinet/ip.h>
  144 
  145 #include <dev/netif/mii_layer/mii.h>
  146 #include <dev/netif/mii_layer/miivar.h>
  147 
  148 #include "pcidevs.h"
  149 #include <bus/pci/pcireg.h>
  150 #include <bus/pci/pcivar.h>
  151 
  152 /* "device miibus" required.  See GENERIC if you get errors here. */
  153 #include "miibus_if.h"
  154 
  155 #include <dev/netif/re/if_rereg.h>
  156 #include <dev/netif/re/if_revar.h>
  157 
  158 /*
  159  * Various supported device vendors/types and their names.
  160  */
  161 static const struct re_type {
  162         uint16_t        re_vid;
  163         uint16_t        re_did;
  164         const char      *re_name;
  165 } re_devs[] = {
  166         { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
  167           "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
  168 
  169         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
  170           "RealTek 8139C+ 10/100BaseTX" },
  171 
  172         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
  173           "RealTek 810x PCIe 10/100baseTX" },
  174 
  175         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
  176           "RealTek 8111/8168 PCIe Gigabit Ethernet" },
  177 
  178         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
  179           "RealTek 8110/8169 Gigabit Ethernet" },
  180 
  181         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
  182           "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
  183 
  184         { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
  185           "Corega CG-LAPCIGT Gigabit Ethernet" },
  186 
  187         { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
  188           "Linksys EG1032 Gigabit Ethernet" },
  189 
  190         { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
  191           "US Robotics 997902 Gigabit Ethernet" },
  192 
  193         { PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
  194           "TTTech MC322 Gigabit Ethernet" },
  195 
  196         { 0, 0, NULL }
  197 };
  198 
  199 static const struct re_hwrev re_hwrevs[] = {
  200         { RE_HWREV_8139CPLUS,   ETHERMTU,
  201           RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
  202 
  203         { RE_HWREV_8169,        ETHERMTU,
  204           RE_C_HWCSUM | RE_C_8169 },
  205 
  206         { RE_HWREV_8110S,       RE_MTU_6K,
  207           RE_C_HWCSUM | RE_C_8169 },
  208 
  209         { RE_HWREV_8169S,       RE_MTU_6K,
  210           RE_C_HWCSUM | RE_C_8169 },
  211 
  212         { RE_HWREV_8169SB,      RE_MTU_6K,
  213           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
  214 
  215         { RE_HWREV_8169SC,      RE_MTU_6K,
  216           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
  217 
  218         { RE_HWREV_8168B1,      RE_MTU_6K,
  219           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
  220 
  221         { RE_HWREV_8168B2,      RE_MTU_6K,
  222           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
  223 
  224         { RE_HWREV_8168C,       RE_MTU_6K,
  225           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  226           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  227 
  228         { RE_HWREV_8168CP,      RE_MTU_6K,
  229           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  230           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  231 
  232         { RE_HWREV_8168D,       RE_MTU_9K,
  233           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  234           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  235 
  236         { RE_HWREV_8168DP,      RE_MTU_9K,
  237           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  238           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  239 
  240         { RE_HWREV_8168E,       RE_MTU_9K,
  241           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  242           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  243 
  244         { RE_HWREV_8168F,       RE_MTU_9K,
  245           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  246           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  247 
  248         { RE_HWREV_8111F,       RE_MTU_9K,
  249           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  250           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  251 
  252         { RE_HWREV_8411,        ETHERMTU,
  253           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  254           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  255 
  256         { RE_HWREV_8168G,       ETHERMTU,
  257           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  258           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  259 
  260         { RE_HWREV_8168EP,      ETHERMTU,
  261           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  262           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  263 
  264         { RE_HWREV_8168GU,      ETHERMTU,
  265           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  266           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  267 
  268         { RE_HWREV_8411B,       ETHERMTU,
  269           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
  270           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
  271 
  272         { RE_HWREV_8100E,       ETHERMTU,
  273           RE_C_HWCSUM | RE_C_FASTE },
  274 
  275         { RE_HWREV_8101E,       ETHERMTU,
  276           RE_C_HWCSUM | RE_C_FASTE },
  277 
  278         { RE_HWREV_8102E,       ETHERMTU,
  279           RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
  280           RE_C_FASTE },
  281 
  282         { RE_HWREV_8102EL,      ETHERMTU,
  283           RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
  284           RE_C_FASTE },
  285 
  286         { RE_HWREV_8105E,       ETHERMTU,
  287           RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
  288           RE_C_STOP_RXTX | RE_C_FASTE },
  289 
  290         { RE_HWREV_8401E,       ETHERMTU,
  291           RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
  292           RE_C_STOP_RXTX | RE_C_FASTE },
  293 
  294         { RE_HWREV_8402,        ETHERMTU,
  295           RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
  296           RE_C_STOP_RXTX | RE_C_FASTE },
  297 
  298         { RE_HWREV_8106E,       ETHERMTU,
  299           RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
  300           RE_C_STOP_RXTX | RE_C_FASTE },
  301 
  302         { RE_HWREV_NULL, 0, 0 }
  303 };
  304 
  305 static int      re_probe(device_t);
  306 static int      re_attach(device_t);
  307 static int      re_detach(device_t);
  308 static int      re_suspend(device_t);
  309 static int      re_resume(device_t);
  310 static void     re_shutdown(device_t);
  311 
  312 static int      re_allocmem(device_t);
  313 static void     re_freemem(device_t);
  314 static void     re_freebufmem(struct re_softc *, int, int);
  315 static int      re_encap(struct re_softc *, struct mbuf **, int *);
  316 static int      re_newbuf_std(struct re_softc *, int, int);
  317 static int      re_newbuf_jumbo(struct re_softc *, int, int);
  318 static void     re_setup_rxdesc(struct re_softc *, int);
  319 static int      re_rx_list_init(struct re_softc *);
  320 static int      re_tx_list_init(struct re_softc *);
  321 static int      re_rxeof(struct re_softc *);
  322 static int      re_txeof(struct re_softc *);
  323 static int      re_tx_collect(struct re_softc *);
  324 static void     re_intr(void *);
  325 static void     re_tick(void *);
  326 static void     re_tick_serialized(void *);
  327 
  328 static void     re_start(struct ifnet *, struct ifaltq_subque *);
  329 static int      re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
  330 static void     re_init(void *);
  331 static void     re_stop(struct re_softc *);
  332 static void     re_watchdog(struct ifnet *);
  333 static int      re_ifmedia_upd(struct ifnet *);
  334 static void     re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  335 
  336 static void     re_eeprom_putbyte(struct re_softc *, int);
  337 static void     re_eeprom_getword(struct re_softc *, int, u_int16_t *);
  338 static void     re_read_eeprom(struct re_softc *, caddr_t, int, int);
  339 static void     re_get_eewidth(struct re_softc *);
  340 
  341 static int      re_gmii_readreg(device_t, int, int);
  342 static int      re_gmii_writereg(device_t, int, int, int);
  343 
  344 static int      re_miibus_readreg(device_t, int, int);
  345 static int      re_miibus_writereg(device_t, int, int, int);
  346 static void     re_miibus_statchg(device_t);
  347 
  348 static void     re_setmulti(struct re_softc *);
  349 static void     re_reset(struct re_softc *, int);
  350 static void     re_get_eaddr(struct re_softc *, uint8_t *);
  351 
  352 static void     re_setup_hw_im(struct re_softc *);
  353 static void     re_setup_sim_im(struct re_softc *);
  354 static void     re_disable_hw_im(struct re_softc *);
  355 static void     re_disable_sim_im(struct re_softc *);
  356 static void     re_config_imtype(struct re_softc *, int);
  357 static void     re_setup_intr(struct re_softc *, int, int);
  358 
  359 static int      re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
  360 static int      re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
  361 static int      re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
  362 static int      re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
  363 static int      re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
  364 
  365 static int      re_jpool_alloc(struct re_softc *);
  366 static void     re_jpool_free(struct re_softc *);
  367 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
  368 static void     re_jbuf_free(void *);
  369 static void     re_jbuf_ref(void *);
  370 
  371 #ifdef RE_DIAG
  372 static int      re_diag(struct re_softc *);
  373 #endif
  374 
  375 #ifdef IFPOLL_ENABLE
  376 static void     re_npoll(struct ifnet *, struct ifpoll_info *);
  377 static void     re_npoll_compat(struct ifnet *, void *, int);
  378 #endif
  379 
  380 static device_method_t re_methods[] = {
  381         /* Device interface */
  382         DEVMETHOD(device_probe,         re_probe),
  383         DEVMETHOD(device_attach,        re_attach),
  384         DEVMETHOD(device_detach,        re_detach),
  385         DEVMETHOD(device_suspend,       re_suspend),
  386         DEVMETHOD(device_resume,        re_resume),
  387         DEVMETHOD(device_shutdown,      re_shutdown),
  388 
  389         /* bus interface */
  390         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  391         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  392 
  393         /* MII interface */
  394         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
  395         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
  396         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
  397 
  398         DEVMETHOD_END
  399 };
  400 
  401 static driver_t re_driver = {
  402         "re",
  403         re_methods,
  404         sizeof(struct re_softc)
  405 };
  406 
  407 static devclass_t re_devclass;
  408 
  409 DECLARE_DUMMY_MODULE(if_re);
  410 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
  411 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
  412 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
  413 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
  414 
  415 static int      re_rx_desc_count = RE_RX_DESC_CNT_DEF;
  416 static int      re_tx_desc_count = RE_TX_DESC_CNT_DEF;
  417 static int      re_msi_enable = 0;
  418 
  419 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
  420 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
  421 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
  422 
  423 #define EE_SET(x)       \
  424         CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
  425 
  426 #define EE_CLR(x)       \
  427         CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
  428 
  429 static __inline void
  430 re_free_rxchain(struct re_softc *sc)
  431 {
  432         if (sc->re_head != NULL) {
  433                 m_freem(sc->re_head);
  434                 sc->re_head = sc->re_tail = NULL;
  435         }
  436 }
  437 
  438 /*
  439  * Send a read command and address to the EEPROM, check for ACK.
  440  */
  441 static void
  442 re_eeprom_putbyte(struct re_softc *sc, int addr)
  443 {
  444         int d, i;
  445 
  446         d = addr | (RE_9346_READ << sc->re_eewidth);
  447 
  448         /*
  449          * Feed in each bit and strobe the clock.
  450          */
  451         for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
  452                 if (d & i)
  453                         EE_SET(RE_EE_DATAIN);
  454                 else
  455                         EE_CLR(RE_EE_DATAIN);
  456                 DELAY(100);
  457                 EE_SET(RE_EE_CLK);
  458                 DELAY(150);
  459                 EE_CLR(RE_EE_CLK);
  460                 DELAY(100);
  461         }
  462 }
  463 
  464 /*
  465  * Read a word of data stored in the EEPROM at address 'addr.'
  466  */
  467 static void
  468 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
  469 {
  470         int i;
  471         uint16_t word = 0;
  472 
  473         /*
  474          * Send address of word we want to read.
  475          */
  476         re_eeprom_putbyte(sc, addr);
  477 
  478         /*
  479          * Start reading bits from EEPROM.
  480          */
  481         for (i = 0x8000; i != 0; i >>= 1) {
  482                 EE_SET(RE_EE_CLK);
  483                 DELAY(100);
  484                 if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
  485                         word |= i;
  486                 EE_CLR(RE_EE_CLK);
  487                 DELAY(100);
  488         }
  489 
  490         *dest = word;
  491 }
  492 
  493 /*
  494  * Read a sequence of words from the EEPROM.
  495  */
  496 static void
  497 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
  498 {
  499         int i;
  500         uint16_t word = 0, *ptr;
  501 
  502         CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
  503         DELAY(100);
  504 
  505         for (i = 0; i < cnt; i++) {
  506                 CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
  507                 re_eeprom_getword(sc, off + i, &word);
  508                 CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
  509                 ptr = (uint16_t *)(dest + (i * 2));
  510                 *ptr = word;
  511         }
  512 
  513         CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
  514 }
  515 
  516 static void
  517 re_get_eewidth(struct re_softc *sc)
  518 {
  519         uint16_t re_did = 0;
  520 
  521         sc->re_eewidth = 6;
  522         re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
  523         if (re_did != 0x8129)
  524                 sc->re_eewidth = 8;
  525 }
  526 
  527 static int
  528 re_gmii_readreg(device_t dev, int phy, int reg)
  529 {
  530         struct re_softc *sc = device_get_softc(dev);
  531         u_int32_t rval;
  532         int i;
  533 
  534         if (phy != 1)
  535                 return(0);
  536 
  537         /* Let the rgephy driver read the GMEDIASTAT register */
  538 
  539         if (reg == RE_GMEDIASTAT)
  540                 return(CSR_READ_1(sc, RE_GMEDIASTAT));
  541 
  542         CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
  543         DELAY(1000);
  544 
  545         for (i = 0; i < RE_TIMEOUT; i++) {
  546                 rval = CSR_READ_4(sc, RE_PHYAR);
  547                 if (rval & RE_PHYAR_BUSY)
  548                         break;
  549                 DELAY(100);
  550         }
  551 
  552         if (i == RE_TIMEOUT) {
  553                 device_printf(dev, "PHY read failed\n");
  554                 return(0);
  555         }
  556 
  557         return(rval & RE_PHYAR_PHYDATA);
  558 }
  559 
  560 static int
  561 re_gmii_writereg(device_t dev, int phy, int reg, int data)
  562 {
  563         struct re_softc *sc = device_get_softc(dev);
  564         uint32_t rval;
  565         int i;
  566 
  567         CSR_WRITE_4(sc, RE_PHYAR,
  568                     (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
  569         DELAY(1000);
  570 
  571         for (i = 0; i < RE_TIMEOUT; i++) {
  572                 rval = CSR_READ_4(sc, RE_PHYAR);
  573                 if ((rval & RE_PHYAR_BUSY) == 0)
  574                         break;
  575                 DELAY(100);
  576         }
  577 
  578         if (i == RE_TIMEOUT)
  579                 device_printf(dev, "PHY write failed\n");
  580 
  581         return(0);
  582 }
  583 
  584 static int
  585 re_miibus_readreg(device_t dev, int phy, int reg)
  586 {
  587         struct re_softc *sc = device_get_softc(dev);
  588         uint16_t rval = 0;
  589         uint16_t re8139_reg = 0;
  590 
  591         if (!RE_IS_8139CP(sc)) {
  592                 rval = re_gmii_readreg(dev, phy, reg);
  593                 return(rval);
  594         }
  595 
  596         /* Pretend the internal PHY is only at address 0 */
  597         if (phy)
  598                 return(0);
  599 
  600         switch(reg) {
  601         case MII_BMCR:
  602                 re8139_reg = RE_BMCR;
  603                 break;
  604         case MII_BMSR:
  605                 re8139_reg = RE_BMSR;
  606                 break;
  607         case MII_ANAR:
  608                 re8139_reg = RE_ANAR;
  609                 break;
  610         case MII_ANER:
  611                 re8139_reg = RE_ANER;
  612                 break;
  613         case MII_ANLPAR:
  614                 re8139_reg = RE_LPAR;
  615                 break;
  616         case MII_PHYIDR1:
  617         case MII_PHYIDR2:
  618                 return(0);
  619         /*
  620          * Allow the rlphy driver to read the media status
  621          * register. If we have a link partner which does not
  622          * support NWAY, this is the register which will tell
  623          * us the results of parallel detection.
  624          */
  625         case RE_MEDIASTAT:
  626                 return(CSR_READ_1(sc, RE_MEDIASTAT));
  627         default:
  628                 device_printf(dev, "bad phy register\n");
  629                 return(0);
  630         }
  631         rval = CSR_READ_2(sc, re8139_reg);
  632         if (re8139_reg == RE_BMCR) {
  633                 /* 8139C+ has different bit layout. */
  634                 rval &= ~(BMCR_LOOP | BMCR_ISO);
  635         }
  636         return(rval);
  637 }
  638 
  639 static int
  640 re_miibus_writereg(device_t dev, int phy, int reg, int data)
  641 {
  642         struct re_softc *sc= device_get_softc(dev);
  643         u_int16_t re8139_reg = 0;
  644 
  645         if (!RE_IS_8139CP(sc))
  646                 return(re_gmii_writereg(dev, phy, reg, data));
  647 
  648         /* Pretend the internal PHY is only at address 0 */
  649         if (phy)
  650                 return(0);
  651 
  652         switch(reg) {
  653         case MII_BMCR:
  654                 re8139_reg = RE_BMCR;
  655                 /* 8139C+ has different bit layout. */
  656                 data &= ~(BMCR_LOOP | BMCR_ISO);
  657                 break;
  658         case MII_BMSR:
  659                 re8139_reg = RE_BMSR;
  660                 break;
  661         case MII_ANAR:
  662                 re8139_reg = RE_ANAR;
  663                 break;
  664         case MII_ANER:
  665                 re8139_reg = RE_ANER;
  666                 break;
  667         case MII_ANLPAR:
  668                 re8139_reg = RE_LPAR;
  669                 break;
  670         case MII_PHYIDR1:
  671         case MII_PHYIDR2:
  672                 return(0);
  673         default:
  674                 device_printf(dev, "bad phy register\n");
  675                 return(0);
  676         }
  677         CSR_WRITE_2(sc, re8139_reg, data);
  678         return(0);
  679 }
  680 
  681 static void
  682 re_miibus_statchg(device_t dev)
  683 {
  684 }
  685 
  686 /*
  687  * Program the 64-bit multicast hash filter.
  688  */
  689 static void
  690 re_setmulti(struct re_softc *sc)
  691 {
  692         struct ifnet *ifp = &sc->arpcom.ac_if;
  693         int h = 0;
  694         uint32_t hashes[2] = { 0, 0 };
  695         struct ifmultiaddr *ifma;
  696         uint32_t rxfilt;
  697         int mcnt = 0;
  698 
  699         rxfilt = CSR_READ_4(sc, RE_RXCFG);
  700 
  701         /* Set the individual bit to receive frames for this host only. */
  702         rxfilt |= RE_RXCFG_RX_INDIV;
  703         /* Set capture broadcast bit to capture broadcast frames. */
  704         rxfilt |= RE_RXCFG_RX_BROAD;
  705 
  706         rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
  707         if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
  708                 rxfilt |= RE_RXCFG_RX_MULTI;
  709 
  710                 /* If we want promiscuous mode, set the allframes bit. */
  711                 if (ifp->if_flags & IFF_PROMISC)
  712                         rxfilt |= RE_RXCFG_RX_ALLPHYS;
  713 
  714                 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
  715                 CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
  716                 CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
  717                 return;
  718         }
  719 
  720         /* first, zot all the existing hash bits */
  721         CSR_WRITE_4(sc, RE_MAR0, 0);
  722         CSR_WRITE_4(sc, RE_MAR4, 0);
  723 
  724         /* now program new ones */
  725         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  726                 if (ifma->ifma_addr->sa_family != AF_LINK)
  727                         continue;
  728                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  729                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
  730                 if (h < 32)
  731                         hashes[0] |= (1 << h);
  732                 else
  733                         hashes[1] |= (1 << (h - 32));
  734                 mcnt++;
  735         }
  736 
  737         if (mcnt)
  738                 rxfilt |= RE_RXCFG_RX_MULTI;
  739         else
  740                 rxfilt &= ~RE_RXCFG_RX_MULTI;
  741 
  742         CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
  743 
  744         /*
  745          * For some unfathomable reason, RealTek decided to reverse
  746          * the order of the multicast hash registers in the PCI Express
  747          * parts. This means we have to write the hash pattern in reverse
  748          * order for those devices.
  749          */
  750         if (sc->re_caps & RE_C_PCIE) {
  751                 CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
  752                 CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
  753         } else {
  754                 CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
  755                 CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
  756         }
  757 }
  758 
  759 static void
  760 re_reset(struct re_softc *sc, int running)
  761 {
  762         int i;
  763 
  764         if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
  765                 CSR_WRITE_1(sc, RE_COMMAND,
  766                             RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
  767                 DELAY(100);
  768         }
  769 
  770         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
  771 
  772         for (i = 0; i < RE_TIMEOUT; i++) {
  773                 DELAY(10);
  774                 if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
  775                         break;
  776         }
  777         if (i == RE_TIMEOUT)
  778                 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
  779 }
  780 
  781 #ifdef RE_DIAG
  782 /*
  783  * The following routine is designed to test for a defect on some
  784  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
  785  * lines connected to the bus, however for a 32-bit only card, they
  786  * should be pulled high. The result of this defect is that the
  787  * NIC will not work right if you plug it into a 64-bit slot: DMA
  788  * operations will be done with 64-bit transfers, which will fail
  789  * because the 64-bit data lines aren't connected.
  790  *
  791  * There's no way to work around this (short of talking a soldering
  792  * iron to the board), however we can detect it. The method we use
  793  * here is to put the NIC into digital loopback mode, set the receiver
  794  * to promiscuous mode, and then try to send a frame. We then compare
  795  * the frame data we sent to what was received. If the data matches,
  796  * then the NIC is working correctly, otherwise we know the user has
  797  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
  798  * slot. In the latter case, there's no way the NIC can work correctly,
  799  * so we print out a message on the console and abort the device attach.
  800  */
  801 
  802 static int
  803 re_diag(struct re_softc *sc)
  804 {
  805         struct ifnet *ifp = &sc->arpcom.ac_if;
  806         struct mbuf *m0;
  807         struct ether_header *eh;
  808         struct re_desc *cur_rx;
  809         uint16_t status;
  810         int total_len, i, error = 0, phyaddr;
  811         uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
  812         uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
  813         char ethstr[2][ETHER_ADDRSTRLEN + 1];
  814 
  815         /* Allocate a single mbuf */
  816 
  817         MGETHDR(m0, MB_DONTWAIT, MT_DATA);
  818         if (m0 == NULL)
  819                 return(ENOBUFS);
  820 
  821         /*
  822          * Initialize the NIC in test mode. This sets the chip up
  823          * so that it can send and receive frames, but performs the
  824          * following special functions:
  825          * - Puts receiver in promiscuous mode
  826          * - Enables digital loopback mode
  827          * - Leaves interrupts turned off
  828          */
  829 
  830         ifp->if_flags |= IFF_PROMISC;
  831         sc->re_flags |= RE_F_TESTMODE;
  832         re_init(sc);
  833         sc->re_flags |= RE_F_LINKED;
  834         if (!RE_IS_8139CP(sc))
  835                 phyaddr = 1;
  836         else
  837                 phyaddr = 0;
  838 
  839         re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
  840         for (i = 0; i < RE_TIMEOUT; i++) {
  841                 status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
  842                 if (!(status & BMCR_RESET))
  843                         break;
  844         }
  845 
  846         re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
  847         CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
  848 
  849         DELAY(100000);
  850 
  851         /* Put some data in the mbuf */
  852 
  853         eh = mtod(m0, struct ether_header *);
  854         bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
  855         bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
  856         eh->ether_type = htons(ETHERTYPE_IP);
  857         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
  858 
  859         /*
  860          * Queue the packet, start transmission.
  861          * Note: ifq_handoff() ultimately calls re_start() for us.
  862          */
  863 
  864         CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
  865         error = ifq_handoff(ifp, m0, NULL);
  866         if (error) {
  867                 m0 = NULL;
  868                 goto done;
  869         }
  870         m0 = NULL;
  871 
  872         /* Wait for it to propagate through the chip */
  873 
  874         DELAY(100000);
  875         for (i = 0; i < RE_TIMEOUT; i++) {
  876                 status = CSR_READ_2(sc, RE_ISR);
  877                 CSR_WRITE_2(sc, RE_ISR, status);
  878                 if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
  879                     (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
  880                         break;
  881                 DELAY(10);
  882         }
  883 
  884         if (i == RE_TIMEOUT) {
  885                 if_printf(ifp, "diagnostic failed to receive packet "
  886                           "in loopback mode\n");
  887                 error = EIO;
  888                 goto done;
  889         }
  890 
  891         /*
  892          * The packet should have been dumped into the first
  893          * entry in the RX DMA ring. Grab it from there.
  894          */
  895 
  896         bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
  897                         BUS_DMASYNC_POSTREAD);
  898         bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
  899                           sc->re_ldata.re_rx_dmamap[0]);
  900 
  901         m0 = sc->re_ldata.re_rx_mbuf[0];
  902         sc->re_ldata.re_rx_mbuf[0] = NULL;
  903         eh = mtod(m0, struct ether_header *);
  904 
  905         cur_rx = &sc->re_ldata.re_rx_list[0];
  906         total_len = RE_RXBYTES(cur_rx);
  907 
  908         if (total_len != ETHER_MIN_LEN) {
  909                 if_printf(ifp, "diagnostic failed, received short packet\n");
  910                 error = EIO;
  911                 goto done;
  912         }
  913 
  914         /* Test that the received packet data matches what we sent. */
  915 
  916         if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
  917             bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
  918             be16toh(eh->ether_type) != ETHERTYPE_IP) {
  919                 if_printf(ifp, "WARNING, DMA FAILURE!\n");
  920                 if_printf(ifp, "expected TX data: %s/%s/0x%x\n",
  921                     kether_ntoa(dst, ethstr[0]), kether_ntoa(src, ethstr[1]), ETHERTYPE_IP);
  922                 if_printf(ifp, "received RX data: %s/%s/0x%x\n",
  923                     kether_ntoa(eh->ether_dhost, ethstr[0]),
  924                     kether_ntoa(eh->ether_shost, ethstr[1]),
  925                     ntohs(eh->ether_type));
  926                 if_printf(ifp, "You may have a defective 32-bit NIC plugged "
  927                     "into a 64-bit PCI slot.\n");
  928                 if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
  929                     "for proper operation.\n");
  930                 if_printf(ifp, "Read the re(4) man page for more details.\n");
  931                 error = EIO;
  932         }
  933 
  934 done:
  935         /* Turn interface off, release resources */
  936 
  937         sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
  938         ifp->if_flags &= ~IFF_PROMISC;
  939         re_stop(sc);
  940         if (m0 != NULL)
  941                 m_freem(m0);
  942 
  943         return (error);
  944 }
  945 #endif  /* RE_DIAG */
  946 
  947 /*
  948  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
  949  * IDs against our list and return a device name if we find a match.
  950  */
  951 static int
  952 re_probe(device_t dev)
  953 {
  954         const struct re_type *t;
  955         const struct re_hwrev *hw_rev;
  956         struct re_softc *sc;
  957         int rid;
  958         uint32_t hwrev, macmode, txcfg;
  959         uint16_t vendor, product;
  960 
  961         vendor = pci_get_vendor(dev);
  962         product = pci_get_device(dev);
  963 
  964         /*
  965          * Only attach to rev.3 of the Linksys EG1032 adapter.
  966          * Rev.2 is supported by sk(4).
  967          */
  968         if (vendor == PCI_VENDOR_LINKSYS &&
  969             product == PCI_PRODUCT_LINKSYS_EG1032 &&
  970             pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
  971                 return ENXIO;
  972 
  973         if (vendor == PCI_VENDOR_REALTEK &&
  974             product == PCI_PRODUCT_REALTEK_RT8139 &&
  975             pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
  976                 /* Poor 8139 */
  977                 return ENXIO;
  978         }
  979 
  980         for (t = re_devs; t->re_name != NULL; t++) {
  981                 if (product == t->re_did && vendor == t->re_vid)
  982                         break;
  983         }
  984 
  985         /*
  986          * Check if we found a RealTek device.
  987          */
  988         if (t->re_name == NULL)
  989                 return ENXIO;
  990 
  991         /*
  992          * Temporarily map the I/O space so we can read the chip ID register.
  993          */
  994         sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
  995         rid = RE_PCI_LOIO;
  996         sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
  997                                             RF_ACTIVE);
  998         if (sc->re_res == NULL) {
  999                 device_printf(dev, "couldn't map ports/memory\n");
 1000                 kfree(sc, M_TEMP);
 1001                 return ENXIO;
 1002         }
 1003 
 1004         sc->re_btag = rman_get_bustag(sc->re_res);
 1005         sc->re_bhandle = rman_get_bushandle(sc->re_res);
 1006 
 1007         txcfg = CSR_READ_4(sc, RE_TXCFG);
 1008         hwrev = txcfg & RE_TXCFG_HWREV;
 1009         macmode = txcfg & RE_TXCFG_MACMODE;
 1010         bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
 1011         kfree(sc, M_TEMP);
 1012 
 1013         /*
 1014          * and continue matching for the specific chip...
 1015          */
 1016         for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
 1017                 if (hw_rev->re_hwrev == hwrev) {
 1018                         sc = device_get_softc(dev);
 1019 
 1020                         sc->re_hwrev = hw_rev->re_hwrev;
 1021                         sc->re_caps = hw_rev->re_caps;
 1022                         sc->re_maxmtu = hw_rev->re_maxmtu;
 1023 
 1024                         /*
 1025                          * Apply chip property fixup
 1026                          */
 1027                         switch (sc->re_hwrev) {
 1028                         case RE_HWREV_8168GU:
 1029                                 if (vendor == PCI_VENDOR_REALTEK &&
 1030                                     product == PCI_PRODUCT_REALTEK_RT8101E) {
 1031                                         /* 8106EUS */
 1032                                         sc->re_caps = RE_C_HWCSUM | RE_C_MAC2 |
 1033                                             RE_C_PHYPMGT | RE_C_AUTOPAD |
 1034                                             RE_C_STOP_RXTX | RE_C_FASTE;
 1035                                         sc->re_maxmtu = ETHERMTU;
 1036                                         device_printf(dev, "8106EUS fixup\n");
 1037                                 } else {
 1038                                         /* 8168GU */
 1039                                         goto ee_eaddr1;
 1040                                 }
 1041                                 break;
 1042 
 1043                         case RE_HWREV_8168E:
 1044                                 if (vendor == PCI_VENDOR_REALTEK &&
 1045                                     product == PCI_PRODUCT_REALTEK_RT8101E) {
 1046                                         /* 8105E */
 1047                                         sc->re_caps = RE_C_HWCSUM | RE_C_MAC2 |
 1048                                             RE_C_PHYPMGT | RE_C_AUTOPAD |
 1049                                             RE_C_STOP_RXTX | RE_C_FASTE;
 1050                                         sc->re_maxmtu = ETHERMTU;
 1051                                         device_printf(dev, "8105E fixup\n");
 1052                                         goto ee_eaddr0;
 1053                                 }
 1054                                 /* 8168E */
 1055                                 break;
 1056 
 1057                         case RE_HWREV_8101E:
 1058                         case RE_HWREV_8102E:
 1059                         case RE_HWREV_8102EL:
 1060                         case RE_HWREV_8401E:
 1061                         case RE_HWREV_8105E:
 1062                         case RE_HWREV_8106E:
 1063 ee_eaddr0:
 1064                                 sc->re_caps |= RE_C_EE_EADDR;
 1065                                 sc->re_ee_eaddr = RE_EE_EADDR0;
 1066                                 break;
 1067 
 1068                         case RE_HWREV_8168F:
 1069                         case RE_HWREV_8111F:
 1070                         case RE_HWREV_8168G:
 1071                                 if (macmode == 0 ||
 1072                                     macmode == 0x100000) {
 1073                                         sc->re_caps |= RE_C_EE_EADDR;
 1074                                         sc->re_ee_eaddr = RE_EE_EADDR1;
 1075                                 }
 1076                                 break;
 1077 
 1078                         case RE_HWREV_8411:
 1079                         case RE_HWREV_8168EP:
 1080                         case RE_HWREV_8411B:
 1081 ee_eaddr1:
 1082                                 sc->re_caps |= RE_C_EE_EADDR;
 1083                                 sc->re_ee_eaddr = RE_EE_EADDR1;
 1084                                 break;
 1085                         }
 1086                         if (pci_is_pcie(dev))
 1087                                 sc->re_caps |= RE_C_PCIE;
 1088 
 1089                         device_set_desc(dev, t->re_name);
 1090                         return 0;
 1091                 }
 1092         }
 1093         device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
 1094             hwrev, macmode);
 1095 
 1096         return ENXIO;
 1097 }
 1098 
 1099 static int
 1100 re_allocmem(device_t dev)
 1101 {
 1102         struct re_softc *sc = device_get_softc(dev);
 1103         bus_dmamem_t dmem;
 1104         int error, i;
 1105 
 1106         /*
 1107          * Allocate list data
 1108          */
 1109         sc->re_ldata.re_tx_mbuf =
 1110         kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
 1111                 M_DEVBUF, M_ZERO | M_WAITOK);
 1112 
 1113         sc->re_ldata.re_rx_mbuf =
 1114         kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
 1115                 M_DEVBUF, M_ZERO | M_WAITOK);
 1116 
 1117         sc->re_ldata.re_rx_paddr =
 1118         kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
 1119                 M_DEVBUF, M_ZERO | M_WAITOK);
 1120 
 1121         sc->re_ldata.re_tx_dmamap =
 1122         kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
 1123                 M_DEVBUF, M_ZERO | M_WAITOK);
 1124 
 1125         sc->re_ldata.re_rx_dmamap =
 1126         kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
 1127                 M_DEVBUF, M_ZERO | M_WAITOK);
 1128 
 1129         /*
 1130          * Allocate the parent bus DMA tag appropriate for PCI.
 1131          */
 1132         error = bus_dma_tag_create(NULL,        /* parent */
 1133                         1, 0,                   /* alignment, boundary */
 1134                         BUS_SPACE_MAXADDR,      /* lowaddr */
 1135                         BUS_SPACE_MAXADDR,      /* highaddr */
 1136                         NULL, NULL,             /* filter, filterarg */
 1137                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
 1138                         0,                      /* nsegments */
 1139                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
 1140                         0,                      /* flags */
 1141                         &sc->re_parent_tag);
 1142         if (error) {
 1143                 device_printf(dev, "could not allocate parent dma tag\n");
 1144                 return error;
 1145         }
 1146 
 1147         /* Allocate TX descriptor list. */
 1148         error = bus_dmamem_coherent(sc->re_parent_tag,
 1149                         RE_RING_ALIGN, 0,
 1150                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1151                         RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
 1152                         &dmem);
 1153         if (error) {
 1154                 device_printf(dev, "could not allocate TX ring\n");
 1155                 return error;
 1156         }
 1157         sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
 1158         sc->re_ldata.re_tx_list_map = dmem.dmem_map;
 1159         sc->re_ldata.re_tx_list = dmem.dmem_addr;
 1160         sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
 1161 
 1162         /* Allocate RX descriptor list. */
 1163         error = bus_dmamem_coherent(sc->re_parent_tag,
 1164                         RE_RING_ALIGN, 0,
 1165                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1166                         RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
 1167                         &dmem);
 1168         if (error) {
 1169                 device_printf(dev, "could not allocate RX ring\n");
 1170                 return error;
 1171         }
 1172         sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
 1173         sc->re_ldata.re_rx_list_map = dmem.dmem_map;
 1174         sc->re_ldata.re_rx_list = dmem.dmem_addr;
 1175         sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
 1176 
 1177         /* Allocate maps for TX mbufs. */
 1178         error = bus_dma_tag_create(sc->re_parent_tag,
 1179                         1, 0,
 1180                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1181                         NULL, NULL,
 1182                         RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
 1183                         BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
 1184                         &sc->re_ldata.re_tx_mtag);
 1185         if (error) {
 1186                 device_printf(dev, "could not allocate TX buf dma tag\n");
 1187                 return(error);
 1188         }
 1189 
 1190         /* Create DMA maps for TX buffers */
 1191         for (i = 0; i < sc->re_tx_desc_cnt; i++) {
 1192                 error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
 1193                                 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
 1194                                 &sc->re_ldata.re_tx_dmamap[i]);
 1195                 if (error) {
 1196                         device_printf(dev, "can't create DMA map for TX buf\n");
 1197                         re_freebufmem(sc, i, 0);
 1198                         return(error);
 1199                 }
 1200         }
 1201 
 1202         /* Allocate maps for RX mbufs. */
 1203         error = bus_dma_tag_create(sc->re_parent_tag,
 1204                         RE_RXBUF_ALIGN, 0,
 1205                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 1206                         NULL, NULL,
 1207                         MCLBYTES, 1, MCLBYTES,
 1208                         BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
 1209                         &sc->re_ldata.re_rx_mtag);
 1210         if (error) {
 1211                 device_printf(dev, "could not allocate RX buf dma tag\n");
 1212                 return(error);
 1213         }
 1214 
 1215         /* Create spare DMA map for RX */
 1216         error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
 1217                         &sc->re_ldata.re_rx_spare);
 1218         if (error) {
 1219                 device_printf(dev, "can't create spare DMA map for RX\n");
 1220                 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
 1221                 sc->re_ldata.re_rx_mtag = NULL;
 1222                 return error;
 1223         }
 1224 
 1225         /* Create DMA maps for RX buffers */
 1226         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
 1227                 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
 1228                                 BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
 1229                 if (error) {
 1230                         device_printf(dev, "can't create DMA map for RX buf\n");
 1231                         re_freebufmem(sc, sc->re_tx_desc_cnt, i);
 1232                         return(error);
 1233                 }
 1234         }
 1235 
 1236         /* Create jumbo buffer pool for RX if required */
 1237         if (sc->re_caps & RE_C_CONTIGRX) {
 1238                 error = re_jpool_alloc(sc);
 1239                 if (error) {
 1240                         re_jpool_free(sc);
 1241                         /* Disable jumbo frame support */
 1242                         sc->re_maxmtu = ETHERMTU;
 1243                 }
 1244         }
 1245         return(0);
 1246 }
 1247 
 1248 static void
 1249 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
 1250 {
 1251         int i;
 1252 
 1253         /* Destroy all the RX and TX buffer maps */
 1254         if (sc->re_ldata.re_tx_mtag) {
 1255                 for (i = 0; i < tx_cnt; i++) {
 1256                         bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
 1257                                            sc->re_ldata.re_tx_dmamap[i]);
 1258                 }
 1259                 bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
 1260                 sc->re_ldata.re_tx_mtag = NULL;
 1261         }
 1262 
 1263         if (sc->re_ldata.re_rx_mtag) {
 1264                 for (i = 0; i < rx_cnt; i++) {
 1265                         bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
 1266                                            sc->re_ldata.re_rx_dmamap[i]);
 1267                 }
 1268                 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
 1269                                    sc->re_ldata.re_rx_spare);
 1270                 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
 1271                 sc->re_ldata.re_rx_mtag = NULL;
 1272         }
 1273 }
 1274 
 1275 static void
 1276 re_freemem(device_t dev)
 1277 {
 1278         struct re_softc *sc = device_get_softc(dev);
 1279 
 1280         /* Unload and free the RX DMA ring memory and map */
 1281         if (sc->re_ldata.re_rx_list_tag) {
 1282                 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
 1283                                   sc->re_ldata.re_rx_list_map);
 1284                 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
 1285                                 sc->re_ldata.re_rx_list,
 1286                                 sc->re_ldata.re_rx_list_map);
 1287                 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
 1288         }
 1289 
 1290         /* Unload and free the TX DMA ring memory and map */
 1291         if (sc->re_ldata.re_tx_list_tag) {
 1292                 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
 1293                                   sc->re_ldata.re_tx_list_map);
 1294                 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
 1295                                 sc->re_ldata.re_tx_list,
 1296                                 sc->re_ldata.re_tx_list_map);
 1297                 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
 1298         }
 1299 
 1300         /* Free RX/TX buf DMA stuffs */
 1301         re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
 1302 
 1303         /* Unload and free the stats buffer and map */
 1304         if (sc->re_ldata.re_stag) {
 1305                 bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
 1306                 bus_dmamem_free(sc->re_ldata.re_stag,
 1307                                 sc->re_ldata.re_stats,
 1308                                 sc->re_ldata.re_smap);
 1309                 bus_dma_tag_destroy(sc->re_ldata.re_stag);
 1310         }
 1311 
 1312         if (sc->re_caps & RE_C_CONTIGRX)
 1313                 re_jpool_free(sc);
 1314 
 1315         if (sc->re_parent_tag)
 1316                 bus_dma_tag_destroy(sc->re_parent_tag);
 1317 
 1318         if (sc->re_ldata.re_tx_mbuf != NULL)
 1319                 kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
 1320         if (sc->re_ldata.re_rx_mbuf != NULL)
 1321                 kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
 1322         if (sc->re_ldata.re_rx_paddr != NULL)
 1323                 kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
 1324         if (sc->re_ldata.re_tx_dmamap != NULL)
 1325                 kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
 1326         if (sc->re_ldata.re_rx_dmamap != NULL)
 1327                 kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
 1328 }
 1329 
 1330 /*
 1331  * Attach the interface. Allocate softc structures, do ifmedia
 1332  * setup and ethernet/BPF attach.
 1333  */
 1334 static int
 1335 re_attach(device_t dev)
 1336 {
 1337         struct re_softc *sc = device_get_softc(dev);
 1338         struct ifnet *ifp;
 1339         uint8_t eaddr[ETHER_ADDR_LEN];
 1340         int error = 0, qlen, msi_enable;
 1341         u_int irq_flags;
 1342 
 1343         callout_init(&sc->re_timer);
 1344         sc->re_dev = dev;
 1345 
 1346         if (RE_IS_8139CP(sc)) {
 1347                 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
 1348                 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
 1349         } else {
 1350                 sc->re_rx_desc_cnt = re_rx_desc_count;
 1351                 if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
 1352                         sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
 1353 
 1354                 sc->re_tx_desc_cnt = re_tx_desc_count;
 1355                 if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
 1356                         sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
 1357         }
 1358 
 1359         qlen = RE_IFQ_MAXLEN;
 1360         if (sc->re_tx_desc_cnt > qlen)
 1361                 qlen = sc->re_tx_desc_cnt;
 1362 
 1363         sc->re_rxbuf_size = MCLBYTES;
 1364         sc->re_newbuf = re_newbuf_std;
 1365 
 1366         sc->re_tx_time = 5;             /* 125us */
 1367         sc->re_rx_time = 2;             /* 50us */
 1368         if (sc->re_caps & RE_C_PCIE)
 1369                 sc->re_sim_time = 75;   /* 75us */
 1370         else
 1371                 sc->re_sim_time = 125;  /* 125us */
 1372         if (!RE_IS_8139CP(sc)) {
 1373                 /* simulated interrupt moderation */
 1374                 sc->re_imtype = RE_IMTYPE_SIM;
 1375         } else {
 1376                 sc->re_imtype = RE_IMTYPE_NONE;
 1377         }
 1378         re_config_imtype(sc, sc->re_imtype);
 1379 
 1380         sysctl_ctx_init(&sc->re_sysctl_ctx);
 1381         sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
 1382                                              SYSCTL_STATIC_CHILDREN(_hw),
 1383                                              OID_AUTO,
 1384                                              device_get_nameunit(dev),
 1385                                              CTLFLAG_RD, 0, "");
 1386         if (sc->re_sysctl_tree == NULL) {
 1387                 device_printf(dev, "can't add sysctl node\n");
 1388                 error = ENXIO;
 1389                 goto fail;
 1390         }
 1391         SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
 1392                        SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
 1393                        "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
 1394                        0, "RX desc count");
 1395         SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
 1396                        SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
 1397                        "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
 1398                        0, "TX desc count");
 1399         SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
 1400                         SYSCTL_CHILDREN(sc->re_sysctl_tree),
 1401                         OID_AUTO, "sim_time",
 1402                         CTLTYPE_INT | CTLFLAG_RW,
 1403                         sc, 0, re_sysctl_simtime, "I",
 1404                         "Simulated interrupt moderation time (usec).");
 1405         SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
 1406                         SYSCTL_CHILDREN(sc->re_sysctl_tree),
 1407                         OID_AUTO, "imtype",
 1408                         CTLTYPE_INT | CTLFLAG_RW,
 1409                         sc, 0, re_sysctl_imtype, "I",
 1410                         "Interrupt moderation type -- "
 1411                         "0:disable, 1:simulated, "
 1412                         "2:hardware(if supported)");
 1413         if (sc->re_caps & RE_C_HWIM) {
 1414                 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
 1415                                 SYSCTL_CHILDREN(sc->re_sysctl_tree),
 1416                                 OID_AUTO, "hw_rxtime",
 1417                                 CTLTYPE_INT | CTLFLAG_RW,
 1418                                 sc, 0, re_sysctl_rxtime, "I",
 1419                                 "Hardware interrupt moderation time "
 1420                                 "(unit: 25usec).");
 1421                 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
 1422                                 SYSCTL_CHILDREN(sc->re_sysctl_tree),
 1423                                 OID_AUTO, "hw_txtime",
 1424                                 CTLTYPE_INT | CTLFLAG_RW,
 1425                                 sc, 0, re_sysctl_txtime, "I",
 1426                                 "Hardware interrupt moderation time "
 1427                                 "(unit: 25usec).");
 1428         }
 1429 
 1430 #ifndef BURN_BRIDGES
 1431         /*
 1432          * Handle power management nonsense.
 1433          */
 1434 
 1435         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
 1436                 uint32_t membase, irq;
 1437 
 1438                 /* Save important PCI config data. */
 1439                 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
 1440                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
 1441 
 1442                 /* Reset the power state. */
 1443                 device_printf(dev, "chip is in D%d power mode "
 1444                     "-- setting to D0\n", pci_get_powerstate(dev));
 1445 
 1446                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
 1447 
 1448                 /* Restore PCI config data. */
 1449                 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
 1450                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
 1451         }
 1452 #endif
 1453         /*
 1454          * Map control/status registers.
 1455          */
 1456         pci_enable_busmaster(dev);
 1457 
 1458         if (pci_is_pcie(dev)) {
 1459                 sc->re_res_rid = PCIR_BAR(2);
 1460                 sc->re_res_type = SYS_RES_MEMORY;
 1461         } else {
 1462                 sc->re_res_rid = PCIR_BAR(0);
 1463                 sc->re_res_type = SYS_RES_IOPORT;
 1464         }
 1465         sc->re_res = bus_alloc_resource_any(dev, sc->re_res_type,
 1466             &sc->re_res_rid, RF_ACTIVE);
 1467         if (sc->re_res == NULL) {
 1468                 device_printf(dev, "couldn't map IO\n");
 1469                 error = ENXIO;
 1470                 goto fail;
 1471         }
 1472 
 1473         sc->re_btag = rman_get_bustag(sc->re_res);
 1474         sc->re_bhandle = rman_get_bushandle(sc->re_res);
 1475 
 1476         /*
 1477          * Allocate interrupt
 1478          */
 1479         if (pci_is_pcie(dev))
 1480                 msi_enable = re_msi_enable;
 1481         else
 1482                 msi_enable = 0;
 1483         sc->re_irq_type = pci_alloc_1intr(dev, msi_enable,
 1484             &sc->re_irq_rid, &irq_flags);
 1485 
 1486         sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
 1487                                             irq_flags);
 1488         if (sc->re_irq == NULL) {
 1489                 device_printf(dev, "couldn't map interrupt\n");
 1490                 error = ENXIO;
 1491                 goto fail;
 1492         }
 1493 
 1494         /* Reset the adapter. */
 1495         re_reset(sc, 0);
 1496 
 1497         if (RE_IS_8139CP(sc)) {
 1498                 sc->re_bus_speed = 33; /* XXX */
 1499         } else if (sc->re_caps & RE_C_PCIE) {
 1500                 sc->re_bus_speed = 125;
 1501         } else {
 1502                 uint8_t cfg2;
 1503 
 1504                 cfg2 = CSR_READ_1(sc, RE_CFG2);
 1505                 switch (cfg2 & RE_CFG2_PCICLK_MASK) {
 1506                 case RE_CFG2_PCICLK_33MHZ:
 1507                         sc->re_bus_speed = 33;
 1508                         break;
 1509                 case RE_CFG2_PCICLK_66MHZ:
 1510                         sc->re_bus_speed = 66;
 1511                         break;
 1512                 default:
 1513                         device_printf(dev, "unknown bus speed, assume 33MHz\n");
 1514                         sc->re_bus_speed = 33;
 1515                         break;
 1516                 }
 1517                 if (cfg2 & RE_CFG2_PCI64)
 1518                         sc->re_caps |= RE_C_PCI64;
 1519         }
 1520         device_printf(dev, "Hardware rev. 0x%08x; PCI%s %dMHz\n",
 1521                       sc->re_hwrev,
 1522                       (sc->re_caps & RE_C_PCIE) ?
 1523                       "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
 1524                       sc->re_bus_speed);
 1525 
 1526         /*
 1527          * NOTE:
 1528          * DO NOT try to adjust config1 and config5 which was spotted in
 1529          * Realtek's Linux drivers.  It will _permanently_ damage certain
 1530          * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
 1531          */
 1532 
 1533         re_get_eaddr(sc, eaddr);
 1534 
 1535         if (!RE_IS_8139CP(sc)) {
 1536                 /* Set RX length mask */
 1537                 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
 1538                 sc->re_txstart = RE_GTXSTART;
 1539         } else {
 1540                 /* Set RX length mask */
 1541                 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
 1542                 sc->re_txstart = RE_TXSTART;
 1543         }
 1544 
 1545         /* Allocate DMA stuffs */
 1546         error = re_allocmem(dev);
 1547         if (error)
 1548                 goto fail;
 1549 
 1550         /*
 1551          * Apply some magic PCI settings from Realtek ...
 1552          */
 1553         if (RE_IS_8169(sc)) {
 1554                 CSR_WRITE_1(sc, 0x82, 1);
 1555                 pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
 1556         }
 1557         pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
 1558 
 1559         if (sc->re_caps & RE_C_MAC2) {
 1560                 /*
 1561                  * Following part is extracted from Realtek BSD driver v176.
 1562                  * However, this does _not_ make much/any sense:
 1563                  * 8168C's PCI Express device control is located at 0x78,
 1564                  * so the reading from 0x79 (higher part of 0x78) and setting
 1565                  * the 4~6bits intend to enlarge the "max read request size"
 1566                  * (we will do it).  The content of the rest part of this
 1567                  * register is not meaningful to other PCI registers, so
 1568                  * writing the value to 0x54 could be completely wrong.
 1569                  * 0x80 is the lower part of PCI Express device status, non-
 1570                  * reserved bits are RW1C, writing 0 to them will not have
 1571                  * any effect at all.
 1572                  */
 1573 #ifdef foo
 1574                 uint8_t val;
 1575 
 1576                 val = pci_read_config(dev, 0x79, 1);
 1577                 val = (val & ~0x70) | 0x50;
 1578                 pci_write_config(dev, 0x54, val, 1);
 1579                 pci_write_config(dev, 0x80, 0, 1);
 1580 #endif
 1581         }
 1582 
 1583         /*
 1584          * Apply some PHY fixup from Realtek ...
 1585          */
 1586         if (sc->re_hwrev == RE_HWREV_8110S) {
 1587                 CSR_WRITE_1(sc, 0x82, 1);
 1588                 re_miibus_writereg(dev, 1, 0xb, 0);
 1589         }
 1590         if (sc->re_caps & RE_C_PHYPMGT) {
 1591                 /* Power up PHY */
 1592                 re_miibus_writereg(dev, 1, 0x1f, 0);
 1593                 re_miibus_writereg(dev, 1, 0xe, 0);
 1594         }
 1595 
 1596         /* Do MII setup */
 1597         if (mii_phy_probe(dev, &sc->re_miibus,
 1598             re_ifmedia_upd, re_ifmedia_sts)) {
 1599                 device_printf(dev, "MII without any phy!\n");
 1600                 error = ENXIO;
 1601                 goto fail;
 1602         }
 1603 
 1604         ifp = &sc->arpcom.ac_if;
 1605         ifp->if_softc = sc;
 1606         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1607         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1608         ifp->if_ioctl = re_ioctl;
 1609         ifp->if_start = re_start;
 1610 #ifdef IFPOLL_ENABLE
 1611         ifp->if_npoll = re_npoll;
 1612 #endif
 1613         ifp->if_watchdog = re_watchdog;
 1614         ifp->if_init = re_init;
 1615         if (!RE_IS_8139CP(sc)) /* XXX */
 1616                 ifp->if_baudrate = 1000000000;
 1617         else
 1618                 ifp->if_baudrate = 100000000;
 1619         ifq_set_maxlen(&ifp->if_snd, qlen);
 1620         ifq_set_ready(&ifp->if_snd);
 1621 
 1622         ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
 1623         if (sc->re_caps & RE_C_HWCSUM)
 1624                 ifp->if_capabilities |= IFCAP_HWCSUM;
 1625 
 1626         ifp->if_capenable = ifp->if_capabilities;
 1627         if (ifp->if_capabilities & IFCAP_HWCSUM) {
 1628                 /*
 1629                  * RTL8168/8111C generates wrong IP checksummed frame if the
 1630                  * packet has IP options so disable TX IP checksum offloading.
 1631                  */ 
 1632                 if (sc->re_hwrev == RE_HWREV_8168CP ||
 1633                     sc->re_hwrev == RE_HWREV_8168C)
 1634                         sc->re_hwassist = CSUM_TCP | CSUM_UDP;
 1635                 else
 1636                         sc->re_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
 1637         }
 1638         ifp->if_hwassist = sc->re_hwassist;
 1639 
 1640         /*
 1641          * Call MI attach routine.
 1642          */
 1643         ether_ifattach(ifp, eaddr, NULL);
 1644 
 1645         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
 1646 
 1647 #ifdef IFPOLL_ENABLE
 1648         ifpoll_compat_setup(&sc->re_npoll,
 1649             &sc->re_sysctl_ctx, sc->re_sysctl_tree, device_get_unit(dev),
 1650             ifp->if_serializer);
 1651 #endif
 1652 
 1653 #ifdef RE_DIAG
 1654         /*
 1655          * Perform hardware diagnostic on the original RTL8169.
 1656          * Some 32-bit cards were incorrectly wired and would
 1657          * malfunction if plugged into a 64-bit slot.
 1658          */
 1659         if (sc->re_hwrev == RE_HWREV_8169) {
 1660                 lwkt_serialize_enter(ifp->if_serializer);
 1661                 error = re_diag(sc);
 1662                 lwkt_serialize_exit(ifp->if_serializer);
 1663 
 1664                 if (error) {
 1665                         device_printf(dev, "hardware diagnostic failure\n");
 1666                         ether_ifdetach(ifp);
 1667                         goto fail;
 1668                 }
 1669         }
 1670 #endif  /* RE_DIAG */
 1671 
 1672         /* Hook interrupt last to avoid having to lock softc */
 1673         error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
 1674                                &sc->re_intrhand, ifp->if_serializer);
 1675 
 1676         if (error) {
 1677                 device_printf(dev, "couldn't set up irq\n");
 1678                 ether_ifdetach(ifp);
 1679                 goto fail;
 1680         }
 1681 
 1682 fail:
 1683         if (error)
 1684                 re_detach(dev);
 1685 
 1686         return (error);
 1687 }
 1688 
 1689 /*
 1690  * Shutdown hardware and free up resources. This can be called any
 1691  * time after the mutex has been initialized. It is called in both
 1692  * the error case in attach and the normal detach case so it needs
 1693  * to be careful about only freeing resources that have actually been
 1694  * allocated.
 1695  */
 1696 static int
 1697 re_detach(device_t dev)
 1698 {
 1699         struct re_softc *sc = device_get_softc(dev);
 1700         struct ifnet *ifp = &sc->arpcom.ac_if;
 1701 
 1702         /* These should only be active if attach succeeded */
 1703         if (device_is_attached(dev)) {
 1704                 lwkt_serialize_enter(ifp->if_serializer);
 1705                 re_stop(sc);
 1706                 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
 1707                 lwkt_serialize_exit(ifp->if_serializer);
 1708 
 1709                 ether_ifdetach(ifp);
 1710         }
 1711         if (sc->re_miibus)
 1712                 device_delete_child(dev, sc->re_miibus);
 1713         bus_generic_detach(dev);
 1714 
 1715         if (sc->re_sysctl_tree != NULL)
 1716                 sysctl_ctx_free(&sc->re_sysctl_ctx);
 1717 
 1718         if (sc->re_irq)
 1719                 bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
 1720                                      sc->re_irq);
 1721 
 1722         if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
 1723                 pci_release_msi(dev);
 1724 
 1725         if (sc->re_res) {
 1726                 bus_release_resource(dev, sc->re_res_type, sc->re_res_rid,
 1727                     sc->re_res);
 1728         }
 1729 
 1730         /* Free DMA stuffs */
 1731         re_freemem(dev);
 1732 
 1733         return(0);
 1734 }
 1735 
 1736 static void
 1737 re_setup_rxdesc(struct re_softc *sc, int idx)
 1738 {
 1739         bus_addr_t paddr;
 1740         uint32_t cmdstat;
 1741         struct re_desc *d;
 1742 
 1743         paddr = sc->re_ldata.re_rx_paddr[idx];
 1744         d = &sc->re_ldata.re_rx_list[idx];
 1745 
 1746         d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
 1747         d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
 1748 
 1749         cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
 1750         if (idx == (sc->re_rx_desc_cnt - 1))
 1751                 cmdstat |= RE_RDESC_CMD_EOR;
 1752         d->re_cmdstat = htole32(cmdstat);
 1753 }
 1754 
 1755 static int
 1756 re_newbuf_std(struct re_softc *sc, int idx, int init)
 1757 {
 1758         bus_dma_segment_t seg;
 1759         bus_dmamap_t map;
 1760         struct mbuf *m;
 1761         int error, nsegs;
 1762 
 1763         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
 1764         if (m == NULL) {
 1765                 error = ENOBUFS;
 1766 
 1767                 if (init) {
 1768                         if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
 1769                         return error;
 1770                 } else {
 1771                         goto back;
 1772                 }
 1773         }
 1774         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1775 
 1776         /*
 1777          * NOTE:
 1778          * re(4) chips need address of the receive buffer to be 8-byte
 1779          * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
 1780          */
 1781 
 1782         error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
 1783                         sc->re_ldata.re_rx_spare, m,
 1784                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
 1785         if (error) {
 1786                 m_freem(m);
 1787                 if (init) {
 1788                         if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
 1789                         return error;
 1790                 } else {
 1791                         goto back;
 1792                 }
 1793         }
 1794 
 1795         if (!init) {
 1796                 bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
 1797                                 sc->re_ldata.re_rx_dmamap[idx],
 1798                                 BUS_DMASYNC_POSTREAD);
 1799                 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
 1800                                   sc->re_ldata.re_rx_dmamap[idx]);
 1801         }
 1802         sc->re_ldata.re_rx_mbuf[idx] = m;
 1803         sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
 1804 
 1805         map = sc->re_ldata.re_rx_dmamap[idx];
 1806         sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
 1807         sc->re_ldata.re_rx_spare = map;
 1808 back:
 1809         re_setup_rxdesc(sc, idx);
 1810         return error;
 1811 }
 1812 
 1813 static int
 1814 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
 1815 {
 1816         struct mbuf *m;
 1817         struct re_jbuf *jbuf;
 1818         int error = 0;
 1819 
 1820         MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
 1821         if (m == NULL) {
 1822                 error = ENOBUFS;
 1823                 if (init) {
 1824                         if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
 1825                         return error;
 1826                 } else {
 1827                         goto back;
 1828                 }
 1829         }
 1830 
 1831         jbuf = re_jbuf_alloc(sc);
 1832         if (jbuf == NULL) {
 1833                 m_freem(m);
 1834 
 1835                 error = ENOBUFS;
 1836                 if (init) {
 1837                         if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
 1838                         return error;
 1839                 } else {
 1840                         goto back;
 1841                 }
 1842         }
 1843 
 1844         m->m_ext.ext_arg = jbuf;
 1845         m->m_ext.ext_buf = jbuf->re_buf;
 1846         m->m_ext.ext_free = re_jbuf_free;
 1847         m->m_ext.ext_ref = re_jbuf_ref;
 1848         m->m_ext.ext_size = sc->re_rxbuf_size;
 1849 
 1850         m->m_data = m->m_ext.ext_buf;
 1851         m->m_flags |= M_EXT;
 1852         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
 1853 
 1854         /*
 1855          * NOTE:
 1856          * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
 1857          * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
 1858          */
 1859 
 1860         sc->re_ldata.re_rx_mbuf[idx] = m;
 1861         sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
 1862 back:
 1863         re_setup_rxdesc(sc, idx);
 1864         return error;
 1865 }
 1866 
 1867 static int
 1868 re_tx_list_init(struct re_softc *sc)
 1869 {
 1870         bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
 1871 
 1872         sc->re_ldata.re_tx_prodidx = 0;
 1873         sc->re_ldata.re_tx_considx = 0;
 1874         sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
 1875 
 1876         return(0);
 1877 }
 1878 
 1879 static int
 1880 re_rx_list_init(struct re_softc *sc)
 1881 {
 1882         int i, error;
 1883 
 1884         bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
 1885 
 1886         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
 1887                 error = sc->re_newbuf(sc, i, 1);
 1888                 if (error)
 1889                         return(error);
 1890         }
 1891 
 1892         sc->re_ldata.re_rx_prodidx = 0;
 1893         sc->re_head = sc->re_tail = NULL;
 1894 
 1895         return(0);
 1896 }
 1897 
 1898 #define RE_IP4_PACKET   0x1
 1899 #define RE_TCP_PACKET   0x2
 1900 #define RE_UDP_PACKET   0x4
 1901 
 1902 static __inline uint8_t
 1903 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
 1904 {
 1905         uint8_t packet_type = 0;
 1906 
 1907         if (sc->re_caps & RE_C_MAC2) {
 1908                 if (rxctrl & RE_RDESC_CTL_PROTOIP4)
 1909                         packet_type |= RE_IP4_PACKET;
 1910         } else {
 1911                 if (rxstat & RE_RDESC_STAT_PROTOID)
 1912                         packet_type |= RE_IP4_PACKET;
 1913         }
 1914         if (RE_TCPPKT(rxstat))
 1915                 packet_type |= RE_TCP_PACKET;
 1916         else if (RE_UDPPKT(rxstat))
 1917                 packet_type |= RE_UDP_PACKET;
 1918         return packet_type;
 1919 }
 1920 
 1921 /*
 1922  * RX handler for C+ and 8169. For the gigE chips, we support
 1923  * the reception of jumbo frames that have been fragmented
 1924  * across multiple 2K mbuf cluster buffers.
 1925  */
 1926 static int
 1927 re_rxeof(struct re_softc *sc)
 1928 {
 1929         struct ifnet *ifp = &sc->arpcom.ac_if;
 1930         struct mbuf *m;
 1931         struct re_desc  *cur_rx;
 1932         uint32_t rxstat, rxctrl;
 1933         int i, total_len, rx = 0;
 1934 
 1935         for (i = sc->re_ldata.re_rx_prodidx;
 1936              RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
 1937                 cur_rx = &sc->re_ldata.re_rx_list[i];
 1938                 m = sc->re_ldata.re_rx_mbuf[i];
 1939                 total_len = RE_RXBYTES(cur_rx);
 1940                 rxstat = le32toh(cur_rx->re_cmdstat);
 1941                 rxctrl = le32toh(cur_rx->re_control);
 1942 
 1943                 rx = 1;
 1944 
 1945 #ifdef INVARIANTS
 1946                 if (sc->re_flags & RE_F_USE_JPOOL)
 1947                         KKASSERT(rxstat & RE_RDESC_STAT_EOF);
 1948 #endif
 1949 
 1950                 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
 1951                         if (sc->re_flags & RE_F_DROP_RXFRAG) {
 1952                                 re_setup_rxdesc(sc, i);
 1953                                 continue;
 1954                         }
 1955 
 1956                         if (sc->re_newbuf(sc, i, 0)) {
 1957                                 /* Drop upcoming fragments */
 1958                                 sc->re_flags |= RE_F_DROP_RXFRAG;
 1959                                 continue;
 1960                         }
 1961 
 1962                         m->m_len = MCLBYTES;
 1963                         if (sc->re_head == NULL) {
 1964                                 sc->re_head = sc->re_tail = m;
 1965                         } else {
 1966                                 sc->re_tail->m_next = m;
 1967                                 sc->re_tail = m;
 1968                         }
 1969                         continue;
 1970                 } else if (sc->re_flags & RE_F_DROP_RXFRAG) {
 1971                         /*
 1972                          * Last fragment of a multi-fragment packet.
 1973                          *
 1974                          * Since error already happened, this fragment
 1975                          * must be dropped as well as the fragment chain.
 1976                          */
 1977                         re_setup_rxdesc(sc, i);
 1978                         re_free_rxchain(sc);
 1979                         sc->re_flags &= ~RE_F_DROP_RXFRAG;
 1980                         continue;
 1981                 }
 1982 
 1983                 /*
 1984                  * NOTE: for the 8139C+, the frame length field
 1985                  * is always 12 bits in size, but for the gigE chips,
 1986                  * it is 13 bits (since the max RX frame length is 16K).
 1987                  * Unfortunately, all 32 bits in the status word
 1988                  * were already used, so to make room for the extra
 1989                  * length bit, RealTek took out the 'frame alignment
 1990                  * error' bit and shifted the other status bits
 1991                  * over one slot. The OWN, EOR, FS and LS bits are
 1992                  * still in the same places. We have already extracted
 1993                  * the frame length and checked the OWN bit, so rather
 1994                  * than using an alternate bit mapping, we shift the
 1995                  * status bits one space to the right so we can evaluate
 1996                  * them using the 8169 status as though it was in the
 1997                  * same format as that of the 8139C+.
 1998                  */
 1999                 if (!RE_IS_8139CP(sc))
 2000                         rxstat >>= 1;
 2001 
 2002                 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
 2003                         IFNET_STAT_INC(ifp, ierrors, 1);
 2004                         /*
 2005                          * If this is part of a multi-fragment packet,
 2006                          * discard all the pieces.
 2007                          */
 2008                         re_free_rxchain(sc);
 2009                         re_setup_rxdesc(sc, i);
 2010                         continue;
 2011                 }
 2012 
 2013                 /*
 2014                  * If allocating a replacement mbuf fails,
 2015                  * reload the current one.
 2016                  */
 2017 
 2018                 if (sc->re_newbuf(sc, i, 0)) {
 2019                         IFNET_STAT_INC(ifp, ierrors, 1);
 2020                         continue;
 2021                 }
 2022 
 2023                 if (sc->re_head != NULL) {
 2024                         m->m_len = total_len % MCLBYTES;
 2025                         /* 
 2026                          * Special case: if there's 4 bytes or less
 2027                          * in this buffer, the mbuf can be discarded:
 2028                          * the last 4 bytes is the CRC, which we don't
 2029                          * care about anyway.
 2030                          */
 2031                         if (m->m_len <= ETHER_CRC_LEN) {
 2032                                 sc->re_tail->m_len -=
 2033                                     (ETHER_CRC_LEN - m->m_len);
 2034                                 m_freem(m);
 2035                         } else {
 2036                                 m->m_len -= ETHER_CRC_LEN;
 2037                                 sc->re_tail->m_next = m;
 2038                         }
 2039                         m = sc->re_head;
 2040                         sc->re_head = sc->re_tail = NULL;
 2041                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
 2042                 } else {
 2043                         m->m_pkthdr.len = m->m_len =
 2044                             (total_len - ETHER_CRC_LEN);
 2045                 }
 2046 
 2047                 IFNET_STAT_INC(ifp, ipackets, 1);
 2048                 m->m_pkthdr.rcvif = ifp;
 2049 
 2050                 /* Do RX checksumming if enabled */
 2051 
 2052                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 2053                         uint8_t packet_type;
 2054 
 2055                         packet_type = re_packet_type(sc, rxstat, rxctrl);
 2056 
 2057                         /* Check IP header checksum */
 2058                         if (packet_type & RE_IP4_PACKET) {
 2059                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2060                                 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
 2061                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2062                         }
 2063 
 2064                         /* Check TCP/UDP checksum */
 2065                         if (((packet_type & RE_TCP_PACKET) &&
 2066                              (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
 2067                             ((packet_type & RE_UDP_PACKET) &&
 2068                              (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
 2069                                 m->m_pkthdr.csum_flags |=
 2070                                     CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
 2071                                     CSUM_FRAG_NOT_CHECKED;
 2072                                 m->m_pkthdr.csum_data = 0xffff;
 2073                         }
 2074                 }
 2075 
 2076                 if (rxctrl & RE_RDESC_CTL_HASTAG) {
 2077                         m->m_flags |= M_VLANTAG;
 2078                         m->m_pkthdr.ether_vlantag =
 2079                                 be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
 2080                 }
 2081                 ifp->if_input(ifp, m);
 2082         }
 2083 
 2084         sc->re_ldata.re_rx_prodidx = i;
 2085 
 2086         return rx;
 2087 }
 2088 
 2089 #undef RE_IP4_PACKET
 2090 #undef RE_TCP_PACKET
 2091 #undef RE_UDP_PACKET
 2092 
 2093 static int
 2094 re_tx_collect(struct re_softc *sc)
 2095 {
 2096         struct ifnet *ifp = &sc->arpcom.ac_if;
 2097         uint32_t txstat;
 2098         int idx, tx = 0;
 2099 
 2100         for (idx = sc->re_ldata.re_tx_considx;
 2101              sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
 2102              RE_TXDESC_INC(sc, idx)) {
 2103                 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
 2104                 if (txstat & RE_TDESC_CMD_OWN)
 2105                         break;
 2106 
 2107                 tx = 1;
 2108 
 2109                 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
 2110 
 2111                 /*
 2112                  * We only stash mbufs in the last descriptor
 2113                  * in a fragment chain, which also happens to
 2114                  * be the only place where the TX status bits
 2115                  * are valid.
 2116                  */
 2117                 if (txstat & RE_TDESC_CMD_EOF) {
 2118                         bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
 2119                             sc->re_ldata.re_tx_dmamap[idx]);
 2120                         m_freem(sc->re_ldata.re_tx_mbuf[idx]);
 2121                         sc->re_ldata.re_tx_mbuf[idx] = NULL;
 2122                         if (txstat & (RE_TDESC_STAT_EXCESSCOL|
 2123                             RE_TDESC_STAT_COLCNT))
 2124                                 IFNET_STAT_INC(ifp, collisions, 1);
 2125                         if (txstat & RE_TDESC_STAT_TXERRSUM)
 2126                                 IFNET_STAT_INC(ifp, oerrors, 1);
 2127                         else
 2128                                 IFNET_STAT_INC(ifp, opackets, 1);
 2129                 }
 2130                 sc->re_ldata.re_tx_free++;
 2131         }
 2132         sc->re_ldata.re_tx_considx = idx;
 2133 
 2134         return tx;
 2135 }
 2136 
 2137 static int
 2138 re_txeof(struct re_softc *sc)
 2139 {
 2140         struct ifnet *ifp = &sc->arpcom.ac_if;
 2141         int tx;
 2142 
 2143         tx = re_tx_collect(sc);
 2144 
 2145         /* There is enough free TX descs */
 2146         if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
 2147                 ifq_clr_oactive(&ifp->if_snd);
 2148 
 2149         /*
 2150          * Some chips will ignore a second TX request issued while an
 2151          * existing transmission is in progress. If the transmitter goes
 2152          * idle but there are still packets waiting to be sent, we need
 2153          * to restart the channel here to flush them out. This only seems
 2154          * to be required with the PCIe devices.
 2155          */
 2156         if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
 2157                 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
 2158         else
 2159                 ifp->if_timer = 0;
 2160 
 2161         return tx;
 2162 }
 2163 
 2164 static void
 2165 re_tick(void *xsc)
 2166 {
 2167         struct re_softc *sc = xsc;
 2168 
 2169         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
 2170         re_tick_serialized(xsc);
 2171         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
 2172 }
 2173 
 2174 static void
 2175 re_tick_serialized(void *xsc)
 2176 {
 2177         struct re_softc *sc = xsc;
 2178         struct ifnet *ifp = &sc->arpcom.ac_if;
 2179         struct mii_data *mii;
 2180 
 2181         ASSERT_SERIALIZED(ifp->if_serializer);
 2182 
 2183         mii = device_get_softc(sc->re_miibus);
 2184         mii_tick(mii);
 2185         if (sc->re_flags & RE_F_LINKED) {
 2186                 if (!(mii->mii_media_status & IFM_ACTIVE))
 2187                         sc->re_flags &= ~RE_F_LINKED;
 2188         } else {
 2189                 if (mii->mii_media_status & IFM_ACTIVE &&
 2190                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 2191                         sc->re_flags |= RE_F_LINKED;
 2192                         if (!ifq_is_empty(&ifp->if_snd))
 2193                                 if_devstart(ifp);
 2194                 }
 2195         }
 2196 
 2197         callout_reset(&sc->re_timer, hz, re_tick, sc);
 2198 }
 2199 
 2200 #ifdef IFPOLL_ENABLE
 2201 
 2202 static void
 2203 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
 2204 {
 2205         struct re_softc *sc = ifp->if_softc;
 2206 
 2207         ASSERT_SERIALIZED(ifp->if_serializer);
 2208 
 2209         if (sc->re_npoll.ifpc_stcount-- == 0) {
 2210                 uint16_t       status;
 2211 
 2212                 sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
 2213 
 2214                 status = CSR_READ_2(sc, RE_ISR);
 2215                 if (status == 0xffff)
 2216                         return;
 2217                 if (status)
 2218                         CSR_WRITE_2(sc, RE_ISR, status);
 2219 
 2220                 /*
 2221                  * XXX check behaviour on receiver stalls.
 2222                  */
 2223 
 2224                 if (status & RE_ISR_SYSTEM_ERR)
 2225                         re_init(sc);
 2226         }
 2227 
 2228         sc->rxcycles = count;
 2229         re_rxeof(sc);
 2230         re_txeof(sc);
 2231 
 2232         if (!ifq_is_empty(&ifp->if_snd))
 2233                 if_devstart(ifp);
 2234 }
 2235 
 2236 static void
 2237 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
 2238 {
 2239         struct re_softc *sc = ifp->if_softc;
 2240 
 2241         ASSERT_SERIALIZED(ifp->if_serializer);
 2242 
 2243         if (info != NULL) {
 2244                 int cpuid = sc->re_npoll.ifpc_cpuid;
 2245 
 2246                 info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
 2247                 info->ifpi_rx[cpuid].arg = NULL;
 2248                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
 2249 
 2250                 if (ifp->if_flags & IFF_RUNNING)
 2251                         re_setup_intr(sc, 0, RE_IMTYPE_NONE);
 2252                 ifq_set_cpuid(&ifp->if_snd, cpuid);
 2253         } else {
 2254                 if (ifp->if_flags & IFF_RUNNING)
 2255                         re_setup_intr(sc, 1, sc->re_imtype);
 2256                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
 2257         }
 2258 }
 2259 #endif /* IFPOLL_ENABLE */
 2260 
 2261 static void
 2262 re_intr(void *arg)
 2263 {
 2264         struct re_softc *sc = arg;
 2265         struct ifnet *ifp = &sc->arpcom.ac_if;
 2266         uint16_t status;
 2267         int rx, tx;
 2268 
 2269         ASSERT_SERIALIZED(ifp->if_serializer);
 2270 
 2271         if ((sc->re_flags & RE_F_SUSPENDED) ||
 2272             (ifp->if_flags & IFF_RUNNING) == 0)
 2273                 return;
 2274 
 2275         rx = tx = 0;
 2276 
 2277         status = CSR_READ_2(sc, RE_ISR);
 2278         /* If the card has gone away the read returns 0xffff. */
 2279         if (status == 0xffff)
 2280                 goto reload;
 2281         if (status)
 2282                 CSR_WRITE_2(sc, RE_ISR, status);
 2283 
 2284         if ((status & sc->re_intrs) == 0)
 2285                 goto reload;
 2286 
 2287         if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
 2288                 rx |= re_rxeof(sc);
 2289 
 2290         if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
 2291                 tx |= re_txeof(sc);
 2292 
 2293         if (status & RE_ISR_SYSTEM_ERR)
 2294                 re_init(sc);
 2295 
 2296         if (status & RE_ISR_LINKCHG) {
 2297                 callout_stop(&sc->re_timer);
 2298                 re_tick_serialized(sc);
 2299         }
 2300 
 2301 reload:
 2302         if (sc->re_imtype == RE_IMTYPE_SIM) {
 2303                 if ((sc->re_flags & RE_F_TIMER_INTR)) {
 2304                         if ((tx | rx) == 0) {
 2305                                 /*
 2306                                  * Nothing needs to be processed, fallback
 2307                                  * to use TX/RX interrupts.
 2308                                  */
 2309                                 re_setup_intr(sc, 1, RE_IMTYPE_NONE);
 2310 
 2311                                 /*
 2312                                  * Recollect, mainly to avoid the possible
 2313                                  * race introduced by changing interrupt
 2314                                  * masks.
 2315                                  */
 2316                                 re_rxeof(sc);
 2317                                 tx = re_txeof(sc);
 2318                         } else {
 2319                                 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
 2320                         }
 2321                 } else if (tx | rx) {
 2322                         /*
 2323                          * Assume that using simulated interrupt moderation
 2324                          * (hardware timer based) could reduce the interript
 2325                          * rate.
 2326                          */
 2327                         re_setup_intr(sc, 1, RE_IMTYPE_SIM);
 2328                 }
 2329         }
 2330 
 2331         if (tx && !ifq_is_empty(&ifp->if_snd))
 2332                 if_devstart(ifp);
 2333 }
 2334 
 2335 static int
 2336 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
 2337 {
 2338         struct mbuf *m = *m_head;
 2339         bus_dma_segment_t segs[RE_MAXSEGS];
 2340         bus_dmamap_t map;
 2341         int error, maxsegs, idx, i, nsegs;
 2342         struct re_desc *d, *tx_ring;
 2343         uint32_t cmd_csum, ctl_csum, vlantag;
 2344 
 2345         KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
 2346                 ("not enough free TX desc"));
 2347 
 2348         map = sc->re_ldata.re_tx_dmamap[*idx0];
 2349 
 2350         /*
 2351          * Set up checksum offload. Note: checksum offload bits must
 2352          * appear in all descriptors of a multi-descriptor transmit
 2353          * attempt. (This is according to testing done with an 8169
 2354          * chip. I'm not sure if this is a requirement or a bug.)
 2355          */
 2356         cmd_csum = ctl_csum = 0;
 2357         if (m->m_pkthdr.csum_flags & CSUM_IP) {
 2358                 cmd_csum |= RE_TDESC_CMD_IPCSUM;
 2359                 ctl_csum |= RE_TDESC_CTL_IPCSUM;
 2360         }
 2361         if (m->m_pkthdr.csum_flags & CSUM_TCP) {
 2362                 cmd_csum |= RE_TDESC_CMD_TCPCSUM;
 2363                 ctl_csum |= RE_TDESC_CTL_TCPCSUM;
 2364         }
 2365         if (m->m_pkthdr.csum_flags & CSUM_UDP) {
 2366                 cmd_csum |= RE_TDESC_CMD_UDPCSUM;
 2367                 ctl_csum |= RE_TDESC_CTL_UDPCSUM;
 2368         }
 2369 
 2370         /* For MAC2 chips, csum flags are set on re_control */
 2371         if (sc->re_caps & RE_C_MAC2)
 2372                 cmd_csum = 0;
 2373         else
 2374                 ctl_csum = 0;
 2375 
 2376         if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
 2377                 /*
 2378                  * With some of the RealTek chips, using the checksum offload
 2379                  * support in conjunction with the autopadding feature results
 2380                  * in the transmission of corrupt frames. For example, if we
 2381                  * need to send a really small IP fragment that's less than 60
 2382                  * bytes in size, and IP header checksumming is enabled, the
 2383                  * resulting ethernet frame that appears on the wire will
 2384                  * have garbled payload. To work around this, if TX checksum
 2385                  * offload is enabled, we always manually pad short frames out
 2386                  * to the minimum ethernet frame size.
 2387                  *
 2388                  * Note: this appears unnecessary for TCP, and doing it for TCP
 2389                  * with PCIe adapters seems to result in bad checksums.
 2390                  */
 2391                 if ((m->m_pkthdr.csum_flags &
 2392                      (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
 2393                     (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
 2394                     m->m_pkthdr.len < RE_MIN_FRAMELEN) {
 2395                         error = m_devpad(m, RE_MIN_FRAMELEN);
 2396                         if (error)
 2397                                 goto back;
 2398                 }
 2399         }
 2400 
 2401         vlantag = 0;
 2402         if (m->m_flags & M_VLANTAG) {
 2403                 vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
 2404                           RE_TDESC_CTL_INSTAG;
 2405         }
 2406 
 2407         maxsegs = sc->re_ldata.re_tx_free;
 2408         if (maxsegs > RE_MAXSEGS)
 2409                 maxsegs = RE_MAXSEGS;
 2410 
 2411         error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
 2412                         m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
 2413         if (error)
 2414                 goto back;
 2415 
 2416         m = *m_head;
 2417         bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
 2418 
 2419         /*
 2420          * Map the segment array into descriptors.  We also keep track
 2421          * of the end of the ring and set the end-of-ring bits as needed,
 2422          * and we set the ownership bits in all except the very first
 2423          * descriptor, whose ownership bits will be turned on later.
 2424          */
 2425         tx_ring = sc->re_ldata.re_tx_list;
 2426         idx = *idx0;
 2427         i = 0;
 2428         for (;;) {
 2429                 uint32_t cmdstat;
 2430 
 2431                 d = &tx_ring[idx];
 2432 
 2433                 cmdstat = segs[i].ds_len;
 2434                 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
 2435                 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
 2436                 if (i == 0)
 2437                         cmdstat |= RE_TDESC_CMD_SOF;
 2438                 else
 2439                         cmdstat |= RE_TDESC_CMD_OWN;
 2440                 if (idx == (sc->re_tx_desc_cnt - 1))
 2441                         cmdstat |= RE_TDESC_CMD_EOR;
 2442                 d->re_cmdstat = htole32(cmdstat | cmd_csum);
 2443                 d->re_control = htole32(ctl_csum | vlantag);
 2444 
 2445                 i++;
 2446                 if (i == nsegs)
 2447                         break;
 2448                 RE_TXDESC_INC(sc, idx);
 2449         }
 2450         d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
 2451 
 2452         /* Transfer ownership of packet to the chip. */
 2453         d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
 2454         if (*idx0 != idx)
 2455                 tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
 2456 
 2457         /*
 2458          * Insure that the map for this transmission
 2459          * is placed at the array index of the last descriptor
 2460          * in this chain.
 2461          */
 2462         sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
 2463         sc->re_ldata.re_tx_dmamap[idx] = map;
 2464 
 2465         sc->re_ldata.re_tx_mbuf[idx] = m;
 2466         sc->re_ldata.re_tx_free -= nsegs;
 2467 
 2468         RE_TXDESC_INC(sc, idx);
 2469         *idx0 = idx;
 2470 back:
 2471         if (error) {
 2472                 m_freem(*m_head);
 2473                 *m_head = NULL;
 2474         }
 2475         return error;
 2476 }
 2477 
 2478 /*
 2479  * Main transmit routine for C+ and gigE NICs.
 2480  */
 2481 
 2482 static void
 2483 re_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 2484 {
 2485         struct re_softc *sc = ifp->if_softc;
 2486         struct mbuf *m_head;
 2487         int idx, need_trans, oactive, error;
 2488 
 2489         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 2490         ASSERT_SERIALIZED(ifp->if_serializer);
 2491 
 2492         if ((sc->re_flags & RE_F_LINKED) == 0) {
 2493                 ifq_purge(&ifp->if_snd);
 2494                 return;
 2495         }
 2496 
 2497         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
 2498                 return;
 2499 
 2500         idx = sc->re_ldata.re_tx_prodidx;
 2501 
 2502         need_trans = 0;
 2503         oactive = 0;
 2504         while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
 2505                 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
 2506                         if (!oactive) {
 2507                                 if (re_tx_collect(sc)) {
 2508                                         oactive = 1;
 2509                                         continue;
 2510                                 }
 2511                         }
 2512                         ifq_set_oactive(&ifp->if_snd);
 2513                         break;
 2514                 }
 2515 
 2516                 m_head = ifq_dequeue(&ifp->if_snd);
 2517                 if (m_head == NULL)
 2518                         break;
 2519 
 2520                 error = re_encap(sc, &m_head, &idx);
 2521                 if (error) {
 2522                         /* m_head is freed by re_encap(), if we reach here */
 2523                         IFNET_STAT_INC(ifp, oerrors, 1);
 2524 
 2525                         if (error == EFBIG && !oactive) {
 2526                                 if (re_tx_collect(sc)) {
 2527                                         oactive = 1;
 2528                                         continue;
 2529                                 }
 2530                         }
 2531                         ifq_set_oactive(&ifp->if_snd);
 2532                         break;
 2533                 }
 2534 
 2535                 oactive = 0;
 2536                 need_trans = 1;
 2537 
 2538                 /*
 2539                  * If there's a BPF listener, bounce a copy of this frame
 2540                  * to him.
 2541                  */
 2542                 ETHER_BPF_MTAP(ifp, m_head);
 2543         }
 2544 
 2545         /*
 2546          * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
 2547          * for OACTIVE to not be properly set when we also do not
 2548          * have sufficient free tx descriptors, leaving packet in
 2549          * ifp->if_snd.  This can cause if_start_dispatch() to loop
 2550          * infinitely so make sure OACTIVE is set properly.
 2551          */
 2552         if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
 2553                 if (!ifq_is_oactive(&ifp->if_snd)) {
 2554                         if_printf(ifp, "Debug: OACTIVE was not set when "
 2555                             "re_tx_free was below minimum!\n");
 2556                         ifq_set_oactive(&ifp->if_snd);
 2557                 }
 2558         }
 2559         if (!need_trans)
 2560                 return;
 2561 
 2562         sc->re_ldata.re_tx_prodidx = idx;
 2563 
 2564         /*
 2565          * RealTek put the TX poll request register in a different
 2566          * location on the 8169 gigE chip. I don't know why.
 2567          */
 2568         CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
 2569 
 2570         /*
 2571          * Set a timeout in case the chip goes out to lunch.
 2572          */
 2573         ifp->if_timer = 5;
 2574 }
 2575 
 2576 static void
 2577 re_init(void *xsc)
 2578 {
 2579         struct re_softc *sc = xsc;
 2580         struct ifnet *ifp = &sc->arpcom.ac_if;
 2581         struct mii_data *mii;
 2582         int error, framelen;
 2583 
 2584         ASSERT_SERIALIZED(ifp->if_serializer);
 2585 
 2586         mii = device_get_softc(sc->re_miibus);
 2587 
 2588         /*
 2589          * Cancel pending I/O and free all RX/TX buffers.
 2590          */
 2591         re_stop(sc);
 2592 
 2593         if (sc->re_caps & RE_C_CONTIGRX) {
 2594                 if (ifp->if_mtu > ETHERMTU) {
 2595                         KKASSERT(sc->re_ldata.re_jbuf != NULL);
 2596                         sc->re_flags |= RE_F_USE_JPOOL;
 2597                         sc->re_rxbuf_size = RE_FRAMELEN_MAX;
 2598                         sc->re_newbuf = re_newbuf_jumbo;
 2599                 } else {
 2600                         sc->re_flags &= ~RE_F_USE_JPOOL;
 2601                         sc->re_rxbuf_size = MCLBYTES;
 2602                         sc->re_newbuf = re_newbuf_std;
 2603                 }
 2604         }
 2605 
 2606         /*
 2607          * Adjust max read request size according to MTU; mainly to
 2608          * improve TX performance for common case (ETHERMTU) on GigE
 2609          * NICs.  However, this could _not_ be done on 10/100 only
 2610          * NICs; their DMA engines will malfunction using non-default
 2611          * max read request size.
 2612          */
 2613         if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
 2614                 if (ifp->if_mtu > ETHERMTU) {
 2615                         /*
 2616                          * 512 seems to be the only value that works
 2617                          * reliably with jumbo frame
 2618                          */
 2619                         pcie_set_max_readrq(sc->re_dev,
 2620                                 PCIEM_DEVCTL_MAX_READRQ_512);
 2621                 } else {
 2622                         pcie_set_max_readrq(sc->re_dev,
 2623                                 PCIEM_DEVCTL_MAX_READRQ_4096);
 2624                 }
 2625         }
 2626 
 2627         /*
 2628          * Enable C+ RX and TX mode, as well as VLAN stripping and
 2629          * RX checksum offload. We must configure the C+ register
 2630          * before all others.
 2631          */
 2632         CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
 2633                     RE_CPLUSCMD_PCI_MRW |
 2634                     (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
 2635                      RE_CPLUSCMD_VLANSTRIP : 0) |
 2636                     (ifp->if_capenable & IFCAP_RXCSUM ?
 2637                      RE_CPLUSCMD_RXCSUM_ENB : 0));
 2638 
 2639         /*
 2640          * Init our MAC address.  Even though the chipset
 2641          * documentation doesn't mention it, we need to enter "Config
 2642          * register write enable" mode to modify the ID registers.
 2643          */
 2644         CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
 2645         CSR_WRITE_4(sc, RE_IDR0,
 2646             htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
 2647         CSR_WRITE_2(sc, RE_IDR4,
 2648             htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
 2649         CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
 2650 
 2651         /*
 2652          * For C+ mode, initialize the RX descriptors and mbufs.
 2653          */
 2654         error = re_rx_list_init(sc);
 2655         if (error) {
 2656                 re_stop(sc);
 2657                 return;
 2658         }
 2659         error = re_tx_list_init(sc);
 2660         if (error) {
 2661                 re_stop(sc);
 2662                 return;
 2663         }
 2664 
 2665         /*
 2666          * Load the addresses of the RX and TX lists into the chip.
 2667          */
 2668         CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
 2669             RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
 2670         CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
 2671             RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
 2672 
 2673         CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
 2674             RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
 2675         CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
 2676             RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
 2677 
 2678         /*
 2679          * Enable transmit and receive.
 2680          */
 2681         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
 2682 
 2683         /*
 2684          * Set the initial TX and RX configuration.
 2685          */
 2686         if (sc->re_flags & RE_F_TESTMODE) {
 2687                 if (!RE_IS_8139CP(sc))
 2688                         CSR_WRITE_4(sc, RE_TXCFG,
 2689                                     RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
 2690                 else
 2691                         CSR_WRITE_4(sc, RE_TXCFG,
 2692                                     RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
 2693         } else
 2694                 CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
 2695 
 2696         framelen = RE_FRAMELEN(ifp->if_mtu);
 2697         if (framelen < MCLBYTES)
 2698                 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
 2699         else
 2700                 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
 2701 
 2702         CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
 2703 
 2704         /*
 2705          * Program the multicast filter, if necessary.
 2706          */
 2707         re_setmulti(sc);
 2708 
 2709 #ifdef IFPOLL_ENABLE
 2710         /*
 2711          * Disable interrupts if we are polling.
 2712          */
 2713         if (ifp->if_flags & IFF_NPOLLING)
 2714                 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
 2715         else    /* otherwise ... */
 2716 #endif /* IFPOLL_ENABLE */
 2717         /*
 2718          * Enable interrupts.
 2719          */
 2720         if (sc->re_flags & RE_F_TESTMODE)
 2721                 CSR_WRITE_2(sc, RE_IMR, 0);
 2722         else
 2723                 re_setup_intr(sc, 1, sc->re_imtype);
 2724         CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
 2725 
 2726         /* Start RX/TX process. */
 2727         CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
 2728 
 2729 #ifdef notdef
 2730         /* Enable receiver and transmitter. */
 2731         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
 2732 #endif
 2733 
 2734         /*
 2735          * For 8169 gigE NICs, set the max allowed RX packet
 2736          * size so we can receive jumbo frames.
 2737          */
 2738         if (!RE_IS_8139CP(sc)) {
 2739                 if (sc->re_caps & RE_C_CONTIGRX)
 2740                         CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
 2741                 else
 2742                         CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
 2743         }
 2744 
 2745         if (sc->re_flags & RE_F_TESTMODE)
 2746                 return;
 2747 
 2748         mii_mediachg(mii);
 2749 
 2750         CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
 2751 
 2752         ifp->if_flags |= IFF_RUNNING;
 2753         ifq_clr_oactive(&ifp->if_snd);
 2754 
 2755         callout_reset(&sc->re_timer, hz, re_tick, sc);
 2756 }
 2757 
 2758 /*
 2759  * Set media options.
 2760  */
 2761 static int
 2762 re_ifmedia_upd(struct ifnet *ifp)
 2763 {
 2764         struct re_softc *sc = ifp->if_softc;
 2765         struct mii_data *mii;
 2766 
 2767         ASSERT_SERIALIZED(ifp->if_serializer);
 2768 
 2769         mii = device_get_softc(sc->re_miibus);
 2770         mii_mediachg(mii);
 2771 
 2772         return(0);
 2773 }
 2774 
 2775 /*
 2776  * Report current media status.
 2777  */
 2778 static void
 2779 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 2780 {
 2781         struct re_softc *sc = ifp->if_softc;
 2782         struct mii_data *mii;
 2783 
 2784         ASSERT_SERIALIZED(ifp->if_serializer);
 2785 
 2786         mii = device_get_softc(sc->re_miibus);
 2787 
 2788         mii_pollstat(mii);
 2789         ifmr->ifm_active = mii->mii_media_active;
 2790         ifmr->ifm_status = mii->mii_media_status;
 2791 }
 2792 
 2793 static int
 2794 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
 2795 {
 2796         struct re_softc *sc = ifp->if_softc;
 2797         struct ifreq *ifr = (struct ifreq *) data;
 2798         struct mii_data *mii;
 2799         int error = 0, mask;
 2800 
 2801         ASSERT_SERIALIZED(ifp->if_serializer);
 2802 
 2803         switch(command) {
 2804         case SIOCSIFMTU:
 2805                 if (ifr->ifr_mtu > sc->re_maxmtu) {
 2806                         error = EINVAL;
 2807                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
 2808                         ifp->if_mtu = ifr->ifr_mtu;
 2809                         if (ifp->if_flags & IFF_RUNNING)
 2810                                 ifp->if_init(sc);
 2811                 }
 2812                 break;
 2813 
 2814         case SIOCSIFFLAGS:
 2815                 if (ifp->if_flags & IFF_UP) {
 2816                         if (ifp->if_flags & IFF_RUNNING) {
 2817                                 if ((ifp->if_flags ^ sc->re_if_flags) &
 2818                                     (IFF_PROMISC | IFF_ALLMULTI))
 2819                                         re_setmulti(sc);
 2820                         } else {
 2821                                 re_init(sc);
 2822                         }
 2823                 } else if (ifp->if_flags & IFF_RUNNING) {
 2824                         re_stop(sc);
 2825                 }
 2826                 sc->re_if_flags = ifp->if_flags;
 2827                 break;
 2828 
 2829         case SIOCADDMULTI:
 2830         case SIOCDELMULTI:
 2831                 re_setmulti(sc);
 2832                 break;
 2833 
 2834         case SIOCGIFMEDIA:
 2835         case SIOCSIFMEDIA:
 2836                 mii = device_get_softc(sc->re_miibus);
 2837                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 2838                 break;
 2839 
 2840         case SIOCSIFCAP:
 2841                 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
 2842                        ifp->if_capabilities;
 2843                 ifp->if_capenable ^= mask;
 2844 
 2845                 if (mask & IFCAP_HWCSUM) {
 2846                         if (ifp->if_capenable & IFCAP_TXCSUM)
 2847                                 ifp->if_hwassist = sc->re_hwassist;
 2848                         else
 2849                                 ifp->if_hwassist = 0;
 2850                 }
 2851                 if (mask && (ifp->if_flags & IFF_RUNNING))
 2852                         re_init(sc);
 2853                 break;
 2854 
 2855         default:
 2856                 error = ether_ioctl(ifp, command, data);
 2857                 break;
 2858         }
 2859         return(error);
 2860 }
 2861 
 2862 static void
 2863 re_watchdog(struct ifnet *ifp)
 2864 {
 2865         struct re_softc *sc = ifp->if_softc;
 2866 
 2867         ASSERT_SERIALIZED(ifp->if_serializer);
 2868 
 2869         if_printf(ifp, "watchdog timeout\n");
 2870 
 2871         IFNET_STAT_INC(ifp, oerrors, 1);
 2872 
 2873         re_txeof(sc);
 2874         re_rxeof(sc);
 2875 
 2876         re_init(sc);
 2877 
 2878         if (!ifq_is_empty(&ifp->if_snd))
 2879                 if_devstart(ifp);
 2880 }
 2881 
 2882 /*
 2883  * Stop the adapter and free any mbufs allocated to the
 2884  * RX and TX lists.
 2885  */
 2886 static void
 2887 re_stop(struct re_softc *sc)
 2888 {
 2889         struct ifnet *ifp = &sc->arpcom.ac_if;
 2890         int i;
 2891 
 2892         ASSERT_SERIALIZED(ifp->if_serializer);
 2893 
 2894         /* Reset the adapter. */
 2895         re_reset(sc, ifp->if_flags & IFF_RUNNING);
 2896 
 2897         ifp->if_timer = 0;
 2898         callout_stop(&sc->re_timer);
 2899 
 2900         ifp->if_flags &= ~IFF_RUNNING;
 2901         ifq_clr_oactive(&ifp->if_snd);
 2902         sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
 2903 
 2904         CSR_WRITE_1(sc, RE_COMMAND, 0x00);
 2905         CSR_WRITE_2(sc, RE_IMR, 0x0000);
 2906         CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
 2907 
 2908         re_free_rxchain(sc);
 2909 
 2910         /* Free the TX list buffers. */
 2911         for (i = 0; i < sc->re_tx_desc_cnt; i++) {
 2912                 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
 2913                         bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
 2914                                           sc->re_ldata.re_tx_dmamap[i]);
 2915                         m_freem(sc->re_ldata.re_tx_mbuf[i]);
 2916                         sc->re_ldata.re_tx_mbuf[i] = NULL;
 2917                 }
 2918         }
 2919 
 2920         /* Free the RX list buffers. */
 2921         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
 2922                 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
 2923                         if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
 2924                                 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
 2925                                                   sc->re_ldata.re_rx_dmamap[i]);
 2926                         }
 2927                         m_freem(sc->re_ldata.re_rx_mbuf[i]);
 2928                         sc->re_ldata.re_rx_mbuf[i] = NULL;
 2929                 }
 2930         }
 2931 }
 2932 
 2933 /*
 2934  * Device suspend routine.  Stop the interface and save some PCI
 2935  * settings in case the BIOS doesn't restore them properly on
 2936  * resume.
 2937  */
 2938 static int
 2939 re_suspend(device_t dev)
 2940 {
 2941 #ifndef BURN_BRIDGES
 2942         int i;
 2943 #endif
 2944         struct re_softc *sc = device_get_softc(dev);
 2945         struct ifnet *ifp = &sc->arpcom.ac_if;
 2946 
 2947         lwkt_serialize_enter(ifp->if_serializer);
 2948 
 2949         re_stop(sc);
 2950 
 2951 #ifndef BURN_BRIDGES
 2952         for (i = 0; i < 5; i++)
 2953                 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
 2954         sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
 2955         sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
 2956         sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
 2957         sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
 2958 #endif
 2959 
 2960         sc->re_flags |= RE_F_SUSPENDED;
 2961 
 2962         lwkt_serialize_exit(ifp->if_serializer);
 2963 
 2964         return (0);
 2965 }
 2966 
 2967 /*
 2968  * Device resume routine.  Restore some PCI settings in case the BIOS
 2969  * doesn't, re-enable busmastering, and restart the interface if
 2970  * appropriate.
 2971  */
 2972 static int
 2973 re_resume(device_t dev)
 2974 {
 2975         struct re_softc *sc = device_get_softc(dev);
 2976         struct ifnet *ifp = &sc->arpcom.ac_if;
 2977 #ifndef BURN_BRIDGES
 2978         int i;
 2979 #endif
 2980 
 2981         lwkt_serialize_enter(ifp->if_serializer);
 2982 
 2983 #ifndef BURN_BRIDGES
 2984         /* better way to do this? */
 2985         for (i = 0; i < 5; i++)
 2986                 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
 2987         pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
 2988         pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
 2989         pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
 2990         pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
 2991 
 2992         /* reenable busmastering */
 2993         pci_enable_busmaster(dev);
 2994         pci_enable_io(dev, SYS_RES_IOPORT);
 2995 #endif
 2996 
 2997         /* reinitialize interface if necessary */
 2998         if (ifp->if_flags & IFF_UP)
 2999                 re_init(sc);
 3000 
 3001         sc->re_flags &= ~RE_F_SUSPENDED;
 3002 
 3003         lwkt_serialize_exit(ifp->if_serializer);
 3004 
 3005         return (0);
 3006 }
 3007 
 3008 /*
 3009  * Stop all chip I/O so that the kernel's probe routines don't
 3010  * get confused by errant DMAs when rebooting.
 3011  */
 3012 static void
 3013 re_shutdown(device_t dev)
 3014 {
 3015         struct re_softc *sc = device_get_softc(dev);
 3016         struct ifnet *ifp = &sc->arpcom.ac_if;
 3017 
 3018         lwkt_serialize_enter(ifp->if_serializer);
 3019         re_stop(sc);
 3020         lwkt_serialize_exit(ifp->if_serializer);
 3021 }
 3022 
 3023 static int
 3024 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
 3025 {
 3026         struct re_softc *sc = arg1;
 3027 
 3028         return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
 3029 }
 3030 
 3031 static int
 3032 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
 3033 {
 3034         struct re_softc *sc = arg1;
 3035 
 3036         return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
 3037 }
 3038 
 3039 static int
 3040 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
 3041 {
 3042         struct re_softc *sc = arg1;
 3043         struct ifnet *ifp = &sc->arpcom.ac_if;
 3044         int error, v;
 3045 
 3046         lwkt_serialize_enter(ifp->if_serializer);
 3047 
 3048         v = *hwtime;
 3049         error = sysctl_handle_int(oidp, &v, 0, req);
 3050         if (error || req->newptr == NULL)
 3051                 goto back;
 3052 
 3053         if (v <= 0) {
 3054                 error = EINVAL;
 3055                 goto back;
 3056         }
 3057 
 3058         if (v != *hwtime) {
 3059                 *hwtime = v;
 3060 
 3061                 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
 3062                     IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
 3063                         re_setup_hw_im(sc);
 3064         }
 3065 back:
 3066         lwkt_serialize_exit(ifp->if_serializer);
 3067         return error;
 3068 }
 3069 
 3070 static int
 3071 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
 3072 {
 3073         struct re_softc *sc = arg1;
 3074         struct ifnet *ifp = &sc->arpcom.ac_if;
 3075         int error, v;
 3076 
 3077         lwkt_serialize_enter(ifp->if_serializer);
 3078 
 3079         v = sc->re_sim_time;
 3080         error = sysctl_handle_int(oidp, &v, 0, req);
 3081         if (error || req->newptr == NULL)
 3082                 goto back;
 3083 
 3084         if (v <= 0) {
 3085                 error = EINVAL;
 3086                 goto back;
 3087         }
 3088 
 3089         if (v != sc->re_sim_time) {
 3090                 sc->re_sim_time = v;
 3091 
 3092                 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
 3093                     IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
 3094 #ifdef foo
 3095                         int reg;
 3096 
 3097                         /*
 3098                          * Following code causes various strange
 3099                          * performance problems.  Hmm ...
 3100                          */
 3101                         CSR_WRITE_2(sc, RE_IMR, 0);
 3102                         if (!RE_IS_8139CP(sc))
 3103                                 reg = RE_TIMERINT_8169;
 3104                         else
 3105                                 reg = RE_TIMERINT;
 3106                         CSR_WRITE_4(sc, reg, 0);
 3107                         CSR_READ_4(sc, reg); /* flush */
 3108 
 3109                         CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
 3110                         re_setup_sim_im(sc);
 3111 #else
 3112                         re_setup_intr(sc, 0, RE_IMTYPE_NONE);
 3113                         DELAY(10);
 3114                         re_setup_intr(sc, 1, RE_IMTYPE_SIM);
 3115 #endif
 3116                 }
 3117         }
 3118 back:
 3119         lwkt_serialize_exit(ifp->if_serializer);
 3120         return error;
 3121 }
 3122 
 3123 static int
 3124 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
 3125 {
 3126         struct re_softc *sc = arg1;
 3127         struct ifnet *ifp = &sc->arpcom.ac_if;
 3128         int error, v;
 3129 
 3130         lwkt_serialize_enter(ifp->if_serializer);
 3131 
 3132         v = sc->re_imtype;
 3133         error = sysctl_handle_int(oidp, &v, 0, req);
 3134         if (error || req->newptr == NULL)
 3135                 goto back;
 3136 
 3137         if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
 3138                 error = EINVAL;
 3139                 goto back;
 3140         }
 3141         if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
 3142                 /* Can't do hardware interrupt moderation */
 3143                 error = EOPNOTSUPP;
 3144                 goto back;
 3145         }
 3146 
 3147         if (v != sc->re_imtype) {
 3148                 sc->re_imtype = v;
 3149                 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
 3150                     IFF_RUNNING)
 3151                         re_setup_intr(sc, 1, sc->re_imtype);
 3152         }
 3153 back:
 3154         lwkt_serialize_exit(ifp->if_serializer);
 3155         return error;
 3156 }
 3157 
 3158 static void
 3159 re_setup_hw_im(struct re_softc *sc)
 3160 {
 3161         KKASSERT(sc->re_caps & RE_C_HWIM);
 3162 
 3163         /*
 3164          * Interrupt moderation
 3165          *
 3166          * 0xABCD
 3167          * A - unknown (maybe TX related)
 3168          * B - TX timer (unit: 25us)
 3169          * C - unknown (maybe RX related)
 3170          * D - RX timer (unit: 25us)
 3171          *
 3172          *
 3173          * re(4)'s interrupt moderation is actually controlled by
 3174          * two variables, like most other NICs (bge, bce etc.)
 3175          * o  timer
 3176          * o  number of packets [P]
 3177          *
 3178          * The logic relationship between these two variables is
 3179          * similar to other NICs too:
 3180          * if (timer expire || packets > [P])
 3181          *     Interrupt is delivered
 3182          *
 3183          * Currently we only know how to set 'timer', but not
 3184          * 'number of packets', which should be ~30, as far as I
 3185          * tested (sink ~900Kpps, interrupt rate is 30KHz)
 3186          */
 3187         CSR_WRITE_2(sc, RE_IM,
 3188                     RE_IM_RXTIME(sc->re_rx_time) |
 3189                     RE_IM_TXTIME(sc->re_tx_time) |
 3190                     RE_IM_MAGIC);
 3191 }
 3192 
 3193 static void
 3194 re_disable_hw_im(struct re_softc *sc)
 3195 {
 3196         if (sc->re_caps & RE_C_HWIM)
 3197                 CSR_WRITE_2(sc, RE_IM, 0);
 3198 }
 3199 
 3200 static void
 3201 re_setup_sim_im(struct re_softc *sc)
 3202 {
 3203         if (!RE_IS_8139CP(sc)) {
 3204                 uint32_t ticks;
 3205 
 3206                 /*
 3207                  * Datasheet says tick decreases at bus speed,
 3208                  * but it seems the clock runs a little bit
 3209                  * faster, so we do some compensation here.
 3210                  */
 3211                 ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
 3212                 CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
 3213         } else {
 3214                 CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
 3215         }
 3216         CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
 3217         sc->re_flags |= RE_F_TIMER_INTR;
 3218 }
 3219 
 3220 static void
 3221 re_disable_sim_im(struct re_softc *sc)
 3222 {
 3223         if (!RE_IS_8139CP(sc))
 3224                 CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
 3225         else
 3226                 CSR_WRITE_4(sc, RE_TIMERINT, 0);
 3227         sc->re_flags &= ~RE_F_TIMER_INTR;
 3228 }
 3229 
 3230 static void
 3231 re_config_imtype(struct re_softc *sc, int imtype)
 3232 {
 3233         switch (imtype) {
 3234         case RE_IMTYPE_HW:
 3235                 KKASSERT(sc->re_caps & RE_C_HWIM);
 3236                 /* FALL THROUGH */
 3237         case RE_IMTYPE_NONE:
 3238                 sc->re_intrs = RE_INTRS;
 3239                 sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
 3240                                 RE_ISR_RX_OVERRUN;
 3241                 sc->re_tx_ack = RE_ISR_TX_OK;
 3242                 break;
 3243 
 3244         case RE_IMTYPE_SIM:
 3245                 sc->re_intrs = RE_INTRS_TIMER;
 3246                 sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
 3247                 sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
 3248                 break;
 3249 
 3250         default:
 3251                 panic("%s: unknown imtype %d",
 3252                       sc->arpcom.ac_if.if_xname, imtype);
 3253         }
 3254 }
 3255 
 3256 static void
 3257 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
 3258 {
 3259         re_config_imtype(sc, imtype);
 3260 
 3261         if (enable_intrs)
 3262                 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
 3263         else
 3264                 CSR_WRITE_2(sc, RE_IMR, 0); 
 3265 
 3266         sc->re_npoll.ifpc_stcount = 0;
 3267 
 3268         switch (imtype) {
 3269         case RE_IMTYPE_NONE:
 3270                 re_disable_sim_im(sc);
 3271                 re_disable_hw_im(sc);
 3272                 break;
 3273 
 3274         case RE_IMTYPE_HW:
 3275                 KKASSERT(sc->re_caps & RE_C_HWIM);
 3276                 re_disable_sim_im(sc);
 3277                 re_setup_hw_im(sc);
 3278                 break;
 3279 
 3280         case RE_IMTYPE_SIM:
 3281                 re_disable_hw_im(sc);
 3282                 re_setup_sim_im(sc);
 3283                 break;
 3284 
 3285         default:
 3286                 panic("%s: unknown imtype %d",
 3287                       sc->arpcom.ac_if.if_xname, imtype);
 3288         }
 3289 }
 3290 
 3291 static void
 3292 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
 3293 {
 3294         int i;
 3295 
 3296         if (sc->re_caps & RE_C_EE_EADDR) {
 3297                 uint16_t re_did;
 3298 
 3299                 re_get_eewidth(sc);
 3300                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
 3301                 if (re_did == 0x8128) {
 3302                         uint16_t as[ETHER_ADDR_LEN / 2];
 3303 
 3304                         /*
 3305                          * Get station address from the EEPROM.
 3306                          */
 3307                         re_read_eeprom(sc, (caddr_t)as, sc->re_ee_eaddr, 3);
 3308                         for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
 3309                                 as[i] = le16toh(as[i]);
 3310                         bcopy(as, eaddr, ETHER_ADDR_LEN);
 3311                         return;
 3312                 }
 3313         }
 3314 
 3315         /*
 3316          * Get station address from IDRx.
 3317          */
 3318         for (i = 0; i < ETHER_ADDR_LEN; ++i)
 3319                 eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
 3320 }
 3321 
 3322 static int
 3323 re_jpool_alloc(struct re_softc *sc)
 3324 {
 3325         struct re_list_data *ldata = &sc->re_ldata;
 3326         struct re_jbuf *jbuf;
 3327         bus_addr_t paddr;
 3328         bus_size_t jpool_size;
 3329         bus_dmamem_t dmem;
 3330         caddr_t buf;
 3331         int i, error;
 3332 
 3333         lwkt_serialize_init(&ldata->re_jbuf_serializer);
 3334 
 3335         ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
 3336                                  M_DEVBUF, M_WAITOK | M_ZERO);
 3337 
 3338         jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
 3339 
 3340         error = bus_dmamem_coherent(sc->re_parent_tag,
 3341                         RE_RXBUF_ALIGN, 0,
 3342                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
 3343                         jpool_size, BUS_DMA_WAITOK, &dmem);
 3344         if (error) {
 3345                 device_printf(sc->re_dev, "could not allocate jumbo memory\n");
 3346                 return error;
 3347         }
 3348         ldata->re_jpool_tag = dmem.dmem_tag;
 3349         ldata->re_jpool_map = dmem.dmem_map;
 3350         ldata->re_jpool = dmem.dmem_addr;
 3351         paddr = dmem.dmem_busaddr;
 3352 
 3353         /* ..and split it into 9KB chunks */
 3354         SLIST_INIT(&ldata->re_jbuf_free);
 3355 
 3356         buf = ldata->re_jpool;
 3357         for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
 3358                 jbuf = &ldata->re_jbuf[i];
 3359 
 3360                 jbuf->re_sc = sc;
 3361                 jbuf->re_inuse = 0;
 3362                 jbuf->re_slot = i;
 3363                 jbuf->re_buf = buf;
 3364                 jbuf->re_paddr = paddr;
 3365 
 3366                 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
 3367 
 3368                 buf += RE_JBUF_SIZE;
 3369                 paddr += RE_JBUF_SIZE;
 3370         }
 3371         return 0;
 3372 }
 3373 
 3374 static void
 3375 re_jpool_free(struct re_softc *sc)
 3376 {
 3377         struct re_list_data *ldata = &sc->re_ldata;
 3378 
 3379         if (ldata->re_jpool_tag != NULL) {
 3380                 bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
 3381                 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
 3382                                 ldata->re_jpool_map);
 3383                 bus_dma_tag_destroy(ldata->re_jpool_tag);
 3384                 ldata->re_jpool_tag = NULL;
 3385         }
 3386 
 3387         if (ldata->re_jbuf != NULL) {
 3388                 kfree(ldata->re_jbuf, M_DEVBUF);
 3389                 ldata->re_jbuf = NULL;
 3390         }
 3391 }
 3392 
 3393 static struct re_jbuf *
 3394 re_jbuf_alloc(struct re_softc *sc)
 3395 {
 3396         struct re_list_data *ldata = &sc->re_ldata;
 3397         struct re_jbuf *jbuf;
 3398 
 3399         lwkt_serialize_enter(&ldata->re_jbuf_serializer);
 3400 
 3401         jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
 3402         if (jbuf != NULL) {
 3403                 SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
 3404                 jbuf->re_inuse = 1;
 3405         }
 3406 
 3407         lwkt_serialize_exit(&ldata->re_jbuf_serializer);
 3408 
 3409         return jbuf;
 3410 }
 3411 
 3412 static void
 3413 re_jbuf_free(void *arg)
 3414 {
 3415         struct re_jbuf *jbuf = arg;
 3416         struct re_softc *sc = jbuf->re_sc;
 3417         struct re_list_data *ldata = &sc->re_ldata;
 3418 
 3419         if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
 3420                 panic("%s: free wrong jumbo buffer",
 3421                       sc->arpcom.ac_if.if_xname);
 3422         } else if (jbuf->re_inuse == 0) {
 3423                 panic("%s: jumbo buffer already freed",
 3424                       sc->arpcom.ac_if.if_xname);
 3425         }
 3426 
 3427         lwkt_serialize_enter(&ldata->re_jbuf_serializer);
 3428         atomic_subtract_int(&jbuf->re_inuse, 1);
 3429         if (jbuf->re_inuse == 0)
 3430                 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
 3431         lwkt_serialize_exit(&ldata->re_jbuf_serializer);
 3432 }
 3433 
 3434 static void
 3435 re_jbuf_ref(void *arg)
 3436 {
 3437         struct re_jbuf *jbuf = arg;
 3438         struct re_softc *sc = jbuf->re_sc;
 3439         struct re_list_data *ldata = &sc->re_ldata;
 3440 
 3441         if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
 3442                 panic("%s: ref wrong jumbo buffer",
 3443                       sc->arpcom.ac_if.if_xname);
 3444         } else if (jbuf->re_inuse == 0) {
 3445                 panic("%s: jumbo buffer already freed",
 3446                       sc->arpcom.ac_if.if_xname);
 3447         }
 3448         atomic_add_int(&jbuf->re_inuse, 1);
 3449 }

Cache object: 331611664b952a10b5a263ff7983d7d0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.