The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/sf/if_sf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  *
   32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
   33  */
   34 
   35 /*
   36  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
   37  * Programming manual is available from:
   38  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
   39  *
   40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   41  * Department of Electical Engineering
   42  * Columbia University, New York City
   43  */
   44 
   45 /*
   46  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
   47  * controller designed with flexibility and reducing CPU load in mind.
   48  * The Starfire offers high and low priority buffer queues, a
   49  * producer/consumer index mechanism and several different buffer
   50  * queue and completion queue descriptor types. Any one of a number
   51  * of different driver designs can be used, depending on system and
   52  * OS requirements. This driver makes use of type0 transmit frame
   53  * descriptors (since BSD fragments packets across an mbuf chain)
   54  * and two RX buffer queues prioritized on size (one queue for small
   55  * frames that will fit into a single mbuf, another with full size
   56  * mbuf clusters for everything else). The producer/consumer indexes
   57  * and completion queues are also used.
   58  *
   59  * One downside to the Starfire has to do with alignment: buffer
   60  * queues must be aligned on 256-byte boundaries, and receive buffers
   61  * must be aligned on longword boundaries. The receive buffer alignment
   62  * causes problems on the Alpha platform, where the packet payload
   63  * should be longword aligned. There is no simple way around this.
   64  *
   65  * For receive filtering, the Starfire offers 16 perfect filter slots
   66  * and a 512-bit hash table.
   67  *
   68  * The Starfire has no internal transceiver, relying instead on an
   69  * external MII-based transceiver. Accessing registers on external
   70  * PHYs is done through a special register map rather than with the
   71  * usual bitbang MDIO method.
   72  *
   73  * Acesssing the registers on the Starfire is a little tricky. The
   74  * Starfire has a 512K internal register space. When programmed for
   75  * PCI memory mapped mode, the entire register space can be accessed
   76  * directly. However in I/O space mode, only 256 bytes are directly
   77  * mapped into PCI I/O space. The other registers can be accessed
   78  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
   79  * registers inside the 256-byte I/O window.
   80  */
   81 
   82 #include <sys/param.h>
   83 #include <sys/systm.h>
   84 #include <sys/sockio.h>
   85 #include <sys/mbuf.h>
   86 #include <sys/malloc.h>
   87 #include <sys/kernel.h>
   88 #include <sys/interrupt.h>
   89 #include <sys/socket.h>
   90 #include <sys/serialize.h>
   91 #include <sys/bus.h>
   92 #include <sys/rman.h>
   93 #include <sys/thread2.h>
   94 
   95 #include <net/if.h>
   96 #include <net/ifq_var.h>
   97 #include <net/if_arp.h>
   98 #include <net/ethernet.h>
   99 #include <net/if_dl.h>
  100 #include <net/if_media.h>
  101 
  102 #include <net/bpf.h>
  103 
  104 #include <vm/vm.h>              /* for vtophys */
  105 #include <vm/pmap.h>            /* for vtophys */
  106 
  107 #include <machine/clock.h>      /* for DELAY */
  108 
  109 #include "../mii_layer/mii.h"
  110 #include "../mii_layer/miivar.h"
  111 
  112 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  113 #include "miibus_if.h"
  114 
  115 #include "pcidevs.h"
  116 #include <bus/pci/pcireg.h>
  117 #include <bus/pci/pcivar.h>
  118 
  119 #define SF_USEIOSPACE
  120 
  121 #include "if_sfreg.h"
  122 
  123 static struct sf_type sf_devs[] = {
  124         { PCI_VENDOR_ADP, PCI_PRODUCT_ADP_AIC6915,
  125                 "Adaptec AIC-6915 10/100BaseTX" },
  126         { 0, 0, NULL }
  127 };
  128 
  129 static int sf_probe             (device_t);
  130 static int sf_attach            (device_t);
  131 static int sf_detach            (device_t);
  132 static void sf_intr             (void *);
  133 static void sf_stats_update     (void *);
  134 static void sf_rxeof            (struct sf_softc *);
  135 static void sf_txeof            (struct sf_softc *);
  136 static int sf_encap             (struct sf_softc *,
  137                                         struct sf_tx_bufdesc_type0 *,
  138                                         struct mbuf *);
  139 static void sf_start            (struct ifnet *, struct ifaltq_subque *);
  140 static int sf_ioctl             (struct ifnet *, u_long, caddr_t,
  141                                         struct ucred *);
  142 static void sf_init             (void *);
  143 static void sf_stop             (struct sf_softc *);
  144 static void sf_watchdog         (struct ifnet *);
  145 static void sf_shutdown         (device_t);
  146 static int sf_ifmedia_upd       (struct ifnet *);
  147 static void sf_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
  148 static void sf_reset            (struct sf_softc *);
  149 static int sf_init_rx_ring      (struct sf_softc *);
  150 static void sf_init_tx_ring     (struct sf_softc *);
  151 static int sf_newbuf            (struct sf_softc *,
  152                                         struct sf_rx_bufdesc_type0 *,
  153                                         struct mbuf *);
  154 static void sf_setmulti         (struct sf_softc *);
  155 static int sf_setperf           (struct sf_softc *, int, caddr_t);
  156 static int sf_sethash           (struct sf_softc *, caddr_t, int);
  157 #ifdef notdef
  158 static int sf_setvlan           (struct sf_softc *, int, u_int32_t);
  159 #endif
  160 
  161 static u_int8_t sf_read_eeprom  (struct sf_softc *, int);
  162 static u_int32_t sf_calchash    (caddr_t);
  163 
  164 static int sf_miibus_readreg    (device_t, int, int);
  165 static int sf_miibus_writereg   (device_t, int, int, int);
  166 static void sf_miibus_statchg   (device_t);
  167 
  168 static u_int32_t csr_read_4     (struct sf_softc *, int);
  169 static void csr_write_4         (struct sf_softc *, int, u_int32_t);
  170 static void sf_txthresh_adjust  (struct sf_softc *);
  171 
  172 #ifdef SF_USEIOSPACE
  173 #define SF_RES                  SYS_RES_IOPORT
  174 #define SF_RID                  SF_PCI_LOIO
  175 #else
  176 #define SF_RES                  SYS_RES_MEMORY
  177 #define SF_RID                  SF_PCI_LOMEM
  178 #endif
  179 
  180 static device_method_t sf_methods[] = {
  181         /* Device interface */
  182         DEVMETHOD(device_probe,         sf_probe),
  183         DEVMETHOD(device_attach,        sf_attach),
  184         DEVMETHOD(device_detach,        sf_detach),
  185         DEVMETHOD(device_shutdown,      sf_shutdown),
  186 
  187         /* bus interface */
  188         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  189         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  190 
  191         /* MII interface */
  192         DEVMETHOD(miibus_readreg,       sf_miibus_readreg),
  193         DEVMETHOD(miibus_writereg,      sf_miibus_writereg),
  194         DEVMETHOD(miibus_statchg,       sf_miibus_statchg),
  195 
  196         DEVMETHOD_END
  197 };
  198 
  199 static driver_t sf_driver = {
  200         "sf",
  201         sf_methods,
  202         sizeof(struct sf_softc),
  203 };
  204 
  205 static devclass_t sf_devclass;
  206 
  207 DECLARE_DUMMY_MODULE(if_sf);
  208 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, NULL, NULL);
  209 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, NULL, NULL);
  210 
  211 #define SF_SETBIT(sc, reg, x)   \
  212         csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
  213 
  214 #define SF_CLRBIT(sc, reg, x)                           \
  215         csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
  216 
  217 static u_int32_t
  218 csr_read_4(struct sf_softc *sc, int reg)
  219 {
  220         u_int32_t               val;
  221 
  222 #ifdef SF_USEIOSPACE
  223         CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  224         val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
  225 #else
  226         val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
  227 #endif
  228 
  229         return(val);
  230 }
  231 
  232 static u_int8_t
  233 sf_read_eeprom(struct sf_softc *sc, int reg)
  234 {
  235         u_int8_t                val;
  236 
  237         val = (csr_read_4(sc, SF_EEADDR_BASE +
  238             (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
  239 
  240         return(val);
  241 }
  242 
  243 static void
  244 csr_write_4(struct sf_softc *sc, int reg, u_int32_t val)
  245 {
  246 #ifdef SF_USEIOSPACE
  247         CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  248         CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
  249 #else
  250         CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
  251 #endif
  252         return;
  253 }
  254 
  255 static u_int32_t
  256 sf_calchash(caddr_t addr)
  257 {
  258         u_int32_t               crc, carry;
  259         int                     i, j;
  260         u_int8_t                c;
  261 
  262         /* Compute CRC for the address value. */
  263         crc = 0xFFFFFFFF; /* initial value */
  264 
  265         for (i = 0; i < 6; i++) {
  266                 c = *(addr + i);
  267                 for (j = 0; j < 8; j++) {
  268                         carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
  269                         crc <<= 1;
  270                         c >>= 1;
  271                         if (carry)
  272                                 crc = (crc ^ 0x04c11db6) | carry;
  273                 }
  274         }
  275 
  276         /* return the filter bit position */
  277         return(crc >> 23 & 0x1FF);
  278 }
  279 
  280 /*
  281  * Copy the address 'mac' into the perfect RX filter entry at
  282  * offset 'idx.' The perfect filter only has 16 entries so do
  283  * some sanity tests.
  284  */
  285 static int
  286 sf_setperf(struct sf_softc *sc, int idx, caddr_t mac)
  287 {
  288         u_int16_t               *p;
  289 
  290         if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
  291                 return(EINVAL);
  292 
  293         if (mac == NULL)
  294                 return(EINVAL);
  295 
  296         p = (u_int16_t *)mac;
  297 
  298         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  299             (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
  300         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  301             (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
  302         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  303             (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
  304 
  305         return(0);
  306 }
  307 
  308 /*
  309  * Set the bit in the 512-bit hash table that corresponds to the
  310  * specified mac address 'mac.' If 'prio' is nonzero, update the
  311  * priority hash table instead of the filter hash table.
  312  */
  313 static int
  314 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
  315 {
  316         u_int32_t               h = 0;
  317 
  318         if (mac == NULL)
  319                 return(EINVAL);
  320 
  321         h = sf_calchash(mac);
  322 
  323         if (prio) {
  324                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
  325                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  326         } else {
  327                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
  328                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  329         }
  330 
  331         return(0);
  332 }
  333 
  334 #ifdef notdef
  335 /*
  336  * Set a VLAN tag in the receive filter.
  337  */
  338 static int
  339 sf_setvlan(struct sf_softc *sc, int idx, u_int32_t vlan)
  340 {
  341         if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
  342                 return(EINVAL);
  343 
  344         csr_write_4(sc, SF_RXFILT_HASH_BASE +
  345             (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
  346 
  347         return(0);
  348 }
  349 #endif
  350 
  351 static int
  352 sf_miibus_readreg(device_t dev, int phy, int reg)
  353 {
  354         struct sf_softc         *sc;
  355         int                     i;
  356         u_int32_t               val = 0;
  357 
  358         sc = device_get_softc(dev);
  359 
  360         for (i = 0; i < SF_TIMEOUT; i++) {
  361                 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
  362                 if (val & SF_MII_DATAVALID)
  363                         break;
  364         }
  365 
  366         if (i == SF_TIMEOUT)
  367                 return(0);
  368 
  369         if ((val & 0x0000FFFF) == 0xFFFF)
  370                 return(0);
  371 
  372         return(val & 0x0000FFFF);
  373 }
  374 
  375 static int
  376 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
  377 {
  378         struct sf_softc         *sc;
  379         int                     i;
  380         int                     busy;
  381 
  382         sc = device_get_softc(dev);
  383 
  384         csr_write_4(sc, SF_PHY_REG(phy, reg), val);
  385 
  386         for (i = 0; i < SF_TIMEOUT; i++) {
  387                 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
  388                 if (!(busy & SF_MII_BUSY))
  389                         break;
  390         }
  391 
  392         return(0);
  393 }
  394 
  395 static void
  396 sf_miibus_statchg(device_t dev)
  397 {
  398         struct sf_softc         *sc;
  399         struct mii_data         *mii;
  400 
  401         sc = device_get_softc(dev);
  402         mii = device_get_softc(sc->sf_miibus);
  403 
  404         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
  405                 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
  406                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
  407         } else {
  408                 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
  409                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
  410         }
  411 
  412         return;
  413 }
  414 
  415 static void
  416 sf_setmulti(struct sf_softc *sc)
  417 {
  418         struct ifnet            *ifp;
  419         int                     i;
  420         struct ifmultiaddr      *ifma;
  421         u_int8_t                dummy[] = { 0, 0, 0, 0, 0, 0 };
  422 
  423         ifp = &sc->arpcom.ac_if;
  424 
  425         /* First zot all the existing filters. */
  426         for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
  427                 sf_setperf(sc, i, (char *)&dummy);
  428         for (i = SF_RXFILT_HASH_BASE;
  429             i < (SF_RXFILT_HASH_MAX + 1); i += 4)
  430                 csr_write_4(sc, i, 0);
  431         SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
  432 
  433         /* Now program new ones. */
  434         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  435                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
  436         } else {
  437                 i = 1;
  438                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
  439                         if (ifma->ifma_addr->sa_family != AF_LINK)
  440                                 continue;
  441                         /*
  442                          * Program the first 15 multicast groups
  443                          * into the perfect filter. For all others,
  444                          * use the hash table.
  445                          */
  446                         if (i < SF_RXFILT_PERFECT_CNT) {
  447                                 sf_setperf(sc, i,
  448                         LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  449                                 i++;
  450                                 continue;
  451                         }
  452 
  453                         sf_sethash(sc,
  454                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
  455                 }
  456         }
  457 
  458         return;
  459 }
  460 
  461 /*
  462  * Set media options.
  463  */
  464 static int
  465 sf_ifmedia_upd(struct ifnet *ifp)
  466 {
  467         struct sf_softc         *sc;
  468         struct mii_data         *mii;
  469 
  470         sc = ifp->if_softc;
  471         mii = device_get_softc(sc->sf_miibus);
  472         sc->sf_link = 0;
  473         if (mii->mii_instance) {
  474                 struct mii_softc        *miisc;
  475                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
  476                     miisc = LIST_NEXT(miisc, mii_list))
  477                         mii_phy_reset(miisc);
  478         }
  479         mii_mediachg(mii);
  480 
  481         return(0);
  482 }
  483 
  484 /*
  485  * Report current media status.
  486  */
  487 static void
  488 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
  489 {
  490         struct sf_softc         *sc;
  491         struct mii_data         *mii;
  492 
  493         sc = ifp->if_softc;
  494         mii = device_get_softc(sc->sf_miibus);
  495 
  496         mii_pollstat(mii);
  497         ifmr->ifm_active = mii->mii_media_active;
  498         ifmr->ifm_status = mii->mii_media_status;
  499 
  500         return;
  501 }
  502 
  503 static int
  504 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
  505 {
  506         struct sf_softc         *sc = ifp->if_softc;
  507         struct ifreq            *ifr = (struct ifreq *) data;
  508         struct mii_data         *mii;
  509         int error = 0;
  510 
  511         switch(command) {
  512         case SIOCSIFFLAGS:
  513                 if (ifp->if_flags & IFF_UP) {
  514                         if (ifp->if_flags & IFF_RUNNING &&
  515                             ifp->if_flags & IFF_PROMISC &&
  516                             !(sc->sf_if_flags & IFF_PROMISC)) {
  517                                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
  518                         } else if (ifp->if_flags & IFF_RUNNING &&
  519                             !(ifp->if_flags & IFF_PROMISC) &&
  520                             sc->sf_if_flags & IFF_PROMISC) {
  521                                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
  522                         } else if (!(ifp->if_flags & IFF_RUNNING))
  523                                 sf_init(sc);
  524                 } else {
  525                         if (ifp->if_flags & IFF_RUNNING)
  526                                 sf_stop(sc);
  527                 }
  528                 sc->sf_if_flags = ifp->if_flags;
  529                 error = 0;
  530                 break;
  531         case SIOCADDMULTI:
  532         case SIOCDELMULTI:
  533                 sf_setmulti(sc);
  534                 error = 0;
  535                 break;
  536         case SIOCGIFMEDIA:
  537         case SIOCSIFMEDIA:
  538                 mii = device_get_softc(sc->sf_miibus);
  539                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
  540                 break;
  541         default:
  542                 error = ether_ioctl(ifp, command, data);
  543                 break;
  544         }
  545 
  546         return(error);
  547 }
  548 
  549 static void
  550 sf_reset(struct sf_softc *sc)
  551 {
  552         int             i;
  553 
  554         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
  555         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  556         DELAY(1000);
  557         SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  558 
  559         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
  560 
  561         for (i = 0; i < SF_TIMEOUT; i++) {
  562                 DELAY(10);
  563                 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
  564                         break;
  565         }
  566 
  567         if (i == SF_TIMEOUT)
  568                 kprintf("sf%d: reset never completed!\n", sc->sf_unit);
  569 
  570         /* Wait a little while for the chip to get its brains in order. */
  571         DELAY(1000);
  572         return;
  573 }
  574 
  575 /*
  576  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
  577  * IDs against our list and return a device name if we find a match.
  578  * We also check the subsystem ID so that we can identify exactly which
  579  * NIC has been found, if possible.
  580  */
  581 static int
  582 sf_probe(device_t dev)
  583 {
  584         struct sf_type          *t;
  585 
  586         t = sf_devs;
  587 
  588         while(t->sf_name != NULL) {
  589                 if ((pci_get_vendor(dev) == t->sf_vid) &&
  590                     (pci_get_device(dev) == t->sf_did)) {
  591                         switch((pci_read_config(dev,
  592                             SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
  593                         case AD_SUBSYSID_62011_REV0:
  594                         case AD_SUBSYSID_62011_REV1:
  595                                 device_set_desc(dev,
  596                                     "Adaptec ANA-62011 10/100BaseTX");
  597                                 return(0);
  598                                 break;
  599                         case AD_SUBSYSID_62022:
  600                                 device_set_desc(dev,
  601                                     "Adaptec ANA-62022 10/100BaseTX");
  602                                 return(0);
  603                                 break;
  604                         case AD_SUBSYSID_62044_REV0:
  605                         case AD_SUBSYSID_62044_REV1:
  606                                 device_set_desc(dev,
  607                                     "Adaptec ANA-62044 10/100BaseTX");
  608                                 return(0);
  609                                 break;
  610                         case AD_SUBSYSID_62020:
  611                                 device_set_desc(dev,
  612                                     "Adaptec ANA-62020 10/100BaseFX");
  613                                 return(0);
  614                                 break;
  615                         case AD_SUBSYSID_69011:
  616                                 device_set_desc(dev,
  617                                     "Adaptec ANA-69011 10/100BaseTX");
  618                                 return(0);
  619                                 break;
  620                         default:
  621                                 device_set_desc(dev, t->sf_name);
  622                                 return(0);
  623                                 break;
  624                         }
  625                 }
  626                 t++;
  627         }
  628 
  629         return(ENXIO);
  630 }
  631 
  632 /*
  633  * Attach the interface. Allocate softc structures, do ifmedia
  634  * setup and ethernet/BPF attach.
  635  */
  636 static int
  637 sf_attach(device_t dev)
  638 {
  639         int                     i;
  640         u_int32_t               command;
  641         struct sf_softc         *sc;
  642         struct ifnet            *ifp;
  643         int                     unit, rid, error = 0;
  644 
  645         sc = device_get_softc(dev);
  646         unit = device_get_unit(dev);
  647 
  648         /*
  649          * Handle power management nonsense.
  650          */
  651         command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
  652         if (command == 0x01) {
  653 
  654                 command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
  655                 if (command & SF_PSTATE_MASK) {
  656                         u_int32_t               iobase, membase, irq;
  657 
  658                         /* Save important PCI config data. */
  659                         iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
  660                         membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
  661                         irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
  662 
  663                         /* Reset the power state. */
  664                         kprintf("sf%d: chip is in D%d power mode "
  665                         "-- setting to D0\n", unit, command & SF_PSTATE_MASK);
  666                         command &= 0xFFFFFFFC;
  667                         pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
  668 
  669                         /* Restore PCI config data. */
  670                         pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
  671                         pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
  672                         pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
  673                 }
  674         }
  675 
  676         /*
  677          * Map control/status registers.
  678          */
  679         command = pci_read_config(dev, PCIR_COMMAND, 4);
  680         command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
  681         pci_write_config(dev, PCIR_COMMAND, command, 4);
  682         command = pci_read_config(dev, PCIR_COMMAND, 4);
  683 
  684 #ifdef SF_USEIOSPACE
  685         if (!(command & PCIM_CMD_PORTEN)) {
  686                 kprintf("sf%d: failed to enable I/O ports!\n", unit);
  687                 error = ENXIO;
  688                 return(error);
  689         }
  690 #else
  691         if (!(command & PCIM_CMD_MEMEN)) {
  692                 kprintf("sf%d: failed to enable memory mapping!\n", unit);
  693                 error = ENXIO;
  694                 return(error);
  695         }
  696 #endif
  697 
  698         rid = SF_RID;
  699         sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
  700 
  701         if (sc->sf_res == NULL) {
  702                 kprintf ("sf%d: couldn't map ports\n", unit);
  703                 error = ENXIO;
  704                 return(error);
  705         }
  706 
  707         sc->sf_btag = rman_get_bustag(sc->sf_res);
  708         sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
  709 
  710         /* Allocate interrupt */
  711         rid = 0;
  712         sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  713             RF_SHAREABLE | RF_ACTIVE);
  714 
  715         if (sc->sf_irq == NULL) {
  716                 kprintf("sf%d: couldn't map interrupt\n", unit);
  717                 error = ENXIO;
  718                 goto fail;
  719         }
  720 
  721         callout_init(&sc->sf_stat_timer);
  722 
  723         /* Reset the adapter. */
  724         sf_reset(sc);
  725 
  726         /*
  727          * Get station address from the EEPROM.
  728          */
  729         for (i = 0; i < ETHER_ADDR_LEN; i++)
  730                 sc->arpcom.ac_enaddr[i] =
  731                     sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
  732 
  733         sc->sf_unit = unit;
  734 
  735         /* Allocate the descriptor queues. */
  736         sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
  737             M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
  738 
  739         if (sc->sf_ldata == NULL) {
  740                 kprintf("sf%d: no memory for list buffers!\n", unit);
  741                 error = ENXIO;
  742                 goto fail;
  743         }
  744 
  745         /* Do MII setup. */
  746         if (mii_phy_probe(dev, &sc->sf_miibus,
  747             sf_ifmedia_upd, sf_ifmedia_sts)) {
  748                 kprintf("sf%d: MII without any phy!\n", sc->sf_unit);
  749                 error = ENXIO;
  750                 goto fail;
  751         }
  752 
  753         ifp = &sc->arpcom.ac_if;
  754         ifp->if_softc = sc;
  755         if_initname(ifp, "sf", unit);
  756         ifp->if_mtu = ETHERMTU;
  757         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  758         ifp->if_ioctl = sf_ioctl;
  759         ifp->if_start = sf_start;
  760         ifp->if_watchdog = sf_watchdog;
  761         ifp->if_init = sf_init;
  762         ifp->if_baudrate = 10000000;
  763         ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
  764         ifq_set_ready(&ifp->if_snd);
  765 
  766         /*
  767          * Call MI attach routine.
  768          */
  769         ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
  770 
  771         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sf_irq));
  772 
  773         error = bus_setup_intr(dev, sc->sf_irq, INTR_MPSAFE,
  774                                sf_intr, sc, &sc->sf_intrhand, 
  775                                ifp->if_serializer);
  776 
  777         if (error) {
  778                 ether_ifdetach(ifp);
  779                 device_printf(dev, "couldn't set up irq\n");
  780                 goto fail;
  781         }
  782 
  783         return(0);
  784 
  785 fail:
  786         sf_detach(dev);
  787         return(error);
  788 }
  789 
  790 static int
  791 sf_detach(device_t dev)
  792 {
  793         struct sf_softc *sc = device_get_softc(dev);
  794         struct ifnet *ifp = &sc->arpcom.ac_if;
  795 
  796         if (device_is_attached(dev)) {
  797                 lwkt_serialize_enter(ifp->if_serializer);
  798                 sf_stop(sc);
  799                 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
  800                 lwkt_serialize_exit(ifp->if_serializer);
  801 
  802                 ether_ifdetach(ifp);
  803         }
  804 
  805         if (sc->sf_miibus)
  806                 device_delete_child(dev, sc->sf_miibus);
  807         bus_generic_detach(dev);
  808 
  809         if (sc->sf_irq)
  810                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
  811         if(sc->sf_res)
  812                 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
  813 
  814         if (sc->sf_ldata) {
  815                 contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
  816                            M_DEVBUF);
  817         }
  818 
  819         return(0);
  820 }
  821 
  822 static int
  823 sf_init_rx_ring(struct sf_softc *sc)
  824 {
  825         struct sf_list_data     *ld;
  826         int                     i;
  827 
  828         ld = sc->sf_ldata;
  829 
  830         bzero((char *)ld->sf_rx_dlist_big,
  831             sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
  832         bzero((char *)ld->sf_rx_clist,
  833             sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
  834 
  835         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
  836                 if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
  837                         return(ENOBUFS);
  838         }
  839 
  840         return(0);
  841 }
  842 
  843 static void
  844 sf_init_tx_ring(struct sf_softc *sc)
  845 {
  846         struct sf_list_data     *ld;
  847         int                     i;
  848 
  849         ld = sc->sf_ldata;
  850 
  851         bzero((char *)ld->sf_tx_dlist,
  852             sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
  853         bzero((char *)ld->sf_tx_clist,
  854             sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
  855 
  856         for (i = 0; i < SF_TX_DLIST_CNT; i++)
  857                 ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
  858         for (i = 0; i < SF_TX_CLIST_CNT; i++)
  859                 ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
  860 
  861         ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
  862         sc->sf_tx_cnt = 0;
  863 
  864         return;
  865 }
  866 
  867 static int
  868 sf_newbuf(struct sf_softc *sc, struct sf_rx_bufdesc_type0 *c,
  869           struct mbuf *m)
  870 {
  871         struct mbuf             *m_new = NULL;
  872 
  873         if (m == NULL) {
  874                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
  875                 if (m_new == NULL)
  876                         return(ENOBUFS);
  877 
  878                 MCLGET(m_new, MB_DONTWAIT);
  879                 if (!(m_new->m_flags & M_EXT)) {
  880                         m_freem(m_new);
  881                         return(ENOBUFS);
  882                 }
  883                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  884         } else {
  885                 m_new = m;
  886                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  887                 m_new->m_data = m_new->m_ext.ext_buf;
  888         }
  889 
  890         m_adj(m_new, sizeof(u_int64_t));
  891 
  892         c->sf_mbuf = m_new;
  893         c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
  894         c->sf_valid = 1;
  895 
  896         return(0);
  897 }
  898 
  899 /*
  900  * The starfire is programmed to use 'normal' mode for packet reception,
  901  * which means we use the consumer/producer model for both the buffer
  902  * descriptor queue and the completion descriptor queue. The only problem
  903  * with this is that it involves a lot of register accesses: we have to
  904  * read the RX completion consumer and producer indexes and the RX buffer
  905  * producer index, plus the RX completion consumer and RX buffer producer
  906  * indexes have to be updated. It would have been easier if Adaptec had
  907  * put each index in a separate register, especially given that the damn
  908  * NIC has a 512K register space.
  909  *
  910  * In spite of all the lovely features that Adaptec crammed into the 6915,
  911  * it is marred by one truly stupid design flaw, which is that receive
  912  * buffer addresses must be aligned on a longword boundary. This forces
  913  * the packet payload to be unaligned, which is suboptimal on the x86 and
  914  * completely unuseable on the Alpha. Our only recourse is to copy received
  915  * packets into properly aligned buffers before handing them off.
  916  */
  917 
  918 static void
  919 sf_rxeof(struct sf_softc *sc)
  920 {
  921         struct mbuf             *m;
  922         struct ifnet            *ifp;
  923         struct sf_rx_bufdesc_type0      *desc;
  924         struct sf_rx_cmpdesc_type3      *cur_rx;
  925         u_int32_t               rxcons, rxprod;
  926         int                     cmpprodidx, cmpconsidx, bufprodidx;
  927 
  928         ifp = &sc->arpcom.ac_if;
  929 
  930         rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
  931         rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
  932         cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
  933         cmpconsidx = SF_IDX_LO(rxcons);
  934         bufprodidx = SF_IDX_LO(rxprod);
  935 
  936         while (cmpconsidx != cmpprodidx) {
  937                 struct mbuf             *m0;
  938 
  939                 cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
  940                 desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
  941                 m = desc->sf_mbuf;
  942                 SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
  943                 SF_INC(bufprodidx, SF_RX_DLIST_CNT);
  944 
  945                 if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
  946                         IFNET_STAT_INC(ifp, ierrors, 1);
  947                         sf_newbuf(sc, desc, m);
  948                         continue;
  949                 }
  950 
  951                 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
  952                     cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
  953                 sf_newbuf(sc, desc, m);
  954                 if (m0 == NULL) {
  955                         IFNET_STAT_INC(ifp, ierrors, 1);
  956                         continue;
  957                 }
  958                 m_adj(m0, ETHER_ALIGN);
  959                 m = m0;
  960 
  961                 IFNET_STAT_INC(ifp, ipackets, 1);
  962 
  963                 ifp->if_input(ifp, m);
  964         }
  965 
  966         csr_write_4(sc, SF_CQ_CONSIDX,
  967             (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
  968         csr_write_4(sc, SF_RXDQ_PTR_Q1,
  969             (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
  970 
  971         return;
  972 }
  973 
  974 /*
  975  * Read the transmit status from the completion queue and release
  976  * mbufs. Note that the buffer descriptor index in the completion
  977  * descriptor is an offset from the start of the transmit buffer
  978  * descriptor list in bytes. This is important because the manual
  979  * gives the impression that it should match the producer/consumer
  980  * index, which is the offset in 8 byte blocks.
  981  */
  982 static void
  983 sf_txeof(struct sf_softc *sc)
  984 {
  985         int                     txcons, cmpprodidx, cmpconsidx;
  986         struct sf_tx_cmpdesc_type1 *cur_cmp;
  987         struct sf_tx_bufdesc_type0 *cur_tx;
  988         struct ifnet            *ifp;
  989 
  990         ifp = &sc->arpcom.ac_if;
  991 
  992         txcons = csr_read_4(sc, SF_CQ_CONSIDX);
  993         cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
  994         cmpconsidx = SF_IDX_HI(txcons);
  995 
  996         while (cmpconsidx != cmpprodidx) {
  997                 cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
  998                 cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
  999 
 1000                 if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
 1001                         IFNET_STAT_INC(ifp, opackets, 1);
 1002                 else {
 1003                         if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
 1004                                 sf_txthresh_adjust(sc);
 1005                         IFNET_STAT_INC(ifp, oerrors, 1);
 1006                 }
 1007 
 1008                 sc->sf_tx_cnt--;
 1009                 if (cur_tx->sf_mbuf != NULL) {
 1010                         m_freem(cur_tx->sf_mbuf);
 1011                         cur_tx->sf_mbuf = NULL;
 1012                 } else
 1013                         break;
 1014                 SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
 1015         }
 1016 
 1017         ifp->if_timer = 0;
 1018         ifq_clr_oactive(&ifp->if_snd);
 1019 
 1020         csr_write_4(sc, SF_CQ_CONSIDX,
 1021             (txcons & ~SF_CQ_CONSIDX_TXQ) |
 1022             ((cmpconsidx << 16) & 0xFFFF0000));
 1023 
 1024         return;
 1025 }
 1026 
 1027 static void
 1028 sf_txthresh_adjust(struct sf_softc *sc)
 1029 {
 1030         u_int32_t               txfctl;
 1031         u_int8_t                txthresh;
 1032 
 1033         txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
 1034         txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
 1035         if (txthresh < 0xFF) {
 1036                 txthresh++;
 1037                 txfctl &= ~SF_TXFRMCTL_TXTHRESH;
 1038                 txfctl |= txthresh;
 1039 #ifdef DIAGNOSTIC
 1040                 kprintf("sf%d: tx underrun, increasing "
 1041                     "tx threshold to %d bytes\n",
 1042                     sc->sf_unit, txthresh * 4);
 1043 #endif
 1044                 csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
 1045         }
 1046 
 1047         return;
 1048 }
 1049 
 1050 static void
 1051 sf_intr(void *arg)
 1052 {
 1053         struct sf_softc         *sc;
 1054         struct ifnet            *ifp;
 1055         u_int32_t               status;
 1056 
 1057         sc = arg;
 1058         ifp = &sc->arpcom.ac_if;
 1059 
 1060         if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
 1061                 return;
 1062 
 1063         /* Disable interrupts. */
 1064         csr_write_4(sc, SF_IMR, 0x00000000);
 1065 
 1066         for (;;) {
 1067                 status = csr_read_4(sc, SF_ISR);
 1068                 if (status)
 1069                         csr_write_4(sc, SF_ISR, status);
 1070 
 1071                 if (!(status & SF_INTRS))
 1072                         break;
 1073 
 1074                 if (status & SF_ISR_RXDQ1_DMADONE)
 1075                         sf_rxeof(sc);
 1076 
 1077                 if (status & SF_ISR_TX_TXDONE ||
 1078                     status & SF_ISR_TX_DMADONE ||
 1079                     status & SF_ISR_TX_QUEUEDONE)
 1080                         sf_txeof(sc);
 1081 
 1082                 if (status & SF_ISR_TX_LOFIFO)
 1083                         sf_txthresh_adjust(sc);
 1084 
 1085                 if (status & SF_ISR_ABNORMALINTR) {
 1086                         if (status & SF_ISR_STATSOFLOW) {
 1087                                 callout_stop(&sc->sf_stat_timer);
 1088                                 sf_stats_update(sc);
 1089                         } else
 1090                                 sf_init(sc);
 1091                 }
 1092         }
 1093 
 1094         /* Re-enable interrupts. */
 1095         csr_write_4(sc, SF_IMR, SF_INTRS);
 1096 
 1097         if (!ifq_is_empty(&ifp->if_snd))
 1098                 if_devstart(ifp);
 1099 }
 1100 
 1101 static void
 1102 sf_init(void *xsc)
 1103 {
 1104         struct sf_softc *sc = xsc;
 1105         struct ifnet *ifp = &sc->arpcom.ac_if;
 1106         int i;
 1107 
 1108         sf_stop(sc);
 1109         sf_reset(sc);
 1110 
 1111         /* Init all the receive filter registers */
 1112         for (i = SF_RXFILT_PERFECT_BASE;
 1113             i < (SF_RXFILT_HASH_MAX + 1); i += 4)
 1114                 csr_write_4(sc, i, 0);
 1115 
 1116         /* Empty stats counter registers. */
 1117         for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
 1118                 csr_write_4(sc, SF_STATS_BASE +
 1119                     (i + sizeof(u_int32_t)), 0);
 1120 
 1121         /* Init our MAC address */
 1122         csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
 1123         csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
 1124         sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
 1125 
 1126         if (sf_init_rx_ring(sc) == ENOBUFS) {
 1127                 kprintf("sf%d: initialization failed: no "
 1128                     "memory for rx buffers\n", sc->sf_unit);
 1129                 return;
 1130         }
 1131 
 1132         sf_init_tx_ring(sc);
 1133 
 1134         csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
 1135 
 1136         /* If we want promiscuous mode, set the allframes bit. */
 1137         if (ifp->if_flags & IFF_PROMISC) {
 1138                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
 1139         } else {
 1140                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
 1141         }
 1142 
 1143         if (ifp->if_flags & IFF_BROADCAST) {
 1144                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
 1145         } else {
 1146                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
 1147         }
 1148 
 1149         /*
 1150          * Load the multicast filter.
 1151          */
 1152         sf_setmulti(sc);
 1153 
 1154         /* Init the completion queue indexes */
 1155         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 1156         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 1157 
 1158         /* Init the RX completion queue */
 1159         csr_write_4(sc, SF_RXCQ_CTL_1,
 1160             vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
 1161         SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
 1162 
 1163         /* Init RX DMA control. */
 1164         SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
 1165 
 1166         /* Init the RX buffer descriptor queue. */
 1167         csr_write_4(sc, SF_RXDQ_ADDR_Q1,
 1168             vtophys(sc->sf_ldata->sf_rx_dlist_big));
 1169         csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
 1170         csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
 1171 
 1172         /* Init the TX completion queue */
 1173         csr_write_4(sc, SF_TXCQ_CTL,
 1174             vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
 1175 
 1176         /* Init the TX buffer descriptor queue. */
 1177         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
 1178                 vtophys(sc->sf_ldata->sf_tx_dlist));
 1179         SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
 1180         csr_write_4(sc, SF_TXDQ_CTL,
 1181             SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
 1182         SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
 1183 
 1184         /* Enable autopadding of short TX frames. */
 1185         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
 1186 
 1187         /* Enable interrupts. */
 1188         csr_write_4(sc, SF_IMR, SF_INTRS);
 1189         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
 1190 
 1191         /* Enable the RX and TX engines. */
 1192         SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
 1193         SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
 1194 
 1195         /*mii_mediachg(mii);*/
 1196         sf_ifmedia_upd(ifp);
 1197 
 1198         ifp->if_flags |= IFF_RUNNING;
 1199         ifq_clr_oactive(&ifp->if_snd);
 1200 
 1201         callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
 1202 }
 1203 
 1204 static int
 1205 sf_encap(struct sf_softc *sc, struct sf_tx_bufdesc_type0 *c,
 1206          struct mbuf *m_head)
 1207 {
 1208         int                     frag = 0;
 1209         struct sf_frag          *f = NULL;
 1210         struct mbuf             *m;
 1211 
 1212         for (m = m_head; m != NULL; m = m->m_next) {
 1213                 if (m->m_len != 0) {
 1214                         if (frag == SF_MAXFRAGS)
 1215                                 break;
 1216                         f = &c->sf_frags[frag];
 1217                         if (frag == 0)
 1218                                 f->sf_pktlen = m_head->m_pkthdr.len;
 1219                         f->sf_fraglen = m->m_len;
 1220                         f->sf_addr = vtophys(mtod(m, vm_offset_t));
 1221                         frag++;
 1222                 }
 1223         }
 1224         /* Caller should make sure that 'm_head' is not excessive fragmented */
 1225         KASSERT(m == NULL, ("too many fragments"));
 1226 
 1227         c->sf_mbuf = m_head;
 1228         c->sf_id = SF_TX_BUFDESC_ID;
 1229         c->sf_fragcnt = frag;
 1230         c->sf_intr = 1;
 1231         c->sf_caltcp = 0;
 1232         c->sf_crcen = 1;
 1233 
 1234         return(0);
 1235 }
 1236 
 1237 static void
 1238 sf_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 1239 {
 1240         struct sf_softc         *sc;
 1241         struct sf_tx_bufdesc_type0 *cur_tx = NULL;
 1242         struct mbuf             *m_head = NULL, *m_defragged;
 1243         int                     i, txprod, need_trans = 0;
 1244 
 1245         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 1246 
 1247         sc = ifp->if_softc;
 1248 
 1249         if (!sc->sf_link) {
 1250                 ifq_purge(&ifp->if_snd);
 1251                 return;
 1252         }
 1253 
 1254         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
 1255                 return;
 1256 
 1257         txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
 1258         i = SF_IDX_HI(txprod) >> 4;
 1259 
 1260         if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
 1261                 kprintf("sf%d: TX ring full, resetting\n", sc->sf_unit);
 1262                 sf_init(sc);
 1263                 txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
 1264                 i = SF_IDX_HI(txprod) >> 4;
 1265         }
 1266 
 1267         while (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
 1268                 struct mbuf *m;
 1269                 int frag;
 1270 
 1271                 /*
 1272                  * Don't get the TX DMA queue get too full.
 1273                  */
 1274                 if (sc->sf_tx_cnt > 64) {
 1275                         ifq_set_oactive(&ifp->if_snd);
 1276                         break;
 1277                 }
 1278 #ifdef foo
 1279                 if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
 1280                         ifq_set_oactive(&ifp->if_snd);
 1281                         break;
 1282                 }
 1283 #endif
 1284 
 1285                 m_defragged = NULL;
 1286                 m_head = ifq_dequeue(&ifp->if_snd);
 1287                 if (m_head == NULL)
 1288                         break;
 1289 
 1290 again:
 1291                 frag = 0;
 1292                 for (m = m_head; m != NULL; m = m->m_next)
 1293                         ++frag;
 1294                 if (frag > SF_MAXFRAGS) {
 1295                         if (m_defragged != NULL) {
 1296                                 /*
 1297                                  * Even after defragmentation, there
 1298                                  * are still too many fragments, so
 1299                                  * drop this packet.
 1300                                  */
 1301                                 m_freem(m_head);
 1302                                 continue;
 1303                         }
 1304 
 1305                         m_defragged = m_defrag(m_head, MB_DONTWAIT);
 1306                         if (m_defragged == NULL) {
 1307                                 m_freem(m_head);
 1308                                 continue;
 1309                         }
 1310                         m_head = m_defragged;
 1311 
 1312                         /* Recount # of fragments */
 1313                         goto again;
 1314                 }
 1315 
 1316                 cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
 1317                 sf_encap(sc, cur_tx, m_head);
 1318                 BPF_MTAP(ifp, cur_tx->sf_mbuf);
 1319 
 1320                 SF_INC(i, SF_TX_DLIST_CNT);
 1321                 sc->sf_tx_cnt++;
 1322                 need_trans = 1;
 1323         }
 1324 
 1325         if (!need_trans)
 1326                 return;
 1327 
 1328         /* Transmit */
 1329         csr_write_4(sc, SF_TXDQ_PRODIDX,
 1330             (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
 1331             ((i << 20) & 0xFFFF0000));
 1332 
 1333         ifp->if_timer = 5;
 1334 }
 1335 
 1336 static void
 1337 sf_stop(struct sf_softc *sc)
 1338 {
 1339         int                     i;
 1340         struct ifnet            *ifp;
 1341 
 1342         ifp = &sc->arpcom.ac_if;
 1343 
 1344         callout_stop(&sc->sf_stat_timer);
 1345 
 1346         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
 1347         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 1348         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 1349         csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
 1350         csr_write_4(sc, SF_RXDQ_CTL_1, 0);
 1351         csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
 1352         csr_write_4(sc, SF_TXCQ_CTL, 0);
 1353         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
 1354         csr_write_4(sc, SF_TXDQ_CTL, 0);
 1355         sf_reset(sc);
 1356 
 1357         sc->sf_link = 0;
 1358 
 1359         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1360                 if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
 1361                         m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
 1362                         sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
 1363                 }
 1364         }
 1365 
 1366         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1367                 if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
 1368                         m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
 1369                         sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
 1370                 }
 1371         }
 1372 
 1373         ifp->if_flags &= ~IFF_RUNNING;
 1374         ifq_clr_oactive(&ifp->if_snd);
 1375 
 1376         return;
 1377 }
 1378 
 1379 /*
 1380  * Note: it is important that this function not be interrupted. We
 1381  * use a two-stage register access scheme: if we are interrupted in
 1382  * between setting the indirect address register and reading from the
 1383  * indirect data register, the contents of the address register could
 1384  * be changed out from under us.
 1385  */     
 1386 static void
 1387 sf_stats_update(void *xsc)
 1388 {
 1389         struct sf_softc *sc = xsc;
 1390         struct ifnet *ifp = &sc->arpcom.ac_if;
 1391         struct mii_data *mii = device_get_softc(sc->sf_miibus);
 1392         struct sf_stats         stats;
 1393         u_int32_t               *ptr;
 1394         int                     i;
 1395 
 1396         lwkt_serialize_enter(ifp->if_serializer);
 1397 
 1398         ptr = (u_int32_t *)&stats;
 1399         for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
 1400                 ptr[i] = csr_read_4(sc, SF_STATS_BASE +
 1401                     (i + sizeof(u_int32_t)));
 1402 
 1403         for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
 1404                 csr_write_4(sc, SF_STATS_BASE +
 1405                     (i + sizeof(u_int32_t)), 0);
 1406 
 1407         IFNET_STAT_INC(ifp, collisions, stats.sf_tx_single_colls +
 1408             stats.sf_tx_multi_colls + stats.sf_tx_excess_colls);
 1409 
 1410         mii_tick(mii);
 1411         if (!sc->sf_link) {
 1412                 mii_pollstat(mii);
 1413                 if (mii->mii_media_status & IFM_ACTIVE &&
 1414                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 1415                         sc->sf_link++;
 1416                         if (!ifq_is_empty(&ifp->if_snd))
 1417                                 if_devstart(ifp);
 1418                 }
 1419         }
 1420 
 1421         callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
 1422 
 1423         lwkt_serialize_exit(ifp->if_serializer);
 1424 }
 1425 
 1426 static void
 1427 sf_watchdog(struct ifnet *ifp)
 1428 {
 1429         struct sf_softc         *sc;
 1430 
 1431         sc = ifp->if_softc;
 1432 
 1433         IFNET_STAT_INC(ifp, oerrors, 1);
 1434         kprintf("sf%d: watchdog timeout\n", sc->sf_unit);
 1435 
 1436         sf_stop(sc);
 1437         sf_reset(sc);
 1438         sf_init(sc);
 1439 
 1440         if (!ifq_is_empty(&ifp->if_snd))
 1441                 if_devstart(ifp);
 1442 }
 1443 
 1444 static void
 1445 sf_shutdown(device_t dev)
 1446 {
 1447         struct sf_softc *sc;
 1448         struct ifnet *ifp;
 1449 
 1450         sc = device_get_softc(dev);
 1451         ifp = &sc->arpcom.ac_if;
 1452         lwkt_serialize_enter(ifp->if_serializer);
 1453         sf_stop(sc);
 1454         lwkt_serialize_exit(ifp->if_serializer);
 1455 
 1456         return;
 1457 }

Cache object: 61ba98e89e1cf079f3e14163b553ecc4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.