The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/vge/if_vge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2004
    3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  *
   32  * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $
   33  */
   34 
   35 /*
   36  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
   37  *
   38  * Written by Bill Paul <wpaul@windriver.com>
   39  * Senior Networking Software Engineer
   40  * Wind River Systems
   41  */
   42 
   43 /*
   44  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
   45  * combines a tri-speed ethernet MAC and PHY, with the following
   46  * features:
   47  *
   48  *      o Jumbo frame support up to 16K
   49  *      o Transmit and receive flow control
   50  *      o IPv4 checksum offload
   51  *      o VLAN tag insertion and stripping
   52  *      o TCP large send
   53  *      o 64-bit multicast hash table filter
   54  *      o 64 entry CAM filter
   55  *      o 16K RX FIFO and 48K TX FIFO memory
   56  *      o Interrupt moderation
   57  *
   58  * The VT6122 supports up to four transmit DMA queues. The descriptors
   59  * in the transmit ring can address up to 7 data fragments; frames which
   60  * span more than 7 data buffers must be coalesced, but in general the
   61  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
   62  * long. The receive descriptors address only a single buffer.
   63  *
   64  * There are two peculiar design issues with the VT6122. One is that
   65  * receive data buffers must be aligned on a 32-bit boundary. This is
   66  * not a problem where the VT6122 is used as a LOM device in x86-based
   67  * systems, but on architectures that generate unaligned access traps, we
   68  * have to do some copying.
   69  *
   70  * The other issue has to do with the way 64-bit addresses are handled.
   71  * The DMA descriptors only allow you to specify 48 bits of addressing
   72  * information. The remaining 16 bits are specified using one of the
   73  * I/O registers. If you only have a 32-bit system, then this isn't
   74  * an issue, but if you have a 64-bit system and more than 4GB of
   75  * memory, you must have to make sure your network data buffers reside
   76  * in the same 48-bit 'segment.'
   77  *
   78  * Special thanks to Ryan Fu at VIA Networking for providing documentation
   79  * and sample NICs for testing.
   80  */
   81 
   82 #include "opt_ifpoll.h"
   83 
   84 #include <sys/param.h>
   85 #include <sys/endian.h>
   86 #include <sys/systm.h>
   87 #include <sys/sockio.h>
   88 #include <sys/mbuf.h>
   89 #include <sys/malloc.h>
   90 #include <sys/module.h>
   91 #include <sys/kernel.h>
   92 #include <sys/socket.h>
   93 #include <sys/serialize.h>
   94 #include <sys/proc.h>
   95 #include <sys/bus.h>
   96 #include <sys/rman.h>
   97 #include <sys/interrupt.h>
   98 
   99 #include <net/if.h>
  100 #include <net/if_arp.h>
  101 #include <net/ethernet.h>
  102 #include <net/if_dl.h>
  103 #include <net/if_media.h>
  104 #include <net/if_poll.h>
  105 #include <net/ifq_var.h>
  106 #include <net/if_types.h>
  107 #include <net/vlan/if_vlan_var.h>
  108 #include <net/vlan/if_vlan_ether.h>
  109 
  110 #include <net/bpf.h>
  111 
  112 #include <dev/netif/mii_layer/mii.h>
  113 #include <dev/netif/mii_layer/miivar.h>
  114 
  115 #include <bus/pci/pcireg.h>
  116 #include <bus/pci/pcivar.h>
  117 #include "pcidevs.h"
  118 
  119 #include "miibus_if.h"
  120 
  121 #include <dev/netif/vge/if_vgereg.h>
  122 #include <dev/netif/vge/if_vgevar.h>
  123 
  124 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
  125 
  126 /*
  127  * Various supported device vendors/types and their names.
  128  */
  129 static const struct vge_type vge_devs[] = {
  130         { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X,
  131           "VIA Networking Gigabit Ethernet" },
  132         { 0, 0, NULL }
  133 };
  134 
  135 static int vge_probe            (device_t);
  136 static int vge_attach           (device_t);
  137 static int vge_detach           (device_t);
  138 
  139 static int vge_encap            (struct vge_softc *, struct mbuf *, int);
  140 
  141 static void vge_dma_map_addr    (void *, bus_dma_segment_t *, int, int);
  142 static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int,
  143                                     bus_size_t, int);
  144 static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int,
  145                                     bus_size_t, int);
  146 static int vge_dma_alloc        (device_t);
  147 static void vge_dma_free        (struct vge_softc *);
  148 static int vge_newbuf           (struct vge_softc *, int, struct mbuf *);
  149 static int vge_rx_list_init     (struct vge_softc *);
  150 static int vge_tx_list_init     (struct vge_softc *);
  151 #ifdef VGE_FIXUP_RX
  152 static __inline void vge_fixup_rx
  153                                 (struct mbuf *);
  154 #endif
  155 static void vge_rxeof           (struct vge_softc *, int);
  156 static void vge_txeof           (struct vge_softc *);
  157 static void vge_intr            (void *);
  158 static void vge_tick            (struct vge_softc *);
  159 static void vge_start           (struct ifnet *, struct ifaltq_subque *);
  160 static int vge_ioctl            (struct ifnet *, u_long, caddr_t,
  161                                  struct ucred *);
  162 static void vge_init            (void *);
  163 static void vge_stop            (struct vge_softc *);
  164 static void vge_watchdog        (struct ifnet *);
  165 static int vge_suspend          (device_t);
  166 static int vge_resume           (device_t);
  167 static void vge_shutdown        (device_t);
  168 static int vge_ifmedia_upd      (struct ifnet *);
  169 static void vge_ifmedia_sts     (struct ifnet *, struct ifmediareq *);
  170 
  171 #ifdef VGE_EEPROM
  172 static void vge_eeprom_getword  (struct vge_softc *, int, u_int16_t *);
  173 #endif
  174 static void vge_read_eeprom     (struct vge_softc *, uint8_t *, int, int, int);
  175 
  176 static void vge_miipoll_start   (struct vge_softc *);
  177 static void vge_miipoll_stop    (struct vge_softc *);
  178 static int vge_miibus_readreg   (device_t, int, int);
  179 static int vge_miibus_writereg  (device_t, int, int, int);
  180 static void vge_miibus_statchg  (device_t);
  181 
  182 static void vge_cam_clear       (struct vge_softc *);
  183 static int vge_cam_set          (struct vge_softc *, uint8_t *);
  184 static void vge_setmulti        (struct vge_softc *);
  185 static void vge_reset           (struct vge_softc *);
  186 
  187 #ifdef IFPOLL_ENABLE
  188 static void     vge_npoll(struct ifnet *, struct ifpoll_info *);
  189 static void     vge_npoll_compat(struct ifnet *, void *, int);
  190 static void     vge_disable_intr(struct vge_softc *);
  191 #endif
  192 static void     vge_enable_intr(struct vge_softc *, uint32_t);
  193 
  194 #define VGE_PCI_LOIO             0x10
  195 #define VGE_PCI_LOMEM            0x14
  196 
  197 static device_method_t vge_methods[] = {
  198         /* Device interface */
  199         DEVMETHOD(device_probe,         vge_probe),
  200         DEVMETHOD(device_attach,        vge_attach),
  201         DEVMETHOD(device_detach,        vge_detach),
  202         DEVMETHOD(device_suspend,       vge_suspend),
  203         DEVMETHOD(device_resume,        vge_resume),
  204         DEVMETHOD(device_shutdown,      vge_shutdown),
  205 
  206         /* bus interface */
  207         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  208         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  209 
  210         /* MII interface */
  211         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
  212         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
  213         DEVMETHOD(miibus_statchg,       vge_miibus_statchg),
  214 
  215         DEVMETHOD_END
  216 };
  217 
  218 static driver_t vge_driver = {
  219         "vge",
  220         vge_methods,
  221         sizeof(struct vge_softc)
  222 };
  223 
  224 static devclass_t vge_devclass;
  225 
  226 DECLARE_DUMMY_MODULE(if_vge);
  227 MODULE_DEPEND(if_vge, miibus, 1, 1, 1);
  228 DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, NULL, NULL);
  229 DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, NULL, NULL);
  230 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, NULL, NULL);
  231 
  232 #ifdef VGE_EEPROM
  233 /*
  234  * Read a word of data stored in the EEPROM at address 'addr.'
  235  */
  236 static void
  237 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest)
  238 {
  239         uint16_t word = 0;
  240         int i;
  241 
  242         /*
  243          * Enter EEPROM embedded programming mode. In order to
  244          * access the EEPROM at all, we first have to set the
  245          * EELOAD bit in the CHIPCFG2 register.
  246          */
  247         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
  248         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
  249 
  250         /* Select the address of the word we want to read */
  251         CSR_WRITE_1(sc, VGE_EEADDR, addr);
  252 
  253         /* Issue read command */
  254         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
  255 
  256         /* Wait for the done bit to be set. */
  257         for (i = 0; i < VGE_TIMEOUT; i++) {
  258                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
  259                         break;
  260         }
  261         if (i == VGE_TIMEOUT) {
  262                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
  263                 *dest = 0;
  264                 return;
  265         }
  266 
  267         /* Read the result */
  268         word = CSR_READ_2(sc, VGE_EERDDAT);
  269 
  270         /* Turn off EEPROM access mode. */
  271         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
  272         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
  273 
  274         *dest = word;
  275 }
  276 #endif
  277 
  278 /*
  279  * Read a sequence of words from the EEPROM.
  280  */
  281 static void
  282 vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap)
  283 {
  284         int i;
  285 #ifdef VGE_EEPROM
  286         uint16_t word = 0, *ptr;
  287 
  288         for (i = 0; i < cnt; i++) {
  289                 vge_eeprom_getword(sc, off + i, &word);
  290                 ptr = (uint16_t *)(dest + (i * 2));
  291                 if (swap)
  292                         *ptr = ntohs(word);
  293                 else
  294                         *ptr = word;
  295         }
  296 #else
  297         for (i = 0; i < ETHER_ADDR_LEN; i++)
  298                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
  299 #endif
  300 }
  301 
  302 static void
  303 vge_miipoll_stop(struct vge_softc *sc)
  304 {
  305         int i;
  306 
  307         CSR_WRITE_1(sc, VGE_MIICMD, 0);
  308 
  309         for (i = 0; i < VGE_TIMEOUT; i++) {
  310                 DELAY(1);
  311                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
  312                         break;
  313         }
  314         if (i == VGE_TIMEOUT)
  315                 if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
  316 }
  317 
  318 static void
  319 vge_miipoll_start(struct vge_softc *sc)
  320 {
  321         int i;
  322 
  323         /* First, make sure we're idle. */
  324         CSR_WRITE_1(sc, VGE_MIICMD, 0);
  325         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
  326 
  327         for (i = 0; i < VGE_TIMEOUT; i++) {
  328                 DELAY(1);
  329                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
  330                         break;
  331         }
  332         if (i == VGE_TIMEOUT) {
  333                 if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
  334                 return;
  335         }
  336 
  337         /* Now enable auto poll mode. */
  338         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
  339 
  340         /* And make sure it started. */
  341         for (i = 0; i < VGE_TIMEOUT; i++) {
  342                 DELAY(1);
  343                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
  344                         break;
  345         }
  346         if (i == VGE_TIMEOUT)
  347                 if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n");
  348 }
  349 
  350 static int
  351 vge_miibus_readreg(device_t dev, int phy, int reg)
  352 {
  353         struct vge_softc *sc;
  354         int i;
  355         uint16_t rval = 0;
  356 
  357         sc = device_get_softc(dev);
  358 
  359         if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
  360                 return(0);
  361 
  362         vge_miipoll_stop(sc);
  363 
  364         /* Specify the register we want to read. */
  365         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
  366 
  367         /* Issue read command. */
  368         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
  369 
  370         /* Wait for the read command bit to self-clear. */
  371         for (i = 0; i < VGE_TIMEOUT; i++) {
  372                 DELAY(1);
  373                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
  374                         break;
  375         }
  376         if (i == VGE_TIMEOUT)
  377                 if_printf(&sc->arpcom.ac_if, "MII read timed out\n");
  378         else
  379                 rval = CSR_READ_2(sc, VGE_MIIDATA);
  380 
  381         vge_miipoll_start(sc);
  382 
  383         return (rval);
  384 }
  385 
  386 static int
  387 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
  388 {
  389         struct vge_softc *sc;
  390         int i, rval = 0;
  391 
  392         sc = device_get_softc(dev);
  393 
  394         if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
  395                 return(0);
  396 
  397         vge_miipoll_stop(sc);
  398 
  399         /* Specify the register we want to write. */
  400         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
  401 
  402         /* Specify the data we want to write. */
  403         CSR_WRITE_2(sc, VGE_MIIDATA, data);
  404 
  405         /* Issue write command. */
  406         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
  407 
  408         /* Wait for the write command bit to self-clear. */
  409         for (i = 0; i < VGE_TIMEOUT; i++) {
  410                 DELAY(1);
  411                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
  412                         break;
  413         }
  414         if (i == VGE_TIMEOUT) {
  415                 if_printf(&sc->arpcom.ac_if, "MII write timed out\n");
  416                 rval = EIO;
  417         }
  418 
  419         vge_miipoll_start(sc);
  420 
  421         return (rval);
  422 }
  423 
  424 static void
  425 vge_cam_clear(struct vge_softc *sc)
  426 {
  427         int i;
  428 
  429         /*
  430          * Turn off all the mask bits. This tells the chip
  431          * that none of the entries in the CAM filter are valid.
  432          * desired entries will be enabled as we fill the filter in.
  433          */
  434         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  435         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
  436         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
  437         for (i = 0; i < 8; i++)
  438                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
  439 
  440         /* Clear the VLAN filter too. */
  441         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
  442         for (i = 0; i < 8; i++)
  443                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
  444 
  445         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
  446         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  447         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
  448 
  449         sc->vge_camidx = 0;
  450 }
  451 
  452 static int
  453 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
  454 {
  455         int i, error = 0;
  456 
  457         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
  458                 return(ENOSPC);
  459 
  460         /* Select the CAM data page. */
  461         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  462         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
  463 
  464         /* Set the filter entry we want to update and enable writing. */
  465         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
  466 
  467         /* Write the address to the CAM registers */
  468         for (i = 0; i < ETHER_ADDR_LEN; i++)
  469                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
  470 
  471         /* Issue a write command. */
  472         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
  473 
  474         /* Wake for it to clear. */
  475         for (i = 0; i < VGE_TIMEOUT; i++) {
  476                 DELAY(1);
  477                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
  478                         break;
  479         }
  480         if (i == VGE_TIMEOUT) {
  481                 if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n");
  482                 error = EIO;
  483                 goto fail;
  484         }
  485 
  486         /* Select the CAM mask page. */
  487         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  488         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
  489 
  490         /* Set the mask bit that enables this filter. */
  491         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
  492             1<<(sc->vge_camidx & 7));
  493 
  494         sc->vge_camidx++;
  495 
  496 fail:
  497         /* Turn off access to CAM. */
  498         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
  499         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  500         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
  501 
  502         return (error);
  503 }
  504 
  505 /*
  506  * Program the multicast filter. We use the 64-entry CAM filter
  507  * for perfect filtering. If there's more than 64 multicast addresses,
  508  * we use the hash filter insted.
  509  */
  510 static void
  511 vge_setmulti(struct vge_softc *sc)
  512 {
  513         struct ifnet *ifp = &sc->arpcom.ac_if;
  514         int error = 0;
  515         struct ifmultiaddr *ifma;
  516         uint32_t h, hashes[2] = { 0, 0 };
  517 
  518         /* First, zot all the multicast entries. */
  519         vge_cam_clear(sc);
  520         CSR_WRITE_4(sc, VGE_MAR0, 0);
  521         CSR_WRITE_4(sc, VGE_MAR1, 0);
  522 
  523         /*
  524          * If the user wants allmulti or promisc mode, enable reception
  525          * of all multicast frames.
  526          */
  527         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  528                 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
  529                 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
  530                 return;
  531         }
  532 
  533         /* Now program new ones */
  534         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  535                 if (ifma->ifma_addr->sa_family != AF_LINK)
  536                         continue;
  537                 error = vge_cam_set(sc,
  538                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  539                 if (error)
  540                         break;
  541         }
  542 
  543         /* If there were too many addresses, use the hash filter. */
  544         if (error) {
  545                 vge_cam_clear(sc);
  546 
  547                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  548                         if (ifma->ifma_addr->sa_family != AF_LINK)
  549                                 continue;
  550                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  551                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
  552                         if (h < 32)
  553                                 hashes[0] |= (1 << h);
  554                         else
  555                                 hashes[1] |= (1 << (h - 32));
  556                 }
  557 
  558                 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
  559                 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
  560         }
  561 }
  562 
  563 static void
  564 vge_reset(struct vge_softc *sc)
  565 {
  566         int i;
  567 
  568         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
  569 
  570         for (i = 0; i < VGE_TIMEOUT; i++) {
  571                 DELAY(5);
  572                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
  573                         break;
  574         }
  575 
  576         if (i == VGE_TIMEOUT) {
  577                 if_printf(&sc->arpcom.ac_if, "soft reset timed out");
  578                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
  579                 DELAY(2000);
  580         }
  581 
  582         DELAY(5000);
  583 
  584         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
  585 
  586         for (i = 0; i < VGE_TIMEOUT; i++) {
  587                 DELAY(5);
  588                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
  589                         break;
  590         }
  591         if (i == VGE_TIMEOUT) {
  592                 if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n");
  593                 return;
  594         }
  595 
  596         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
  597 }
  598 
  599 /*
  600  * Probe for a VIA gigabit chip. Check the PCI vendor and device
  601  * IDs against our list and return a device name if we find a match.
  602  */
  603 static int
  604 vge_probe(device_t dev)
  605 {
  606         const struct vge_type *t;
  607         uint16_t did, vid;
  608 
  609         did = pci_get_device(dev);
  610         vid = pci_get_vendor(dev);
  611         for (t = vge_devs; t->vge_name != NULL; ++t) {
  612                 if (vid == t->vge_vid && did == t->vge_did) {
  613                         device_set_desc(dev, t->vge_name);
  614                         return 0;
  615                 }
  616         }
  617         return (ENXIO);
  618 }
  619 
  620 static void
  621 vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
  622                     bus_size_t mapsize, int error)
  623 {
  624 
  625         struct vge_dmaload_arg *ctx;
  626         struct vge_rx_desc *d = NULL;
  627 
  628         if (error)
  629                 return;
  630 
  631         ctx = arg;
  632 
  633         /* Signal error to caller if there's too many segments */
  634         if (nseg > ctx->vge_maxsegs) {
  635                 ctx->vge_maxsegs = 0;
  636                 return;
  637         }
  638 
  639         /*
  640          * Map the segment array into descriptors.
  641          */
  642         d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
  643 
  644         /* If this descriptor is still owned by the chip, bail. */
  645         if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
  646                 if_printf(&ctx->sc->arpcom.ac_if,
  647                           "tried to map busy descriptor\n");
  648                 ctx->vge_maxsegs = 0;
  649                 return;
  650         }
  651 
  652         d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
  653         d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
  654         d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
  655         d->vge_sts = 0;
  656         d->vge_ctl = 0;
  657 
  658         ctx->vge_maxsegs = 1;
  659 }
  660 
  661 static void
  662 vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
  663                     bus_size_t mapsize, int error)
  664 {
  665         struct vge_dmaload_arg *ctx;
  666         struct vge_tx_desc *d = NULL;
  667         struct vge_tx_frag *f;
  668         int i = 0;
  669 
  670         if (error)
  671                 return;
  672 
  673         ctx = arg;
  674 
  675         /* Signal error to caller if there's too many segments */
  676         if (nseg > ctx->vge_maxsegs) {
  677                 ctx->vge_maxsegs = 0;
  678                 return;
  679         }
  680 
  681         /* Map the segment array into descriptors. */
  682         d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
  683 
  684         /* If this descriptor is still owned by the chip, bail. */
  685         if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
  686                 ctx->vge_maxsegs = 0;
  687                 return;
  688         }
  689 
  690         for (i = 0; i < nseg; i++) {
  691                 f = &d->vge_frag[i];
  692                 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
  693                 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
  694                 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
  695         }
  696 
  697         /* Argh. This chip does not autopad short frames */
  698         if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
  699                 f = &d->vge_frag[i];
  700                 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
  701                     ctx->vge_m0->m_pkthdr.len));
  702                 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
  703                 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
  704                 ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
  705                 i++;
  706         }
  707 
  708         /*
  709          * When telling the chip how many segments there are, we
  710          * must use nsegs + 1 instead of just nsegs. Darned if I
  711          * know why.
  712          */
  713         i++;
  714 
  715         d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
  716         d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
  717 
  718         if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
  719                 d->vge_ctl |= VGE_TDCTL_JUMBO;
  720 
  721         ctx->vge_maxsegs = nseg;
  722 }
  723 
  724 /*
  725  * Map a single buffer address.
  726  */
  727 
  728 static void
  729 vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  730 {
  731         if (error)
  732                 return;
  733 
  734         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
  735         *((bus_addr_t *)arg) = segs->ds_addr;
  736 }
  737 
  738 static int
  739 vge_dma_alloc(device_t dev)
  740 {
  741         struct vge_softc *sc = device_get_softc(dev);
  742         int error, nseg, i, tx_pos = 0, rx_pos = 0;
  743 
  744         /*
  745          * Allocate the parent bus DMA tag appropriate for PCI.
  746          */
  747 #define VGE_NSEG_NEW 32
  748         error = bus_dma_tag_create(NULL,        /* parent */
  749                         1, 0,                   /* alignment, boundary */
  750                         BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
  751                         BUS_SPACE_MAXADDR,      /* highaddr */
  752                         NULL, NULL,             /* filter, filterarg */
  753                         MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */
  754                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
  755                         BUS_DMA_ALLOCNOW,       /* flags */
  756                         &sc->vge_parent_tag);
  757         if (error) {
  758                 device_printf(dev, "can't create parent dma tag\n");
  759                 return error;
  760         }
  761 
  762         /*
  763          * Allocate map for RX mbufs.
  764          */
  765         nseg = 32;
  766         error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
  767                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  768                                    NULL, NULL,
  769                                    MCLBYTES * nseg, nseg, MCLBYTES,
  770                                    BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag);
  771         if (error) {
  772                 device_printf(dev, "could not allocate mbuf dma tag\n");
  773                 return error;
  774         }
  775 
  776         /*
  777          * Allocate map for TX descriptor list.
  778          */
  779         error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
  780                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  781                                    NULL, NULL,
  782                                    VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
  783                                    BUS_DMA_ALLOCNOW,
  784                                    &sc->vge_ldata.vge_tx_list_tag);
  785         if (error) {
  786                 device_printf(dev, "could not allocate tx list dma tag\n");
  787                 return error;
  788         }
  789 
  790         /* Allocate DMA'able memory for the TX ring */
  791         error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
  792                                  (void **)&sc->vge_ldata.vge_tx_list,
  793                                  BUS_DMA_WAITOK | BUS_DMA_ZERO,
  794                                  &sc->vge_ldata.vge_tx_list_map);
  795         if (error) {
  796                 device_printf(dev, "could not allocate tx list dma memory\n");
  797                 return error;
  798         }
  799 
  800         /* Load the map for the TX ring. */
  801         error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
  802                                 sc->vge_ldata.vge_tx_list_map,
  803                                 sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ,
  804                                 vge_dma_map_addr,
  805                                 &sc->vge_ldata.vge_tx_list_addr,
  806                                 BUS_DMA_WAITOK);
  807         if (error) {
  808                 device_printf(dev, "could not load tx list\n");
  809                 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag, 
  810                                 sc->vge_ldata.vge_tx_list,
  811                                 sc->vge_ldata.vge_tx_list_map);
  812                 sc->vge_ldata.vge_tx_list = NULL;
  813                 return error;
  814         }
  815 
  816         /* Create DMA maps for TX buffers */
  817         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
  818                 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
  819                                           &sc->vge_ldata.vge_tx_dmamap[i]);
  820                 if (error) {
  821                         device_printf(dev, "can't create DMA map for TX\n");
  822                         tx_pos = i;
  823                         goto map_fail;
  824                 }
  825         }
  826         tx_pos = VGE_TX_DESC_CNT;
  827 
  828         /*
  829          * Allocate map for RX descriptor list.
  830          */
  831         error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
  832                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  833                                    NULL, NULL,
  834                                    VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
  835                                    BUS_DMA_ALLOCNOW,
  836                                    &sc->vge_ldata.vge_rx_list_tag);
  837         if (error) {
  838                 device_printf(dev, "could not allocate rx list dma tag\n");
  839                 return error;
  840         }
  841 
  842         /* Allocate DMA'able memory for the RX ring */
  843         error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
  844                                  (void **)&sc->vge_ldata.vge_rx_list,
  845                                  BUS_DMA_WAITOK | BUS_DMA_ZERO,
  846                                  &sc->vge_ldata.vge_rx_list_map);
  847         if (error) {
  848                 device_printf(dev, "could not allocate rx list dma memory\n");
  849                 return error;
  850         }
  851 
  852         /* Load the map for the RX ring. */
  853         error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
  854                                 sc->vge_ldata.vge_rx_list_map,
  855                                 sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ,
  856                                 vge_dma_map_addr,
  857                                 &sc->vge_ldata.vge_rx_list_addr,
  858                                 BUS_DMA_WAITOK);
  859         if (error) {
  860                 device_printf(dev, "could not load rx list\n");
  861                 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
  862                                 sc->vge_ldata.vge_rx_list,
  863                                 sc->vge_ldata.vge_rx_list_map);
  864                 sc->vge_ldata.vge_rx_list = NULL;
  865                 return error;
  866         }
  867 
  868         /* Create DMA maps for RX buffers */
  869         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
  870                 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
  871                                           &sc->vge_ldata.vge_rx_dmamap[i]);
  872                 if (error) {
  873                         device_printf(dev, "can't create DMA map for RX\n");
  874                         rx_pos = i;
  875                         goto map_fail;
  876                 }
  877         }
  878         return (0);
  879 
  880 map_fail:
  881         for (i = 0; i < tx_pos; ++i) {
  882                 error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
  883                                            sc->vge_ldata.vge_tx_dmamap[i]);
  884         }
  885         for (i = 0; i < rx_pos; ++i) {
  886                 error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
  887                                            sc->vge_ldata.vge_rx_dmamap[i]);
  888         }
  889         bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
  890         sc->vge_ldata.vge_mtag = NULL;
  891 
  892         return error;
  893 }
  894 
  895 static void
  896 vge_dma_free(struct vge_softc *sc)
  897 {
  898         /* Unload and free the RX DMA ring memory and map */
  899         if (sc->vge_ldata.vge_rx_list_tag) {
  900                 bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
  901                                   sc->vge_ldata.vge_rx_list_map);
  902                 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
  903                                 sc->vge_ldata.vge_rx_list,
  904                                 sc->vge_ldata.vge_rx_list_map);
  905         }
  906 
  907         if (sc->vge_ldata.vge_rx_list_tag)
  908                 bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
  909 
  910         /* Unload and free the TX DMA ring memory and map */
  911         if (sc->vge_ldata.vge_tx_list_tag) {
  912                 bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
  913                                   sc->vge_ldata.vge_tx_list_map);
  914                 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
  915                                 sc->vge_ldata.vge_tx_list,
  916                                 sc->vge_ldata.vge_tx_list_map);
  917         }
  918 
  919         if (sc->vge_ldata.vge_tx_list_tag)
  920                 bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
  921 
  922         /* Destroy all the RX and TX buffer maps */
  923         if (sc->vge_ldata.vge_mtag) {
  924                 int i;
  925 
  926                 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
  927                         bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
  928                                            sc->vge_ldata.vge_tx_dmamap[i]);
  929                 }
  930                 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
  931                         bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
  932                                            sc->vge_ldata.vge_rx_dmamap[i]);
  933                 }
  934                 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
  935         }
  936 
  937         if (sc->vge_parent_tag)
  938                 bus_dma_tag_destroy(sc->vge_parent_tag);
  939 }
  940 
  941 /*
  942  * Attach the interface. Allocate softc structures, do ifmedia
  943  * setup and ethernet/BPF attach.
  944  */
  945 static int
  946 vge_attach(device_t dev)
  947 {
  948         uint8_t eaddr[ETHER_ADDR_LEN];
  949         struct vge_softc *sc;
  950         struct ifnet *ifp;
  951         int error = 0;
  952 
  953         sc = device_get_softc(dev);
  954         ifp = &sc->arpcom.ac_if;
  955 
  956         /* Initialize if_xname early, so if_printf() can be used */
  957         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  958 
  959         /*
  960          * Map control/status registers.
  961          */
  962         pci_enable_busmaster(dev);
  963 
  964         sc->vge_res_rid = VGE_PCI_LOMEM;
  965         sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  966                                              &sc->vge_res_rid, RF_ACTIVE);
  967         if (sc->vge_res == NULL) {
  968                 device_printf(dev, "couldn't map ports/memory\n");
  969                 return ENXIO;
  970         }
  971 
  972         sc->vge_btag = rman_get_bustag(sc->vge_res);
  973         sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
  974 
  975         /* Allocate interrupt */
  976         sc->vge_irq_rid = 0;
  977         sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid,
  978                                              RF_SHAREABLE | RF_ACTIVE);
  979         if (sc->vge_irq == NULL) {
  980                 device_printf(dev, "couldn't map interrupt\n");
  981                 error = ENXIO;
  982                 goto fail;
  983         }
  984 
  985         /* Reset the adapter. */
  986         vge_reset(sc);
  987 
  988         /*
  989          * Get station address from the EEPROM.
  990          */
  991         vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0);
  992 
  993         /* Allocate DMA related stuffs */
  994         error = vge_dma_alloc(dev);
  995         if (error)
  996                 goto fail;
  997 
  998         /* Do MII setup */
  999         error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd,
 1000                               vge_ifmedia_sts);
 1001         if (error) {
 1002                 device_printf(dev, "MII without any phy!\n");
 1003                 goto fail;
 1004         }
 1005 
 1006         ifp->if_softc = sc;
 1007         ifp->if_mtu = ETHERMTU;
 1008         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1009         ifp->if_init = vge_init;
 1010         ifp->if_start = vge_start;
 1011         ifp->if_watchdog = vge_watchdog;
 1012         ifp->if_ioctl = vge_ioctl;
 1013 #ifdef IFPOLL_ENABLE
 1014         ifp->if_npoll = vge_npoll;
 1015 #endif
 1016         ifp->if_hwassist = VGE_CSUM_FEATURES;
 1017         ifp->if_capabilities = IFCAP_VLAN_MTU |
 1018                                IFCAP_HWCSUM |
 1019                                IFCAP_VLAN_HWTAGGING;
 1020         ifp->if_capenable = ifp->if_capabilities;
 1021         ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
 1022         ifq_set_ready(&ifp->if_snd);
 1023 
 1024         /*
 1025          * Call MI attach routine.
 1026          */
 1027         ether_ifattach(ifp, eaddr, NULL);
 1028 
 1029         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vge_irq));
 1030 
 1031 #ifdef IFPOLL_ENABLE
 1032         ifpoll_compat_setup(&sc->vge_npoll, NULL, NULL, device_get_unit(dev),
 1033             ifp->if_serializer);
 1034 #endif
 1035 
 1036         /* Hook interrupt last to avoid having to lock softc */
 1037         error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc,
 1038                                &sc->vge_intrhand, ifp->if_serializer);
 1039         if (error) {
 1040                 device_printf(dev, "couldn't set up irq\n");
 1041                 ether_ifdetach(ifp);
 1042                 goto fail;
 1043         }
 1044 
 1045         return 0;
 1046 fail:
 1047         vge_detach(dev);
 1048         return error;
 1049 }
 1050 
 1051 /*
 1052  * Shutdown hardware and free up resources. This can be called any
 1053  * time after the mutex has been initialized. It is called in both
 1054  * the error case in attach and the normal detach case so it needs
 1055  * to be careful about only freeing resources that have actually been
 1056  * allocated.
 1057  */
 1058 static int
 1059 vge_detach(device_t dev)
 1060 {
 1061         struct vge_softc *sc = device_get_softc(dev);
 1062         struct ifnet *ifp = &sc->arpcom.ac_if;
 1063 
 1064         /* These should only be active if attach succeeded */
 1065         if (device_is_attached(dev)) {
 1066                 lwkt_serialize_enter(ifp->if_serializer);
 1067 
 1068                 vge_stop(sc);
 1069                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
 1070                 /*
 1071                  * Force off the IFF_UP flag here, in case someone
 1072                  * still had a BPF descriptor attached to this
 1073                  * interface. If they do, ether_ifattach() will cause
 1074                  * the BPF code to try and clear the promisc mode
 1075                  * flag, which will bubble down to vge_ioctl(),
 1076                  * which will try to call vge_init() again. This will
 1077                  * turn the NIC back on and restart the MII ticker,
 1078                  * which will panic the system when the kernel tries
 1079                  * to invoke the vge_tick() function that isn't there
 1080                  * anymore.
 1081                  */
 1082                 ifp->if_flags &= ~IFF_UP;
 1083 
 1084                 lwkt_serialize_exit(ifp->if_serializer);
 1085 
 1086                 ether_ifdetach(ifp);
 1087         }
 1088 
 1089         if (sc->vge_miibus)
 1090                 device_delete_child(dev, sc->vge_miibus);
 1091         bus_generic_detach(dev);
 1092 
 1093         if (sc->vge_irq) {
 1094                 bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid,
 1095                                      sc->vge_irq);
 1096         }
 1097 
 1098         if (sc->vge_res) {
 1099                 bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid,
 1100                                      sc->vge_res);
 1101         }
 1102 
 1103         vge_dma_free(sc);
 1104         return (0);
 1105 }
 1106 
 1107 static int
 1108 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
 1109 {
 1110         struct vge_dmaload_arg arg;
 1111         struct mbuf *n = NULL;
 1112         int i, error;
 1113 
 1114         if (m == NULL) {
 1115                 n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
 1116                 if (n == NULL)
 1117                         return (ENOBUFS);
 1118                 m = n;
 1119         } else {
 1120                 m->m_data = m->m_ext.ext_buf;
 1121         }
 1122 
 1123 
 1124 #ifdef VGE_FIXUP_RX
 1125         /*
 1126          * This is part of an evil trick to deal with non-x86 platforms.
 1127          * The VIA chip requires RX buffers to be aligned on 32-bit
 1128          * boundaries, but that will hose non-x86 machines. To get around
 1129          * this, we leave some empty space at the start of each buffer
 1130          * and for non-x86 hosts, we copy the buffer back two bytes
 1131          * to achieve word alignment. This is slightly more efficient
 1132          * than allocating a new buffer, copying the contents, and
 1133          * discarding the old buffer.
 1134          */
 1135         m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
 1136         m_adj(m, VGE_ETHER_ALIGN);
 1137 #else
 1138         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1139 #endif
 1140 
 1141         arg.sc = sc;
 1142         arg.vge_idx = idx;
 1143         arg.vge_maxsegs = 1;
 1144         arg.vge_flags = 0;
 1145 
 1146         error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
 1147                                      sc->vge_ldata.vge_rx_dmamap[idx], m,
 1148                                      vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT);
 1149         if (error || arg.vge_maxsegs != 1) {
 1150                 if (n != NULL)
 1151                         m_freem(n);
 1152                 return (ENOMEM);
 1153         }
 1154 
 1155         /*
 1156          * Note: the manual fails to document the fact that for
 1157          * proper opration, the driver needs to replentish the RX
 1158          * DMA ring 4 descriptors at a time (rather than one at a
 1159          * time, like most chips). We can allocate the new buffers
 1160          * but we should not set the OWN bits until we're ready
 1161          * to hand back 4 of them in one shot.
 1162          */
 1163 
 1164 #define VGE_RXCHUNK 4
 1165         sc->vge_rx_consumed++;
 1166         if (sc->vge_rx_consumed == VGE_RXCHUNK) {
 1167                 for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
 1168                         sc->vge_ldata.vge_rx_list[i].vge_sts |=
 1169                             htole32(VGE_RDSTS_OWN);
 1170                 }
 1171                 sc->vge_rx_consumed = 0;
 1172         }
 1173 
 1174         sc->vge_ldata.vge_rx_mbuf[idx] = m;
 1175 
 1176         bus_dmamap_sync(sc->vge_ldata.vge_mtag,
 1177                         sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD);
 1178 
 1179         return (0);
 1180 }
 1181 
 1182 static int
 1183 vge_tx_list_init(struct vge_softc *sc)
 1184 {
 1185         bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
 1186         bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
 1187             (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
 1188 
 1189         bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
 1190             sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
 1191         sc->vge_ldata.vge_tx_prodidx = 0;
 1192         sc->vge_ldata.vge_tx_considx = 0;
 1193         sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
 1194 
 1195         return (0);
 1196 }
 1197 
 1198 static int
 1199 vge_rx_list_init(struct vge_softc *sc)
 1200 {
 1201         int i;
 1202 
 1203         bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
 1204         bzero(&sc->vge_ldata.vge_rx_mbuf,
 1205               VGE_RX_DESC_CNT * sizeof(struct mbuf *));
 1206 
 1207         sc->vge_rx_consumed = 0;
 1208 
 1209         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
 1210                 if (vge_newbuf(sc, i, NULL) == ENOBUFS)
 1211                         return (ENOBUFS);
 1212         }
 1213 
 1214         /* Flush the RX descriptors */
 1215         bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
 1216                         sc->vge_ldata.vge_rx_list_map,
 1217                         BUS_DMASYNC_PREWRITE);
 1218 
 1219         sc->vge_ldata.vge_rx_prodidx = 0;
 1220         sc->vge_rx_consumed = 0;
 1221         sc->vge_head = sc->vge_tail = NULL;
 1222         return (0);
 1223 }
 1224 
 1225 #ifdef VGE_FIXUP_RX
 1226 static __inline void
 1227 vge_fixup_rx(struct mbuf *m)
 1228 {
 1229         uint16_t *src, *dst;
 1230         int i;
 1231 
 1232         src = mtod(m, uint16_t *);
 1233         dst = src - 1;
 1234 
 1235         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
 1236                 *dst++ = *src++;
 1237 
 1238         m->m_data -= ETHER_ALIGN;
 1239 }
 1240 #endif
 1241 
 1242 /*
 1243  * RX handler. We support the reception of jumbo frames that have
 1244  * been fragmented across multiple 2K mbuf cluster buffers.
 1245  */
 1246 static void
 1247 vge_rxeof(struct vge_softc *sc, int count)
 1248 {
 1249         struct ifnet *ifp = &sc->arpcom.ac_if;
 1250         struct mbuf *m;
 1251         int i, total_len, lim = 0;
 1252         struct vge_rx_desc *cur_rx;
 1253         uint32_t rxstat, rxctl;
 1254 
 1255         ASSERT_SERIALIZED(ifp->if_serializer);
 1256 
 1257         i = sc->vge_ldata.vge_rx_prodidx;
 1258 
 1259         /* Invalidate the descriptor memory */
 1260 
 1261         bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
 1262                         sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD);
 1263 
 1264         while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
 1265 #ifdef IFPOLL_ENABLE
 1266                 if (count >= 0 && count-- == 0)
 1267                         break;
 1268 #endif
 1269 
 1270                 cur_rx = &sc->vge_ldata.vge_rx_list[i];
 1271                 m = sc->vge_ldata.vge_rx_mbuf[i];
 1272                 total_len = VGE_RXBYTES(cur_rx);
 1273                 rxstat = le32toh(cur_rx->vge_sts);
 1274                 rxctl = le32toh(cur_rx->vge_ctl);
 1275 
 1276                 /* Invalidate the RX mbuf and unload its map */
 1277                 bus_dmamap_sync(sc->vge_ldata.vge_mtag,
 1278                                 sc->vge_ldata.vge_rx_dmamap[i],
 1279                                 BUS_DMASYNC_POSTWRITE);
 1280                 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
 1281                                   sc->vge_ldata.vge_rx_dmamap[i]);
 1282 
 1283                 /*
 1284                  * If the 'start of frame' bit is set, this indicates
 1285                  * either the first fragment in a multi-fragment receive,
 1286                  * or an intermediate fragment. Either way, we want to
 1287                  * accumulate the buffers.
 1288                  */
 1289                 if (rxstat & VGE_RXPKT_SOF) {
 1290                         m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
 1291                         if (sc->vge_head == NULL) {
 1292                                 sc->vge_head = sc->vge_tail = m;
 1293                         } else {
 1294                                 m->m_flags &= ~M_PKTHDR;
 1295                                 sc->vge_tail->m_next = m;
 1296                                 sc->vge_tail = m;
 1297                         }
 1298                         vge_newbuf(sc, i, NULL);
 1299                         VGE_RX_DESC_INC(i);
 1300                         continue;
 1301                 }
 1302 
 1303                 /*
 1304                  * Bad/error frames will have the RXOK bit cleared.
 1305                  * However, there's one error case we want to allow:
 1306                  * if a VLAN tagged frame arrives and the chip can't
 1307                  * match it against the CAM filter, it considers this
 1308                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
 1309                  * We don't want to drop the frame though: our VLAN
 1310                  * filtering is done in software.
 1311                  */
 1312                 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) &&
 1313                     !(rxstat & VGE_RDSTS_CSUMERR)) {
 1314                         IFNET_STAT_INC(ifp, ierrors, 1);
 1315                         /*
 1316                          * If this is part of a multi-fragment packet,
 1317                          * discard all the pieces.
 1318                          */
 1319                         if (sc->vge_head != NULL) {
 1320                                 m_freem(sc->vge_head);
 1321                                 sc->vge_head = sc->vge_tail = NULL;
 1322                         }
 1323                         vge_newbuf(sc, i, m);
 1324                         VGE_RX_DESC_INC(i);
 1325                         continue;
 1326                 }
 1327 
 1328                 /*
 1329                  * If allocating a replacement mbuf fails,
 1330                  * reload the current one.
 1331                  */
 1332                 if (vge_newbuf(sc, i, NULL)) {
 1333                         IFNET_STAT_INC(ifp, ierrors, 1);
 1334                         if (sc->vge_head != NULL) {
 1335                                 m_freem(sc->vge_head);
 1336                                 sc->vge_head = sc->vge_tail = NULL;
 1337                         }
 1338                         vge_newbuf(sc, i, m);
 1339                         VGE_RX_DESC_INC(i);
 1340                         continue;
 1341                 }
 1342 
 1343                 VGE_RX_DESC_INC(i);
 1344 
 1345                 if (sc->vge_head != NULL) {
 1346                         m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
 1347                         /*
 1348                          * Special case: if there's 4 bytes or less
 1349                          * in this buffer, the mbuf can be discarded:
 1350                          * the last 4 bytes is the CRC, which we don't
 1351                          * care about anyway.
 1352                          */
 1353                         if (m->m_len <= ETHER_CRC_LEN) {
 1354                                 sc->vge_tail->m_len -=
 1355                                     (ETHER_CRC_LEN - m->m_len);
 1356                                 m_freem(m);
 1357                         } else {
 1358                                 m->m_len -= ETHER_CRC_LEN;
 1359                                 m->m_flags &= ~M_PKTHDR;
 1360                                 sc->vge_tail->m_next = m;
 1361                         }
 1362                         m = sc->vge_head;
 1363                         sc->vge_head = sc->vge_tail = NULL;
 1364                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
 1365                 } else {
 1366                         m->m_pkthdr.len = m->m_len =
 1367                             (total_len - ETHER_CRC_LEN);
 1368                 }
 1369 
 1370 #ifdef VGE_FIXUP_RX
 1371                 vge_fixup_rx(m);
 1372 #endif
 1373                 IFNET_STAT_INC(ifp, ipackets, 1);
 1374                 m->m_pkthdr.rcvif = ifp;
 1375 
 1376                 /* Do RX checksumming if enabled */
 1377                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 1378                         /* Check IP header checksum */
 1379                         if (rxctl & VGE_RDCTL_IPPKT)
 1380                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 1381                         if (rxctl & VGE_RDCTL_IPCSUMOK)
 1382                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 1383 
 1384                         /* Check TCP/UDP checksum */
 1385                         if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
 1386                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
 1387                                 m->m_pkthdr.csum_flags |=
 1388                                     CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
 1389                                     CSUM_FRAG_NOT_CHECKED;
 1390                                 m->m_pkthdr.csum_data = 0xffff;
 1391                         }
 1392                 }
 1393 
 1394                 if (rxstat & VGE_RDSTS_VTAG) {
 1395                         m->m_flags |= M_VLANTAG;
 1396                         m->m_pkthdr.ether_vlantag =
 1397                                 ntohs((rxctl & VGE_RDCTL_VLANID));
 1398                 }
 1399                 ifp->if_input(ifp, m);
 1400 
 1401                 lim++;
 1402                 if (lim == VGE_RX_DESC_CNT)
 1403                         break;
 1404         }
 1405 
 1406         /* Flush the RX DMA ring */
 1407         bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
 1408                         sc->vge_ldata.vge_rx_list_map,
 1409                         BUS_DMASYNC_PREWRITE);
 1410 
 1411         sc->vge_ldata.vge_rx_prodidx = i;
 1412         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
 1413 }
 1414 
 1415 static void
 1416 vge_txeof(struct vge_softc *sc)
 1417 {
 1418         struct ifnet *ifp = &sc->arpcom.ac_if;
 1419         uint32_t txstat;
 1420         int idx;
 1421 
 1422         idx = sc->vge_ldata.vge_tx_considx;
 1423 
 1424         /* Invalidate the TX descriptor list */
 1425 
 1426         bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
 1427                         sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD);
 1428 
 1429         while (idx != sc->vge_ldata.vge_tx_prodidx) {
 1430 
 1431                 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
 1432                 if (txstat & VGE_TDSTS_OWN)
 1433                         break;
 1434 
 1435                 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
 1436                 sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
 1437                 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
 1438                                   sc->vge_ldata.vge_tx_dmamap[idx]);
 1439                 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
 1440                         IFNET_STAT_INC(ifp, collisions, 1);
 1441                 if (txstat & VGE_TDSTS_TXERR)
 1442                         IFNET_STAT_INC(ifp, oerrors, 1);
 1443                 else
 1444                         IFNET_STAT_INC(ifp, opackets, 1);
 1445 
 1446                 sc->vge_ldata.vge_tx_free++;
 1447                 VGE_TX_DESC_INC(idx);
 1448         }
 1449 
 1450         /* No changes made to the TX ring, so no flush needed */
 1451         if (idx != sc->vge_ldata.vge_tx_considx) {
 1452                 sc->vge_ldata.vge_tx_considx = idx;
 1453                 ifq_clr_oactive(&ifp->if_snd);
 1454                 ifp->if_timer = 0;
 1455         }
 1456 
 1457         /*
 1458          * If not all descriptors have been released reaped yet,
 1459          * reload the timer so that we will eventually get another
 1460          * interrupt that will cause us to re-enter this routine.
 1461          * This is done in case the transmitter has gone idle.
 1462          */
 1463         if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
 1464                 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
 1465 }
 1466 
 1467 static void
 1468 vge_tick(struct vge_softc *sc)
 1469 {
 1470         struct ifnet *ifp = &sc->arpcom.ac_if;
 1471         struct mii_data *mii;
 1472 
 1473         mii = device_get_softc(sc->vge_miibus);
 1474 
 1475         mii_tick(mii);
 1476         if (sc->vge_link) {
 1477                 if (!(mii->mii_media_status & IFM_ACTIVE))
 1478                         sc->vge_link = 0;
 1479         } else {
 1480                 if (mii->mii_media_status & IFM_ACTIVE &&
 1481                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 1482                         sc->vge_link = 1;
 1483                         if (!ifq_is_empty(&ifp->if_snd))
 1484                                 if_devstart(ifp);
 1485                 }
 1486         }
 1487 }
 1488 
 1489 #ifdef IFPOLL_ENABLE
 1490 
 1491 static void
 1492 vge_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
 1493 {
 1494         struct vge_softc *sc = ifp->if_softc;
 1495 
 1496         ASSERT_SERIALIZED(ifp->if_serializer);
 1497 
 1498         vge_rxeof(sc, count);
 1499         vge_txeof(sc);
 1500 
 1501         if (!ifq_is_empty(&ifp->if_snd))
 1502                 if_devstart(ifp);
 1503 
 1504         /* XXX copy & paste from vge_intr */
 1505         if (sc->vge_npoll.ifpc_stcount-- == 0) {
 1506                 uint32_t status;
 1507 
 1508                 sc->vge_npoll.ifpc_stcount = sc->vge_npoll.ifpc_stfrac;
 1509 
 1510                 status = CSR_READ_4(sc, VGE_ISR);
 1511                 if (status == 0xffffffff)
 1512                         return;
 1513 
 1514                 if (status)
 1515                         CSR_WRITE_4(sc, VGE_ISR, status);
 1516 
 1517                 if (status & (VGE_ISR_TXDMA_STALL |
 1518                               VGE_ISR_RXDMA_STALL))
 1519                         vge_init(sc);
 1520 
 1521                 if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
 1522                         IFNET_STAT_INC(ifp, ierrors, 1);
 1523                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
 1524                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
 1525                 }
 1526         }
 1527 }
 1528 
 1529 static void
 1530 vge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
 1531 {
 1532         struct vge_softc *sc = ifp->if_softc;
 1533 
 1534         ASSERT_SERIALIZED(ifp->if_serializer);
 1535 
 1536         if (info != NULL) {
 1537                 int cpuid = sc->vge_npoll.ifpc_cpuid;
 1538 
 1539                 info->ifpi_rx[cpuid].poll_func = vge_npoll_compat;
 1540                 info->ifpi_rx[cpuid].arg = NULL;
 1541                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
 1542 
 1543                 if (ifp->if_flags & IFF_RUNNING)
 1544                         vge_disable_intr(sc);
 1545                 ifq_set_cpuid(&ifp->if_snd, cpuid);
 1546         } else {
 1547                 if (ifp->if_flags & IFF_RUNNING)
 1548                         vge_enable_intr(sc, 0xffffffff);
 1549                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vge_irq));
 1550         }
 1551 }
 1552 
 1553 #endif  /* IFPOLL_ENABLE */
 1554 
 1555 static void
 1556 vge_intr(void *arg)
 1557 {
 1558         struct vge_softc *sc = arg;
 1559         struct ifnet *ifp = &sc->arpcom.ac_if;
 1560         uint32_t status;
 1561 
 1562         if (sc->suspended || !(ifp->if_flags & IFF_UP))
 1563                 return;
 1564 
 1565         /* Disable interrupts */
 1566         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
 1567 
 1568         for (;;) {
 1569                 status = CSR_READ_4(sc, VGE_ISR);
 1570                 /* If the card has gone away the read returns 0xffff. */
 1571                 if (status == 0xFFFFFFFF)
 1572                         break;
 1573 
 1574                 if (status)
 1575                         CSR_WRITE_4(sc, VGE_ISR, status);
 1576 
 1577                 if ((status & VGE_INTRS) == 0)
 1578                         break;
 1579 
 1580                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
 1581                         vge_rxeof(sc, -1);
 1582 
 1583                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
 1584                         vge_rxeof(sc, -1);
 1585                         IFNET_STAT_INC(ifp, ierrors, 1);
 1586                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
 1587                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
 1588                 }
 1589 
 1590                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
 1591                         vge_txeof(sc);
 1592 
 1593                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
 1594                         vge_init(sc);
 1595 
 1596                 if (status & VGE_ISR_LINKSTS)
 1597                         vge_tick(sc);
 1598         }
 1599 
 1600         /* Re-enable interrupts */
 1601         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
 1602 
 1603         if (!ifq_is_empty(&ifp->if_snd))
 1604                 if_devstart(ifp);
 1605 }
 1606 
 1607 static int
 1608 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
 1609 {
 1610         struct vge_dmaload_arg arg;
 1611         bus_dmamap_t map;
 1612         int error;
 1613 
 1614         arg.vge_flags = 0;
 1615 
 1616         if (m_head->m_pkthdr.csum_flags & CSUM_IP)
 1617                 arg.vge_flags |= VGE_TDCTL_IPCSUM;
 1618         if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
 1619                 arg.vge_flags |= VGE_TDCTL_TCPCSUM;
 1620         if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
 1621                 arg.vge_flags |= VGE_TDCTL_UDPCSUM;
 1622 
 1623         arg.sc = sc;
 1624         arg.vge_idx = idx;
 1625         arg.vge_m0 = m_head;
 1626         arg.vge_maxsegs = VGE_TX_FRAGS;
 1627 
 1628         map = sc->vge_ldata.vge_tx_dmamap[idx];
 1629         error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head,
 1630                                      vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
 1631         if (error && error != EFBIG) {
 1632                 if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n",
 1633                           error);
 1634                 goto fail;
 1635         }
 1636 
 1637         /* Too many segments to map, coalesce into a single mbuf */
 1638         if (error || arg.vge_maxsegs == 0) {
 1639                 struct mbuf *m_new;
 1640 
 1641                 m_new = m_defrag(m_head, MB_DONTWAIT);
 1642                 if (m_new == NULL) {
 1643                         error = ENOBUFS;
 1644                         goto fail;
 1645                 } else {
 1646                         m_head = m_new;
 1647                 }
 1648 
 1649                 arg.sc = sc;
 1650                 arg.vge_m0 = m_head;
 1651                 arg.vge_idx = idx;
 1652                 arg.vge_maxsegs = 1;
 1653 
 1654                 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
 1655                                              m_head, vge_dma_map_tx_desc, &arg,
 1656                                              BUS_DMA_NOWAIT);
 1657                 if (error) {
 1658                         if_printf(&sc->arpcom.ac_if,
 1659                                   "can't map mbuf (error %d)\n", error);
 1660                         goto fail;
 1661                 }
 1662         }
 1663 
 1664         sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
 1665         sc->vge_ldata.vge_tx_free--;
 1666 
 1667         /*
 1668          * Set up hardware VLAN tagging.
 1669          */
 1670         if (m_head->m_flags & M_VLANTAG) {
 1671                 sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
 1672                         htole32(htons(m_head->m_pkthdr.ether_vlantag) |
 1673                                 VGE_TDCTL_VTAG);
 1674         }
 1675 
 1676         sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
 1677         return (0);
 1678 
 1679 fail:
 1680         m_freem(m_head);
 1681         return error;
 1682 }
 1683 
 1684 /*
 1685  * Main transmit routine.
 1686  */
 1687 
 1688 static void
 1689 vge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 1690 {
 1691         struct vge_softc *sc = ifp->if_softc;
 1692         struct mbuf *m_head = NULL;
 1693         int idx, pidx = 0;
 1694 
 1695         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 1696         ASSERT_SERIALIZED(ifp->if_serializer);
 1697 
 1698         if (!sc->vge_link) {
 1699                 ifq_purge(&ifp->if_snd);
 1700                 return;
 1701         }
 1702 
 1703         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
 1704                 return;
 1705 
 1706         idx = sc->vge_ldata.vge_tx_prodidx;
 1707 
 1708         pidx = idx - 1;
 1709         if (pidx < 0)
 1710                 pidx = VGE_TX_DESC_CNT - 1;
 1711 
 1712         while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
 1713                 if (sc->vge_ldata.vge_tx_free <= 2) {
 1714                         ifq_set_oactive(&ifp->if_snd);
 1715                         break;
 1716                 }
 1717 
 1718                 m_head = ifq_dequeue(&ifp->if_snd);
 1719                 if (m_head == NULL)
 1720                         break;
 1721 
 1722                 if (vge_encap(sc, m_head, idx)) {
 1723                         /* If vge_encap() failed, it will free m_head for us */
 1724                         ifq_set_oactive(&ifp->if_snd);
 1725                         break;
 1726                 }
 1727 
 1728                 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
 1729                     htole16(VGE_TXDESC_Q);
 1730 
 1731                 pidx = idx;
 1732                 VGE_TX_DESC_INC(idx);
 1733 
 1734                 /*
 1735                  * If there's a BPF listener, bounce a copy of this frame
 1736                  * to him.
 1737                  */
 1738                 ETHER_BPF_MTAP(ifp, m_head);
 1739         }
 1740 
 1741         if (idx == sc->vge_ldata.vge_tx_prodidx)
 1742                 return;
 1743 
 1744         /* Flush the TX descriptors */
 1745         bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
 1746                         sc->vge_ldata.vge_tx_list_map,
 1747                         BUS_DMASYNC_PREWRITE);
 1748 
 1749         /* Issue a transmit command. */
 1750         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
 1751 
 1752         sc->vge_ldata.vge_tx_prodidx = idx;
 1753 
 1754         /*
 1755          * Use the countdown timer for interrupt moderation.
 1756          * 'TX done' interrupts are disabled. Instead, we reset the
 1757          * countdown timer, which will begin counting until it hits
 1758          * the value in the SSTIMER register, and then trigger an
 1759          * interrupt. Each time we set the TIMER0_ENABLE bit, the
 1760          * the timer count is reloaded. Only when the transmitter
 1761          * is idle will the timer hit 0 and an interrupt fire.
 1762          */
 1763         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
 1764 
 1765         /*
 1766          * Set a timeout in case the chip goes out to lunch.
 1767          */
 1768         ifp->if_timer = 5;
 1769 }
 1770 
 1771 static void
 1772 vge_init(void *xsc)
 1773 {
 1774         struct vge_softc *sc = xsc;
 1775         struct ifnet *ifp = &sc->arpcom.ac_if;
 1776         struct mii_data *mii;
 1777         int i;
 1778 
 1779         ASSERT_SERIALIZED(ifp->if_serializer);
 1780 
 1781         mii = device_get_softc(sc->vge_miibus);
 1782 
 1783         /*
 1784          * Cancel pending I/O and free all RX/TX buffers.
 1785          */
 1786         vge_stop(sc);
 1787         vge_reset(sc);
 1788 
 1789         /*
 1790          * Initialize the RX and TX descriptors and mbufs.
 1791          */
 1792         vge_rx_list_init(sc);
 1793         vge_tx_list_init(sc);
 1794 
 1795         /* Set our station address */
 1796         for (i = 0; i < ETHER_ADDR_LEN; i++)
 1797                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]);
 1798 
 1799         /*
 1800          * Set receive FIFO threshold. Also allow transmission and
 1801          * reception of VLAN tagged frames.
 1802          */
 1803         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
 1804         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
 1805 
 1806         /* Set DMA burst length */
 1807         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
 1808         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
 1809 
 1810         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
 1811 
 1812         /* Set collision backoff algorithm */
 1813         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
 1814             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
 1815         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
 1816 
 1817         /* Disable LPSEL field in priority resolution */
 1818         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
 1819 
 1820         /*
 1821          * Load the addresses of the DMA queues into the chip.
 1822          * Note that we only use one transmit queue.
 1823          */
 1824         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
 1825             VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
 1826         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
 1827 
 1828         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
 1829             VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
 1830         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
 1831         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
 1832 
 1833         /* Enable and wake up the RX descriptor queue */
 1834         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
 1835         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
 1836 
 1837         /* Enable the TX descriptor queue */
 1838         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
 1839 
 1840         /* Set up the receive filter -- allow large frames for VLANs. */
 1841         CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
 1842 
 1843         /* If we want promiscuous mode, set the allframes bit. */
 1844         if (ifp->if_flags & IFF_PROMISC)
 1845                 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
 1846 
 1847         /* Set capture broadcast bit to capture broadcast frames. */
 1848         if (ifp->if_flags & IFF_BROADCAST)
 1849                 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
 1850 
 1851         /* Set multicast bit to capture multicast frames. */
 1852         if (ifp->if_flags & IFF_MULTICAST)
 1853                 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
 1854 
 1855         /* Init the cam filter. */
 1856         vge_cam_clear(sc);
 1857 
 1858         /* Init the multicast filter. */
 1859         vge_setmulti(sc);
 1860 
 1861         /* Enable flow control */
 1862 
 1863         CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
 1864 
 1865         /* Enable jumbo frame reception (if desired) */
 1866 
 1867         /* Start the MAC. */
 1868         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
 1869         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
 1870         CSR_WRITE_1(sc, VGE_CRS0,
 1871             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
 1872 
 1873         /*
 1874          * Configure one-shot timer for microsecond
 1875          * resulution and load it for 500 usecs.
 1876          */
 1877         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
 1878         CSR_WRITE_2(sc, VGE_SSTIMER, 400);
 1879 
 1880         /*
 1881          * Configure interrupt moderation for receive. Enable
 1882          * the holdoff counter and load it, and set the RX
 1883          * suppression count to the number of descriptors we
 1884          * want to allow before triggering an interrupt.
 1885          * The holdoff timer is in units of 20 usecs.
 1886          */
 1887 
 1888 #ifdef notyet
 1889         CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
 1890         /* Select the interrupt holdoff timer page. */
 1891         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
 1892         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
 1893         CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
 1894 
 1895         /* Enable use of the holdoff timer. */
 1896         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
 1897         CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
 1898 
 1899         /* Select the RX suppression threshold page. */
 1900         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
 1901         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
 1902         CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
 1903 
 1904         /* Restore the page select bits. */
 1905         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
 1906         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
 1907 #endif
 1908 
 1909 #ifdef IFPOLL_ENABLE
 1910         /* Disable intr if polling(4) is enabled */
 1911         if (ifp->if_flags & IFF_NPOLLING)
 1912                 vge_disable_intr(sc);
 1913         else
 1914 #endif
 1915         vge_enable_intr(sc, 0);
 1916 
 1917         mii_mediachg(mii);
 1918 
 1919         ifp->if_flags |= IFF_RUNNING;
 1920         ifq_clr_oactive(&ifp->if_snd);
 1921 
 1922         sc->vge_if_flags = 0;
 1923         sc->vge_link = 0;
 1924 }
 1925 
 1926 /*
 1927  * Set media options.
 1928  */
 1929 static int
 1930 vge_ifmedia_upd(struct ifnet *ifp)
 1931 {
 1932         struct vge_softc *sc = ifp->if_softc;
 1933         struct mii_data *mii = device_get_softc(sc->vge_miibus);
 1934 
 1935         mii_mediachg(mii);
 1936 
 1937         return (0);
 1938 }
 1939 
 1940 /*
 1941  * Report current media status.
 1942  */
 1943 static void
 1944 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1945 {
 1946         struct vge_softc *sc = ifp->if_softc;
 1947         struct mii_data *mii = device_get_softc(sc->vge_miibus);
 1948 
 1949         mii_pollstat(mii);
 1950         ifmr->ifm_active = mii->mii_media_active;
 1951         ifmr->ifm_status = mii->mii_media_status;
 1952 }
 1953 
 1954 static void
 1955 vge_miibus_statchg(device_t dev)
 1956 {
 1957         struct vge_softc *sc;
 1958         struct mii_data *mii;
 1959         struct ifmedia_entry *ife;
 1960 
 1961         sc = device_get_softc(dev);
 1962         mii = device_get_softc(sc->vge_miibus);
 1963         ife = mii->mii_media.ifm_cur;
 1964 
 1965         /*
 1966          * If the user manually selects a media mode, we need to turn
 1967          * on the forced MAC mode bit in the DIAGCTL register. If the
 1968          * user happens to choose a full duplex mode, we also need to
 1969          * set the 'force full duplex' bit. This applies only to
 1970          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
 1971          * mode is disabled, and in 1000baseT mode, full duplex is
 1972          * always implied, so we turn on the forced mode bit but leave
 1973          * the FDX bit cleared.
 1974          */
 1975 
 1976         switch (IFM_SUBTYPE(ife->ifm_media)) {
 1977         case IFM_AUTO:
 1978                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
 1979                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 1980                 break;
 1981         case IFM_1000_T:
 1982                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
 1983                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 1984                 break;
 1985         case IFM_100_TX:
 1986         case IFM_10_T:
 1987                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
 1988                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
 1989                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 1990                 else
 1991                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 1992                 break;
 1993         default:
 1994                 device_printf(dev, "unknown media type: %x\n",
 1995                               IFM_SUBTYPE(ife->ifm_media));
 1996                 break;
 1997         }
 1998 }
 1999 
 2000 static int
 2001 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
 2002 {
 2003         struct vge_softc *sc = ifp->if_softc;
 2004         struct ifreq *ifr = (struct ifreq *)data;
 2005         struct mii_data *mii;
 2006         int error = 0;
 2007 
 2008         switch (command) {
 2009         case SIOCSIFMTU:
 2010                 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
 2011                         error = EINVAL;
 2012                 ifp->if_mtu = ifr->ifr_mtu;
 2013                 break;
 2014         case SIOCSIFFLAGS:
 2015                 if (ifp->if_flags & IFF_UP) {
 2016                         if ((ifp->if_flags & IFF_RUNNING) &&
 2017                             (ifp->if_flags & IFF_PROMISC) &&
 2018                             !(sc->vge_if_flags & IFF_PROMISC)) {
 2019                                 CSR_SETBIT_1(sc, VGE_RXCTL,
 2020                                     VGE_RXCTL_RX_PROMISC);
 2021                                 vge_setmulti(sc);
 2022                         } else if ((ifp->if_flags & IFF_RUNNING) &&
 2023                                    !(ifp->if_flags & IFF_PROMISC) &&
 2024                                    (sc->vge_if_flags & IFF_PROMISC)) {
 2025                                 CSR_CLRBIT_1(sc, VGE_RXCTL,
 2026                                              VGE_RXCTL_RX_PROMISC);
 2027                                 vge_setmulti(sc);
 2028                         } else {
 2029                                 vge_init(sc);
 2030                         }
 2031                 } else {
 2032                         if (ifp->if_flags & IFF_RUNNING)
 2033                                 vge_stop(sc);
 2034                 }
 2035                 sc->vge_if_flags = ifp->if_flags;
 2036                 break;
 2037         case SIOCADDMULTI:
 2038         case SIOCDELMULTI:
 2039                 vge_setmulti(sc);
 2040                 break;
 2041         case SIOCGIFMEDIA:
 2042         case SIOCSIFMEDIA:
 2043                 mii = device_get_softc(sc->vge_miibus);
 2044                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 2045                 break;
 2046         case SIOCSIFCAP:
 2047             {
 2048                 uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 2049 
 2050                 if (mask & IFCAP_HWCSUM) {
 2051                         ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
 2052                         if (ifp->if_capenable & IFCAP_TXCSUM)
 2053                                 ifp->if_hwassist = VGE_CSUM_FEATURES;
 2054                         else
 2055                                 ifp->if_hwassist = 0;
 2056                         if (ifp->if_flags & IFF_RUNNING)
 2057                                 vge_init(sc);
 2058                 }
 2059             }
 2060                 break;
 2061         default:
 2062                 error = ether_ioctl(ifp, command, data);
 2063                 break;
 2064         }
 2065         return (error);
 2066 }
 2067 
 2068 static void
 2069 vge_watchdog(struct ifnet *ifp)
 2070 {
 2071         struct vge_softc *sc = ifp->if_softc;
 2072 
 2073         if_printf(ifp, "watchdog timeout\n");
 2074         IFNET_STAT_INC(ifp, oerrors, 1);
 2075 
 2076         vge_txeof(sc);
 2077         vge_rxeof(sc, -1);
 2078 
 2079         vge_init(sc);
 2080 }
 2081 
 2082 /*
 2083  * Stop the adapter and free any mbufs allocated to the
 2084  * RX and TX lists.
 2085  */
 2086 static void
 2087 vge_stop(struct vge_softc *sc)
 2088 {
 2089         struct ifnet *ifp = &sc->arpcom.ac_if;
 2090         int i;
 2091 
 2092         ASSERT_SERIALIZED(ifp->if_serializer);
 2093 
 2094         ifp->if_timer = 0;
 2095 
 2096         ifp->if_flags &= ~IFF_RUNNING;
 2097         ifq_clr_oactive(&ifp->if_snd);
 2098 
 2099         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
 2100         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
 2101         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
 2102         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
 2103         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
 2104         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
 2105 
 2106         if (sc->vge_head != NULL) {
 2107                 m_freem(sc->vge_head);
 2108                 sc->vge_head = sc->vge_tail = NULL;
 2109         }
 2110 
 2111         /* Free the TX list buffers. */
 2112         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
 2113                 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
 2114                         bus_dmamap_unload(sc->vge_ldata.vge_mtag,
 2115                                           sc->vge_ldata.vge_tx_dmamap[i]);
 2116                         m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
 2117                         sc->vge_ldata.vge_tx_mbuf[i] = NULL;
 2118                 }
 2119         }
 2120 
 2121         /* Free the RX list buffers. */
 2122         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
 2123                 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
 2124                         bus_dmamap_unload(sc->vge_ldata.vge_mtag,
 2125                                           sc->vge_ldata.vge_rx_dmamap[i]);
 2126                         m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
 2127                         sc->vge_ldata.vge_rx_mbuf[i] = NULL;
 2128                 }
 2129         }
 2130 }
 2131 
 2132 /*
 2133  * Device suspend routine.  Stop the interface and save some PCI
 2134  * settings in case the BIOS doesn't restore them properly on
 2135  * resume.
 2136  */
 2137 static int
 2138 vge_suspend(device_t dev)
 2139 {
 2140         struct vge_softc *sc = device_get_softc(dev);
 2141         struct ifnet *ifp = &sc->arpcom.ac_if;
 2142 
 2143         lwkt_serialize_enter(ifp->if_serializer);
 2144         vge_stop(sc);
 2145         sc->suspended = 1;
 2146         lwkt_serialize_exit(ifp->if_serializer);
 2147 
 2148         return (0);
 2149 }
 2150 
 2151 /*
 2152  * Device resume routine.  Restore some PCI settings in case the BIOS
 2153  * doesn't, re-enable busmastering, and restart the interface if
 2154  * appropriate.
 2155  */
 2156 static int
 2157 vge_resume(device_t dev)
 2158 {
 2159         struct vge_softc *sc = device_get_softc(dev);
 2160         struct ifnet *ifp = &sc->arpcom.ac_if;
 2161 
 2162         /* reenable busmastering */
 2163         pci_enable_busmaster(dev);
 2164         pci_enable_io(dev, SYS_RES_MEMORY);
 2165 
 2166         lwkt_serialize_enter(ifp->if_serializer);
 2167         /* reinitialize interface if necessary */
 2168         if (ifp->if_flags & IFF_UP)
 2169                 vge_init(sc);
 2170 
 2171         sc->suspended = 0;
 2172         lwkt_serialize_exit(ifp->if_serializer);
 2173 
 2174         return (0);
 2175 }
 2176 
 2177 /*
 2178  * Stop all chip I/O so that the kernel's probe routines don't
 2179  * get confused by errant DMAs when rebooting.
 2180  */
 2181 static void
 2182 vge_shutdown(device_t dev)
 2183 {
 2184         struct vge_softc *sc = device_get_softc(dev);
 2185         struct ifnet *ifp = &sc->arpcom.ac_if;
 2186 
 2187         lwkt_serialize_enter(ifp->if_serializer);
 2188         vge_stop(sc);
 2189         lwkt_serialize_exit(ifp->if_serializer);
 2190 }
 2191 
 2192 static void
 2193 vge_enable_intr(struct vge_softc *sc, uint32_t isr)
 2194 {
 2195         CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
 2196         CSR_WRITE_4(sc, VGE_ISR, isr);
 2197         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
 2198 }
 2199 
 2200 #ifdef IFPOLL_ENABLE
 2201 
 2202 static void
 2203 vge_disable_intr(struct vge_softc *sc)
 2204 {
 2205         CSR_WRITE_4(sc, VGE_IMR, 0);
 2206         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
 2207         sc->vge_npoll.ifpc_stcount = 0;
 2208 }
 2209 
 2210 #endif  /* IFPOLL_ENABLE */

Cache object: 8aa3ad006428ebbdc1270c549f423ede


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.