The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/wb/if_wb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  *
   32  * $FreeBSD: src/sys/pci/if_wb.c,v 1.26.2.6 2003/03/05 18:42:34 njl Exp $
   33  */
   34 
   35 /*
   36  * Winbond fast ethernet PCI NIC driver
   37  *
   38  * Supports various cheap network adapters based on the Winbond W89C840F
   39  * fast ethernet controller chip. This includes adapters manufactured by
   40  * Winbond itself and some made by Linksys.
   41  *
   42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   43  * Electrical Engineering Department
   44  * Columbia University, New York City
   45  */
   46 
   47 /*
   48  * The Winbond W89C840F chip is a bus master; in some ways it resembles
   49  * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
   50  * one major difference which is that while the registers do many of
   51  * the same things as a tulip adapter, the offsets are different: where
   52  * tulip registers are typically spaced 8 bytes apart, the Winbond
   53  * registers are spaced 4 bytes apart. The receiver filter is also
   54  * programmed differently.
   55  * 
   56  * Like the tulip, the Winbond chip uses small descriptors containing
   57  * a status word, a control word and 32-bit areas that can either be used
   58  * to point to two external data blocks, or to point to a single block
   59  * and another descriptor in a linked list. Descriptors can be grouped
   60  * together in blocks to form fixed length rings or can be chained
   61  * together in linked lists. A single packet may be spread out over
   62  * several descriptors if necessary.
   63  *
   64  * For the receive ring, this driver uses a linked list of descriptors,
   65  * each pointing to a single mbuf cluster buffer, which us large enough
   66  * to hold an entire packet. The link list is looped back to created a
   67  * closed ring.
   68  *
   69  * For transmission, the driver creates a linked list of 'super descriptors'
   70  * which each contain several individual descriptors linked toghether.
   71  * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
   72  * abuse as fragment pointers. This allows us to use a buffer managment
   73  * scheme very similar to that used in the ThunderLAN and Etherlink XL
   74  * drivers.
   75  *
   76  * Autonegotiation is performed using the external PHY via the MII bus.
   77  * The sample boards I have all use a Davicom PHY.
   78  *
   79  * Note: the author of the Linux driver for the Winbond chip alludes
   80  * to some sort of flaw in the chip's design that seems to mandate some
   81  * drastic workaround which signigicantly impairs transmit performance.
   82  * I have no idea what he's on about: transmit performance with all
   83  * three of my test boards seems fine.
   84  */
   85 
   86 #include <sys/param.h>
   87 #include <sys/systm.h>
   88 #include <sys/sockio.h>
   89 #include <sys/mbuf.h>
   90 #include <sys/malloc.h>
   91 #include <sys/kernel.h>
   92 #include <sys/socket.h>
   93 #include <sys/queue.h>
   94 #include <sys/serialize.h>
   95 #include <sys/bus.h>
   96 #include <sys/rman.h>
   97 #include <sys/thread2.h>
   98 #include <sys/interrupt.h>
   99 
  100 #include <net/if.h>
  101 #include <net/ifq_var.h>
  102 #include <net/if_arp.h>
  103 #include <net/ethernet.h>
  104 #include <net/if_dl.h>
  105 #include <net/if_media.h>
  106 
  107 #include <net/bpf.h>
  108 
  109 #include <vm/vm.h>              /* for vtophys */
  110 #include <vm/pmap.h>            /* for vtophys */
  111 
  112 #include "pcidevs.h"
  113 #include <bus/pci/pcireg.h>
  114 #include <bus/pci/pcivar.h>
  115 
  116 #include <dev/netif/mii_layer/mii.h>
  117 #include <dev/netif/mii_layer/miivar.h>
  118 
  119 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  120 #include "miibus_if.h"
  121 
  122 #define WB_USEIOSPACE
  123 
  124 #include "if_wbreg.h"
  125 
  126 /*
  127  * Various supported device vendors/types and their names.
  128  */
  129 static struct wb_type wb_devs[] = {
  130         { PCI_VENDOR_WINBOND, PCI_PRODUCT_WINBOND_W89C840F,
  131                 "Winbond W89C840F 10/100BaseTX" },
  132         { PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100ATX,
  133                 "Compex RL100-ATX 10/100baseTX" },
  134         { 0, 0, NULL }
  135 };
  136 
  137 static int      wb_probe(device_t);
  138 static int      wb_attach(device_t);
  139 static int      wb_detach(device_t);
  140 
  141 static void     wb_bfree(void *);
  142 static int      wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *,
  143                           struct mbuf *);
  144 static int      wb_encap(struct wb_softc *, struct wb_chain *, struct mbuf *);
  145 
  146 static void     wb_rxeof(struct wb_softc *);
  147 static void     wb_rxeoc(struct wb_softc *);
  148 static void     wb_txeof(struct wb_softc *);
  149 static void     wb_txeoc(struct wb_softc *);
  150 static void     wb_intr(void *);
  151 static void     wb_tick(void *);
  152 static void     wb_start(struct ifnet *, struct ifaltq_subque *);
  153 static int      wb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
  154 static void     wb_init(void *);
  155 static void     wb_stop(struct wb_softc *);
  156 static void     wb_watchdog(struct ifnet *);
  157 static void     wb_shutdown(device_t);
  158 static int      wb_ifmedia_upd(struct ifnet *);
  159 static void     wb_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  160 
  161 static void     wb_eeprom_putbyte(struct wb_softc *, int);
  162 static void     wb_eeprom_getword(struct wb_softc *, int, uint16_t *);
  163 static void     wb_read_eeprom(struct wb_softc *, caddr_t, int, int);
  164 static void     wb_mii_sync(struct wb_softc *);
  165 static void     wb_mii_send(struct wb_softc *, uint32_t, int);
  166 static int      wb_mii_readreg(struct wb_softc *, struct wb_mii_frame *);
  167 static int      wb_mii_writereg(struct wb_softc *, struct wb_mii_frame *);
  168 
  169 static void     wb_setcfg(struct wb_softc *, uint32_t);
  170 static void     wb_setmulti(struct wb_softc *);
  171 static void     wb_reset(struct wb_softc *);
  172 static void     wb_fixmedia(struct wb_softc *);
  173 static int      wb_list_rx_init(struct wb_softc *);
  174 static int      wb_list_tx_init(struct wb_softc *);
  175 
  176 static int      wb_miibus_readreg(device_t, int, int);
  177 static int      wb_miibus_writereg(device_t, int, int, int);
  178 static void     wb_miibus_statchg(device_t);
  179 
  180 #ifdef WB_USEIOSPACE
  181 #define WB_RES                  SYS_RES_IOPORT
  182 #define WB_RID                  WB_PCI_LOIO
  183 #else
  184 #define WB_RES                  SYS_RES_MEMORY
  185 #define WB_RID                  WB_PCI_LOMEM
  186 #endif
  187 
  188 static device_method_t wb_methods[] = {
  189         /* Device interface */
  190         DEVMETHOD(device_probe,         wb_probe),
  191         DEVMETHOD(device_attach,        wb_attach),
  192         DEVMETHOD(device_detach,        wb_detach),
  193         DEVMETHOD(device_shutdown,      wb_shutdown),
  194 
  195         /* bus interface, for miibus */
  196         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  197         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  198 
  199         /* MII interface */
  200         DEVMETHOD(miibus_readreg,       wb_miibus_readreg),
  201         DEVMETHOD(miibus_writereg,      wb_miibus_writereg),
  202         DEVMETHOD(miibus_statchg,       wb_miibus_statchg),
  203         DEVMETHOD_END
  204 };
  205 
  206 static DEFINE_CLASS_0(wb, wb_driver, wb_methods, sizeof(struct wb_softc));
  207 static devclass_t wb_devclass;
  208 
  209 DECLARE_DUMMY_MODULE(if_wb);
  210 DRIVER_MODULE(if_wb, pci, wb_driver, wb_devclass, NULL, NULL);
  211 DRIVER_MODULE(miibus, wb, miibus_driver, miibus_devclass, NULL, NULL);
  212 
  213 #define WB_SETBIT(sc, reg, x)                           \
  214         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  215 
  216 #define WB_CLRBIT(sc, reg, x)                           \
  217         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  218 
  219 #define SIO_SET(x)                                      \
  220         CSR_WRITE_4(sc, WB_SIO, CSR_READ_4(sc, WB_SIO) | (x))
  221 
  222 #define SIO_CLR(x)                                      \
  223         CSR_WRITE_4(sc, WB_SIO, CSR_READ_4(sc, WB_SIO) & ~(x))
  224 
  225 /*
  226  * Send a read command and address to the EEPROM, check for ACK.
  227  */
  228 static void
  229 wb_eeprom_putbyte(struct wb_softc *sc, int addr)
  230 {
  231         int d, i;
  232 
  233         d = addr | WB_EECMD_READ;
  234 
  235         /*
  236          * Feed in each bit and stobe the clock.
  237          */
  238         for (i = 0x400; i; i >>= 1) {
  239                 if (d & i)
  240                         SIO_SET(WB_SIO_EE_DATAIN);
  241                 else
  242                         SIO_CLR(WB_SIO_EE_DATAIN);
  243                 DELAY(100);
  244                 SIO_SET(WB_SIO_EE_CLK);
  245                 DELAY(150);
  246                 SIO_CLR(WB_SIO_EE_CLK);
  247                 DELAY(100);
  248         }
  249 }
  250 
  251 /*
  252  * Read a word of data stored in the EEPROM at address 'addr.'
  253  */
  254 static void
  255 wb_eeprom_getword(struct wb_softc *sc, int addr, uint16_t *dest)
  256 {
  257         int i;
  258         uint16_t word = 0;
  259 
  260         /* Enter EEPROM access mode. */
  261         CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
  262 
  263         /*
  264          * Send address of word we want to read.
  265          */
  266         wb_eeprom_putbyte(sc, addr);
  267 
  268         CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
  269 
  270         /*
  271          * Start reading bits from EEPROM.
  272          */
  273         for (i = 0x8000; i; i >>= 1) {
  274                 SIO_SET(WB_SIO_EE_CLK);
  275                 DELAY(100);
  276                 if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
  277                         word |= i;
  278                 SIO_CLR(WB_SIO_EE_CLK);
  279                 DELAY(100);
  280         }
  281 
  282         /* Turn off EEPROM access mode. */
  283         CSR_WRITE_4(sc, WB_SIO, 0);
  284 
  285         *dest = word;
  286 }
  287 
  288 /*
  289  * Read a sequence of words from the EEPROM.
  290  */
  291 static void
  292 wb_read_eeprom(struct wb_softc *sc, caddr_t dest, int off, int cnt)
  293 {
  294         int i;
  295         uint16_t word = 0, *ptr;
  296 
  297         for (i = 0; i < cnt; i++) {
  298                 wb_eeprom_getword(sc, off + i, &word);
  299                 ptr = (uint16_t *)(dest + (i * 2));
  300                 *ptr = word;
  301         }
  302 }
  303 
  304 /*
  305  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  306  */
  307 static void
  308 wb_mii_sync(struct wb_softc *sc)
  309 {
  310         int i;
  311 
  312         SIO_SET(WB_SIO_MII_DIR | WB_SIO_MII_DATAIN);
  313 
  314         for (i = 0; i < 32; i++) {
  315                 SIO_SET(WB_SIO_MII_CLK);
  316                 DELAY(1);
  317                 SIO_CLR(WB_SIO_MII_CLK);
  318                 DELAY(1);
  319         }
  320 }
  321 
  322 /*
  323  * Clock a series of bits through the MII.
  324  */
  325 static void
  326 wb_mii_send(struct wb_softc *sc, uint32_t bits, int cnt)
  327 {
  328         int i;
  329 
  330         SIO_CLR(WB_SIO_MII_CLK);
  331 
  332         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
  333                 if (bits & i)
  334                         SIO_SET(WB_SIO_MII_DATAIN);
  335                 else
  336                         SIO_CLR(WB_SIO_MII_DATAIN);
  337                 DELAY(1);
  338                 SIO_CLR(WB_SIO_MII_CLK);
  339                 DELAY(1);
  340                 SIO_SET(WB_SIO_MII_CLK);
  341         }
  342 }
  343 
  344 /*
  345  * Read an PHY register through the MII.
  346  */
  347 static int
  348 wb_mii_readreg(struct wb_softc *sc, struct wb_mii_frame *frame)
  349 {
  350         int ack, i;
  351 
  352         crit_enter();
  353 
  354         /*
  355          * Set up frame for RX.
  356          */
  357         frame->mii_stdelim = WB_MII_STARTDELIM;
  358         frame->mii_opcode = WB_MII_READOP;
  359         frame->mii_turnaround = 0;
  360         frame->mii_data = 0;
  361 
  362         CSR_WRITE_4(sc, WB_SIO, 0);
  363 
  364         /*
  365          * Turn on data xmit.
  366          */
  367         SIO_SET(WB_SIO_MII_DIR);
  368 
  369         wb_mii_sync(sc);
  370 
  371         /*
  372          * Send command/address info.
  373          */
  374         wb_mii_send(sc, frame->mii_stdelim, 2);
  375         wb_mii_send(sc, frame->mii_opcode, 2);
  376         wb_mii_send(sc, frame->mii_phyaddr, 5);
  377         wb_mii_send(sc, frame->mii_regaddr, 5);
  378 
  379         /* Idle bit */
  380         SIO_CLR((WB_SIO_MII_CLK | WB_SIO_MII_DATAIN));
  381         DELAY(1);
  382         SIO_SET(WB_SIO_MII_CLK);
  383         DELAY(1);
  384 
  385         /* Turn off xmit. */
  386         SIO_CLR(WB_SIO_MII_DIR);
  387         /* Check for ack */
  388         SIO_CLR(WB_SIO_MII_CLK);
  389         DELAY(1);
  390         ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
  391         SIO_SET(WB_SIO_MII_CLK);
  392         DELAY(1);
  393         SIO_CLR(WB_SIO_MII_CLK);
  394         DELAY(1);
  395         SIO_SET(WB_SIO_MII_CLK);
  396         DELAY(1);
  397 
  398         /*
  399          * Now try reading data bits. If the ack failed, we still
  400          * need to clock through 16 cycles to keep the PHY(s) in sync.
  401          */
  402         if (ack) {
  403                 for(i = 0; i < 16; i++) {
  404                         SIO_CLR(WB_SIO_MII_CLK);
  405                         DELAY(1);
  406                         SIO_SET(WB_SIO_MII_CLK);
  407                         DELAY(1);
  408                 }
  409                 goto fail;
  410         }
  411 
  412         for (i = 0x8000; i; i >>= 1) {
  413                 SIO_CLR(WB_SIO_MII_CLK);
  414                 DELAY(1);
  415                 if (!ack) {
  416                         if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
  417                                 frame->mii_data |= i;
  418                         DELAY(1);
  419                 }
  420                 SIO_SET(WB_SIO_MII_CLK);
  421                 DELAY(1);
  422         }
  423 
  424 fail:
  425 
  426         SIO_CLR(WB_SIO_MII_CLK);
  427         DELAY(1);
  428         SIO_SET(WB_SIO_MII_CLK);
  429         DELAY(1);
  430 
  431         crit_exit();
  432 
  433         if (ack)
  434                 return(1);
  435         return(0);
  436 }
  437 
  438 /*
  439  * Write to a PHY register through the MII.
  440  */
  441 static int
  442 wb_mii_writereg(struct wb_softc *sc, struct wb_mii_frame *frame)        
  443 {
  444 
  445         crit_enter();
  446         /*
  447          * Set up frame for TX.
  448          */
  449 
  450         frame->mii_stdelim = WB_MII_STARTDELIM;
  451         frame->mii_opcode = WB_MII_WRITEOP;
  452         frame->mii_turnaround = WB_MII_TURNAROUND;
  453         
  454         /*
  455          * Turn on data output.
  456          */
  457         SIO_SET(WB_SIO_MII_DIR);
  458 
  459         wb_mii_sync(sc);
  460 
  461         wb_mii_send(sc, frame->mii_stdelim, 2);
  462         wb_mii_send(sc, frame->mii_opcode, 2);
  463         wb_mii_send(sc, frame->mii_phyaddr, 5);
  464         wb_mii_send(sc, frame->mii_regaddr, 5);
  465         wb_mii_send(sc, frame->mii_turnaround, 2);
  466         wb_mii_send(sc, frame->mii_data, 16);
  467 
  468         /* Idle bit. */
  469         SIO_SET(WB_SIO_MII_CLK);
  470         DELAY(1);
  471         SIO_CLR(WB_SIO_MII_CLK);
  472         DELAY(1);
  473 
  474         /*
  475          * Turn off xmit.
  476          */
  477         SIO_CLR(WB_SIO_MII_DIR);
  478 
  479         crit_exit();
  480 
  481         return(0);
  482 }
  483 
  484 static int
  485 wb_miibus_readreg(device_t dev, int phy, int reg)
  486 {
  487         struct wb_softc *sc = device_get_softc(dev);
  488         struct wb_mii_frame frame;
  489 
  490         bzero(&frame, sizeof(frame));
  491 
  492         frame.mii_phyaddr = phy;
  493         frame.mii_regaddr = reg;
  494         wb_mii_readreg(sc, &frame);
  495 
  496         return(frame.mii_data);
  497 }
  498 
  499 static int
  500 wb_miibus_writereg(device_t dev, int phy, int reg, int data)
  501 {
  502         struct wb_softc *sc = device_get_softc(dev);
  503         struct wb_mii_frame frame;
  504 
  505         bzero(&frame, sizeof(frame));
  506 
  507         frame.mii_phyaddr = phy;
  508         frame.mii_regaddr = reg;
  509         frame.mii_data = data;
  510 
  511         wb_mii_writereg(sc, &frame);
  512 
  513         return(0);
  514 }
  515 
  516 static void
  517 wb_miibus_statchg(device_t dev)
  518 {
  519         struct wb_softc *sc = device_get_softc(dev);
  520         struct mii_data *mii;
  521 
  522         mii = device_get_softc(sc->wb_miibus);
  523         wb_setcfg(sc, mii->mii_media_active);
  524 }
  525 
  526 /*
  527  * Program the 64-bit multicast hash filter.
  528  */
  529 static void
  530 wb_setmulti(struct wb_softc *sc)
  531 {
  532         struct ifnet *ifp = &sc->arpcom.ac_if;
  533         int h = 0, mcnt = 0;
  534         uint32_t hashes[2] = { 0, 0 };
  535         struct ifmultiaddr *ifma;
  536         uint32_t rxfilt;
  537 
  538         rxfilt = CSR_READ_4(sc, WB_NETCFG);
  539 
  540         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  541                 rxfilt |= WB_NETCFG_RX_MULTI;
  542                 CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
  543                 CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
  544                 CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
  545                 return;
  546         }
  547 
  548         /* first, zot all the existing hash bits */
  549         CSR_WRITE_4(sc, WB_MAR0, 0);
  550         CSR_WRITE_4(sc, WB_MAR1, 0);
  551 
  552         /* now program new ones */
  553         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  554                 if (ifma->ifma_addr->sa_family != AF_LINK)
  555                         continue;
  556                 h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
  557                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
  558                 if (h < 32)
  559                         hashes[0] |= (1 << h);
  560                 else
  561                         hashes[1] |= (1 << (h - 32));
  562                 mcnt++;
  563         }
  564 
  565         if (mcnt)
  566                 rxfilt |= WB_NETCFG_RX_MULTI;
  567         else
  568                 rxfilt &= ~WB_NETCFG_RX_MULTI;
  569 
  570         CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
  571         CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
  572         CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
  573 }
  574 
  575 /*
  576  * The Winbond manual states that in order to fiddle with the
  577  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
  578  * first have to put the transmit and/or receive logic in the idle state.
  579  */
  580 static void
  581 wb_setcfg(struct wb_softc *sc, uint32_t media)
  582 {
  583         int i, restart = 0;
  584 
  585         if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON | WB_NETCFG_RX_ON)) {
  586                 restart = 1;
  587                 WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON | WB_NETCFG_RX_ON));
  588 
  589                 for (i = 0; i < WB_TIMEOUT; i++) {
  590                         DELAY(10);
  591                         if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
  592                                 (CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
  593                                 break;
  594                 }
  595 
  596                 if (i == WB_TIMEOUT) {
  597                         if_printf(&sc->arpcom.ac_if, "failed to force tx and "
  598                                   "rx to idle state\n");
  599                 }
  600         }
  601 
  602         if (IFM_SUBTYPE(media) == IFM_10_T)
  603                 WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
  604         else
  605                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
  606 
  607         if ((media & IFM_GMASK) == IFM_FDX)
  608                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
  609         else
  610                 WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
  611 
  612         if (restart)
  613                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON | WB_NETCFG_RX_ON);
  614 }
  615 
  616 static void
  617 wb_reset(struct wb_softc *sc)
  618 {
  619         int i;
  620         struct mii_data *mii;
  621 
  622         CSR_WRITE_4(sc, WB_NETCFG, 0);
  623         CSR_WRITE_4(sc, WB_BUSCTL, 0);
  624         CSR_WRITE_4(sc, WB_TXADDR, 0);
  625         CSR_WRITE_4(sc, WB_RXADDR, 0);
  626 
  627         WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
  628         WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
  629 
  630         for (i = 0; i < WB_TIMEOUT; i++) {
  631                 DELAY(10);
  632                 if ((CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET) == 0)
  633                         break;
  634         }
  635         if (i == WB_TIMEOUT)
  636                 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
  637 
  638         /* Wait a little while for the chip to get its brains in order. */
  639         DELAY(1000);
  640 
  641         if (sc->wb_miibus == NULL)
  642                 return;
  643 
  644         mii = device_get_softc(sc->wb_miibus);
  645         if (mii == NULL)
  646                 return;
  647 
  648         if (mii->mii_instance) {
  649                 struct mii_softc *miisc;
  650                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  651                         mii_phy_reset(miisc);
  652         }
  653 }
  654 
  655 static void
  656 wb_fixmedia(struct wb_softc *sc)
  657 {
  658         struct mii_data *mii;
  659         uint32_t media;
  660 
  661         if (sc->wb_miibus == NULL)
  662                 return;
  663 
  664         mii = device_get_softc(sc->wb_miibus);
  665 
  666         mii_pollstat(mii);
  667         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
  668                 media = mii->mii_media_active & ~IFM_10_T;
  669                 media |= IFM_100_TX;
  670         } else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
  671                 media = mii->mii_media_active & ~IFM_100_TX;
  672                 media |= IFM_10_T;
  673         } else
  674                 return;
  675 
  676         ifmedia_set(&mii->mii_media, media);
  677 }
  678 
  679 /*
  680  * Probe for a Winbond chip. Check the PCI vendor and device
  681  * IDs against our list and return a device name if we find a match.
  682  */
  683 static int
  684 wb_probe(device_t dev)
  685 {
  686         struct wb_type *t;
  687         uint16_t vendor, product;
  688 
  689         vendor = pci_get_vendor(dev);
  690         product = pci_get_device(dev);
  691 
  692         for (t = wb_devs; t->wb_name != NULL; t++) {
  693                 if (vendor == t->wb_vid && product == t->wb_did) {
  694                         device_set_desc(dev, t->wb_name);
  695                         return(0);
  696                 }
  697         }
  698 
  699         return(ENXIO);
  700 }
  701 
  702 /*
  703  * Attach the interface. Allocate softc structures, do ifmedia
  704  * setup and ethernet/BPF attach.
  705  */
  706 static int
  707 wb_attach(device_t dev)
  708 {
  709         u_char eaddr[ETHER_ADDR_LEN];
  710         struct wb_softc *sc;
  711         struct ifnet *ifp;
  712         int error = 0, rid;
  713 
  714         sc = device_get_softc(dev);
  715         callout_init(&sc->wb_stat_timer);
  716 
  717         /*
  718          * Handle power management nonsense.
  719          */
  720         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  721                 uint32_t iobase, membase, irq;
  722 
  723                 /* Save important PCI config data. */
  724                 iobase = pci_read_config(dev, WB_PCI_LOIO, 4);
  725                 membase = pci_read_config(dev, WB_PCI_LOMEM, 4);
  726                 irq = pci_read_config(dev, WB_PCI_INTLINE, 4);
  727 
  728                 /* Reset the power state. */
  729                 device_printf(dev, "chip is in D%d power mode "
  730                 "-- setting to D0\n", pci_get_powerstate(dev));
  731                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  732 
  733                 /* Restore PCI config data. */
  734                 pci_write_config(dev, WB_PCI_LOIO, iobase, 4);
  735                 pci_write_config(dev, WB_PCI_LOMEM, membase, 4);
  736                 pci_write_config(dev, WB_PCI_INTLINE, irq, 4);
  737         }
  738 
  739         pci_enable_busmaster(dev);
  740 
  741         rid = WB_RID;
  742         sc->wb_res = bus_alloc_resource_any(dev, WB_RES, &rid, RF_ACTIVE);
  743 
  744         if (sc->wb_res == NULL) {
  745                 device_printf(dev, "couldn't map ports/memory\n");
  746                 error = ENXIO;
  747                 goto fail;
  748         }
  749 
  750         sc->wb_btag = rman_get_bustag(sc->wb_res);
  751         sc->wb_bhandle = rman_get_bushandle(sc->wb_res);
  752 
  753         /* Allocate interrupt */
  754         rid = 0;
  755         sc->wb_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  756             RF_SHAREABLE | RF_ACTIVE);
  757 
  758         if (sc->wb_irq == NULL) {
  759                 device_printf(dev, "couldn't map interrupt\n");
  760                 error = ENXIO;
  761                 goto fail;
  762         }
  763 
  764         /* Save the cache line size. */
  765         sc->wb_cachesize = pci_read_config(dev, WB_PCI_CACHELEN, 4) & 0xFF;
  766 
  767         ifp = &sc->arpcom.ac_if;
  768         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  769 
  770         /* Reset the adapter. */
  771         wb_reset(sc);
  772 
  773         /*
  774          * Get station address from the EEPROM.
  775          */
  776         wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3);
  777 
  778         sc->wb_ldata = contigmalloc(sizeof(struct wb_list_data) + 8, M_DEVBUF,
  779             M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
  780 
  781         if (sc->wb_ldata == NULL) {
  782                 device_printf(dev, "no memory for list buffers!\n");
  783                 error = ENXIO;
  784                 goto fail;
  785         }
  786 
  787         ifp->if_softc = sc;
  788         ifp->if_mtu = ETHERMTU;
  789         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  790         ifp->if_ioctl = wb_ioctl;
  791         ifp->if_start = wb_start;
  792         ifp->if_watchdog = wb_watchdog;
  793         ifp->if_init = wb_init;
  794         ifp->if_baudrate = 10000000;
  795         ifq_set_maxlen(&ifp->if_snd, WB_TX_LIST_CNT - 1);
  796         ifq_set_ready(&ifp->if_snd);
  797 
  798         /*
  799          * Do MII setup.
  800          */
  801         if (mii_phy_probe(dev, &sc->wb_miibus,
  802             wb_ifmedia_upd, wb_ifmedia_sts)) {
  803                 error = ENXIO;
  804                 goto fail;
  805         }
  806 
  807         /*
  808          * Call MI attach routine.
  809          */
  810         ether_ifattach(ifp, eaddr, NULL);
  811 
  812         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->wb_irq));
  813 
  814         error = bus_setup_intr(dev, sc->wb_irq, INTR_MPSAFE,
  815                                wb_intr, sc, &sc->wb_intrhand, 
  816                                ifp->if_serializer);
  817 
  818         if (error) {
  819                 device_printf(dev, "couldn't set up irq\n");
  820                 ether_ifdetach(ifp);
  821                 goto fail;
  822         }
  823 
  824         return(0);
  825 
  826 fail:
  827         wb_detach(dev);
  828         return(error);
  829 }
  830 
  831 static int
  832 wb_detach(device_t dev)
  833 {
  834         struct wb_softc *sc = device_get_softc(dev);
  835         struct ifnet *ifp = &sc->arpcom.ac_if;
  836 
  837 
  838         if (device_is_attached(dev)) {
  839                 lwkt_serialize_enter(ifp->if_serializer);
  840                 wb_stop(sc);
  841                 bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
  842                 lwkt_serialize_exit(ifp->if_serializer);
  843 
  844                 ether_ifdetach(ifp);
  845         }
  846 
  847         if (sc->wb_miibus)
  848                 device_delete_child(dev, sc->wb_miibus);
  849         bus_generic_detach(dev);
  850 
  851         if (sc->wb_irq)
  852                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
  853         if (sc->wb_res)
  854                 bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
  855         if (sc->wb_ldata_ptr) {
  856                 contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
  857                     M_DEVBUF);
  858         }
  859 
  860         return(0);
  861 }
  862 
  863 /*
  864  * Initialize the transmit descriptors.
  865  */
  866 static int
  867 wb_list_tx_init(struct wb_softc *sc)
  868 {
  869         struct wb_chain_data *cd;
  870         struct wb_list_data *ld;
  871         int i, nexti;
  872 
  873         cd = &sc->wb_cdata;
  874         ld = sc->wb_ldata;
  875 
  876         for (i = 0; i < WB_TX_LIST_CNT; i++) {
  877                 nexti = (i == WB_TX_LIST_CNT - 1) ? 0 : i + 1;
  878                 cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
  879                 cd->wb_tx_chain[i].wb_nextdesc = &cd->wb_tx_chain[nexti];
  880         }
  881 
  882         cd->wb_tx_free = &cd->wb_tx_chain[0];
  883         cd->wb_tx_tail = cd->wb_tx_head = NULL;
  884 
  885         return(0);
  886 }
  887 
  888 /*
  889  * Initialize the RX descriptors and allocate mbufs for them. Note that
  890  * we arrange the descriptors in a closed ring, so that the last descriptor
  891  * points back to the first.
  892  */
  893 static int
  894 wb_list_rx_init(struct wb_softc *sc)
  895 {
  896         struct wb_chain_data *cd;
  897         struct wb_list_data *ld;
  898         int i, nexti;
  899 
  900         cd = &sc->wb_cdata;
  901         ld = sc->wb_ldata;
  902 
  903         for (i = 0; i < WB_RX_LIST_CNT; i++) {
  904                 cd->wb_rx_chain[i].wb_ptr = &ld->wb_rx_list[i];
  905                 cd->wb_rx_chain[i].wb_buf = &ld->wb_rxbufs[i];
  906                 if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
  907                         return(ENOBUFS);
  908                 nexti = (WB_RX_LIST_CNT - 1) ? 0 : i + 1;
  909                 cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[nexti];
  910                 ld->wb_rx_list[i].wb_next =  vtophys(&ld->wb_rx_list[nexti]);
  911         }
  912 
  913         cd->wb_rx_head = &cd->wb_rx_chain[0];
  914 
  915         return(0);
  916 }
  917 
  918 static void
  919 wb_bfree(void *arg)
  920 {
  921 }
  922 
  923 /*
  924  * Initialize an RX descriptor and attach an MBUF cluster.
  925  */
  926 static int
  927 wb_newbuf(struct wb_softc *sc, struct wb_chain_onefrag *c, struct mbuf *m)
  928 {
  929         struct mbuf *m_new = NULL;
  930 
  931         if (m == NULL) {
  932                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
  933                 if (m_new == NULL)
  934                         return(ENOBUFS);
  935 
  936                 m_new->m_data = m_new->m_ext.ext_buf = c->wb_buf;
  937                 m_new->m_flags |= M_EXT;
  938                 m_new->m_ext.ext_size = m_new->m_pkthdr.len =
  939                     m_new->m_len = WB_BUFBYTES;
  940                 m_new->m_ext.ext_free = wb_bfree;
  941                 m_new->m_ext.ext_ref = wb_bfree;
  942         } else {
  943                 m_new = m;
  944                 m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
  945                 m_new->m_data = m_new->m_ext.ext_buf;
  946         }
  947 
  948         m_adj(m_new, sizeof(uint64_t));
  949 
  950         c->wb_mbuf = m_new;
  951         c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
  952         c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
  953         c->wb_ptr->wb_status = WB_RXSTAT;
  954 
  955         return(0);
  956 }
  957 
  958 /*
  959  * A frame has been uploaded: pass the resulting mbuf chain up to
  960  * the higher level protocols.
  961  */
  962 static void
  963 wb_rxeof(struct wb_softc *sc)
  964 {
  965         struct ifnet *ifp = &sc->arpcom.ac_if;
  966         struct mbuf *m, *m0;
  967         struct wb_chain_onefrag *cur_rx;
  968         int total_len = 0;
  969         uint32_t rxstat;
  970 
  971         for (;;) {
  972                 rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status;
  973                 if ((rxstat & WB_RXSTAT_OWN) == 0)
  974                         break;
  975 
  976                 cur_rx = sc->wb_cdata.wb_rx_head;
  977                 sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
  978 
  979                 m = cur_rx->wb_mbuf;
  980 
  981                 if ((rxstat & WB_RXSTAT_MIIERR) ||
  982                     (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
  983                     (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
  984                     (rxstat & WB_RXSTAT_LASTFRAG) == 0||
  985                     (rxstat & WB_RXSTAT_RXCMP) == 0) {
  986                         IFNET_STAT_INC(ifp, ierrors, 1);
  987                         wb_newbuf(sc, cur_rx, m);
  988                         if_printf(ifp, "receiver babbling: possible chip "
  989                                   "bug, forcing reset\n");
  990                         wb_fixmedia(sc);
  991                         wb_reset(sc);
  992                         wb_init(sc);
  993                         return;
  994                 }
  995 
  996                 if (rxstat & WB_RXSTAT_RXERR) {
  997                         IFNET_STAT_INC(ifp, ierrors, 1);
  998                         wb_newbuf(sc, cur_rx, m);
  999                         break;
 1000                 }
 1001 
 1002                 /* No errors; receive the packet. */    
 1003                 total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
 1004 
 1005                 /*
 1006                  * XXX The Winbond chip includes the CRC with every
 1007                  * received frame, and there's no way to turn this
 1008                  * behavior off (at least, I can't find anything in
 1009                  * the manual that explains how to do it) so we have
 1010                  * to trim off the CRC manually.
 1011                  */
 1012                 total_len -= ETHER_CRC_LEN;
 1013 
 1014                 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
 1015                      total_len + ETHER_ALIGN, 0, ifp, NULL);
 1016                 wb_newbuf(sc, cur_rx, m);
 1017                 if (m0 == NULL) {
 1018                         IFNET_STAT_INC(ifp, ierrors, 1);
 1019                         break;
 1020                 }
 1021                 m_adj(m0, ETHER_ALIGN);
 1022                 m = m0;
 1023 
 1024                 IFNET_STAT_INC(ifp, ipackets, 1);
 1025                 ifp->if_input(ifp, m);
 1026         }
 1027 }
 1028 
 1029 static void
 1030 wb_rxeoc(struct wb_softc *sc)
 1031 {
 1032         wb_rxeof(sc);
 1033 
 1034         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
 1035         CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
 1036         WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
 1037         if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
 1038                 CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
 1039 }
 1040 
 1041 /*
 1042  * A frame was downloaded to the chip. It's safe for us to clean up
 1043  * the list buffers.
 1044  */
 1045 static void
 1046 wb_txeof(struct wb_softc *sc)
 1047 {
 1048         struct ifnet *ifp = &sc->arpcom.ac_if;
 1049         struct wb_chain *cur_tx;
 1050 
 1051         /* Clear the timeout timer. */
 1052         ifp->if_timer = 0;
 1053 
 1054         if (sc->wb_cdata.wb_tx_head == NULL)
 1055                 return;
 1056 
 1057         /*
 1058          * Go through our tx list and free mbufs for those
 1059          * frames that have been transmitted.
 1060          */
 1061         while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
 1062                 uint32_t txstat;
 1063 
 1064                 cur_tx = sc->wb_cdata.wb_tx_head;
 1065                 txstat = WB_TXSTATUS(cur_tx);
 1066 
 1067                 if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
 1068                         break;
 1069 
 1070                 if (txstat & WB_TXSTAT_TXERR) {
 1071                         IFNET_STAT_INC(ifp, oerrors, 1);
 1072                         if (txstat & WB_TXSTAT_ABORT)
 1073                                 IFNET_STAT_INC(ifp, collisions, 1);
 1074                         if (txstat & WB_TXSTAT_LATECOLL)
 1075                                 IFNET_STAT_INC(ifp, collisions, 1);
 1076                 }
 1077 
 1078                 IFNET_STAT_INC(ifp, collisions,
 1079                     (txstat & WB_TXSTAT_COLLCNT) >> 3);
 1080 
 1081                 IFNET_STAT_INC(ifp, opackets, 1);
 1082                 m_freem(cur_tx->wb_mbuf);
 1083                 cur_tx->wb_mbuf = NULL;
 1084 
 1085                 if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
 1086                         sc->wb_cdata.wb_tx_head = NULL;
 1087                         sc->wb_cdata.wb_tx_tail = NULL;
 1088                         break;
 1089                 }
 1090 
 1091                 sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
 1092         }
 1093 }
 1094 
 1095 /*
 1096  * TX 'end of channel' interrupt handler.
 1097  */
 1098 static void
 1099 wb_txeoc(struct wb_softc *sc)
 1100 {
 1101         struct ifnet *ifp = &sc->arpcom.ac_if;
 1102 
 1103         ifp->if_timer = 0;
 1104 
 1105         if (sc->wb_cdata.wb_tx_head == NULL) {
 1106                 ifq_clr_oactive(&ifp->if_snd);
 1107                 sc->wb_cdata.wb_tx_tail = NULL;
 1108         } else if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
 1109                 WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
 1110                 ifp->if_timer = 5;
 1111                 CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
 1112         }
 1113 }
 1114 
 1115 static void
 1116 wb_intr(void *arg)
 1117 {
 1118         struct wb_softc *sc = arg;
 1119         struct ifnet *ifp = &sc->arpcom.ac_if;
 1120         uint32_t status;
 1121 
 1122         if ((ifp->if_flags & IFF_UP) == 0)
 1123                 return;
 1124 
 1125         /* Disable interrupts. */
 1126         CSR_WRITE_4(sc, WB_IMR, 0x00000000);
 1127 
 1128         for (;;) {
 1129                 status = CSR_READ_4(sc, WB_ISR);
 1130                 if (status)
 1131                         CSR_WRITE_4(sc, WB_ISR, status);
 1132 
 1133                 if ((status & WB_INTRS) == 0)
 1134                         break;
 1135 
 1136                 if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
 1137                         IFNET_STAT_INC(ifp, ierrors, 1);
 1138                         wb_reset(sc);
 1139                         if (status & WB_ISR_RX_ERR)
 1140                                 wb_fixmedia(sc);
 1141                         wb_init(sc);
 1142                         continue;
 1143                 }
 1144 
 1145                 if (status & WB_ISR_RX_OK)
 1146                         wb_rxeof(sc);
 1147         
 1148                 if (status & WB_ISR_RX_IDLE)
 1149                         wb_rxeoc(sc);
 1150 
 1151                 if (status & WB_ISR_TX_OK)
 1152                         wb_txeof(sc);
 1153 
 1154                 if (status & WB_ISR_TX_NOBUF)
 1155                         wb_txeoc(sc);
 1156 
 1157                 if (status & WB_ISR_TX_IDLE) {
 1158                         wb_txeof(sc);
 1159                         if (sc->wb_cdata.wb_tx_head != NULL) {
 1160                                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1161                                 CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
 1162                         }
 1163                 }
 1164 
 1165                 if (status & WB_ISR_TX_UNDERRUN) {
 1166                         IFNET_STAT_INC(ifp, oerrors, 1);
 1167                         wb_txeof(sc);
 1168                         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1169                         /* Jack up TX threshold */
 1170                         sc->wb_txthresh += WB_TXTHRESH_CHUNK;
 1171                         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
 1172                         WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
 1173                         WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1174                 }
 1175 
 1176                 if (status & WB_ISR_BUS_ERR) {
 1177                         wb_reset(sc);
 1178                         wb_init(sc);
 1179                 }
 1180         }
 1181 
 1182         /* Re-enable interrupts. */
 1183         CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
 1184 
 1185         if (!ifq_is_empty(&ifp->if_snd))
 1186                 if_devstart(ifp);
 1187 }
 1188 
 1189 static void
 1190 wb_tick(void *xsc)
 1191 {
 1192         struct wb_softc *sc = xsc;
 1193         struct ifnet *ifp = &sc->arpcom.ac_if;
 1194         struct mii_data *mii = device_get_softc(sc->wb_miibus);
 1195 
 1196         lwkt_serialize_enter(ifp->if_serializer);
 1197         mii_tick(mii);
 1198         callout_reset(&sc->wb_stat_timer, hz, wb_tick, sc);
 1199         lwkt_serialize_exit(ifp->if_serializer);
 1200 }
 1201 
 1202 /*
 1203  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1204  * pointers to the fragment pointers.
 1205  */
 1206 static int
 1207 wb_encap(struct wb_softc *sc, struct wb_chain *c, struct mbuf *m_head)
 1208 {
 1209         struct wb_desc *f = NULL;
 1210         struct mbuf *m;
 1211         int frag, total_len;
 1212 
 1213         /*
 1214          * Start packing the mbufs in this chain into
 1215          * the fragment pointers. Stop when we run out
 1216          * of fragments or hit the end of the mbuf chain.
 1217          */
 1218         total_len = 0;
 1219 
 1220         for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
 1221                 if (m->m_len != 0) {
 1222                         if (frag == WB_MAXFRAGS)
 1223                                 break;
 1224                         total_len += m->m_len;
 1225                         f = &c->wb_ptr->wb_frag[frag];
 1226                         f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
 1227                         if (frag == 0) {
 1228                                 f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
 1229                                 f->wb_status = 0;
 1230                         } else {
 1231                                 f->wb_status = WB_TXSTAT_OWN;
 1232                         }
 1233                         f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
 1234                         f->wb_data = vtophys(mtod(m, vm_offset_t));
 1235                         frag++;
 1236                 }
 1237         }
 1238 
 1239         /*
 1240          * Handle special case: we used up all 16 fragments,
 1241          * but we have more mbufs left in the chain. Copy the
 1242          * data into an mbuf cluster. Note that we don't
 1243          * bother clearing the values in the other fragment
 1244          * pointers/counters; it wouldn't gain us anything,
 1245          * and would waste cycles.
 1246          */
 1247         if (m != NULL) {
 1248                 struct mbuf *m_new = NULL;
 1249 
 1250                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
 1251                 if (m_new == NULL)
 1252                         return(1);
 1253                 if (m_head->m_pkthdr.len > MHLEN) {
 1254                         MCLGET(m_new, MB_DONTWAIT);
 1255                         if ((m_new->m_flags & M_EXT) == 0) {
 1256                                 m_freem(m_new);
 1257                                 return(1);
 1258                         }
 1259                 }
 1260                 m_copydata(m_head, 0, m_head->m_pkthdr.len,
 1261                     mtod(m_new, caddr_t));
 1262                 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
 1263                 m_freem(m_head);
 1264                 m_head = m_new;
 1265                 f = &c->wb_ptr->wb_frag[0];
 1266                 f->wb_status = 0;
 1267                 f->wb_data = vtophys(mtod(m_new, caddr_t));
 1268                 f->wb_ctl = total_len = m_new->m_len;
 1269                 f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
 1270                 frag = 1;
 1271         }
 1272 
 1273         if (total_len < WB_MIN_FRAMELEN) {
 1274                 f = &c->wb_ptr->wb_frag[frag];
 1275                 f->wb_ctl = WB_MIN_FRAMELEN - total_len;
 1276                 f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
 1277                 f->wb_ctl |= WB_TXCTL_TLINK;
 1278                 f->wb_status = WB_TXSTAT_OWN;
 1279                 frag++;
 1280         }
 1281 
 1282         c->wb_mbuf = m_head;
 1283         c->wb_lastdesc = frag - 1;
 1284         WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
 1285         WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
 1286 
 1287         return(0);
 1288 }
 1289 
 1290 /*
 1291  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 1292  * to the mbuf data regions directly in the transmit lists. We also save a
 1293  * copy of the pointers since the transmit list fragment pointers are
 1294  * physical addresses.
 1295  */
 1296 static void
 1297 wb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 1298 {
 1299         struct wb_softc *sc = ifp->if_softc;
 1300         struct mbuf *m_head = NULL;
 1301         struct wb_chain *cur_tx = NULL, *start_tx;
 1302 
 1303         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 1304 
 1305         /*
 1306          * Check for an available queue slot. If there are none,
 1307          * punt.
 1308          */
 1309         if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
 1310                 ifq_set_oactive(&ifp->if_snd);
 1311                 return;
 1312         }
 1313 
 1314         start_tx = sc->wb_cdata.wb_tx_free;
 1315 
 1316         while (sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
 1317                 m_head = ifq_dequeue(&ifp->if_snd);
 1318                 if (m_head == NULL)
 1319                         break;
 1320 
 1321                 /* Pick a descriptor off the free list. */
 1322                 cur_tx = sc->wb_cdata.wb_tx_free;
 1323                 sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
 1324 
 1325                 /* Pack the data into the descriptor. */
 1326                 wb_encap(sc, cur_tx, m_head);
 1327 
 1328                 if (cur_tx != start_tx)
 1329                         WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
 1330 
 1331                 BPF_MTAP(ifp, cur_tx->wb_mbuf);
 1332         }
 1333 
 1334         /*
 1335          * If there are no packets queued, bail.
 1336          */
 1337         if (cur_tx == NULL)
 1338                 return;
 1339 
 1340         /*
 1341          * Place the request for the upload interrupt
 1342          * in the last descriptor in the chain. This way, if
 1343          * we're chaining several packets at once, we'll only
 1344          * get an interupt once for the whole chain rather than
 1345          * once for each packet.
 1346          */
 1347         WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
 1348         cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
 1349         sc->wb_cdata.wb_tx_tail = cur_tx;
 1350 
 1351         if (sc->wb_cdata.wb_tx_head == NULL) {
 1352                 sc->wb_cdata.wb_tx_head = start_tx;
 1353                 WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
 1354                 CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
 1355         } else {
 1356                 /*
 1357                  * We need to distinguish between the case where
 1358                  * the own bit is clear because the chip cleared it
 1359                  * and where the own bit is clear because we haven't
 1360                  * set it yet. The magic value WB_UNSET is just some
 1361                  * ramdomly chosen number which doesn't have the own
 1362                  * bit set. When we actually transmit the frame, the
 1363                  * status word will have _only_ the own bit set, so
 1364                  * the txeoc handler will be able to tell if it needs
 1365                  * to initiate another transmission to flush out pending
 1366                  * frames.
 1367                  */
 1368                 WB_TXOWN(start_tx) = WB_UNSENT;
 1369         }
 1370 
 1371         /*
 1372          * Set a timeout in case the chip goes out to lunch.
 1373          */
 1374         ifp->if_timer = 5;
 1375 }
 1376 
 1377 static void
 1378 wb_init(void *xsc)
 1379 {
 1380         struct wb_softc *sc = xsc;
 1381         struct ifnet *ifp = &sc->arpcom.ac_if;
 1382         int i;
 1383         struct mii_data *mii;
 1384 
 1385         crit_enter();
 1386 
 1387         mii = device_get_softc(sc->wb_miibus);
 1388 
 1389         /*
 1390          * Cancel pending I/O and free all RX/TX buffers.
 1391          */
 1392         wb_stop(sc);
 1393         wb_reset(sc);
 1394 
 1395         sc->wb_txthresh = WB_TXTHRESH_INIT;
 1396 
 1397         /*
 1398          * Set cache alignment and burst length.
 1399          */
 1400 #ifdef foo
 1401         CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
 1402         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
 1403         WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
 1404 #endif
 1405 
 1406         CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE | WB_BUSCTL_ARBITRATION);
 1407         WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
 1408         switch(sc->wb_cachesize) {
 1409         case 32:
 1410                 WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
 1411                 break;
 1412         case 16:
 1413                 WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
 1414                 break;
 1415         case 8:
 1416                 WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
 1417                 break;
 1418         case 0:
 1419         default:
 1420                 WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
 1421                 break;
 1422         }
 1423 
 1424         /* This doesn't tend to work too well at 100Mbps. */
 1425         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
 1426 
 1427         /* Init our MAC address */
 1428         for (i = 0; i < ETHER_ADDR_LEN; i++)
 1429                 CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
 1430 
 1431         /* Init circular RX list. */
 1432         if (wb_list_rx_init(sc) == ENOBUFS) {
 1433                 if_printf(ifp, "initialization failed: no "
 1434                           "memory for rx buffers\n");
 1435                 wb_stop(sc);
 1436                 crit_exit();
 1437                 return;
 1438         }
 1439 
 1440         /* Init TX descriptors. */
 1441         wb_list_tx_init(sc);
 1442 
 1443         /* If we want promiscuous mode, set the allframes bit. */
 1444         if (ifp->if_flags & IFF_PROMISC)
 1445                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
 1446         else
 1447                 WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
 1448 
 1449         /*
 1450          * Set capture broadcast bit to capture broadcast frames.
 1451          */
 1452         if (ifp->if_flags & IFF_BROADCAST)
 1453                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
 1454         else
 1455                 WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
 1456 
 1457         /*
 1458          * Program the multicast filter, if necessary.
 1459          */
 1460         wb_setmulti(sc);
 1461 
 1462         /*
 1463          * Load the address of the RX list.
 1464          */
 1465         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
 1466         CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
 1467 
 1468         /*
 1469          * Enable interrupts.
 1470          */
 1471         CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
 1472         CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
 1473 
 1474         /* Enable receiver and transmitter. */
 1475         WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
 1476         CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
 1477 
 1478         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1479         CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
 1480         WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1481 
 1482         mii_mediachg(mii);
 1483 
 1484         ifp->if_flags |= IFF_RUNNING;
 1485         ifq_clr_oactive(&ifp->if_snd);
 1486 
 1487         crit_exit();
 1488 
 1489         callout_reset(&sc->wb_stat_timer, hz, wb_tick, sc);
 1490 }
 1491 
 1492 /*
 1493  * Set media options.
 1494  */
 1495 static int
 1496 wb_ifmedia_upd(struct ifnet *ifp)
 1497 {
 1498         struct wb_softc *sc = ifp->if_softc;
 1499 
 1500         if (ifp->if_flags & IFF_UP)
 1501                 wb_init(sc);
 1502 
 1503         return(0);
 1504 }
 1505 
 1506 /*
 1507  * Report current media status.
 1508  */
 1509 static void
 1510 wb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1511 {
 1512         struct wb_softc *sc = ifp->if_softc;
 1513         struct mii_data *mii = device_get_softc(sc->wb_miibus);
 1514 
 1515         mii_pollstat(mii);
 1516         ifmr->ifm_active = mii->mii_media_active;
 1517         ifmr->ifm_status = mii->mii_media_status;
 1518 }
 1519 
 1520 static int
 1521 wb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
 1522 {
 1523         struct wb_softc *sc = ifp->if_softc;
 1524         struct mii_data *mii;
 1525         struct ifreq *ifr = (struct ifreq *) data;
 1526         int error = 0;
 1527 
 1528         crit_enter();
 1529 
 1530         switch(command) {
 1531         case SIOCSIFFLAGS:
 1532                 if (ifp->if_flags & IFF_UP)
 1533                         wb_init(sc);
 1534                 else if (ifp->if_flags & IFF_RUNNING)
 1535                         wb_stop(sc);
 1536                 error = 0;
 1537                 break;
 1538         case SIOCADDMULTI:
 1539         case SIOCDELMULTI:
 1540                 wb_setmulti(sc);
 1541                 error = 0;
 1542                 break;
 1543         case SIOCGIFMEDIA:
 1544         case SIOCSIFMEDIA:
 1545                 mii = device_get_softc(sc->wb_miibus);
 1546                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1547                 break;
 1548         default:
 1549                 error = ether_ioctl(ifp, command, data);
 1550                 break;
 1551         }
 1552 
 1553         crit_exit();
 1554 
 1555         return(error);
 1556 }
 1557 
 1558 static void
 1559 wb_watchdog(struct ifnet *ifp)
 1560 {
 1561         struct wb_softc *sc = ifp->if_softc;
 1562 
 1563         IFNET_STAT_INC(ifp, oerrors, 1);
 1564         if_printf(ifp, "watchdog timeout\n");
 1565 #ifdef foo
 1566         if ((wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) == 0)
 1567                 if_printf(ifp, "no carrier - transceiver cable problem?\n");
 1568 #endif
 1569         wb_stop(sc);
 1570         wb_reset(sc);
 1571         wb_init(sc);
 1572 
 1573         if (!ifq_is_empty(&ifp->if_snd))
 1574                 if_devstart(ifp);
 1575 }
 1576 
 1577 /*
 1578  * Stop the adapter and free any mbufs allocated to the
 1579  * RX and TX lists.
 1580  */
 1581 static void
 1582 wb_stop(struct wb_softc *sc)
 1583 {
 1584         struct ifnet *ifp = &sc->arpcom.ac_if;
 1585         int i;
 1586 
 1587         ifp->if_timer = 0;
 1588 
 1589         callout_stop(&sc->wb_stat_timer);
 1590 
 1591         WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON | WB_NETCFG_TX_ON));
 1592         CSR_WRITE_4(sc, WB_IMR, 0x00000000);
 1593         CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
 1594         CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
 1595 
 1596         /*
 1597          * Free data in the RX lists.
 1598          */
 1599         for (i = 0; i < WB_RX_LIST_CNT; i++) {
 1600                 if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
 1601                         m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
 1602                         sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
 1603                 }
 1604         }
 1605         bzero(&sc->wb_ldata->wb_rx_list, sizeof(sc->wb_ldata->wb_rx_list));
 1606 
 1607         /*
 1608          * Free the TX list buffers.
 1609          */
 1610         for (i = 0; i < WB_TX_LIST_CNT; i++) {
 1611                 if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
 1612                         m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
 1613                         sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
 1614                 }
 1615         }
 1616 
 1617         bzero(&sc->wb_ldata->wb_tx_list, sizeof(sc->wb_ldata->wb_tx_list));
 1618 
 1619         ifp->if_flags &= ~IFF_RUNNING;
 1620         ifq_clr_oactive(&ifp->if_snd);
 1621 }
 1622 
 1623 /*
 1624  * Stop all chip I/O so that the kernel's probe routines don't
 1625  * get confused by errant DMAs when rebooting.
 1626  */
 1627 static void
 1628 wb_shutdown(device_t dev)
 1629 {
 1630         struct wb_softc *sc = device_get_softc(dev);
 1631         struct ifnet *ifp = &sc->arpcom.ac_if;
 1632 
 1633         lwkt_serialize_enter(ifp->if_serializer);
 1634         wb_stop(sc);
 1635         lwkt_serialize_exit(ifp->if_serializer);
 1636 }
 1637 

Cache object: 3b8e683457c4ad954d9b3acc0a372f09


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.