The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/wpi/if_wpi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006,2007
    3  *      Damien Bergamini <damien.bergamini@free.fr>
    4  *      Benjamin Close <Benjamin.Close@clearchain.com>
    5  *
    6  * Permission to use, copy, modify, and distribute this software for any
    7  * purpose with or without fee is hereby granted, provided that the above
    8  * copyright notice and this permission notice appear in all copies.
    9  *
   10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   17  *
   18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
   19  */
   20 
   21 #define VERSION "20071127"
   22 
   23 /*
   24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
   25  *
   26  * The 3945ABG network adapter doesn't use traditional hardware as
   27  * many other adaptors do. Instead at run time the eeprom is set into a known
   28  * state and told to load boot firmware. The boot firmware loads an init and a
   29  * main  binary firmware image into SRAM on the card via DMA.
   30  * Once the firmware is loaded, the driver/hw then
   31  * communicate by way of circular dma rings via the the SRAM to the firmware.
   32  *
   33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
   34  * The 4 tx data rings allow for prioritization QoS.
   35  *
   36  * The rx data ring consists of 32 dma buffers. Two registers are used to
   37  * indicate where in the ring the driver and the firmware are up to. The
   38  * driver sets the initial read index (reg1) and the initial write index (reg2),
   39  * the firmware updates the read index (reg1) on rx of a packet and fires an
   40  * interrupt. The driver then processes the buffers starting at reg1 indicating
   41  * to the firmware which buffers have been accessed by updating reg2. At the
   42  * same time allocating new memory for the processed buffer.
   43  *
   44  * A similar thing happens with the tx rings. The difference is the firmware
   45  * stop processing buffers once the queue is full and until confirmation
   46  * of a successful transmition (tx_intr) has occurred.
   47  *
   48  * The command ring operates in the same manner as the tx queues.
   49  *
   50  * All communication direct to the card (ie eeprom) is classed as Stage1
   51  * communication
   52  *
   53  * All communication via the firmware to the card is classed as State2.
   54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
   55  * firmware. The bootstrap firmware and runtime firmware are loaded
   56  * from host memory via dma to the card then told to execute. From this point
   57  * on the majority of communications between the driver and the card goes
   58  * via the firmware.
   59  */
   60 
   61 #include <sys/param.h>
   62 #include <sys/sysctl.h>
   63 #include <sys/sockio.h>
   64 #include <sys/mbuf.h>
   65 #include <sys/kernel.h>
   66 #include <sys/socket.h>
   67 #include <sys/systm.h>
   68 #include <sys/malloc.h>
   69 #include <sys/queue.h>
   70 #include <sys/taskqueue.h>
   71 #include <sys/module.h>
   72 #include <sys/bus.h>
   73 #include <sys/endian.h>
   74 #include <sys/linker.h>
   75 #include <sys/firmware.h>
   76 
   77 #include <sys/resource.h>
   78 #include <sys/rman.h>
   79 
   80 #include <bus/pci/pcireg.h>
   81 #include <bus/pci/pcivar.h>
   82 
   83 #include <net/bpf.h>
   84 #include <net/if.h>
   85 #include <net/if_arp.h>
   86 #include <net/ifq_var.h>
   87 #include <net/ethernet.h>
   88 #include <net/if_dl.h>
   89 #include <net/if_media.h>
   90 #include <net/if_types.h>
   91 
   92 #include <netproto/802_11/ieee80211_var.h>
   93 #include <netproto/802_11/ieee80211_radiotap.h>
   94 #include <netproto/802_11/ieee80211_regdomain.h>
   95 #include <netproto/802_11/ieee80211_ratectl.h>
   96 
   97 #include <netinet/in.h>
   98 #include <netinet/in_systm.h>
   99 #include <netinet/in_var.h>
  100 #include <netinet/ip.h>
  101 #include <netinet/if_ether.h>
  102 
  103 /* XXX: move elsewhere */
  104 #define abs(x) (((x) < 0) ? -(x) : (x))
  105 
  106 #include "if_wpireg.h"
  107 #include "if_wpivar.h"
  108 
  109 #define WPI_DEBUG
  110 
  111 #ifdef WPI_DEBUG
  112 #define DPRINTF(x)      do { if (wpi_debug != 0) kprintf x; } while (0)
  113 #define DPRINTFN(n, x)  do { if (wpi_debug & n) kprintf x; } while (0)
  114 #define WPI_DEBUG_SET   (wpi_debug != 0)
  115 
  116 enum {
  117         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
  118         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
  119         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
  120         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
  121         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
  122         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
  123         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
  124         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
  125         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
  126         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
  127         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
  128         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
  129         WPI_DEBUG_ANY           = 0xffffffff
  130 };
  131 
  132 static int wpi_debug = 1;
  133 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
  134 TUNABLE_INT("debug.wpi", &wpi_debug);
  135 
  136 #else
  137 #define DPRINTF(x)
  138 #define DPRINTFN(n, x)
  139 #define WPI_DEBUG_SET   0
  140 #endif
  141 
  142 struct wpi_ident {
  143         uint16_t        vendor;
  144         uint16_t        device;
  145         uint16_t        subdevice;
  146         const char      *name;
  147 };
  148 
  149 static const struct wpi_ident wpi_ident_table[] = {
  150         /* The below entries support ABG regardless of the subid */
  151         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  152         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  153         /* The below entries only support BG */
  154         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
  155         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
  156         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
  157         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
  158         { 0, 0, 0, NULL }
  159 };
  160 
  161 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
  162                     const char name[IFNAMSIZ], int unit,
  163                     enum ieee80211_opmode opmode,
  164                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
  165                     const uint8_t mac[IEEE80211_ADDR_LEN]);
  166 static void     wpi_vap_delete(struct ieee80211vap *);
  167 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
  168                     void **, bus_size_t, bus_size_t, int);
  169 static void     wpi_dma_contig_free(struct wpi_dma_info *);
  170 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  171 static int      wpi_alloc_shared(struct wpi_softc *);
  172 static void     wpi_free_shared(struct wpi_softc *);
  173 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  174 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  175 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  176 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
  177                     int, int);
  178 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  179 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
  181                             const uint8_t mac[IEEE80211_ADDR_LEN]);
  182 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  183 static void     wpi_mem_lock(struct wpi_softc *);
  184 static void     wpi_mem_unlock(struct wpi_softc *);
  185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
  186 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
  187 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
  188                     const uint32_t *, int);
  189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
  190 static int      wpi_alloc_fwmem(struct wpi_softc *);
  191 static void     wpi_free_fwmem(struct wpi_softc *);
  192 static int      wpi_load_firmware(struct wpi_softc *);
  193 static void     wpi_unload_firmware(struct wpi_softc *);
  194 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
  195 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
  196                     struct wpi_rx_data *);
  197 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
  198 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
  199 static void     wpi_notif_intr(struct wpi_softc *);
  200 static void     wpi_intr(void *);
  201 static uint8_t  wpi_plcp_signal(int);
  202 static void     wpi_watchdog_callout(void *);
  203 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
  204                     struct ieee80211_node *, int);
  205 static void     wpi_start(struct ifnet *, struct ifaltq_subque *);
  206 static void     wpi_start_locked(struct ifnet *);
  207 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  208                     const struct ieee80211_bpf_params *);
  209 static void     wpi_scan_start(struct ieee80211com *);
  210 static void     wpi_scan_end(struct ieee80211com *);
  211 static void     wpi_set_channel(struct ieee80211com *);
  212 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
  213 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
  214 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
  215 static void     wpi_read_eeprom(struct wpi_softc *,
  216                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
  217 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
  218 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
  219 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
  220 static int      wpi_wme_update(struct ieee80211com *);
  221 static int      wpi_mrr_setup(struct wpi_softc *);
  222 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
  223 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
  224 #if 0
  225 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
  226 #endif
  227 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
  228 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
  229 static int      wpi_scan(struct wpi_softc *);
  230 static int      wpi_config(struct wpi_softc *);
  231 static void     wpi_stop_master(struct wpi_softc *);
  232 static int      wpi_power_up(struct wpi_softc *);
  233 static int      wpi_reset(struct wpi_softc *);
  234 static void     wpi_hwreset_task(void *, int);
  235 static void     wpi_rfreset_task(void *, int);
  236 static void     wpi_hw_config(struct wpi_softc *);
  237 static void     wpi_init(void *);
  238 static void     wpi_init_locked(struct wpi_softc *, int);
  239 static void     wpi_stop(struct wpi_softc *);
  240 static void     wpi_stop_locked(struct wpi_softc *);
  241 
  242 static void     wpi_newassoc(struct ieee80211_node *, int);
  243 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
  244                     int);
  245 static void     wpi_calib_timeout_callout(void *);
  246 static void     wpi_power_calibration(struct wpi_softc *, int);
  247 static int      wpi_get_power_index(struct wpi_softc *,
  248                     struct wpi_power_group *, struct ieee80211_channel *, int);
  249 #ifdef WPI_DEBUG
  250 static const char *wpi_cmd_str(int);
  251 #endif
  252 static int wpi_probe(device_t);
  253 static int wpi_attach(device_t);
  254 static int wpi_detach(device_t);
  255 static int wpi_shutdown(device_t);
  256 static int wpi_suspend(device_t);
  257 static int wpi_resume(device_t);
  258 
  259 
  260 static device_method_t wpi_methods[] = {
  261         /* Device interface */
  262         DEVMETHOD(device_probe,         wpi_probe),
  263         DEVMETHOD(device_attach,        wpi_attach),
  264         DEVMETHOD(device_detach,        wpi_detach),
  265         DEVMETHOD(device_shutdown,      wpi_shutdown),
  266         DEVMETHOD(device_suspend,       wpi_suspend),
  267         DEVMETHOD(device_resume,        wpi_resume),
  268 
  269         DEVMETHOD_END
  270 };
  271 
  272 static driver_t wpi_driver = {
  273         "wpi",
  274         wpi_methods,
  275         sizeof (struct wpi_softc)
  276 };
  277 
  278 static devclass_t wpi_devclass;
  279 
  280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
  281 
  282 static const uint8_t wpi_ridx_to_plcp[] = {
  283         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
  284         /* R1-R4 (ral/ural is R4-R1) */
  285         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
  286         /* CCK: device-dependent */
  287         10, 20, 55, 110
  288 };
  289 static const uint8_t wpi_ridx_to_rate[] = {
  290         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
  291         2, 4, 11, 22 /*CCK */
  292 };
  293 
  294 
  295 static int
  296 wpi_probe(device_t dev)
  297 {
  298         const struct wpi_ident *ident;
  299 
  300         wlan_serialize_enter();
  301         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  302                 if (pci_get_vendor(dev) == ident->vendor &&
  303                     pci_get_device(dev) == ident->device) {
  304                         device_set_desc(dev, ident->name);
  305                         wlan_serialize_exit();
  306                         return 0;
  307                 }
  308         }
  309         wlan_serialize_exit();
  310         return ENXIO;
  311 }
  312 
  313 /**
  314  * Load the firmare image from disk to the allocated dma buffer.
  315  * we also maintain the reference to the firmware pointer as there
  316  * is times where we may need to reload the firmware but we are not
  317  * in a context that can access the filesystem (ie taskq cause by restart)
  318  *
  319  * @return 0 on success, an errno on failure
  320  */
  321 static int
  322 wpi_load_firmware(struct wpi_softc *sc)
  323 {
  324         const struct firmware *fp;
  325         struct wpi_dma_info *dma = &sc->fw_dma;
  326         const struct wpi_firmware_hdr *hdr;
  327         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
  328         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
  329         int error;
  330 
  331         DPRINTFN(WPI_DEBUG_FIRMWARE,
  332             ("Attempting Loading Firmware from wpi_fw module\n"));
  333 
  334         wlan_assert_serialized();
  335         wlan_serialize_exit();
  336         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
  337                 device_printf(sc->sc_dev,
  338                     "could not load firmware image 'wpifw_fw'\n");
  339                 error = ENOENT;
  340                 wlan_serialize_enter();
  341                 goto fail;
  342         }
  343         wlan_serialize_enter();
  344 
  345         fp = sc->fw_fp;
  346 
  347         /* Validate the firmware is minimum a particular version */
  348         if (fp->version < WPI_FW_MINVERSION) {
  349             device_printf(sc->sc_dev,
  350                            "firmware version is too old. Need %d, got %d\n",
  351                            WPI_FW_MINVERSION,
  352                            fp->version);
  353             error = ENXIO;
  354             goto fail;
  355         }
  356 
  357         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
  358                 device_printf(sc->sc_dev,
  359                     "firmware file too short: %zu bytes\n", fp->datasize);
  360                 error = ENXIO;
  361                 goto fail;
  362         }
  363 
  364         hdr = (const struct wpi_firmware_hdr *)fp->data;
  365 
  366         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
  367            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
  368 
  369         rtextsz = le32toh(hdr->rtextsz);
  370         rdatasz = le32toh(hdr->rdatasz);
  371         itextsz = le32toh(hdr->itextsz);
  372         idatasz = le32toh(hdr->idatasz);
  373         btextsz = le32toh(hdr->btextsz);
  374 
  375         /* check that all firmware segments are present */
  376         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
  377                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
  378                 device_printf(sc->sc_dev,
  379                     "firmware file too short: %zu bytes\n", fp->datasize);
  380                 error = ENXIO; /* XXX appropriate error code? */
  381                 goto fail;
  382         }
  383 
  384         /* get pointers to firmware segments */
  385         rtext = (const uint8_t *)(hdr + 1);
  386         rdata = rtext + rtextsz;
  387         itext = rdata + rdatasz;
  388         idata = itext + itextsz;
  389         btext = idata + idatasz;
  390 
  391         DPRINTFN(WPI_DEBUG_FIRMWARE,
  392             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
  393              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
  394              (le32toh(hdr->version) & 0xff000000) >> 24,
  395              (le32toh(hdr->version) & 0x00ff0000) >> 16,
  396              (le32toh(hdr->version) & 0x0000ffff),
  397              rtextsz, rdatasz,
  398              itextsz, idatasz, btextsz));
  399 
  400         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
  401         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
  402         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
  403         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
  404         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
  405 
  406         /* sanity checks */
  407         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
  408             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
  409             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
  410             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
  411             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
  412             (btextsz & 3) != 0) {
  413                 device_printf(sc->sc_dev, "firmware invalid\n");
  414                 error = EINVAL;
  415                 goto fail;
  416         }
  417 
  418         /* copy initialization images into pre-allocated DMA-safe memory */
  419         memcpy(dma->vaddr, idata, idatasz);
  420         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
  421 
  422         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  423 
  424         /* tell adapter where to find initialization images */
  425         wpi_mem_lock(sc);
  426         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  427         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
  428         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  429             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
  430         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
  431         wpi_mem_unlock(sc);
  432 
  433         /* load firmware boot code */
  434         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
  435             device_printf(sc->sc_dev, "Failed to load microcode\n");
  436             goto fail;
  437         }
  438 
  439         /* now press "execute" */
  440         WPI_WRITE(sc, WPI_RESET, 0);
  441 
  442         /* wait at most one second for the first alive notification */
  443         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
  444                 device_printf(sc->sc_dev,
  445                     "timeout waiting for adapter to initialize\n");
  446                 goto fail;
  447         }
  448 
  449         /* copy runtime images into pre-allocated DMA-sage memory */
  450         memcpy(dma->vaddr, rdata, rdatasz);
  451         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
  452         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  453 
  454         /* tell adapter where to find runtime images */
  455         wpi_mem_lock(sc);
  456         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  457         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
  458         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  459             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
  460         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
  461         wpi_mem_unlock(sc);
  462 
  463         /* wait at most one second for the first alive notification */
  464         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
  465                 device_printf(sc->sc_dev,
  466                     "timeout waiting for adapter to initialize2\n");
  467                 goto fail;
  468         }
  469 
  470         DPRINTFN(WPI_DEBUG_FIRMWARE,
  471             ("Firmware loaded to driver successfully\n"));
  472         return error;
  473 fail:
  474         wpi_unload_firmware(sc);
  475         return error;
  476 }
  477 
  478 /**
  479  * Free the referenced firmware image
  480  */
  481 static void
  482 wpi_unload_firmware(struct wpi_softc *sc)
  483 {
  484         if (sc->fw_fp) {
  485                 wlan_assert_serialized();
  486                 wlan_serialize_exit();
  487                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
  488                 wlan_serialize_enter();
  489                 sc->fw_fp = NULL;
  490         }
  491 }
  492 
  493 static int
  494 wpi_attach(device_t dev)
  495 {
  496         struct wpi_softc *sc;
  497         struct ifnet *ifp;
  498         struct ieee80211com *ic;
  499         int ac, error, supportsa = 1;
  500         uint32_t tmp;
  501         const struct wpi_ident *ident;
  502         uint8_t macaddr[IEEE80211_ADDR_LEN];
  503 
  504         wlan_serialize_enter();
  505         sc = device_get_softc(dev);
  506         sc->sc_dev = dev;
  507 
  508         if (bootverbose || WPI_DEBUG_SET)
  509             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
  510 
  511         /*
  512          * Some card's only support 802.11b/g not a, check to see if
  513          * this is one such card. A 0x0 in the subdevice table indicates
  514          * the entire subdevice range is to be ignored.
  515          */
  516         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  517                 if (ident->subdevice &&
  518                     pci_get_subdevice(dev) == ident->subdevice) {
  519                     supportsa = 0;
  520                     break;
  521                 }
  522         }
  523 
  524         /* Create the tasks that can be queued */
  525         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
  526         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
  527 
  528         callout_init(&sc->calib_to_callout);
  529         callout_init(&sc->watchdog_to_callout);
  530 
  531         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  532                 device_printf(dev, "chip is in D%d power mode "
  533                     "-- setting to D0\n", pci_get_powerstate(dev));
  534                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  535         }
  536 
  537         /* disable the retry timeout register */
  538         pci_write_config(dev, 0x41, 0, 1);
  539 
  540         /* enable bus-mastering */
  541         pci_enable_busmaster(dev);
  542 
  543         sc->mem_rid = PCIR_BAR(0);
  544         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
  545             RF_ACTIVE);
  546         if (sc->mem == NULL) {
  547                 device_printf(dev, "could not allocate memory resource\n");
  548                 error = ENOMEM;
  549                 goto fail;
  550         }
  551 
  552         sc->sc_st = rman_get_bustag(sc->mem);
  553         sc->sc_sh = rman_get_bushandle(sc->mem);
  554 
  555         sc->irq_rid = 0;
  556         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
  557             RF_ACTIVE | RF_SHAREABLE);
  558         if (sc->irq == NULL) {
  559                 device_printf(dev, "could not allocate interrupt resource\n");
  560                 error = ENOMEM;
  561                 goto fail;
  562         }
  563 
  564         /*
  565          * Allocate DMA memory for firmware transfers.
  566          */
  567         if ((error = wpi_alloc_fwmem(sc)) != 0) {
  568                 kprintf(": could not allocate firmware memory\n");
  569                 error = ENOMEM;
  570                 goto fail;
  571         }
  572 
  573         /*
  574          * Put adapter into a known state.
  575          */
  576         if ((error = wpi_reset(sc)) != 0) {
  577                 device_printf(dev, "could not reset adapter\n");
  578                 goto fail;
  579         }
  580 
  581         wpi_mem_lock(sc);
  582         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
  583         if (bootverbose || WPI_DEBUG_SET)
  584             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
  585 
  586         wpi_mem_unlock(sc);
  587 
  588         /* Allocate shared page */
  589         if ((error = wpi_alloc_shared(sc)) != 0) {
  590                 device_printf(dev, "could not allocate shared page\n");
  591                 goto fail;
  592         }
  593 
  594         /* tx data queues  - 4 for QoS purposes */
  595         for (ac = 0; ac < WME_NUM_AC; ac++) {
  596                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
  597                 if (error != 0) {
  598                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
  599                     goto fail;
  600                 }
  601         }
  602 
  603         /* command queue to talk to the card's firmware */
  604         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
  605         if (error != 0) {
  606                 device_printf(dev, "could not allocate command ring\n");
  607                 goto fail;
  608         }
  609 
  610         /* receive data queue */
  611         error = wpi_alloc_rx_ring(sc, &sc->rxq);
  612         if (error != 0) {
  613                 device_printf(dev, "could not allocate Rx ring\n");
  614                 goto fail;
  615         }
  616 
  617         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
  618         if (ifp == NULL) {
  619                 device_printf(dev, "can not if_alloc()\n");
  620                 error = ENOMEM;
  621                 goto fail;
  622         }
  623         ic = ifp->if_l2com;
  624 
  625         ic->ic_ifp = ifp;
  626         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  627         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  628 
  629         /* set device capabilities */
  630         ic->ic_caps =
  631                   IEEE80211_C_STA               /* station mode supported */
  632                 | IEEE80211_C_MONITOR           /* monitor mode supported */
  633                 | IEEE80211_C_TXPMGT            /* tx power management */
  634                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  635                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  636                 | IEEE80211_C_WPA               /* 802.11i */
  637 /* XXX looks like WME is partly supported? */
  638 #if 0
  639                 | IEEE80211_C_IBSS              /* IBSS mode support */
  640                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  641                 | IEEE80211_C_WME               /* 802.11e */
  642                 | IEEE80211_C_HOSTAP            /* Host access point mode */
  643 #endif
  644                 ;
  645 
  646         /*
  647          * Read in the eeprom and also setup the channels for
  648          * net80211. We don't set the rates as net80211 does this for us
  649          */
  650         wpi_read_eeprom(sc, macaddr);
  651 
  652         if (bootverbose || WPI_DEBUG_SET) {
  653             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
  654             device_printf(sc->sc_dev, "Hardware Type: %c\n",
  655                           sc->type > 1 ? 'B': '?');
  656             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
  657                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
  658             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
  659                           supportsa ? "does" : "does not");
  660 
  661             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
  662                what sc->rev really represents - benjsc 20070615 */
  663         }
  664 
  665         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  666         ifp->if_softc = sc;
  667         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  668         ifp->if_init = wpi_init;
  669         ifp->if_ioctl = wpi_ioctl;
  670         ifp->if_start = wpi_start;
  671         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
  672 #ifdef notyet
  673         ifq_set_ready(&ifp->if_snd);
  674 #endif
  675 
  676         ieee80211_ifattach(ic, macaddr);
  677         /* override default methods */
  678         ic->ic_node_alloc = wpi_node_alloc;
  679         ic->ic_newassoc = wpi_newassoc;
  680         ic->ic_raw_xmit = wpi_raw_xmit;
  681         ic->ic_wme.wme_update = wpi_wme_update;
  682         ic->ic_scan_start = wpi_scan_start;
  683         ic->ic_scan_end = wpi_scan_end;
  684         ic->ic_set_channel = wpi_set_channel;
  685         ic->ic_scan_curchan = wpi_scan_curchan;
  686         ic->ic_scan_mindwell = wpi_scan_mindwell;
  687 
  688         ic->ic_vap_create = wpi_vap_create;
  689         ic->ic_vap_delete = wpi_vap_delete;
  690 
  691         ieee80211_radiotap_attach(ic,
  692             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
  693                 WPI_TX_RADIOTAP_PRESENT,
  694             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
  695                 WPI_RX_RADIOTAP_PRESENT);
  696 
  697         /*
  698          * Hook our interrupt after all initialization is complete.
  699          */
  700         error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
  701             wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
  702         if (error != 0) {
  703                 device_printf(dev, "could not set up interrupt\n");
  704                 goto fail;
  705         }
  706 
  707         if (bootverbose)
  708                 ieee80211_announce(ic);
  709 #ifdef XXX_DEBUG
  710         ieee80211_announce_channels(ic);
  711 #endif
  712         wlan_serialize_exit();
  713         return 0;
  714 
  715 fail:
  716         wlan_serialize_exit();
  717         wpi_detach(dev);
  718         return ENXIO;
  719 }
  720 
  721 static int
  722 wpi_detach(device_t dev)
  723 {
  724         struct wpi_softc *sc;
  725         struct ifnet *ifp;
  726         struct ieee80211com *ic;
  727         int ac;
  728 
  729         wlan_serialize_enter();
  730         sc = device_get_softc(dev);
  731         ifp = sc->sc_ifp;
  732         if (ifp != NULL) {
  733                 ic = ifp->if_l2com;
  734 
  735                 ieee80211_draintask(ic, &sc->sc_restarttask);
  736                 ieee80211_draintask(ic, &sc->sc_radiotask);
  737                 wpi_stop(sc);
  738                 callout_stop(&sc->watchdog_to_callout);
  739                 callout_stop(&sc->calib_to_callout);
  740                 ieee80211_ifdetach(ic);
  741         }
  742 
  743         if (sc->txq[0].data_dmat) {
  744                 for (ac = 0; ac < WME_NUM_AC; ac++)
  745                         wpi_free_tx_ring(sc, &sc->txq[ac]);
  746 
  747                 wpi_free_tx_ring(sc, &sc->cmdq);
  748                 wpi_free_rx_ring(sc, &sc->rxq);
  749                 wpi_free_shared(sc);
  750         }
  751 
  752         if (sc->fw_fp != NULL) {
  753                 wpi_unload_firmware(sc);
  754         }
  755 
  756         if (sc->fw_dma.tag)
  757                 wpi_free_fwmem(sc);
  758 
  759         if (sc->irq != NULL) {
  760                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  761                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
  762         }
  763 
  764         if (sc->mem != NULL)
  765                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
  766 
  767         if (ifp != NULL)
  768                 if_free(ifp);
  769 
  770         wlan_serialize_exit();
  771         return 0;
  772 }
  773 
  774 static struct ieee80211vap *
  775 wpi_vap_create(struct ieee80211com *ic,
  776         const char name[IFNAMSIZ], int unit,
  777         enum ieee80211_opmode opmode, int flags,
  778         const uint8_t bssid[IEEE80211_ADDR_LEN],
  779         const uint8_t mac[IEEE80211_ADDR_LEN])
  780 {
  781         struct wpi_vap *wvp;
  782         struct ieee80211vap *vap;
  783 
  784         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  785                 return NULL;
  786         wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
  787             M_80211_VAP, M_INTWAIT | M_ZERO);
  788         if (wvp == NULL)
  789                 return NULL;
  790         vap = &wvp->vap;
  791         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
  792         /* override with driver methods */
  793         wvp->newstate = vap->iv_newstate;
  794         vap->iv_newstate = wpi_newstate;
  795 
  796         ieee80211_ratectl_init(vap);
  797 
  798         /* complete setup */
  799         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
  800         ic->ic_opmode = opmode;
  801         return vap;
  802 }
  803 
  804 static void
  805 wpi_vap_delete(struct ieee80211vap *vap)
  806 {
  807         struct wpi_vap *wvp = WPI_VAP(vap);
  808 
  809         ieee80211_ratectl_deinit(vap);
  810         ieee80211_vap_detach(vap);
  811         kfree(wvp, M_80211_VAP);
  812 }
  813 
  814 static void
  815 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  816 {
  817         if (error != 0)
  818                 return;
  819 
  820         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
  821 
  822         *(bus_addr_t *)arg = segs[0].ds_addr;
  823 }
  824 
  825 /*
  826  * Allocates a contiguous block of dma memory of the requested size and
  827  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
  828  * allocations greater than 4096 may fail. Hence if the requested alignment is
  829  * greater we allocate 'alignment' size extra memory and shift the vaddr and
  830  * paddr after the dma load. This bypasses the problem at the cost of a little
  831  * more memory.
  832  */
  833 static int
  834 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
  835     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
  836 {
  837         int error;
  838         bus_size_t align;
  839         bus_size_t reqsize;
  840 
  841         DPRINTFN(WPI_DEBUG_DMA,
  842             ("Size: %zd - alignment %zd\n", size, alignment));
  843 
  844         dma->size = size;
  845         dma->tag = NULL;
  846 
  847         if (alignment > 4096) {
  848                 align = PAGE_SIZE;
  849                 reqsize = size + alignment;
  850         } else {
  851                 align = alignment;
  852                 reqsize = size;
  853         }
  854         error = bus_dma_tag_create(dma->tag, align,
  855             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  856             NULL, NULL, reqsize,
  857             1, reqsize, flags,
  858             &dma->tag);
  859         if (error != 0) {
  860                 device_printf(sc->sc_dev,
  861                     "could not create shared page DMA tag\n");
  862                 goto fail;
  863         }
  864         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
  865             flags | BUS_DMA_ZERO, &dma->map);
  866         if (error != 0) {
  867                 device_printf(sc->sc_dev,
  868                     "could not allocate shared page DMA memory\n");
  869                 goto fail;
  870         }
  871 
  872         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
  873             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
  874 
  875         /* Save the original pointers so we can free all the memory */
  876         dma->paddr = dma->paddr_start;
  877         dma->vaddr = dma->vaddr_start;
  878 
  879         /*
  880          * Check the alignment and increment by 4096 until we get the
  881          * requested alignment. Fail if can't obtain the alignment
  882          * we requested.
  883          */
  884         if ((dma->paddr & (alignment -1 )) != 0) {
  885                 int i;
  886 
  887                 for (i = 0; i < alignment / 4096; i++) {
  888                         if ((dma->paddr & (alignment - 1 )) == 0)
  889                                 break;
  890                         dma->paddr += 4096;
  891                         dma->vaddr += 4096;
  892                 }
  893                 if (i == alignment / 4096) {
  894                         device_printf(sc->sc_dev,
  895                             "alignment requirement was not satisfied\n");
  896                         goto fail;
  897                 }
  898         }
  899 
  900         if (error != 0) {
  901                 device_printf(sc->sc_dev,
  902                     "could not load shared page DMA map\n");
  903                 goto fail;
  904         }
  905 
  906         if (kvap != NULL)
  907                 *kvap = dma->vaddr;
  908 
  909         return 0;
  910 
  911 fail:
  912         wpi_dma_contig_free(dma);
  913         return error;
  914 }
  915 
  916 static void
  917 wpi_dma_contig_free(struct wpi_dma_info *dma)
  918 {
  919         if (dma->tag) {
  920                 if (dma->map != NULL) {
  921                         if (dma->paddr_start != 0) {
  922                                 bus_dmamap_sync(dma->tag, dma->map,
  923                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  924                                 bus_dmamap_unload(dma->tag, dma->map);
  925                         }
  926                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
  927                 }
  928                 bus_dma_tag_destroy(dma->tag);
  929         }
  930 }
  931 
  932 /*
  933  * Allocate a shared page between host and NIC.
  934  */
  935 static int
  936 wpi_alloc_shared(struct wpi_softc *sc)
  937 {
  938         int error;
  939 
  940         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
  941             (void **)&sc->shared, sizeof (struct wpi_shared),
  942             PAGE_SIZE,
  943             BUS_DMA_NOWAIT);
  944 
  945         if (error != 0) {
  946                 device_printf(sc->sc_dev,
  947                     "could not allocate shared area DMA memory\n");
  948         }
  949 
  950         return error;
  951 }
  952 
  953 static void
  954 wpi_free_shared(struct wpi_softc *sc)
  955 {
  956         wpi_dma_contig_free(&sc->shared_dma);
  957 }
  958 
  959 static int
  960 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
  961 {
  962 
  963         int i, error;
  964 
  965         ring->cur = 0;
  966 
  967         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
  968             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
  969             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
  970 
  971         if (error != 0) {
  972                 device_printf(sc->sc_dev,
  973                     "%s: could not allocate rx ring DMA memory, error %d\n",
  974                     __func__, error);
  975                 goto fail;
  976         }
  977 
  978         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
  979             BUS_SPACE_MAXADDR_32BIT,
  980             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
  981             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
  982         if (error != 0) {
  983                 device_printf(sc->sc_dev,
  984                     "%s: bus_dma_tag_create_failed, error %d\n",
  985                     __func__, error);
  986                 goto fail;
  987         }
  988 
  989         /*
  990          * Setup Rx buffers.
  991          */
  992         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
  993                 struct wpi_rx_data *data = &ring->data[i];
  994                 struct mbuf *m;
  995                 bus_addr_t paddr;
  996 
  997                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
  998                 if (error != 0) {
  999                         device_printf(sc->sc_dev,
 1000                             "%s: bus_dmamap_create failed, error %d\n",
 1001                             __func__, error);
 1002                         goto fail;
 1003                 }
 1004                 m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1005                 if (m == NULL) {
 1006                         device_printf(sc->sc_dev,
 1007                            "%s: could not allocate rx mbuf\n", __func__);
 1008                         error = ENOMEM;
 1009                         goto fail;
 1010                 }
 1011                 /* map page */
 1012                 error = bus_dmamap_load(ring->data_dmat, data->map,
 1013                     mtod(m, caddr_t), MJUMPAGESIZE,
 1014                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1015                 if (error != 0 && error != EFBIG) {
 1016                         device_printf(sc->sc_dev,
 1017                             "%s: bus_dmamap_load failed, error %d\n",
 1018                             __func__, error);
 1019                         m_freem(m);
 1020                         error = ENOMEM; /* XXX unique code */
 1021                         goto fail;
 1022                 }
 1023                 bus_dmamap_sync(ring->data_dmat, data->map,
 1024                     BUS_DMASYNC_PREWRITE);
 1025 
 1026                 data->m = m;
 1027                 ring->desc[i] = htole32(paddr);
 1028         }
 1029         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1030             BUS_DMASYNC_PREWRITE);
 1031         return 0;
 1032 fail:
 1033         wpi_free_rx_ring(sc, ring);
 1034         return error;
 1035 }
 1036 
 1037 static void
 1038 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1039 {
 1040         int ntries;
 1041 
 1042         wpi_mem_lock(sc);
 1043 
 1044         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
 1045 
 1046         for (ntries = 0; ntries < 100; ntries++) {
 1047                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
 1048                         break;
 1049                 DELAY(10);
 1050         }
 1051 
 1052         wpi_mem_unlock(sc);
 1053 
 1054 #ifdef WPI_DEBUG
 1055         if (ntries == 100 && wpi_debug > 0)
 1056                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
 1057 #endif
 1058 
 1059         ring->cur = 0;
 1060 }
 1061 
 1062 static void
 1063 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1064 {
 1065         int i;
 1066 
 1067         wpi_dma_contig_free(&ring->desc_dma);
 1068 
 1069         for (i = 0; i < WPI_RX_RING_COUNT; i++)
 1070                 if (ring->data[i].m != NULL)
 1071                         m_freem(ring->data[i].m);
 1072 }
 1073 
 1074 static int
 1075 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
 1076         int qid)
 1077 {
 1078         struct wpi_tx_data *data;
 1079         int i, error;
 1080 
 1081         ring->qid = qid;
 1082         ring->count = count;
 1083         ring->queued = 0;
 1084         ring->cur = 0;
 1085         ring->data = NULL;
 1086 
 1087         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
 1088                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
 1089                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
 1090 
 1091         if (error != 0) {
 1092             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
 1093             goto fail;
 1094         }
 1095 
 1096         /* update shared page with ring's base address */
 1097         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
 1098 
 1099         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
 1100                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
 1101                 BUS_DMA_NOWAIT);
 1102 
 1103         if (error != 0) {
 1104                 device_printf(sc->sc_dev,
 1105                     "could not allocate tx command DMA memory\n");
 1106                 goto fail;
 1107         }
 1108 
 1109         ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
 1110             M_INTWAIT | M_ZERO);
 1111         if (ring->data == NULL) {
 1112                 device_printf(sc->sc_dev,
 1113                     "could not allocate tx data slots\n");
 1114                 goto fail;
 1115         }
 1116 
 1117         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
 1118             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE,
 1119             WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT,
 1120             &ring->data_dmat);
 1121         if (error != 0) {
 1122                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
 1123                 goto fail;
 1124         }
 1125 
 1126         for (i = 0; i < count; i++) {
 1127                 data = &ring->data[i];
 1128 
 1129                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1130                 if (error != 0) {
 1131                         device_printf(sc->sc_dev,
 1132                             "could not create tx buf DMA map\n");
 1133                         goto fail;
 1134                 }
 1135                 bus_dmamap_sync(ring->data_dmat, data->map,
 1136                     BUS_DMASYNC_PREWRITE);
 1137         }
 1138 
 1139         return 0;
 1140 
 1141 fail:
 1142         wpi_free_tx_ring(sc, ring);
 1143         return error;
 1144 }
 1145 
 1146 static void
 1147 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1148 {
 1149         struct wpi_tx_data *data;
 1150         int i, ntries;
 1151 
 1152         wpi_mem_lock(sc);
 1153 
 1154         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
 1155         for (ntries = 0; ntries < 100; ntries++) {
 1156                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
 1157                         break;
 1158                 DELAY(10);
 1159         }
 1160 #ifdef WPI_DEBUG
 1161         if (ntries == 100 && wpi_debug > 0)
 1162                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
 1163                     ring->qid);
 1164 #endif
 1165         wpi_mem_unlock(sc);
 1166 
 1167         for (i = 0; i < ring->count; i++) {
 1168                 data = &ring->data[i];
 1169 
 1170                 if (data->m != NULL) {
 1171                         bus_dmamap_unload(ring->data_dmat, data->map);
 1172                         m_freem(data->m);
 1173                         data->m = NULL;
 1174                 }
 1175         }
 1176 
 1177         ring->queued = 0;
 1178         ring->cur = 0;
 1179 }
 1180 
 1181 static void
 1182 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1183 {
 1184         struct wpi_tx_data *data;
 1185         int i;
 1186 
 1187         wpi_dma_contig_free(&ring->desc_dma);
 1188         wpi_dma_contig_free(&ring->cmd_dma);
 1189 
 1190         if (ring->data != NULL) {
 1191                 for (i = 0; i < ring->count; i++) {
 1192                         data = &ring->data[i];
 1193 
 1194                         if (data->m != NULL) {
 1195                                 bus_dmamap_sync(ring->data_dmat, data->map,
 1196                                     BUS_DMASYNC_POSTWRITE);
 1197                                 bus_dmamap_unload(ring->data_dmat, data->map);
 1198                                 m_freem(data->m);
 1199                                 data->m = NULL;
 1200                         }
 1201                 }
 1202                 kfree(ring->data, M_DEVBUF);
 1203         }
 1204 
 1205         if (ring->data_dmat != NULL)
 1206                 bus_dma_tag_destroy(ring->data_dmat);
 1207 }
 1208 
 1209 static int
 1210 wpi_shutdown(device_t dev)
 1211 {
 1212         struct wpi_softc *sc;
 1213 
 1214         wlan_serialize_enter();
 1215         sc = device_get_softc(dev);
 1216         wpi_stop_locked(sc);
 1217         wpi_unload_firmware(sc);
 1218         wlan_serialize_exit();
 1219 
 1220         return 0;
 1221 }
 1222 
 1223 static int
 1224 wpi_suspend(device_t dev)
 1225 {
 1226         struct wpi_softc *sc;
 1227 
 1228         wlan_serialize_enter();
 1229         sc = device_get_softc(dev);
 1230         wpi_stop(sc);
 1231         wlan_serialize_exit();
 1232         return 0;
 1233 }
 1234 
 1235 static int
 1236 wpi_resume(device_t dev)
 1237 {
 1238         struct wpi_softc *sc;
 1239         struct ifnet *ifp;
 1240 
 1241         wlan_serialize_enter();
 1242         sc = device_get_softc(dev);
 1243         ifp = sc->sc_ifp;
 1244         pci_write_config(dev, 0x41, 0, 1);
 1245 
 1246         if (ifp->if_flags & IFF_UP) {
 1247                 wpi_init(ifp->if_softc);
 1248                 if (ifp->if_flags & IFF_RUNNING)
 1249                         if_devstart(ifp);
 1250         }
 1251         wlan_serialize_exit();
 1252         return 0;
 1253 }
 1254 
 1255 /* ARGSUSED */
 1256 static struct ieee80211_node *
 1257 wpi_node_alloc(struct ieee80211vap *vap __unused,
 1258         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
 1259 {
 1260         struct wpi_node *wn;
 1261 
 1262         wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
 1263 
 1264         return &wn->ni;
 1265 }
 1266 
 1267 /**
 1268  * Called by net80211 when ever there is a change to 80211 state machine
 1269  */
 1270 static int
 1271 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
 1272 {
 1273         struct wpi_vap *wvp = WPI_VAP(vap);
 1274         struct ieee80211com *ic = vap->iv_ic;
 1275         struct ifnet *ifp = ic->ic_ifp;
 1276         struct wpi_softc *sc = ifp->if_softc;
 1277         int error;
 1278 
 1279         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
 1280                 ieee80211_state_name[vap->iv_state],
 1281                 ieee80211_state_name[nstate], sc->flags));
 1282 
 1283         if (nstate == IEEE80211_S_AUTH) {
 1284                 /* The node must be registered in the firmware before auth */
 1285                 error = wpi_auth(sc, vap);
 1286                 if (error != 0) {
 1287                         device_printf(sc->sc_dev,
 1288                             "%s: could not move to auth state, error %d\n",
 1289                             __func__, error);
 1290                 }
 1291         }
 1292         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
 1293                 error = wpi_run(sc, vap);
 1294                 if (error != 0) {
 1295                         device_printf(sc->sc_dev,
 1296                             "%s: could not move to run state, error %d\n",
 1297                             __func__, error);
 1298                 }
 1299         }
 1300         if (nstate == IEEE80211_S_RUN) {
 1301                 /* RUN -> RUN transition; just restart the timers */
 1302                 wpi_calib_timeout_callout(sc);
 1303                 /* XXX split out rate control timer */
 1304         }
 1305         return wvp->newstate(vap, nstate, arg);
 1306 }
 1307 
 1308 /*
 1309  * Grab exclusive access to NIC memory.
 1310  */
 1311 static void
 1312 wpi_mem_lock(struct wpi_softc *sc)
 1313 {
 1314         int ntries;
 1315         uint32_t tmp;
 1316 
 1317         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1318         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
 1319 
 1320         /* spin until we actually get the lock */
 1321         for (ntries = 0; ntries < 100; ntries++) {
 1322                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
 1323                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
 1324                         break;
 1325                 DELAY(10);
 1326         }
 1327         if (ntries == 100)
 1328                 device_printf(sc->sc_dev, "could not lock memory\n");
 1329 }
 1330 
 1331 /*
 1332  * Release lock on NIC memory.
 1333  */
 1334 static void
 1335 wpi_mem_unlock(struct wpi_softc *sc)
 1336 {
 1337         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1338         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
 1339 }
 1340 
 1341 static uint32_t
 1342 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
 1343 {
 1344         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
 1345         return WPI_READ(sc, WPI_READ_MEM_DATA);
 1346 }
 1347 
 1348 static void
 1349 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
 1350 {
 1351         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
 1352         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
 1353 }
 1354 
 1355 static void
 1356 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
 1357     const uint32_t *data, int wlen)
 1358 {
 1359         for (; wlen > 0; wlen--, data++, addr+=4)
 1360                 wpi_mem_write(sc, addr, *data);
 1361 }
 1362 
 1363 /*
 1364  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
 1365  * using the traditional bit-bang method. Data is read up until len bytes have
 1366  * been obtained.
 1367  */
 1368 static uint16_t
 1369 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
 1370 {
 1371         int ntries;
 1372         uint32_t val;
 1373         uint8_t *out = data;
 1374 
 1375         wpi_mem_lock(sc);
 1376 
 1377         for (; len > 0; len -= 2, addr++) {
 1378                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
 1379 
 1380                 for (ntries = 0; ntries < 10; ntries++) {
 1381                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
 1382                                 break;
 1383                         DELAY(5);
 1384                 }
 1385 
 1386                 if (ntries == 10) {
 1387                         device_printf(sc->sc_dev, "could not read EEPROM\n");
 1388                         return ETIMEDOUT;
 1389                 }
 1390 
 1391                 *out++= val >> 16;
 1392                 if (len > 1)
 1393                         *out ++= val >> 24;
 1394         }
 1395 
 1396         wpi_mem_unlock(sc);
 1397 
 1398         return 0;
 1399 }
 1400 
 1401 /*
 1402  * The firmware text and data segments are transferred to the NIC using DMA.
 1403  * The driver just copies the firmware into DMA-safe memory and tells the NIC
 1404  * where to find it.  Once the NIC has copied the firmware into its internal
 1405  * memory, we can free our local copy in the driver.
 1406  */
 1407 static int
 1408 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
 1409 {
 1410         int error, ntries;
 1411 
 1412         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
 1413 
 1414         size /= sizeof(uint32_t);
 1415 
 1416         wpi_mem_lock(sc);
 1417 
 1418         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
 1419             (const uint32_t *)fw, size);
 1420 
 1421         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
 1422         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
 1423         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
 1424 
 1425         /* run microcode */
 1426         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
 1427 
 1428         /* wait while the adapter is busy copying the firmware */
 1429         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
 1430                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
 1431                 DPRINTFN(WPI_DEBUG_HW,
 1432                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
 1433                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
 1434                 if (status & WPI_TX_IDLE(6)) {
 1435                         DPRINTFN(WPI_DEBUG_HW,
 1436                             ("Status Match! - ntries = %d\n", ntries));
 1437                         break;
 1438                 }
 1439                 DELAY(10);
 1440         }
 1441         if (ntries == 1000) {
 1442                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
 1443                 error = ETIMEDOUT;
 1444         }
 1445 
 1446         /* start the microcode executing */
 1447         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
 1448 
 1449         wpi_mem_unlock(sc);
 1450 
 1451         return (error);
 1452 }
 1453 
 1454 static void
 1455 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 1456         struct wpi_rx_data *data)
 1457 {
 1458         struct ifnet *ifp = sc->sc_ifp;
 1459         struct ieee80211com *ic = ifp->if_l2com;
 1460         struct wpi_rx_ring *ring = &sc->rxq;
 1461         struct wpi_rx_stat *stat;
 1462         struct wpi_rx_head *head;
 1463         struct wpi_rx_tail *tail;
 1464         struct ieee80211_node *ni;
 1465         struct mbuf *m, *mnew;
 1466         bus_addr_t paddr;
 1467         int error;
 1468 
 1469         stat = (struct wpi_rx_stat *)(desc + 1);
 1470 
 1471         if (stat->len > WPI_STAT_MAXLEN) {
 1472                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
 1473                 IFNET_STAT_INC(ifp, ierrors, 1);
 1474                 return;
 1475         }
 1476 
 1477         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
 1478         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
 1479 
 1480         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
 1481             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
 1482             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
 1483             (uintmax_t)le64toh(tail->tstamp)));
 1484 
 1485         /* discard Rx frames with bad CRC early */
 1486         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
 1487                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
 1488                     le32toh(tail->flags)));
 1489                 IFNET_STAT_INC(ifp, ierrors, 1);
 1490                 return;
 1491         }
 1492         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
 1493                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
 1494                     le16toh(head->len)));
 1495                 IFNET_STAT_INC(ifp, ierrors, 1);
 1496                 return;
 1497         }
 1498 
 1499         /* XXX don't need mbuf, just dma buffer */
 1500         mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1501         if (mnew == NULL) {
 1502                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
 1503                     __func__));
 1504                 IFNET_STAT_INC(ifp, ierrors, 1);
 1505                 return;
 1506         }
 1507         error = bus_dmamap_load(ring->data_dmat, data->map,
 1508             mtod(mnew, caddr_t), MJUMPAGESIZE,
 1509             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1510         if (error != 0 && error != EFBIG) {
 1511                 device_printf(sc->sc_dev,
 1512                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
 1513                 m_freem(mnew);
 1514                 IFNET_STAT_INC(ifp, ierrors, 1);
 1515                 return;
 1516         }
 1517         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 1518 
 1519         /* finalize mbuf and swap in new one */
 1520         m = data->m;
 1521         m->m_pkthdr.rcvif = ifp;
 1522         m->m_data = (caddr_t)(head + 1);
 1523         m->m_pkthdr.len = m->m_len = le16toh(head->len);
 1524 
 1525         data->m = mnew;
 1526         /* update Rx descriptor */
 1527         ring->desc[ring->cur] = htole32(paddr);
 1528 
 1529         if (ieee80211_radiotap_active(ic)) {
 1530                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
 1531 
 1532                 tap->wr_flags = 0;
 1533                 tap->wr_chan_freq =
 1534                         htole16(ic->ic_channels[head->chan].ic_freq);
 1535                 tap->wr_chan_flags =
 1536                         htole16(ic->ic_channels[head->chan].ic_flags);
 1537                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
 1538                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
 1539                 tap->wr_tsft = tail->tstamp;
 1540                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
 1541                 switch (head->rate) {
 1542                 /* CCK rates */
 1543                 case  10: tap->wr_rate =   2; break;
 1544                 case  20: tap->wr_rate =   4; break;
 1545                 case  55: tap->wr_rate =  11; break;
 1546                 case 110: tap->wr_rate =  22; break;
 1547                 /* OFDM rates */
 1548                 case 0xd: tap->wr_rate =  12; break;
 1549                 case 0xf: tap->wr_rate =  18; break;
 1550                 case 0x5: tap->wr_rate =  24; break;
 1551                 case 0x7: tap->wr_rate =  36; break;
 1552                 case 0x9: tap->wr_rate =  48; break;
 1553                 case 0xb: tap->wr_rate =  72; break;
 1554                 case 0x1: tap->wr_rate =  96; break;
 1555                 case 0x3: tap->wr_rate = 108; break;
 1556                 /* unknown rate: should not happen */
 1557                 default:  tap->wr_rate =   0;
 1558                 }
 1559                 if (le16toh(head->flags) & 0x4)
 1560                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
 1561         }
 1562 
 1563         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 1564         if (ni != NULL) {
 1565                 (void) ieee80211_input(ni, m, stat->rssi, 0);
 1566                 ieee80211_free_node(ni);
 1567         } else
 1568                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
 1569 }
 1570 
 1571 static void
 1572 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1573 {
 1574         struct ifnet *ifp = sc->sc_ifp;
 1575         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
 1576         struct wpi_tx_data *txdata = &ring->data[desc->idx];
 1577         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
 1578         struct ieee80211_node *ni = txdata->ni;
 1579         struct ieee80211vap *vap = ni->ni_vap;
 1580         int retrycnt = 0;
 1581 
 1582         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
 1583             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
 1584             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
 1585             le32toh(stat->status)));
 1586 
 1587         /*
 1588          * Update rate control statistics for the node.
 1589          * XXX we should not count mgmt frames since they're always sent at
 1590          * the lowest available bit-rate.
 1591          * XXX frames w/o ACK shouldn't be used either
 1592          */
 1593         if (stat->ntries > 0) {
 1594                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
 1595                 retrycnt = 1;
 1596         }
 1597         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
 1598                 &retrycnt, NULL);
 1599 
 1600         /* XXX oerrors should only count errors !maxtries */
 1601         if ((le32toh(stat->status) & 0xff) != 1)
 1602                 IFNET_STAT_INC(ifp, oerrors, 1);
 1603         else
 1604                 IFNET_STAT_INC(ifp, opackets, 1);
 1605 
 1606         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
 1607         bus_dmamap_unload(ring->data_dmat, txdata->map);
 1608         /* XXX handle M_TXCB? */
 1609         m_freem(txdata->m);
 1610         txdata->m = NULL;
 1611         ieee80211_free_node(txdata->ni);
 1612         txdata->ni = NULL;
 1613 
 1614         ring->queued--;
 1615 
 1616         sc->sc_tx_timer = 0;
 1617         ifq_clr_oactive(&ifp->if_snd);
 1618         wpi_start_locked(ifp);
 1619 }
 1620 
 1621 static void
 1622 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1623 {
 1624         struct wpi_tx_ring *ring = &sc->cmdq;
 1625         struct wpi_tx_data *data;
 1626 
 1627         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
 1628                                  "type=%s len=%d\n", desc->qid, desc->idx,
 1629                                  desc->flags, wpi_cmd_str(desc->type),
 1630                                  le32toh(desc->len)));
 1631 
 1632         if ((desc->qid & 7) != 4)
 1633                 return; /* not a command ack */
 1634 
 1635         data = &ring->data[desc->idx];
 1636 
 1637         /* if the command was mapped in a mbuf, free it */
 1638         if (data->m != NULL) {
 1639                 bus_dmamap_unload(ring->data_dmat, data->map);
 1640                 m_freem(data->m);
 1641                 data->m = NULL;
 1642         }
 1643 
 1644         sc->flags &= ~WPI_FLAG_BUSY;
 1645         wakeup(&ring->cmd[desc->idx]);
 1646 }
 1647 
 1648 static void
 1649 wpi_notif_intr(struct wpi_softc *sc)
 1650 {
 1651         struct ifnet *ifp = sc->sc_ifp;
 1652         struct ieee80211com *ic = ifp->if_l2com;
 1653         struct wpi_rx_desc *desc;
 1654         struct wpi_rx_data *data;
 1655         uint32_t hw;
 1656 
 1657         hw = le32toh(sc->shared->next);
 1658         while (sc->rxq.cur != hw) {
 1659                 data = &sc->rxq.data[sc->rxq.cur];
 1660                 desc = (void *)data->m->m_ext.ext_buf;
 1661 
 1662                 DPRINTFN(WPI_DEBUG_NOTIFY,
 1663                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
 1664                           desc->qid,
 1665                           desc->idx,
 1666                           desc->flags,
 1667                           desc->type,
 1668                           le32toh(desc->len)));
 1669 
 1670                 if (!(desc->qid & 0x80))        /* reply to a command */
 1671                         wpi_cmd_intr(sc, desc);
 1672 
 1673                 switch (desc->type) {
 1674                 case WPI_RX_DONE:
 1675                         /* a 802.11 frame was received */
 1676                         wpi_rx_intr(sc, desc, data);
 1677                         break;
 1678 
 1679                 case WPI_TX_DONE:
 1680                         /* a 802.11 frame has been transmitted */
 1681                         wpi_tx_intr(sc, desc);
 1682                         break;
 1683 
 1684                 case WPI_UC_READY:
 1685                 {
 1686                         struct wpi_ucode_info *uc =
 1687                                 (struct wpi_ucode_info *)(desc + 1);
 1688 
 1689                         /* the microcontroller is ready */
 1690                         DPRINTF(("microcode alive notification version %x "
 1691                                 "alive %x\n", le32toh(uc->version),
 1692                                 le32toh(uc->valid)));
 1693 
 1694                         if (le32toh(uc->valid) != 1) {
 1695                                 device_printf(sc->sc_dev,
 1696                                     "microcontroller initialization failed\n");
 1697                                 wpi_stop_locked(sc);
 1698                         }
 1699                         break;
 1700                 }
 1701                 case WPI_STATE_CHANGED:
 1702                 {
 1703                         uint32_t *status = (uint32_t *)(desc + 1);
 1704 
 1705                         /* enabled/disabled notification */
 1706                         DPRINTF(("state changed to %x\n", le32toh(*status)));
 1707 
 1708                         if (le32toh(*status) & 1) {
 1709                                 device_printf(sc->sc_dev,
 1710                                     "Radio transmitter is switched off\n");
 1711                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 1712                                 ifp->if_flags &= ~IFF_RUNNING;
 1713                                 /* Disable firmware commands */
 1714                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
 1715                         }
 1716                         break;
 1717                 }
 1718                 case WPI_START_SCAN:
 1719                 {
 1720 #ifdef WPI_DEBUG
 1721                         struct wpi_start_scan *scan =
 1722                                 (struct wpi_start_scan *)(desc + 1);
 1723 #endif
 1724 
 1725                         DPRINTFN(WPI_DEBUG_SCANNING,
 1726                                  ("scanning channel %d status %x\n",
 1727                             scan->chan, le32toh(scan->status)));
 1728                         break;
 1729                 }
 1730                 case WPI_STOP_SCAN:
 1731                 {
 1732 #ifdef WPI_DEBUG
 1733                         struct wpi_stop_scan *scan =
 1734                                 (struct wpi_stop_scan *)(desc + 1);
 1735 #endif
 1736                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1737 
 1738                         DPRINTFN(WPI_DEBUG_SCANNING,
 1739                             ("scan finished nchan=%d status=%d chan=%d\n",
 1740                              scan->nchan, scan->status, scan->chan));
 1741 
 1742                         sc->sc_scan_timer = 0;
 1743                         ieee80211_scan_next(vap);
 1744                         break;
 1745                 }
 1746                 case WPI_MISSED_BEACON:
 1747                 {
 1748                         struct wpi_missed_beacon *beacon =
 1749                                 (struct wpi_missed_beacon *)(desc + 1);
 1750                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1751 
 1752                         if (le32toh(beacon->consecutive) >=
 1753                             vap->iv_bmissthreshold) {
 1754                                 DPRINTF(("Beacon miss: %u >= %u\n",
 1755                                          le32toh(beacon->consecutive),
 1756                                          vap->iv_bmissthreshold));
 1757                                 ieee80211_beacon_miss(ic);
 1758                         }
 1759                         break;
 1760                 }
 1761                 }
 1762 
 1763                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
 1764         }
 1765 
 1766         /* tell the firmware what we have processed */
 1767         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
 1768         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
 1769 }
 1770 
 1771 static void
 1772 wpi_intr(void *arg)
 1773 {
 1774         struct wpi_softc *sc = arg;
 1775         uint32_t r;
 1776 
 1777         r = WPI_READ(sc, WPI_INTR);
 1778         if (r == 0 || r == 0xffffffff) {
 1779                 return;
 1780         }
 1781 
 1782         /* disable interrupts */
 1783         WPI_WRITE(sc, WPI_MASK, 0);
 1784         /* ack interrupts */
 1785         WPI_WRITE(sc, WPI_INTR, r);
 1786 
 1787         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
 1788                 struct ifnet *ifp = sc->sc_ifp;
 1789                 struct ieee80211com *ic = ifp->if_l2com;
 1790                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1791 
 1792                 device_printf(sc->sc_dev, "fatal firmware error\n");
 1793                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
 1794                                 "(Hardware Error)"));
 1795                 if (vap != NULL)
 1796                         ieee80211_cancel_scan(vap);
 1797                 ieee80211_runtask(ic, &sc->sc_restarttask);
 1798                 sc->flags &= ~WPI_FLAG_BUSY;
 1799                 return;
 1800         }
 1801 
 1802         if (r & WPI_RX_INTR)
 1803                 wpi_notif_intr(sc);
 1804 
 1805         if (r & WPI_ALIVE_INTR) /* firmware initialized */
 1806                 wakeup(sc);
 1807 
 1808         /* re-enable interrupts */
 1809         if (sc->sc_ifp->if_flags & IFF_UP)
 1810                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 1811 
 1812 }
 1813 
 1814 static uint8_t
 1815 wpi_plcp_signal(int rate)
 1816 {
 1817         switch (rate) {
 1818         /* CCK rates (returned values are device-dependent) */
 1819         case 2:         return 10;
 1820         case 4:         return 20;
 1821         case 11:        return 55;
 1822         case 22:        return 110;
 1823 
 1824         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1825         /* R1-R4 (ral/ural is R4-R1) */
 1826         case 12:        return 0xd;
 1827         case 18:        return 0xf;
 1828         case 24:        return 0x5;
 1829         case 36:        return 0x7;
 1830         case 48:        return 0x9;
 1831         case 72:        return 0xb;
 1832         case 96:        return 0x1;
 1833         case 108:       return 0x3;
 1834 
 1835         /* unsupported rates (should not get there) */
 1836         default:        return 0;
 1837         }
 1838 }
 1839 
 1840 /* quickly determine if a given rate is CCK or OFDM */
 1841 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
 1842 
 1843 /*
 1844  * Construct the data packet for a transmit buffer and acutally put
 1845  * the buffer onto the transmit ring, kicking the card to process the
 1846  * the buffer.
 1847  */
 1848 static int
 1849 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
 1850         int ac)
 1851 {
 1852         struct ieee80211vap *vap = ni->ni_vap;
 1853         struct ifnet *ifp = sc->sc_ifp;
 1854         struct ieee80211com *ic = ifp->if_l2com;
 1855         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
 1856         struct wpi_tx_ring *ring = &sc->txq[ac];
 1857         struct wpi_tx_desc *desc;
 1858         struct wpi_tx_data *data;
 1859         struct wpi_tx_cmd *cmd;
 1860         struct wpi_cmd_data *tx;
 1861         struct ieee80211_frame *wh;
 1862         const struct ieee80211_txparam *tp;
 1863         struct ieee80211_key *k;
 1864         struct mbuf *mnew;
 1865         int i, error, nsegs, rate, hdrlen, ismcast;
 1866         bus_dma_segment_t segs[WPI_MAX_SCATTER];
 1867 
 1868         desc = &ring->desc[ring->cur];
 1869         data = &ring->data[ring->cur];
 1870 
 1871         wh = mtod(m0, struct ieee80211_frame *);
 1872 
 1873         hdrlen = ieee80211_hdrsize(wh);
 1874         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 1875 
 1876         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1877                 k = ieee80211_crypto_encap(ni, m0);
 1878                 if (k == NULL) {
 1879                         m_freem(m0);
 1880                         return ENOBUFS;
 1881                 }
 1882                 /* packet header may have moved, reset our local pointer */
 1883                 wh = mtod(m0, struct ieee80211_frame *);
 1884         }
 1885 
 1886         cmd = &ring->cmd[ring->cur];
 1887         cmd->code = WPI_CMD_TX_DATA;
 1888         cmd->flags = 0;
 1889         cmd->qid = ring->qid;
 1890         cmd->idx = ring->cur;
 1891 
 1892         tx = (struct wpi_cmd_data *)cmd->data;
 1893         tx->flags = htole32(WPI_TX_AUTO_SEQ);
 1894         tx->timeout = htole16(0);
 1895         tx->ofdm_mask = 0xff;
 1896         tx->cck_mask = 0x0f;
 1897         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 1898         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
 1899         tx->len = htole16(m0->m_pkthdr.len);
 1900 
 1901         if (!ismcast) {
 1902                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
 1903                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
 1904                         tx->flags |= htole32(WPI_TX_NEED_ACK);
 1905                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
 1906                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
 1907                         tx->rts_ntries = 7;
 1908                 }
 1909         }
 1910         /* pick a rate */
 1911         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
 1912         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
 1913                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 1914                 /* tell h/w to set timestamp in probe responses */
 1915                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 1916                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
 1917                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 1918                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 1919                         tx->timeout = htole16(3);
 1920                 else
 1921                         tx->timeout = htole16(2);
 1922                 rate = tp->mgmtrate;
 1923         } else if (ismcast) {
 1924                 rate = tp->mcastrate;
 1925         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
 1926                 rate = tp->ucastrate;
 1927         } else {
 1928                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 1929                 rate = ni->ni_txrate;
 1930         }
 1931         tx->rate = wpi_plcp_signal(rate);
 1932 
 1933         /* be very persistant at sending frames out */
 1934 #if 0
 1935         tx->data_ntries = tp->maxretry;
 1936 #else
 1937         tx->data_ntries = 30;           /* XXX way too high */
 1938 #endif
 1939 
 1940         if (ieee80211_radiotap_active_vap(vap)) {
 1941                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 1942                 tap->wt_flags = 0;
 1943                 tap->wt_rate = rate;
 1944                 tap->wt_hwqueue = ac;
 1945                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
 1946                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 1947 
 1948                 ieee80211_radiotap_tx(vap, m0);
 1949         }
 1950 
 1951         /* save and trim IEEE802.11 header */
 1952         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
 1953         m_adj(m0, hdrlen);
 1954 
 1955         error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
 1956             1, &nsegs, BUS_DMA_NOWAIT);
 1957         if (error != 0 && error != EFBIG) {
 1958                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1959                     error);
 1960                 m_freem(m0);
 1961                 return error;
 1962         }
 1963         if (error != 0) {
 1964                 /* XXX use m_collapse */
 1965                 mnew = m_defrag(m0, MB_DONTWAIT);
 1966                 if (mnew == NULL) {
 1967                         device_printf(sc->sc_dev,
 1968                             "could not defragment mbuf\n");
 1969                         m_freem(m0);
 1970                         return ENOBUFS;
 1971                 }
 1972                 m0 = mnew;
 1973 
 1974                 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
 1975                     m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
 1976                 if (error != 0) {
 1977                         device_printf(sc->sc_dev,
 1978                             "could not map mbuf (error %d)\n", error);
 1979                         m_freem(m0);
 1980                         return error;
 1981                 }
 1982         }
 1983 
 1984         data->m = m0;
 1985         data->ni = ni;
 1986 
 1987         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
 1988             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
 1989 
 1990         /* first scatter/gather segment is used by the tx data command */
 1991         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
 1992             (1 + nsegs) << 24);
 1993         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 1994             ring->cur * sizeof (struct wpi_tx_cmd));
 1995         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
 1996         for (i = 1; i <= nsegs; i++) {
 1997                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
 1998                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
 1999         }
 2000 
 2001         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2002         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2003             BUS_DMASYNC_PREWRITE);
 2004 
 2005         ring->queued++;
 2006 
 2007         /* kick ring */
 2008         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
 2009         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2010 
 2011         return 0;
 2012 }
 2013 
 2014 /**
 2015  * Process data waiting to be sent on the IFNET output queue
 2016  */
 2017 static void
 2018 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 2019 {
 2020         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 2021         wpi_start_locked(ifp);
 2022 }
 2023 
 2024 static void
 2025 wpi_start_locked(struct ifnet *ifp)
 2026 {
 2027         struct wpi_softc *sc = ifp->if_softc;
 2028         struct ieee80211_node *ni;
 2029         struct mbuf *m;
 2030         int ac;
 2031 
 2032         if ((ifp->if_flags & IFF_RUNNING) == 0) {
 2033                 ifq_purge(&ifp->if_snd);
 2034                 return;
 2035         }
 2036 
 2037         for (;;) {
 2038                 m = ifq_dequeue(&ifp->if_snd);
 2039                 if (m == NULL)
 2040                         break;
 2041                 ac = M_WME_GETAC(m);
 2042                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
 2043                         /* there is no place left in this ring */
 2044                         /*
 2045                          * XXX: we CANNOT do it this way. If something
 2046                          * is prepended already, this is going to blow.
 2047                          */
 2048                         ifq_set_oactive(&ifp->if_snd);
 2049                         ifq_prepend(&ifp->if_snd, m);
 2050                         break;
 2051                 }
 2052                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
 2053                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
 2054                         ieee80211_free_node(ni);
 2055                         IFNET_STAT_INC(ifp, oerrors, 1);
 2056                         break;
 2057                 }
 2058                 sc->sc_tx_timer = 5;
 2059         }
 2060 }
 2061 
 2062 static int
 2063 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 2064         const struct ieee80211_bpf_params *params)
 2065 {
 2066         struct ieee80211com *ic = ni->ni_ic;
 2067         struct ifnet *ifp = ic->ic_ifp;
 2068         struct wpi_softc *sc = ifp->if_softc;
 2069 
 2070         /* prevent management frames from being sent if we're not ready */
 2071         if (!(ifp->if_flags & IFF_RUNNING)) {
 2072                 m_freem(m);
 2073                 ieee80211_free_node(ni);
 2074                 return ENETDOWN;
 2075         }
 2076 
 2077         /* management frames go into ring 0 */
 2078         if (sc->txq[0].queued > sc->txq[0].count - 8) {
 2079                 ifq_set_oactive(&ifp->if_snd);
 2080                 m_freem(m);
 2081                 ieee80211_free_node(ni);
 2082                 return ENOBUFS;         /* XXX */
 2083         }
 2084 
 2085         IFNET_STAT_INC(ifp, opackets, 1);
 2086         if (wpi_tx_data(sc, m, ni, 0) != 0)
 2087                 goto bad;
 2088         sc->sc_tx_timer = 5;
 2089         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
 2090 
 2091         return 0;
 2092 bad:
 2093         IFNET_STAT_INC(ifp, oerrors, 1);
 2094         ieee80211_free_node(ni);
 2095         return EIO;             /* XXX */
 2096 }
 2097 
 2098 static int
 2099 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
 2100 {
 2101         struct wpi_softc *sc = ifp->if_softc;
 2102         struct ieee80211com *ic = ifp->if_l2com;
 2103         struct ifreq *ifr = (struct ifreq *) data;
 2104         int error = 0, startall = 0;
 2105 
 2106         switch (cmd) {
 2107         case SIOCSIFFLAGS:
 2108                 if ((ifp->if_flags & IFF_UP)) {
 2109                         if (!(ifp->if_flags & IFF_RUNNING)) {
 2110                                 wpi_init_locked(sc, 0);
 2111                                 startall = 1;
 2112                         }
 2113                 } else if ((ifp->if_flags & IFF_RUNNING) ||
 2114                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
 2115                         wpi_stop_locked(sc);
 2116                 if (startall)
 2117                         ieee80211_start_all(ic);
 2118                 break;
 2119         case SIOCGIFMEDIA:
 2120                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
 2121                 break;
 2122         case SIOCGIFADDR:
 2123                 error = ether_ioctl(ifp, cmd, data);
 2124                 break;
 2125         default:
 2126                 error = EINVAL;
 2127                 break;
 2128         }
 2129         return error;
 2130 }
 2131 
 2132 /*
 2133  * Extract various information from EEPROM.
 2134  */
 2135 static void
 2136 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
 2137 {
 2138         int i;
 2139 
 2140         /* read the hardware capabilities, revision and SKU type */
 2141         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
 2142         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
 2143         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
 2144 
 2145         /* read the regulatory domain */
 2146         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
 2147 
 2148         /* read in the hw MAC address */
 2149         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
 2150 
 2151         /* read the list of authorized channels */
 2152         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
 2153                 wpi_read_eeprom_channels(sc,i);
 2154 
 2155         /* read the power level calibration info for each group */
 2156         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
 2157                 wpi_read_eeprom_group(sc,i);
 2158 }
 2159 
 2160 /*
 2161  * Send a command to the firmware.
 2162  */
 2163 static int
 2164 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
 2165 {
 2166         struct wpi_tx_ring *ring = &sc->cmdq;
 2167         struct wpi_tx_desc *desc;
 2168         struct wpi_tx_cmd *cmd;
 2169 
 2170 #ifdef WPI_DEBUG
 2171         if (!async) {
 2172                 wlan_assert_serialized();
 2173         }
 2174 #endif
 2175 
 2176         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
 2177                     async));
 2178 
 2179         if (sc->flags & WPI_FLAG_BUSY) {
 2180                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
 2181                     __func__, code);
 2182                 return EAGAIN;
 2183         }
 2184         sc->flags|= WPI_FLAG_BUSY;
 2185 
 2186         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
 2187             code, size));
 2188 
 2189         desc = &ring->desc[ring->cur];
 2190         cmd = &ring->cmd[ring->cur];
 2191 
 2192         cmd->code = code;
 2193         cmd->flags = 0;
 2194         cmd->qid = ring->qid;
 2195         cmd->idx = ring->cur;
 2196         memcpy(cmd->data, buf, size);
 2197 
 2198         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
 2199         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2200                 ring->cur * sizeof (struct wpi_tx_cmd));
 2201         desc->segs[0].len  = htole32(4 + size);
 2202 
 2203         /* kick cmd ring */
 2204         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2205         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2206 
 2207         if (async) {
 2208                 sc->flags &= ~ WPI_FLAG_BUSY;
 2209                 return 0;
 2210         }
 2211 
 2212         return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
 2213 }
 2214 
 2215 static int
 2216 wpi_wme_update(struct ieee80211com *ic)
 2217 {
 2218 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
 2219 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
 2220         struct wpi_softc *sc = ic->ic_ifp->if_softc;
 2221         const struct wmeParams *wmep;
 2222         struct wpi_wme_setup wme;
 2223         int ac;
 2224 
 2225         /* don't override default WME values if WME is not actually enabled */
 2226         if (!(ic->ic_flags & IEEE80211_F_WME))
 2227                 return 0;
 2228 
 2229         wme.flags = 0;
 2230         for (ac = 0; ac < WME_NUM_AC; ac++) {
 2231                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
 2232                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
 2233                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
 2234                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
 2235                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
 2236 
 2237                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
 2238                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
 2239                     wme.ac[ac].cwmax, wme.ac[ac].txop));
 2240         }
 2241         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
 2242 #undef WPI_USEC
 2243 #undef WPI_EXP2
 2244 }
 2245 
 2246 /*
 2247  * Configure h/w multi-rate retries.
 2248  */
 2249 static int
 2250 wpi_mrr_setup(struct wpi_softc *sc)
 2251 {
 2252         struct ifnet *ifp = sc->sc_ifp;
 2253         struct ieee80211com *ic = ifp->if_l2com;
 2254         struct wpi_mrr_setup mrr;
 2255         int i, error;
 2256 
 2257         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
 2258 
 2259         /* CCK rates (not used with 802.11a) */
 2260         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
 2261                 mrr.rates[i].flags = 0;
 2262                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2263                 /* fallback to the immediate lower CCK rate (if any) */
 2264                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
 2265                 /* try one time at this rate before falling back to "next" */
 2266                 mrr.rates[i].ntries = 1;
 2267         }
 2268 
 2269         /* OFDM rates (not used with 802.11b) */
 2270         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
 2271                 mrr.rates[i].flags = 0;
 2272                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2273                 /* fallback to the immediate lower OFDM rate (if any) */
 2274                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
 2275                 mrr.rates[i].next = (i == WPI_OFDM6) ?
 2276                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
 2277                         WPI_OFDM6 : WPI_CCK2) :
 2278                     i - 1;
 2279                 /* try one time at this rate before falling back to "next" */
 2280                 mrr.rates[i].ntries = 1;
 2281         }
 2282 
 2283         /* setup MRR for control frames */
 2284         mrr.which = htole32(WPI_MRR_CTL);
 2285         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2286         if (error != 0) {
 2287                 device_printf(sc->sc_dev,
 2288                     "could not setup MRR for control frames\n");
 2289                 return error;
 2290         }
 2291 
 2292         /* setup MRR for data frames */
 2293         mrr.which = htole32(WPI_MRR_DATA);
 2294         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2295         if (error != 0) {
 2296                 device_printf(sc->sc_dev,
 2297                     "could not setup MRR for data frames\n");
 2298                 return error;
 2299         }
 2300 
 2301         return 0;
 2302 }
 2303 
 2304 static void
 2305 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
 2306 {
 2307         struct wpi_cmd_led led;
 2308 
 2309         led.which = which;
 2310         led.unit = htole32(100000);     /* on/off in unit of 100ms */
 2311         led.off = off;
 2312         led.on = on;
 2313 
 2314         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
 2315 }
 2316 
 2317 static void
 2318 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
 2319 {
 2320         struct wpi_cmd_tsf tsf;
 2321         uint64_t val, mod;
 2322 
 2323         memset(&tsf, 0, sizeof tsf);
 2324         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
 2325         tsf.bintval = htole16(ni->ni_intval);
 2326         tsf.lintval = htole16(10);
 2327 
 2328         /* compute remaining time until next beacon */
 2329         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
 2330         mod = le64toh(tsf.tstamp) % val;
 2331         tsf.binitval = htole32((uint32_t)(val - mod));
 2332 
 2333         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
 2334                 device_printf(sc->sc_dev, "could not enable TSF\n");
 2335 }
 2336 
 2337 #if 0
 2338 /*
 2339  * Build a beacon frame that the firmware will broadcast periodically in
 2340  * IBSS or HostAP modes.
 2341  */
 2342 static int
 2343 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
 2344 {
 2345         struct ifnet *ifp = sc->sc_ifp;
 2346         struct ieee80211com *ic = ifp->if_l2com;
 2347         struct wpi_tx_ring *ring = &sc->cmdq;
 2348         struct wpi_tx_desc *desc;
 2349         struct wpi_tx_data *data;
 2350         struct wpi_tx_cmd *cmd;
 2351         struct wpi_cmd_beacon *bcn;
 2352         struct ieee80211_beacon_offsets bo;
 2353         struct mbuf *m0;
 2354         bus_addr_t physaddr;
 2355         int error;
 2356 
 2357         desc = &ring->desc[ring->cur];
 2358         data = &ring->data[ring->cur];
 2359 
 2360         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
 2361         if (m0 == NULL) {
 2362                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
 2363                 return ENOMEM;
 2364         }
 2365 
 2366         cmd = &ring->cmd[ring->cur];
 2367         cmd->code = WPI_CMD_SET_BEACON;
 2368         cmd->flags = 0;
 2369         cmd->qid = ring->qid;
 2370         cmd->idx = ring->cur;
 2371 
 2372         bcn = (struct wpi_cmd_beacon *)cmd->data;
 2373         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
 2374         bcn->id = WPI_ID_BROADCAST;
 2375         bcn->ofdm_mask = 0xff;
 2376         bcn->cck_mask = 0x0f;
 2377         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
 2378         bcn->len = htole16(m0->m_pkthdr.len);
 2379         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2380                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2381         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
 2382 
 2383         /* save and trim IEEE802.11 header */
 2384         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
 2385         m_adj(m0, sizeof (struct ieee80211_frame));
 2386 
 2387         /* assume beacon frame is contiguous */
 2388         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
 2389             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
 2390         if (error != 0) {
 2391                 device_printf(sc->sc_dev, "could not map beacon\n");
 2392                 m_freem(m0);
 2393                 return error;
 2394         }
 2395 
 2396         data->m = m0;
 2397 
 2398         /* first scatter/gather segment is used by the beacon command */
 2399         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
 2400         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2401                 ring->cur * sizeof (struct wpi_tx_cmd));
 2402         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
 2403         desc->segs[1].addr = htole32(physaddr);
 2404         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
 2405 
 2406         /* kick cmd ring */
 2407         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2408         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2409 
 2410         return 0;
 2411 }
 2412 #endif
 2413 
 2414 static int
 2415 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
 2416 {
 2417         struct ieee80211com *ic = vap->iv_ic;
 2418         struct ieee80211_node *ni;
 2419         struct wpi_node_info node;
 2420         int error;
 2421 
 2422 
 2423         /* update adapter's configuration */
 2424         sc->config.associd = 0;
 2425         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
 2426         ni = ieee80211_ref_node(vap->iv_bss);
 2427         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
 2428         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
 2429         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
 2430                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2431                     WPI_CONFIG_24GHZ);
 2432         }
 2433         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
 2434                 sc->config.cck_mask  = 0;
 2435                 sc->config.ofdm_mask = 0x15;
 2436         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
 2437                 sc->config.cck_mask  = 0x03;
 2438                 sc->config.ofdm_mask = 0;
 2439         } else {
 2440                 /* XXX assume 802.11b/g */
 2441                 sc->config.cck_mask  = 0x0f;
 2442                 sc->config.ofdm_mask = 0x15;
 2443         }
 2444 
 2445         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
 2446                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
 2447         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2448                 sizeof (struct wpi_config), 1);
 2449         if (error != 0) {
 2450                 device_printf(sc->sc_dev, "could not configure\n");
 2451                 ieee80211_free_node(ni);
 2452                 return error;
 2453         }
 2454 
 2455         /* configuration has changed, set Tx power accordingly */
 2456         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
 2457                 device_printf(sc->sc_dev, "could not set Tx power\n");
 2458                 ieee80211_free_node(ni);
 2459                 return error;
 2460         }
 2461 
 2462         /* add default node */
 2463         memset(&node, 0, sizeof node);
 2464         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
 2465         ieee80211_free_node(ni);
 2466         node.id = WPI_ID_BSS;
 2467         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2468             wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2469         node.action = htole32(WPI_ACTION_SET_RATE);
 2470         node.antenna = WPI_ANTENNA_BOTH;
 2471         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 2472         if (error != 0)
 2473                 device_printf(sc->sc_dev, "could not add BSS node\n");
 2474 
 2475         return (error);
 2476 }
 2477 
 2478 static int
 2479 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
 2480 {
 2481         struct ieee80211com *ic = vap->iv_ic;
 2482         struct ieee80211_node *ni;
 2483         int error;
 2484 
 2485         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
 2486                 /* link LED blinks while monitoring */
 2487                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 2488                 return 0;
 2489         }
 2490 
 2491         ni = ieee80211_ref_node(vap->iv_bss);
 2492         wpi_enable_tsf(sc, ni);
 2493 
 2494         /* update adapter's configuration */
 2495         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
 2496         /* short preamble/slot time are negotiated when associating */
 2497         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
 2498             WPI_CONFIG_SHSLOT);
 2499         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 2500                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
 2501         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 2502                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
 2503         sc->config.filter |= htole32(WPI_FILTER_BSS);
 2504 
 2505         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
 2506 
 2507         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
 2508                     sc->config.flags));
 2509         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
 2510                     wpi_config), 1);
 2511         if (error != 0) {
 2512                 device_printf(sc->sc_dev, "could not update configuration\n");
 2513                 ieee80211_free_node(ni);
 2514                 return error;
 2515         }
 2516 
 2517         error = wpi_set_txpower(sc, ni->ni_chan, 1);
 2518         ieee80211_free_node(ni);
 2519         if (error != 0) {
 2520                 device_printf(sc->sc_dev, "could set txpower\n");
 2521                 return error;
 2522         }
 2523 
 2524         /* link LED always on while associated */
 2525         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 2526 
 2527         /* start automatic rate control timer */
 2528         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
 2529 
 2530         return (error);
 2531 }
 2532 
 2533 /*
 2534  * Send a scan request to the firmware.  Since this command is huge, we map it
 2535  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
 2536  * much of this code is similar to that in wpi_cmd but because we must manually
 2537  * construct the probe & channels, we duplicate what's needed here. XXX In the
 2538  * future, this function should be modified to use wpi_cmd to help cleanup the
 2539  * code base.
 2540  */
 2541 static int
 2542 wpi_scan(struct wpi_softc *sc)
 2543 {
 2544         struct ifnet *ifp = sc->sc_ifp;
 2545         struct ieee80211com *ic = ifp->if_l2com;
 2546         struct ieee80211_scan_state *ss = ic->ic_scan;
 2547         struct wpi_tx_ring *ring = &sc->cmdq;
 2548         struct wpi_tx_desc *desc;
 2549         struct wpi_tx_data *data;
 2550         struct wpi_tx_cmd *cmd;
 2551         struct wpi_scan_hdr *hdr;
 2552         struct wpi_scan_chan *chan;
 2553         struct ieee80211_frame *wh;
 2554         struct ieee80211_rateset *rs;
 2555         struct ieee80211_channel *c;
 2556         enum ieee80211_phymode mode;
 2557         uint8_t *frm;
 2558         int nrates, pktlen, error, i, nssid;
 2559         bus_addr_t physaddr;
 2560 
 2561         desc = &ring->desc[ring->cur];
 2562         data = &ring->data[ring->cur];
 2563 
 2564         data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 2565         if (data->m == NULL) {
 2566                 device_printf(sc->sc_dev,
 2567                     "could not allocate mbuf for scan command\n");
 2568                 return ENOMEM;
 2569         }
 2570 
 2571         cmd = mtod(data->m, struct wpi_tx_cmd *);
 2572         cmd->code = WPI_CMD_SCAN;
 2573         cmd->flags = 0;
 2574         cmd->qid = ring->qid;
 2575         cmd->idx = ring->cur;
 2576 
 2577         hdr = (struct wpi_scan_hdr *)cmd->data;
 2578         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
 2579 
 2580         /*
 2581          * Move to the next channel if no packets are received within 5 msecs
 2582          * after sending the probe request (this helps to reduce the duration
 2583          * of active scans).
 2584          */
 2585         hdr->quiet = htole16(5);
 2586         hdr->threshold = htole16(1);
 2587 
 2588         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
 2589                 /* send probe requests at 6Mbps */
 2590                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
 2591 
 2592                 /* Enable crc checking */
 2593                 hdr->promotion = htole16(1);
 2594         } else {
 2595                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
 2596                 /* send probe requests at 1Mbps */
 2597                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
 2598         }
 2599         hdr->tx.id = WPI_ID_BROADCAST;
 2600         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
 2601         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
 2602 
 2603         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
 2604         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
 2605         for (i = 0; i < nssid; i++) {
 2606                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
 2607                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
 2608                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
 2609                     hdr->scan_essids[i].esslen);
 2610 #ifdef WPI_DEBUG
 2611                 if (wpi_debug & WPI_DEBUG_SCANNING) {
 2612                         kprintf("Scanning Essid: ");
 2613                         ieee80211_print_essid(hdr->scan_essids[i].essid,
 2614                             hdr->scan_essids[i].esslen);
 2615                         kprintf("\n");
 2616                 }
 2617 #endif
 2618         }
 2619 
 2620         /*
 2621          * Build a probe request frame.  Most of the following code is a
 2622          * copy & paste of what is done in net80211.
 2623          */
 2624         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
 2625         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 2626                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
 2627         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 2628         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
 2629         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
 2630         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
 2631         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
 2632         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
 2633 
 2634         frm = (uint8_t *)(wh + 1);
 2635 
 2636         /* add essid IE, the hardware will fill this in for us */
 2637         *frm++ = IEEE80211_ELEMID_SSID;
 2638         *frm++ = 0;
 2639 
 2640         mode = ieee80211_chan2mode(ic->ic_curchan);
 2641         rs = &ic->ic_sup_rates[mode];
 2642 
 2643         /* add supported rates IE */
 2644         *frm++ = IEEE80211_ELEMID_RATES;
 2645         nrates = rs->rs_nrates;
 2646         if (nrates > IEEE80211_RATE_SIZE)
 2647                 nrates = IEEE80211_RATE_SIZE;
 2648         *frm++ = nrates;
 2649         memcpy(frm, rs->rs_rates, nrates);
 2650         frm += nrates;
 2651 
 2652         /* add supported xrates IE */
 2653         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
 2654                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
 2655                 *frm++ = IEEE80211_ELEMID_XRATES;
 2656                 *frm++ = nrates;
 2657                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
 2658                 frm += nrates;
 2659         }
 2660 
 2661         /* setup length of probe request */
 2662         hdr->tx.len = htole16(frm - (uint8_t *)wh);
 2663 
 2664         /*
 2665          * Construct information about the channel that we
 2666          * want to scan. The firmware expects this to be directly
 2667          * after the scan probe request
 2668          */
 2669         c = ic->ic_curchan;
 2670         chan = (struct wpi_scan_chan *)frm;
 2671         chan->chan = ieee80211_chan2ieee(ic, c);
 2672         chan->flags = 0;
 2673         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2674                 chan->flags |= WPI_CHAN_ACTIVE;
 2675                 if (nssid != 0)
 2676                         chan->flags |= WPI_CHAN_DIRECT;
 2677         }
 2678         chan->gain_dsp = 0x6e; /* Default level */
 2679         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2680                 chan->active = htole16(10);
 2681                 chan->passive = htole16(ss->ss_maxdwell);
 2682                 chan->gain_radio = 0x3b;
 2683         } else {
 2684                 chan->active = htole16(20);
 2685                 chan->passive = htole16(ss->ss_maxdwell);
 2686                 chan->gain_radio = 0x28;
 2687         }
 2688 
 2689         DPRINTFN(WPI_DEBUG_SCANNING,
 2690             ("Scanning %u Passive: %d\n",
 2691              chan->chan,
 2692              c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2693 
 2694         hdr->nchan++;
 2695         chan++;
 2696 
 2697         frm += sizeof (struct wpi_scan_chan);
 2698 #if 0
 2699         // XXX All Channels....
 2700         for (c  = &ic->ic_channels[1];
 2701              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
 2702                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
 2703                         continue;
 2704 
 2705                 chan->chan = ieee80211_chan2ieee(ic, c);
 2706                 chan->flags = 0;
 2707                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2708                     chan->flags |= WPI_CHAN_ACTIVE;
 2709                     if (ic->ic_des_ssid[0].len != 0)
 2710                         chan->flags |= WPI_CHAN_DIRECT;
 2711                 }
 2712                 chan->gain_dsp = 0x6e; /* Default level */
 2713                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2714                         chan->active = htole16(10);
 2715                         chan->passive = htole16(110);
 2716                         chan->gain_radio = 0x3b;
 2717                 } else {
 2718                         chan->active = htole16(20);
 2719                         chan->passive = htole16(120);
 2720                         chan->gain_radio = 0x28;
 2721                 }
 2722 
 2723                 DPRINTFN(WPI_DEBUG_SCANNING,
 2724                          ("Scanning %u Passive: %d\n",
 2725                           chan->chan,
 2726                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2727 
 2728                 hdr->nchan++;
 2729                 chan++;
 2730 
 2731                 frm += sizeof (struct wpi_scan_chan);
 2732         }
 2733 #endif
 2734 
 2735         hdr->len = htole16(frm - (uint8_t *)hdr);
 2736         pktlen = frm - (uint8_t *)cmd;
 2737 
 2738         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
 2739             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
 2740         if (error != 0) {
 2741                 device_printf(sc->sc_dev, "could not map scan command\n");
 2742                 m_freem(data->m);
 2743                 data->m = NULL;
 2744                 return error;
 2745         }
 2746 
 2747         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
 2748         desc->segs[0].addr = htole32(physaddr);
 2749         desc->segs[0].len  = htole32(pktlen);
 2750 
 2751         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2752             BUS_DMASYNC_PREWRITE);
 2753         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2754 
 2755         /* kick cmd ring */
 2756         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2757         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2758 
 2759         sc->sc_scan_timer = 5;
 2760         return 0;       /* will be notified async. of failure/success */
 2761 }
 2762 
 2763 /**
 2764  * Configure the card to listen to a particular channel, this transisions the
 2765  * card in to being able to receive frames from remote devices.
 2766  */
 2767 static int
 2768 wpi_config(struct wpi_softc *sc)
 2769 {
 2770         struct ifnet *ifp = sc->sc_ifp;
 2771         struct ieee80211com *ic = ifp->if_l2com;
 2772         struct wpi_power power;
 2773         struct wpi_bluetooth bluetooth;
 2774         struct wpi_node_info node;
 2775         int error;
 2776 
 2777         /* set power mode */
 2778         memset(&power, 0, sizeof power);
 2779         power.flags = htole32(WPI_POWER_CAM|0x8);
 2780         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
 2781         if (error != 0) {
 2782                 device_printf(sc->sc_dev, "could not set power mode\n");
 2783                 return error;
 2784         }
 2785 
 2786         /* configure bluetooth coexistence */
 2787         memset(&bluetooth, 0, sizeof bluetooth);
 2788         bluetooth.flags = 3;
 2789         bluetooth.lead = 0xaa;
 2790         bluetooth.kill = 1;
 2791         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
 2792             0);
 2793         if (error != 0) {
 2794                 device_printf(sc->sc_dev,
 2795                     "could not configure bluetooth coexistence\n");
 2796                 return error;
 2797         }
 2798 
 2799         /* configure adapter */
 2800         memset(&sc->config, 0, sizeof (struct wpi_config));
 2801         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
 2802         /*set default channel*/
 2803         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
 2804         sc->config.flags = htole32(WPI_CONFIG_TSF);
 2805         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
 2806                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2807                     WPI_CONFIG_24GHZ);
 2808         }
 2809         sc->config.filter = 0;
 2810         switch (ic->ic_opmode) {
 2811         case IEEE80211_M_STA:
 2812         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
 2813                 sc->config.mode = WPI_MODE_STA;
 2814                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
 2815                 break;
 2816         case IEEE80211_M_IBSS:
 2817         case IEEE80211_M_AHDEMO:
 2818                 sc->config.mode = WPI_MODE_IBSS;
 2819                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
 2820                                              WPI_FILTER_MULTICAST);
 2821                 break;
 2822         case IEEE80211_M_HOSTAP:
 2823                 sc->config.mode = WPI_MODE_HOSTAP;
 2824                 break;
 2825         case IEEE80211_M_MONITOR:
 2826                 sc->config.mode = WPI_MODE_MONITOR;
 2827                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
 2828                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
 2829                 break;
 2830         default:
 2831                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
 2832                 return EINVAL;
 2833         }
 2834         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
 2835         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
 2836         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2837                 sizeof (struct wpi_config), 0);
 2838         if (error != 0) {
 2839                 device_printf(sc->sc_dev, "configure command failed\n");
 2840                 return error;
 2841         }
 2842 
 2843         /* configuration has changed, set Tx power accordingly */
 2844         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
 2845             device_printf(sc->sc_dev, "could not set Tx power\n");
 2846             return error;
 2847         }
 2848 
 2849         /* add broadcast node */
 2850         memset(&node, 0, sizeof node);
 2851         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
 2852         node.id = WPI_ID_BROADCAST;
 2853         node.rate = wpi_plcp_signal(2);
 2854         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
 2855         if (error != 0) {
 2856                 device_printf(sc->sc_dev, "could not add broadcast node\n");
 2857                 return error;
 2858         }
 2859 
 2860         /* Setup rate scalling */
 2861         error = wpi_mrr_setup(sc);
 2862         if (error != 0) {
 2863                 device_printf(sc->sc_dev, "could not setup MRR\n");
 2864                 return error;
 2865         }
 2866 
 2867         return 0;
 2868 }
 2869 
 2870 static void
 2871 wpi_stop_master(struct wpi_softc *sc)
 2872 {
 2873         uint32_t tmp;
 2874         int ntries;
 2875 
 2876         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
 2877 
 2878         tmp = WPI_READ(sc, WPI_RESET);
 2879         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
 2880 
 2881         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2882         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
 2883                 return; /* already asleep */
 2884 
 2885         for (ntries = 0; ntries < 100; ntries++) {
 2886                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
 2887                         break;
 2888                 DELAY(10);
 2889         }
 2890         if (ntries == 100) {
 2891                 device_printf(sc->sc_dev, "timeout waiting for master\n");
 2892         }
 2893 }
 2894 
 2895 static int
 2896 wpi_power_up(struct wpi_softc *sc)
 2897 {
 2898         uint32_t tmp;
 2899         int ntries;
 2900 
 2901         wpi_mem_lock(sc);
 2902         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
 2903         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
 2904         wpi_mem_unlock(sc);
 2905 
 2906         for (ntries = 0; ntries < 5000; ntries++) {
 2907                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
 2908                         break;
 2909                 DELAY(10);
 2910         }
 2911         if (ntries == 5000) {
 2912                 device_printf(sc->sc_dev,
 2913                     "timeout waiting for NIC to power up\n");
 2914                 return ETIMEDOUT;
 2915         }
 2916         return 0;
 2917 }
 2918 
 2919 static int
 2920 wpi_reset(struct wpi_softc *sc)
 2921 {
 2922         uint32_t tmp;
 2923         int ntries;
 2924 
 2925         DPRINTFN(WPI_DEBUG_HW,
 2926             ("Resetting the card - clearing any uploaded firmware\n"));
 2927 
 2928         /* clear any pending interrupts */
 2929         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 2930 
 2931         tmp = WPI_READ(sc, WPI_PLL_CTL);
 2932         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
 2933 
 2934         tmp = WPI_READ(sc, WPI_CHICKEN);
 2935         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
 2936 
 2937         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2938         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
 2939 
 2940         /* wait for clock stabilization */
 2941         for (ntries = 0; ntries < 25000; ntries++) {
 2942                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
 2943                         break;
 2944                 DELAY(10);
 2945         }
 2946         if (ntries == 25000) {
 2947                 device_printf(sc->sc_dev,
 2948                     "timeout waiting for clock stabilization\n");
 2949                 return ETIMEDOUT;
 2950         }
 2951 
 2952         /* initialize EEPROM */
 2953         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
 2954 
 2955         if ((tmp & WPI_EEPROM_VERSION) == 0) {
 2956                 device_printf(sc->sc_dev, "EEPROM not found\n");
 2957                 return EIO;
 2958         }
 2959         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
 2960 
 2961         return 0;
 2962 }
 2963 
 2964 static void
 2965 wpi_hw_config(struct wpi_softc *sc)
 2966 {
 2967         uint32_t rev, hw;
 2968 
 2969         /* voodoo from the Linux "driver".. */
 2970         hw = WPI_READ(sc, WPI_HWCONFIG);
 2971 
 2972         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
 2973         if ((rev & 0xc0) == 0x40)
 2974                 hw |= WPI_HW_ALM_MB;
 2975         else if (!(rev & 0x80))
 2976                 hw |= WPI_HW_ALM_MM;
 2977 
 2978         if (sc->cap == 0x80)
 2979                 hw |= WPI_HW_SKU_MRC;
 2980 
 2981         hw &= ~WPI_HW_REV_D;
 2982         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
 2983                 hw |= WPI_HW_REV_D;
 2984 
 2985         if (sc->type > 1)
 2986                 hw |= WPI_HW_TYPE_B;
 2987 
 2988         WPI_WRITE(sc, WPI_HWCONFIG, hw);
 2989 }
 2990 
 2991 static void
 2992 wpi_rfkill_resume(struct wpi_softc *sc)
 2993 {
 2994         struct ifnet *ifp = sc->sc_ifp;
 2995         struct ieee80211com *ic = ifp->if_l2com;
 2996         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 2997         int ntries;
 2998 
 2999         /* enable firmware again */
 3000         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3001         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3002 
 3003         /* wait for thermal sensors to calibrate */
 3004         for (ntries = 0; ntries < 1000; ntries++) {
 3005                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3006                         break;
 3007                 DELAY(10);
 3008         }
 3009 
 3010         if (ntries == 1000) {
 3011                 device_printf(sc->sc_dev,
 3012                     "timeout waiting for thermal calibration\n");
 3013                 return;
 3014         }
 3015         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3016 
 3017         if (wpi_config(sc) != 0) {
 3018                 device_printf(sc->sc_dev, "device config failed\n");
 3019                 return;
 3020         }
 3021 
 3022         ifq_clr_oactive(&ifp->if_snd);
 3023         ifp->if_flags |= IFF_RUNNING;
 3024         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3025 
 3026         if (vap != NULL) {
 3027                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 3028                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
 3029                                 ieee80211_beacon_miss(ic);
 3030                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 3031                         } else
 3032                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 3033                 } else {
 3034                         ieee80211_scan_next(vap);
 3035                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3036                 }
 3037         }
 3038 
 3039         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
 3040 }
 3041 
 3042 static void
 3043 wpi_init_locked(struct wpi_softc *sc, int force)
 3044 {
 3045         struct ifnet *ifp = sc->sc_ifp;
 3046         uint32_t tmp;
 3047         int ntries, qid;
 3048 
 3049         wpi_stop_locked(sc);
 3050         (void)wpi_reset(sc);
 3051 
 3052         wpi_mem_lock(sc);
 3053         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
 3054         DELAY(20);
 3055         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
 3056         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
 3057         wpi_mem_unlock(sc);
 3058 
 3059         (void)wpi_power_up(sc);
 3060         wpi_hw_config(sc);
 3061 
 3062         /* init Rx ring */
 3063         wpi_mem_lock(sc);
 3064         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
 3065         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
 3066             offsetof(struct wpi_shared, next));
 3067         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
 3068         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
 3069         wpi_mem_unlock(sc);
 3070 
 3071         /* init Tx rings */
 3072         wpi_mem_lock(sc);
 3073         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
 3074         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
 3075         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
 3076         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
 3077         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
 3078         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
 3079         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
 3080 
 3081         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
 3082         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
 3083 
 3084         for (qid = 0; qid < 6; qid++) {
 3085                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
 3086                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
 3087                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
 3088         }
 3089         wpi_mem_unlock(sc);
 3090 
 3091         /* clear "radio off" and "disable command" bits (reversed logic) */
 3092         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3093         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3094         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3095 
 3096         /* clear any pending interrupts */
 3097         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 3098 
 3099         /* enable interrupts */
 3100         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 3101 
 3102         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3103         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3104 
 3105         if ((wpi_load_firmware(sc)) != 0) {
 3106             device_printf(sc->sc_dev,
 3107                 "A problem occurred loading the firmware to the driver\n");
 3108             return;
 3109         }
 3110 
 3111         /* At this point the firmware is up and running. If the hardware
 3112          * RF switch is turned off thermal calibration will fail, though
 3113          * the card is still happy to continue to accept commands, catch
 3114          * this case and schedule a task to watch for it to be turned on.
 3115          */
 3116         wpi_mem_lock(sc);
 3117         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3118         wpi_mem_unlock(sc);
 3119 
 3120         if (!(tmp & 0x1)) {
 3121                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 3122                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
 3123                 goto out;
 3124         }
 3125 
 3126         /* wait for thermal sensors to calibrate */
 3127         for (ntries = 0; ntries < 1000; ntries++) {
 3128                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3129                         break;
 3130                 DELAY(10);
 3131         }
 3132 
 3133         if (ntries == 1000) {
 3134                 device_printf(sc->sc_dev,
 3135                     "timeout waiting for thermal sensors calibration\n");
 3136                 return;
 3137         }
 3138         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3139 
 3140         if (wpi_config(sc) != 0) {
 3141                 device_printf(sc->sc_dev, "device config failed\n");
 3142                 return;
 3143         }
 3144 
 3145         ifq_clr_oactive(&ifp->if_snd);
 3146         ifp->if_flags |= IFF_RUNNING;
 3147 out:
 3148         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
 3149 }
 3150 
 3151 static void
 3152 wpi_init(void *arg)
 3153 {
 3154         struct wpi_softc *sc = arg;
 3155         struct ifnet *ifp = sc->sc_ifp;
 3156         struct ieee80211com *ic = ifp->if_l2com;
 3157 
 3158         wpi_init_locked(sc, 0);
 3159 
 3160         if (ifp->if_flags & IFF_RUNNING)
 3161                 ieee80211_start_all(ic);                /* start all vaps */
 3162 }
 3163 
 3164 static void
 3165 wpi_stop_locked(struct wpi_softc *sc)
 3166 {
 3167         struct ifnet *ifp = sc->sc_ifp;
 3168         uint32_t tmp;
 3169         int ac;
 3170 
 3171         sc->sc_tx_timer = 0;
 3172         sc->sc_scan_timer = 0;
 3173         ifp->if_flags &= ~IFF_RUNNING;
 3174         ifq_clr_oactive(&ifp->if_snd);
 3175         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3176         callout_stop(&sc->watchdog_to_callout);
 3177         callout_stop(&sc->calib_to_callout);
 3178 
 3179 
 3180         /* disable interrupts */
 3181         WPI_WRITE(sc, WPI_MASK, 0);
 3182         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
 3183         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
 3184         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
 3185 
 3186         wpi_mem_lock(sc);
 3187         wpi_mem_write(sc, WPI_MEM_MODE, 0);
 3188         wpi_mem_unlock(sc);
 3189 
 3190         /* reset all Tx rings */
 3191         for (ac = 0; ac < 4; ac++)
 3192                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
 3193         wpi_reset_tx_ring(sc, &sc->cmdq);
 3194 
 3195         /* reset Rx ring */
 3196         wpi_reset_rx_ring(sc, &sc->rxq);
 3197 
 3198         wpi_mem_lock(sc);
 3199         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
 3200         wpi_mem_unlock(sc);
 3201 
 3202         DELAY(5);
 3203 
 3204         wpi_stop_master(sc);
 3205 
 3206         tmp = WPI_READ(sc, WPI_RESET);
 3207         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
 3208         sc->flags &= ~WPI_FLAG_BUSY;
 3209 }
 3210 
 3211 static void
 3212 wpi_stop(struct wpi_softc *sc)
 3213 {
 3214         wpi_stop_locked(sc);
 3215 }
 3216 
 3217 static void
 3218 wpi_newassoc(struct ieee80211_node *ni, int isnew)
 3219 {
 3220         /* XXX move */
 3221         ieee80211_ratectl_node_init(ni);
 3222 }
 3223 
 3224 static void
 3225 wpi_calib_timeout_callout(void *arg)
 3226 {
 3227         struct wpi_softc *sc = arg;
 3228         struct ifnet *ifp = sc->sc_ifp;
 3229         struct ieee80211com *ic = ifp->if_l2com;
 3230         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3231         int temp;
 3232 
 3233         if (vap->iv_state != IEEE80211_S_RUN)
 3234                 return;
 3235 
 3236         /* update sensor data */
 3237         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
 3238         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
 3239 
 3240         wpi_power_calibration(sc, temp);
 3241 
 3242         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
 3243 }
 3244 
 3245 /*
 3246  * This function is called periodically (every 60 seconds) to adjust output
 3247  * power to temperature changes.
 3248  */
 3249 static void
 3250 wpi_power_calibration(struct wpi_softc *sc, int temp)
 3251 {
 3252         struct ifnet *ifp = sc->sc_ifp;
 3253         struct ieee80211com *ic = ifp->if_l2com;
 3254         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3255 
 3256         /* sanity-check read value */
 3257         if (temp < -260 || temp > 25) {
 3258                 /* this can't be correct, ignore */
 3259                 DPRINTFN(WPI_DEBUG_TEMP,
 3260                     ("out-of-range temperature reported: %d\n", temp));
 3261                 return;
 3262         }
 3263 
 3264         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
 3265 
 3266         /* adjust Tx power if need be */
 3267         if (abs(temp - sc->temp) <= 6)
 3268                 return;
 3269 
 3270         sc->temp = temp;
 3271 
 3272         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
 3273                 /* just warn, too bad for the automatic calibration... */
 3274                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
 3275         }
 3276 }
 3277 
 3278 /**
 3279  * Read the eeprom to find out what channels are valid for the given
 3280  * band and update net80211 with what we find.
 3281  */
 3282 static void
 3283 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
 3284 {
 3285         struct ifnet *ifp = sc->sc_ifp;
 3286         struct ieee80211com *ic = ifp->if_l2com;
 3287         const struct wpi_chan_band *band = &wpi_bands[n];
 3288         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
 3289         struct ieee80211_channel *c;
 3290         int chan, i, passive;
 3291 
 3292         wpi_read_prom_data(sc, band->addr, channels,
 3293             band->nchan * sizeof (struct wpi_eeprom_chan));
 3294 
 3295         for (i = 0; i < band->nchan; i++) {
 3296                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
 3297                         DPRINTFN(WPI_DEBUG_HW,
 3298                             ("Channel Not Valid: %d, band %d\n",
 3299                              band->chan[i],n));
 3300                         continue;
 3301                 }
 3302 
 3303                 passive = 0;
 3304                 chan = band->chan[i];
 3305                 c = &ic->ic_channels[ic->ic_nchans++];
 3306 
 3307                 /* is active scan allowed on this channel? */
 3308                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
 3309                         passive = IEEE80211_CHAN_PASSIVE;
 3310                 }
 3311 
 3312                 if (n == 0) {   /* 2GHz band */
 3313                         c->ic_ieee = chan;
 3314                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3315                             IEEE80211_CHAN_2GHZ);
 3316                         c->ic_flags = IEEE80211_CHAN_B | passive;
 3317 
 3318                         c = &ic->ic_channels[ic->ic_nchans++];
 3319                         c->ic_ieee = chan;
 3320                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3321                             IEEE80211_CHAN_2GHZ);
 3322                         c->ic_flags = IEEE80211_CHAN_G | passive;
 3323 
 3324                 } else {        /* 5GHz band */
 3325                         /*
 3326                          * Some 3945ABG adapters support channels 7, 8, 11
 3327                          * and 12 in the 2GHz *and* 5GHz bands.
 3328                          * Because of limitations in our net80211(9) stack,
 3329                          * we can't support these channels in 5GHz band.
 3330                          * XXX not true; just need to map to proper frequency
 3331                          */
 3332                         if (chan <= 14)
 3333                                 continue;
 3334 
 3335                         c->ic_ieee = chan;
 3336                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3337                             IEEE80211_CHAN_5GHZ);
 3338                         c->ic_flags = IEEE80211_CHAN_A | passive;
 3339                 }
 3340 
 3341                 /* save maximum allowed power for this channel */
 3342                 sc->maxpwr[chan] = channels[i].maxpwr;
 3343 
 3344 #if 0
 3345                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
 3346                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
 3347                 //ic->ic_channels[chan].ic_minpower...
 3348                 //ic->ic_channels[chan].ic_maxregtxpower...
 3349 #endif
 3350 
 3351                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
 3352                     " passive=%d, offset %d\n", chan, c->ic_freq,
 3353                     channels[i].flags, sc->maxpwr[chan],
 3354                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
 3355                     ic->ic_nchans));
 3356         }
 3357 }
 3358 
 3359 static void
 3360 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
 3361 {
 3362         struct wpi_power_group *group = &sc->groups[n];
 3363         struct wpi_eeprom_group rgroup;
 3364         int i;
 3365 
 3366         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
 3367             sizeof rgroup);
 3368 
 3369         /* save power group information */
 3370         group->chan   = rgroup.chan;
 3371         group->maxpwr = rgroup.maxpwr;
 3372         /* temperature at which the samples were taken */
 3373         group->temp   = (int16_t)le16toh(rgroup.temp);
 3374 
 3375         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
 3376                     group->chan, group->maxpwr, group->temp));
 3377 
 3378         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
 3379                 group->samples[i].index = rgroup.samples[i].index;
 3380                 group->samples[i].power = rgroup.samples[i].power;
 3381 
 3382                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
 3383                             group->samples[i].index, group->samples[i].power));
 3384         }
 3385 }
 3386 
 3387 /*
 3388  * Update Tx power to match what is defined for channel `c'.
 3389  */
 3390 static int
 3391 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
 3392 {
 3393         struct ifnet *ifp = sc->sc_ifp;
 3394         struct ieee80211com *ic = ifp->if_l2com;
 3395         struct wpi_power_group *group;
 3396         struct wpi_cmd_txpower txpower;
 3397         u_int chan;
 3398         int i;
 3399 
 3400         /* get channel number */
 3401         chan = ieee80211_chan2ieee(ic, c);
 3402 
 3403         /* find the power group to which this channel belongs */
 3404         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3405                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
 3406                         if (chan <= group->chan)
 3407                                 break;
 3408         } else
 3409                 group = &sc->groups[0];
 3410 
 3411         memset(&txpower, 0, sizeof txpower);
 3412         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
 3413         txpower.channel = htole16(chan);
 3414 
 3415         /* set Tx power for all OFDM and CCK rates */
 3416         for (i = 0; i <= 11 ; i++) {
 3417                 /* retrieve Tx power for this channel/rate combination */
 3418                 int idx = wpi_get_power_index(sc, group, c,
 3419                     wpi_ridx_to_rate[i]);
 3420 
 3421                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
 3422 
 3423                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3424                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
 3425                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
 3426                 } else {
 3427                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
 3428                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
 3429                 }
 3430                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
 3431                             chan, wpi_ridx_to_rate[i], idx));
 3432         }
 3433 
 3434         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
 3435 }
 3436 
 3437 /*
 3438  * Determine Tx power index for a given channel/rate combination.
 3439  * This takes into account the regulatory information from EEPROM and the
 3440  * current temperature.
 3441  */
 3442 static int
 3443 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
 3444     struct ieee80211_channel *c, int rate)
 3445 {
 3446 /* fixed-point arithmetic division using a n-bit fractional part */
 3447 #define fdivround(a, b, n)      \
 3448         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
 3449 
 3450 /* linear interpolation */
 3451 #define interpolate(x, x1, y1, x2, y2, n)       \
 3452         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
 3453 
 3454         struct ifnet *ifp = sc->sc_ifp;
 3455         struct ieee80211com *ic = ifp->if_l2com;
 3456         struct wpi_power_sample *sample;
 3457         int pwr, idx;
 3458         u_int chan;
 3459 
 3460         /* get channel number */
 3461         chan = ieee80211_chan2ieee(ic, c);
 3462 
 3463         /* default power is group's maximum power - 3dB */
 3464         pwr = group->maxpwr / 2;
 3465 
 3466         /* decrease power for highest OFDM rates to reduce distortion */
 3467         switch (rate) {
 3468                 case 72:        /* 36Mb/s */
 3469                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
 3470                         break;
 3471                 case 96:        /* 48Mb/s */
 3472                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
 3473                         break;
 3474                 case 108:       /* 54Mb/s */
 3475                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
 3476                         break;
 3477         }
 3478 
 3479         /* never exceed channel's maximum allowed Tx power */
 3480         pwr = min(pwr, sc->maxpwr[chan]);
 3481 
 3482         /* retrieve power index into gain tables from samples */
 3483         for (sample = group->samples; sample < &group->samples[3]; sample++)
 3484                 if (pwr > sample[1].power)
 3485                         break;
 3486         /* fixed-point linear interpolation using a 19-bit fractional part */
 3487         idx = interpolate(pwr, sample[0].power, sample[0].index,
 3488             sample[1].power, sample[1].index, 19);
 3489 
 3490         /*
 3491          *  Adjust power index based on current temperature
 3492          *      - if colder than factory-calibrated: decreate output power
 3493          *      - if warmer than factory-calibrated: increase output power
 3494          */
 3495         idx -= (sc->temp - group->temp) * 11 / 100;
 3496 
 3497         /* decrease power for CCK rates (-5dB) */
 3498         if (!WPI_RATE_IS_OFDM(rate))
 3499                 idx += 10;
 3500 
 3501         /* keep power index in a valid range */
 3502         if (idx < 0)
 3503                 return 0;
 3504         if (idx > WPI_MAX_PWR_INDEX)
 3505                 return WPI_MAX_PWR_INDEX;
 3506         return idx;
 3507 
 3508 #undef interpolate
 3509 #undef fdivround
 3510 }
 3511 
 3512 /**
 3513  * Called by net80211 framework to indicate that a scan
 3514  * is starting. This function doesn't actually do the scan,
 3515  * wpi_scan_curchan starts things off. This function is more
 3516  * of an early warning from the framework we should get ready
 3517  * for the scan.
 3518  */
 3519 static void
 3520 wpi_scan_start(struct ieee80211com *ic)
 3521 {
 3522         struct ifnet *ifp = ic->ic_ifp;
 3523         struct wpi_softc *sc = ifp->if_softc;
 3524 
 3525         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3526 }
 3527 
 3528 /**
 3529  * Called by the net80211 framework, indicates that the
 3530  * scan has ended. If there is a scan in progress on the card
 3531  * then it should be aborted.
 3532  */
 3533 static void
 3534 wpi_scan_end(struct ieee80211com *ic)
 3535 {
 3536         /* XXX ignore */
 3537 }
 3538 
 3539 /**
 3540  * Called by the net80211 framework to indicate to the driver
 3541  * that the channel should be changed
 3542  */
 3543 static void
 3544 wpi_set_channel(struct ieee80211com *ic)
 3545 {
 3546         struct ifnet *ifp = ic->ic_ifp;
 3547         struct wpi_softc *sc = ifp->if_softc;
 3548         int error;
 3549 
 3550         /*
 3551          * Only need to set the channel in Monitor mode. AP scanning and auth
 3552          * are already taken care of by their respective firmware commands.
 3553          */
 3554         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
 3555                 error = wpi_config(sc);
 3556                 if (error != 0)
 3557                         device_printf(sc->sc_dev,
 3558                             "error %d settting channel\n", error);
 3559         }
 3560 }
 3561 
 3562 /**
 3563  * Called by net80211 to indicate that we need to scan the current
 3564  * channel. The channel is previously be set via the wpi_set_channel
 3565  * callback.
 3566  */
 3567 static void
 3568 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
 3569 {
 3570         struct ieee80211vap *vap = ss->ss_vap;
 3571         struct ifnet *ifp = vap->iv_ic->ic_ifp;
 3572         struct wpi_softc *sc = ifp->if_softc;
 3573 
 3574         if (wpi_scan(sc))
 3575                 ieee80211_cancel_scan(vap);
 3576 }
 3577 
 3578 /**
 3579  * Called by the net80211 framework to indicate
 3580  * the minimum dwell time has been met, terminate the scan.
 3581  * We don't actually terminate the scan as the firmware will notify
 3582  * us when it's finished and we have no way to interrupt it.
 3583  */
 3584 static void
 3585 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
 3586 {
 3587         /* NB: don't try to abort scan; wait for firmware to finish */
 3588 }
 3589 
 3590 static void
 3591 wpi_hwreset_task(void *arg, int pending)
 3592 {
 3593         struct wpi_softc *sc;
 3594 
 3595         wlan_serialize_enter();
 3596         sc = arg;
 3597         wpi_init_locked(sc, 0);
 3598         wlan_serialize_exit();
 3599 }
 3600 
 3601 static void
 3602 wpi_rfreset_task(void *arg, int pending)
 3603 {
 3604         struct wpi_softc *sc;
 3605 
 3606         wlan_serialize_enter();
 3607         sc = arg;
 3608         wpi_rfkill_resume(sc);
 3609         wlan_serialize_exit();
 3610 }
 3611 
 3612 /*
 3613  * Allocate DMA-safe memory for firmware transfer.
 3614  */
 3615 static int
 3616 wpi_alloc_fwmem(struct wpi_softc *sc)
 3617 {
 3618         /* allocate enough contiguous space to store text and data */
 3619         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
 3620             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
 3621             BUS_DMA_NOWAIT);
 3622 }
 3623 
 3624 static void
 3625 wpi_free_fwmem(struct wpi_softc *sc)
 3626 {
 3627         wpi_dma_contig_free(&sc->fw_dma);
 3628 }
 3629 
 3630 /**
 3631  * Called every second, wpi_watchdog_callout used by the watch dog timer
 3632  * to check that the card is still alive
 3633  */
 3634 static void
 3635 wpi_watchdog_callout(void *arg)
 3636 {
 3637         struct wpi_softc *sc;
 3638         struct ifnet *ifp;
 3639         struct ieee80211com *ic;
 3640         uint32_t tmp;
 3641 
 3642         wlan_serialize_enter();
 3643         sc = arg;
 3644         ifp = sc->sc_ifp;
 3645         ic = ifp->if_l2com;
 3646         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
 3647 
 3648         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
 3649                 /* No need to lock firmware memory */
 3650                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3651 
 3652                 if ((tmp & 0x1) == 0) {
 3653                         /* Radio kill switch is still off */
 3654                         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
 3655                         wlan_serialize_exit();
 3656                         return;
 3657                 }
 3658 
 3659                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
 3660                 ieee80211_runtask(ic, &sc->sc_radiotask);
 3661                 wlan_serialize_exit();
 3662                 return;
 3663         }
 3664 
 3665         if (sc->sc_tx_timer > 0) {
 3666                 if (--sc->sc_tx_timer == 0) {
 3667                         device_printf(sc->sc_dev,"device timeout\n");
 3668                         IFNET_STAT_INC(ifp, oerrors, 1);
 3669                         wlan_serialize_exit();
 3670                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3671                         wlan_serialize_enter();
 3672                 }
 3673         }
 3674         if (sc->sc_scan_timer > 0) {
 3675                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3676                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
 3677                         device_printf(sc->sc_dev,"scan timeout\n");
 3678                         ieee80211_cancel_scan(vap);
 3679                         wlan_serialize_exit();
 3680                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3681                         wlan_serialize_enter();
 3682                 }
 3683         }
 3684 
 3685         if (ifp->if_flags & IFF_RUNNING)
 3686                 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
 3687 
 3688         wlan_serialize_exit();
 3689 }
 3690 
 3691 #ifdef WPI_DEBUG
 3692 static const char *wpi_cmd_str(int cmd)
 3693 {
 3694         switch (cmd) {
 3695         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
 3696         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
 3697         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
 3698         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
 3699         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
 3700         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
 3701         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
 3702         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
 3703         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
 3704         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
 3705         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
 3706         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
 3707         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
 3708         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
 3709 
 3710         default:
 3711                 KASSERT(1, ("Unknown Command: %d", cmd));
 3712                 return "UNKNOWN CMD";   /* Make the compiler happy */
 3713         }
 3714 }
 3715 #endif
 3716 
 3717 MODULE_DEPEND(wpi, pci,  1, 1, 1);
 3718 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
 3719 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
 3720 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);

Cache object: aaa08ca177eab02252d8f3dee4e2fa94


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.