1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2011-2014 Matteo Landi
5 * Copyright (C) 2011-2016 Luigi Rizzo
6 * Copyright (C) 2011-2016 Giuseppe Lettieri
7 * Copyright (C) 2011-2016 Vincenzo Maffione
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32
33 /*
34 * $FreeBSD$
35 *
36 * This module supports memory mapped access to network devices,
37 * see netmap(4).
38 *
39 * The module uses a large, memory pool allocated by the kernel
40 * and accessible as mmapped memory by multiple userspace threads/processes.
41 * The memory pool contains packet buffers and "netmap rings",
42 * i.e. user-accessible copies of the interface's queues.
43 *
44 * Access to the network card works like this:
45 * 1. a process/thread issues one or more open() on /dev/netmap, to create
46 * select()able file descriptor on which events are reported.
47 * 2. on each descriptor, the process issues an ioctl() to identify
48 * the interface that should report events to the file descriptor.
49 * 3. on each descriptor, the process issues an mmap() request to
50 * map the shared memory region within the process' address space.
51 * The list of interesting queues is indicated by a location in
52 * the shared memory region.
53 * 4. using the functions in the netmap(4) userspace API, a process
54 * can look up the occupation state of a queue, access memory buffers,
55 * and retrieve received packets or enqueue packets to transmit.
56 * 5. using some ioctl()s the process can synchronize the userspace view
57 * of the queue with the actual status in the kernel. This includes both
58 * receiving the notification of new packets, and transmitting new
59 * packets on the output interface.
60 * 6. select() or poll() can be used to wait for events on individual
61 * transmit or receive queues (or all queues for a given interface).
62 *
63
64 SYNCHRONIZATION (USER)
65
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73
74 LOCKING (INTERNAL)
75
76 Within the kernel, access to the netmap rings is protected as follows:
77
78 - a spinlock on each ring, to handle producer/consumer races on
79 RX rings attached to the host stack (against multiple host
80 threads writing from the host stack to the same ring),
81 and on 'destination' rings attached to a VALE switch
82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83 protecting multiple active senders for the same destination)
84
85 - an atomic variable to guarantee that there is at most one
86 instance of *_*xsync() on the ring at any time.
87 For rings connected to user file
88 descriptors, an atomic_test_and_set() protects this, and the
89 lock on the ring is not actually used.
90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91 is also used to prevent multiple executions (the driver might indeed
92 already guarantee this).
93 For NIC TX rings connected to a VALE switch, the lock arbitrates
94 access to the queue (both when allocating buffers and when pushing
95 them out).
96
97 - *xsync() should be protected against initializations of the card.
98 On FreeBSD most devices have the reset routine protected by
99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100 the RING protection on rx_reset(), this should be added.
101
102 On linux there is an external lock on the tx path, which probably
103 also arbitrates access to the reset routine. XXX to be revised
104
105 - a per-interface core_lock protecting access from the host stack
106 while interfaces may be detached from netmap mode.
107 XXX there should be no need for this lock if we detach the interfaces
108 only while they are down.
109
110
111 --- VALE SWITCH ---
112
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130
131 */
132
133
134 /* --- internals ----
135 *
136 * Roadmap to the code that implements the above.
137 *
138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139 * > select()able file descriptor on which events are reported.
140 *
141 * Internally, we allocate a netmap_priv_d structure, that will be
142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143 * structure for each open().
144 *
145 * os-specific:
146 * FreeBSD: see netmap_open() (netmap_freebsd.c)
147 * linux: see linux_netmap_open() (netmap_linux.c)
148 *
149 * > 2. on each descriptor, the process issues an ioctl() to identify
150 * > the interface that should report events to the file descriptor.
151 *
152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153 * Most important things happen in netmap_get_na() and
154 * netmap_do_regif(), called from there. Additional details can be
155 * found in the comments above those functions.
156 *
157 * In all cases, this action creates/takes-a-reference-to a
158 * netmap_*_adapter describing the port, and allocates a netmap_if
159 * and all necessary netmap rings, filling them with netmap buffers.
160 *
161 * In this phase, the sync callbacks for each ring are set (these are used
162 * in steps 5 and 6 below). The callbacks depend on the type of adapter.
163 * The adapter creation/initialization code puts them in the
164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they
165 * are copied from there to the netmap_kring's during netmap_do_regif(), by
166 * the nm_krings_create() callback. All the nm_krings_create callbacks
167 * actually call netmap_krings_create() to perform this and the other
168 * common stuff. netmap_krings_create() also takes care of the host rings,
169 * if needed, by setting their sync callbacks appropriately.
170 *
171 * Additional actions depend on the kind of netmap_adapter that has been
172 * registered:
173 *
174 * - netmap_hw_adapter: [netmap.c]
175 * This is a system netdev/ifp with native netmap support.
176 * The ifp is detached from the host stack by redirecting:
177 * - transmissions (from the network stack) to netmap_transmit()
178 * - receive notifications to the nm_notify() callback for
179 * this adapter. The callback is normally netmap_notify(), unless
180 * the ifp is attached to a bridge using bwrap, in which case it
181 * is netmap_bwrap_intr_notify().
182 *
183 * - netmap_generic_adapter: [netmap_generic.c]
184 * A system netdev/ifp without native netmap support.
185 *
186 * (the decision about native/non native support is taken in
187 * netmap_get_hw_na(), called by netmap_get_na())
188 *
189 * - netmap_vp_adapter [netmap_vale.c]
190 * Returned by netmap_get_bdg_na().
191 * This is a persistent or ephemeral VALE port. Ephemeral ports
192 * are created on the fly if they don't already exist, and are
193 * always attached to a bridge.
194 * Persistent VALE ports must must be created separately, and i
195 * then attached like normal NICs. The NIOCREGIF we are examining
196 * will find them only if they had previously been created and
197 * attached (see VALE_CTL below).
198 *
199 * - netmap_pipe_adapter [netmap_pipe.c]
200 * Returned by netmap_get_pipe_na().
201 * Both pipe ends are created, if they didn't already exist.
202 *
203 * - netmap_monitor_adapter [netmap_monitor.c]
204 * Returned by netmap_get_monitor_na().
205 * If successful, the nm_sync callbacks of the monitored adapter
206 * will be intercepted by the returned monitor.
207 *
208 * - netmap_bwrap_adapter [netmap_vale.c]
209 * Cannot be obtained in this way, see VALE_CTL below
210 *
211 *
212 * os-specific:
213 * linux: we first go through linux_netmap_ioctl() to
214 * adapt the FreeBSD interface to the linux one.
215 *
216 *
217 * > 3. on each descriptor, the process issues an mmap() request to
218 * > map the shared memory region within the process' address space.
219 * > The list of interesting queues is indicated by a location in
220 * > the shared memory region.
221 *
222 * os-specific:
223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224 * linux: linux_netmap_mmap (netmap_linux.c).
225 *
226 * > 4. using the functions in the netmap(4) userspace API, a process
227 * > can look up the occupation state of a queue, access memory buffers,
228 * > and retrieve received packets or enqueue packets to transmit.
229 *
230 * these actions do not involve the kernel.
231 *
232 * > 5. using some ioctl()s the process can synchronize the userspace view
233 * > of the queue with the actual status in the kernel. This includes both
234 * > receiving the notification of new packets, and transmitting new
235 * > packets on the output interface.
236 *
237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238 * cases. They invoke the nm_sync callbacks on the netmap_kring
239 * structures, as initialized in step 2 and maybe later modified
240 * by a monitor. Monitors, however, will always call the original
241 * callback before doing anything else.
242 *
243 *
244 * > 6. select() or poll() can be used to wait for events on individual
245 * > transmit or receive queues (or all queues for a given interface).
246 *
247 * Implemented in netmap_poll(). This will call the same nm_sync()
248 * callbacks as in step 5 above.
249 *
250 * os-specific:
251 * linux: we first go through linux_netmap_poll() to adapt
252 * the FreeBSD interface to the linux one.
253 *
254 *
255 * ---- VALE_CTL -----
256 *
257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null
258 * nr_cmd in the nmreq structure. These subcommands are handled by
259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261 * subcommands, respectively.
262 *
263 * Any network interface known to the system (including a persistent VALE
264 * port) can be attached to a VALE switch by issuing the
265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266 * look exactly like ephemeral VALE ports (as created in step 2 above). The
267 * attachment of other interfaces, instead, requires the creation of a
268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in
269 * netmap mode. This may require the creation of a netmap_generic_adapter if
270 * we have no native support for the interface, or if generic adapters have
271 * been forced by sysctl.
272 *
273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275 * callback. In the case of the bwrap, the callback creates the
276 * netmap_bwrap_adapter. The initialization of the bwrap is then
277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279 * A generic adapter for the wrapped ifp will be created if needed, when
280 * netmap_get_bdg_na() calls netmap_get_hw_na().
281 *
282 *
283 * ---- DATAPATHS -----
284 *
285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286 *
287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288 *
289 * - tx from netmap userspace:
290 * concurrently:
291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292 * kring->nm_sync() == DEVICE_netmap_txsync()
293 * 2) device interrupt handler
294 * na->nm_notify() == netmap_notify()
295 * - rx from netmap userspace:
296 * concurrently:
297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298 * kring->nm_sync() == DEVICE_netmap_rxsync()
299 * 2) device interrupt handler
300 * na->nm_notify() == netmap_notify()
301 * - rx from host stack
302 * concurrently:
303 * 1) host stack
304 * netmap_transmit()
305 * na->nm_notify == netmap_notify()
306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307 * kring->nm_sync() == netmap_rxsync_from_host
308 * netmap_rxsync_from_host(na, NULL, NULL)
309 * - tx to host stack
310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context
311 * kring->nm_sync() == netmap_txsync_to_host
312 * netmap_txsync_to_host(na)
313 * nm_os_send_up()
314 * FreeBSD: na->if_input() == ether_input()
315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316 *
317 *
318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319 *
320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321 *
322 * - tx from netmap userspace:
323 * concurrently:
324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325 * kring->nm_sync() == generic_netmap_txsync()
326 * nm_os_generic_xmit_frame()
327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328 * ifp->ndo_start_xmit == generic_ndo_start_xmit()
329 * gna->save_start_xmit == orig. dev. start_xmit
330 * FreeBSD: na->if_transmit() == orig. dev if_transmit
331 * 2) generic_mbuf_destructor()
332 * na->nm_notify() == netmap_notify()
333 * - rx from netmap userspace:
334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335 * kring->nm_sync() == generic_netmap_rxsync()
336 * mbq_safe_dequeue()
337 * 2) device driver
338 * generic_rx_handler()
339 * mbq_safe_enqueue()
340 * na->nm_notify() == netmap_notify()
341 * - rx from host stack
342 * FreeBSD: same as native
343 * Linux: same as native except:
344 * 1) host stack
345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346 * ifp->ndo_start_xmit == generic_ndo_start_xmit()
347 * netmap_transmit()
348 * na->nm_notify() == netmap_notify()
349 * - tx to host stack (same as native):
350 *
351 *
352 * -= VALE =-
353 *
354 * INCOMING:
355 *
356 * - VALE ports:
357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context
358 * kring->nm_sync() == netmap_vp_txsync()
359 *
360 * - system device with native support:
361 * from cable:
362 * interrupt
363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364 * kring->nm_sync() == DEVICE_netmap_rxsync()
365 * netmap_vp_txsync()
366 * kring->nm_sync() == DEVICE_netmap_rxsync()
367 * from host stack:
368 * netmap_transmit()
369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370 * kring->nm_sync() == netmap_rxsync_from_host()
371 * netmap_vp_txsync()
372 *
373 * - system device with generic support:
374 * from device driver:
375 * generic_rx_handler()
376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377 * kring->nm_sync() == generic_netmap_rxsync()
378 * netmap_vp_txsync()
379 * kring->nm_sync() == generic_netmap_rxsync()
380 * from host stack:
381 * netmap_transmit()
382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383 * kring->nm_sync() == netmap_rxsync_from_host()
384 * netmap_vp_txsync()
385 *
386 * (all cases) --> nm_bdg_flush()
387 * dest_na->nm_notify() == (see below)
388 *
389 * OUTGOING:
390 *
391 * - VALE ports:
392 * concurrently:
393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394 * kring->nm_sync() == netmap_vp_rxsync()
395 * 2) from nm_bdg_flush()
396 * na->nm_notify() == netmap_notify()
397 *
398 * - system device with native support:
399 * to cable:
400 * na->nm_notify() == netmap_bwrap_notify()
401 * netmap_vp_rxsync()
402 * kring->nm_sync() == DEVICE_netmap_txsync()
403 * netmap_vp_rxsync()
404 * to host stack:
405 * netmap_vp_rxsync()
406 * kring->nm_sync() == netmap_txsync_to_host
407 * netmap_vp_rxsync_locked()
408 *
409 * - system device with generic adapter:
410 * to device driver:
411 * na->nm_notify() == netmap_bwrap_notify()
412 * netmap_vp_rxsync()
413 * kring->nm_sync() == generic_netmap_txsync()
414 * netmap_vp_rxsync()
415 * to host stack:
416 * netmap_vp_rxsync()
417 * kring->nm_sync() == netmap_txsync_to_host
418 * netmap_vp_rxsync()
419 *
420 */
421
422 /*
423 * OS-specific code that is used only within this file.
424 * Other OS-specific code that must be accessed by drivers
425 * is present in netmap_kern.h
426 */
427
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h> /* defines used in kernel.h */
433 #include <sys/kernel.h> /* types used in module initialization */
434 #include <sys/conf.h> /* cdevsw struct, UID, GID */
435 #include <sys/filio.h> /* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h> /* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/proc.h>
441 #include <sys/rwlock.h>
442 #include <sys/socket.h> /* sockaddrs */
443 #include <sys/selinfo.h>
444 #include <sys/sysctl.h>
445 #include <sys/jail.h>
446 #include <sys/epoch.h>
447 #include <net/vnet.h>
448 #include <net/if.h>
449 #include <net/if_var.h>
450 #include <net/bpf.h> /* BIOCIMMEDIATE */
451 #include <machine/bus.h> /* bus_dmamap_* */
452 #include <sys/endian.h>
453 #include <sys/refcount.h>
454 #include <net/ethernet.h> /* ETHER_BPF_MTAP */
455
456
457 #elif defined(linux)
458
459 #include "bsd_glue.h"
460
461 #elif defined(__APPLE__)
462
463 #warning OSX support is only partial
464 #include "osx_glue.h"
465
466 #elif defined (_WIN32)
467
468 #include "win_glue.h"
469
470 #else
471
472 #error Unsupported platform
473
474 #endif /* unsupported */
475
476 /*
477 * common headers
478 */
479 #include <net/netmap.h>
480 #include <dev/netmap/netmap_kern.h>
481 #include <dev/netmap/netmap_mem2.h>
482
483
484 /* user-controlled variables */
485 int netmap_verbose;
486 #ifdef CONFIG_NETMAP_DEBUG
487 int netmap_debug;
488 #endif /* CONFIG_NETMAP_DEBUG */
489
490 static int netmap_no_timestamp; /* don't timestamp on rxsync */
491 int netmap_no_pendintr = 1;
492 int netmap_txsync_retry = 2;
493 static int netmap_fwd = 0; /* force transparent forwarding */
494
495 /*
496 * netmap_admode selects the netmap mode to use.
497 * Invalid values are reset to NETMAP_ADMODE_BEST
498 */
499 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */
500 NETMAP_ADMODE_NATIVE, /* either native or none */
501 NETMAP_ADMODE_GENERIC, /* force generic */
502 NETMAP_ADMODE_LAST };
503 static int netmap_admode = NETMAP_ADMODE_BEST;
504
505 /* netmap_generic_mit controls mitigation of RX notifications for
506 * the generic netmap adapter. The value is a time interval in
507 * nanoseconds. */
508 int netmap_generic_mit = 100*1000;
509
510 /* We use by default netmap-aware qdiscs with generic netmap adapters,
511 * even if there can be a little performance hit with hardware NICs.
512 * However, using the qdisc is the safer approach, for two reasons:
513 * 1) it prevents non-fifo qdiscs to break the TX notification
514 * scheme, which is based on mbuf destructors when txqdisc is
515 * not used.
516 * 2) it makes it possible to transmit over software devices that
517 * change skb->dev, like bridge, veth, ...
518 *
519 * Anyway users looking for the best performance should
520 * use native adapters.
521 */
522 #ifdef linux
523 int netmap_generic_txqdisc = 1;
524 #endif
525
526 /* Default number of slots and queues for generic adapters. */
527 int netmap_generic_ringsize = 1024;
528 int netmap_generic_rings = 1;
529
530 /* Non-zero to enable checksum offloading in NIC drivers */
531 int netmap_generic_hwcsum = 0;
532
533 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
534 int ptnet_vnet_hdr = 1;
535
536 /*
537 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
538 * in some other operating systems
539 */
540 SYSBEGIN(main_init);
541
542 SYSCTL_DECL(_dev_netmap);
543 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
544 "Netmap args");
545 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
546 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
547 #ifdef CONFIG_NETMAP_DEBUG
548 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
549 CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
550 #endif /* CONFIG_NETMAP_DEBUG */
551 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
552 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
553 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
554 0, "Always look for new received packets.");
555 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
556 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
557
558 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
559 "Force NR_FORWARD mode");
560 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
561 "Adapter mode. 0 selects the best option available,"
562 "1 forces native adapter, 2 forces emulated adapter");
563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
564 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
565 "1 to enable checksum generation by the NIC");
566 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
567 0, "RX notification interval in nanoseconds");
568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
569 &netmap_generic_ringsize, 0,
570 "Number of per-ring slots for emulated netmap mode");
571 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
572 &netmap_generic_rings, 0,
573 "Number of TX/RX queues for emulated netmap adapters");
574 #ifdef linux
575 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
576 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
577 #endif
578 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
579 0, "Allow ptnet devices to use virtio-net headers");
580
581 SYSEND;
582
583 NMG_LOCK_T netmap_global_lock;
584
585 /*
586 * mark the ring as stopped, and run through the locks
587 * to make sure other users get to see it.
588 * stopped must be either NR_KR_STOPPED (for unbounded stop)
589 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
590 */
591 static void
592 netmap_disable_ring(struct netmap_kring *kr, int stopped)
593 {
594 nm_kr_stop(kr, stopped);
595 // XXX check if nm_kr_stop is sufficient
596 mtx_lock(&kr->q_lock);
597 mtx_unlock(&kr->q_lock);
598 nm_kr_put(kr);
599 }
600
601 /* stop or enable a single ring */
602 void
603 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
604 {
605 if (stopped)
606 netmap_disable_ring(NMR(na, t)[ring_id], stopped);
607 else
608 NMR(na, t)[ring_id]->nkr_stopped = 0;
609 }
610
611
612 /* stop or enable all the rings of na */
613 void
614 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
615 {
616 int i;
617 enum txrx t;
618
619 if (!nm_netmap_on(na))
620 return;
621
622 if (netmap_verbose) {
623 nm_prinf("%s: %sable all rings", na->name,
624 (stopped ? "dis" : "en"));
625 }
626 for_rx_tx(t) {
627 for (i = 0; i < netmap_real_rings(na, t); i++) {
628 netmap_set_ring(na, i, t, stopped);
629 }
630 }
631 }
632
633 /*
634 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s
635 * to finish and prevents any new one from starting. Call this before turning
636 * netmap mode off, or before removing the hardware rings (e.g., on module
637 * onload).
638 */
639 void
640 netmap_disable_all_rings(struct ifnet *ifp)
641 {
642 if (NM_NA_VALID(ifp)) {
643 netmap_set_all_rings(NA(ifp), NM_KR_LOCKED);
644 }
645 }
646
647 /*
648 * Convenience function used in drivers. Re-enables rxsync and txsync on the
649 * adapter's rings In linux drivers, this should be placed near each
650 * napi_enable().
651 */
652 void
653 netmap_enable_all_rings(struct ifnet *ifp)
654 {
655 if (NM_NA_VALID(ifp)) {
656 netmap_set_all_rings(NA(ifp), 0 /* enabled */);
657 }
658 }
659
660 void
661 netmap_make_zombie(struct ifnet *ifp)
662 {
663 if (NM_NA_VALID(ifp)) {
664 struct netmap_adapter *na = NA(ifp);
665 netmap_set_all_rings(na, NM_KR_LOCKED);
666 na->na_flags |= NAF_ZOMBIE;
667 netmap_set_all_rings(na, 0);
668 }
669 }
670
671 void
672 netmap_undo_zombie(struct ifnet *ifp)
673 {
674 if (NM_NA_VALID(ifp)) {
675 struct netmap_adapter *na = NA(ifp);
676 if (na->na_flags & NAF_ZOMBIE) {
677 netmap_set_all_rings(na, NM_KR_LOCKED);
678 na->na_flags &= ~NAF_ZOMBIE;
679 netmap_set_all_rings(na, 0);
680 }
681 }
682 }
683
684 /*
685 * generic bound_checking function
686 */
687 u_int
688 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
689 {
690 u_int oldv = *v;
691 const char *op = NULL;
692
693 if (dflt < lo)
694 dflt = lo;
695 if (dflt > hi)
696 dflt = hi;
697 if (oldv < lo) {
698 *v = dflt;
699 op = "Bump";
700 } else if (oldv > hi) {
701 *v = hi;
702 op = "Clamp";
703 }
704 if (op && msg)
705 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
706 return *v;
707 }
708
709
710 /*
711 * packet-dump function, user-supplied or static buffer.
712 * The destination buffer must be at least 30+4*len
713 */
714 const char *
715 nm_dump_buf(char *p, int len, int lim, char *dst)
716 {
717 static char _dst[8192];
718 int i, j, i0;
719 static char hex[] ="0123456789abcdef";
720 char *o; /* output position */
721
722 #define P_HI(x) hex[((x) & 0xf0)>>4]
723 #define P_LO(x) hex[((x) & 0xf)]
724 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
725 if (!dst)
726 dst = _dst;
727 if (lim <= 0 || lim > len)
728 lim = len;
729 o = dst;
730 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
731 o += strlen(o);
732 /* hexdump routine */
733 for (i = 0; i < lim; ) {
734 sprintf(o, "%5d: ", i);
735 o += strlen(o);
736 memset(o, ' ', 48);
737 i0 = i;
738 for (j=0; j < 16 && i < lim; i++, j++) {
739 o[j*3] = P_HI(p[i]);
740 o[j*3+1] = P_LO(p[i]);
741 }
742 i = i0;
743 for (j=0; j < 16 && i < lim; i++, j++)
744 o[j + 48] = P_C(p[i]);
745 o[j+48] = '\n';
746 o += j+49;
747 }
748 *o = '\0';
749 #undef P_HI
750 #undef P_LO
751 #undef P_C
752 return dst;
753 }
754
755
756 /*
757 * Fetch configuration from the device, to cope with dynamic
758 * reconfigurations after loading the module.
759 */
760 /* call with NMG_LOCK held */
761 int
762 netmap_update_config(struct netmap_adapter *na)
763 {
764 struct nm_config_info info;
765
766 if (na->ifp && !nm_is_bwrap(na)) {
767 strlcpy(na->name, na->ifp->if_xname, sizeof(na->name));
768 }
769
770 bzero(&info, sizeof(info));
771 if (na->nm_config == NULL ||
772 na->nm_config(na, &info)) {
773 /* take whatever we had at init time */
774 info.num_tx_rings = na->num_tx_rings;
775 info.num_tx_descs = na->num_tx_desc;
776 info.num_rx_rings = na->num_rx_rings;
777 info.num_rx_descs = na->num_rx_desc;
778 info.rx_buf_maxsize = na->rx_buf_maxsize;
779 }
780
781 if (na->num_tx_rings == info.num_tx_rings &&
782 na->num_tx_desc == info.num_tx_descs &&
783 na->num_rx_rings == info.num_rx_rings &&
784 na->num_rx_desc == info.num_rx_descs &&
785 na->rx_buf_maxsize == info.rx_buf_maxsize)
786 return 0; /* nothing changed */
787 if (na->active_fds == 0) {
788 na->num_tx_rings = info.num_tx_rings;
789 na->num_tx_desc = info.num_tx_descs;
790 na->num_rx_rings = info.num_rx_rings;
791 na->num_rx_desc = info.num_rx_descs;
792 na->rx_buf_maxsize = info.rx_buf_maxsize;
793 if (netmap_verbose)
794 nm_prinf("configuration changed for %s: txring %d x %d, "
795 "rxring %d x %d, rxbufsz %d",
796 na->name, na->num_tx_rings, na->num_tx_desc,
797 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
798 return 0;
799 }
800 nm_prerr("WARNING: configuration changed for %s while active: "
801 "txring %d x %d, rxring %d x %d, rxbufsz %d",
802 na->name, info.num_tx_rings, info.num_tx_descs,
803 info.num_rx_rings, info.num_rx_descs,
804 info.rx_buf_maxsize);
805 return 1;
806 }
807
808 /* nm_sync callbacks for the host rings */
809 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
810 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
811
812 static int
813 netmap_default_bufcfg(struct netmap_kring *kring, uint64_t target)
814 {
815 kring->hwbuf_len = target;
816 kring->buf_align = 0; /* no alignment */
817 return 0;
818 }
819
820 /* create the krings array and initialize the fields common to all adapters.
821 * The array layout is this:
822 *
823 * +----------+
824 * na->tx_rings ----->| | \
825 * | | } na->num_tx_ring
826 * | | /
827 * +----------+
828 * | | host tx kring
829 * na->rx_rings ----> +----------+
830 * | | \
831 * | | } na->num_rx_rings
832 * | | /
833 * +----------+
834 * | | host rx kring
835 * +----------+
836 * na->tailroom ----->| | \
837 * | | } tailroom bytes
838 * | | /
839 * +----------+
840 *
841 * Note: for compatibility, host krings are created even when not needed.
842 * The tailroom space is currently used by vale ports for allocating leases.
843 */
844 /* call with NMG_LOCK held */
845 int
846 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
847 {
848 u_int i, len, ndesc;
849 struct netmap_kring *kring;
850 u_int n[NR_TXRX];
851 enum txrx t;
852 int err = 0;
853
854 if (na->tx_rings != NULL) {
855 if (netmap_debug & NM_DEBUG_ON)
856 nm_prerr("warning: krings were already created");
857 return 0;
858 }
859
860 /* account for the (possibly fake) host rings */
861 n[NR_TX] = netmap_all_rings(na, NR_TX);
862 n[NR_RX] = netmap_all_rings(na, NR_RX);
863
864 len = (n[NR_TX] + n[NR_RX]) *
865 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
866 + tailroom;
867
868 na->tx_rings = nm_os_malloc((size_t)len);
869 if (na->tx_rings == NULL) {
870 nm_prerr("Cannot allocate krings");
871 return ENOMEM;
872 }
873 na->rx_rings = na->tx_rings + n[NR_TX];
874 na->tailroom = na->rx_rings + n[NR_RX];
875
876 /* link the krings in the krings array */
877 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
878 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
879 na->tx_rings[i] = kring;
880 kring++;
881 }
882
883 /*
884 * All fields in krings are 0 except the one initialized below.
885 * but better be explicit on important kring fields.
886 */
887 for_rx_tx(t) {
888 ndesc = nma_get_ndesc(na, t);
889 for (i = 0; i < n[t]; i++) {
890 kring = NMR(na, t)[i];
891 bzero(kring, sizeof(*kring));
892 kring->notify_na = na;
893 kring->ring_id = i;
894 kring->tx = t;
895 kring->nkr_num_slots = ndesc;
896 kring->nr_mode = NKR_NETMAP_OFF;
897 kring->nr_pending_mode = NKR_NETMAP_OFF;
898 if (i < nma_get_nrings(na, t)) {
899 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
900 kring->nm_bufcfg = na->nm_bufcfg;
901 if (kring->nm_bufcfg == NULL)
902 kring->nm_bufcfg = netmap_default_bufcfg;
903 } else {
904 if (!(na->na_flags & NAF_HOST_RINGS))
905 kring->nr_kflags |= NKR_FAKERING;
906 kring->nm_sync = (t == NR_TX ?
907 netmap_txsync_to_host:
908 netmap_rxsync_from_host);
909 kring->nm_bufcfg = netmap_default_bufcfg;
910 }
911 kring->nm_notify = na->nm_notify;
912 kring->rhead = kring->rcur = kring->nr_hwcur = 0;
913 /*
914 * IMPORTANT: Always keep one slot empty.
915 */
916 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
917 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
918 nm_txrx2str(t), i);
919 nm_prdis("ktx %s h %d c %d t %d",
920 kring->name, kring->rhead, kring->rcur, kring->rtail);
921 err = nm_os_selinfo_init(&kring->si, kring->name);
922 if (err) {
923 netmap_krings_delete(na);
924 return err;
925 }
926 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
927 kring->na = na; /* setting this field marks the mutex as initialized */
928 }
929 err = nm_os_selinfo_init(&na->si[t], na->name);
930 if (err) {
931 netmap_krings_delete(na);
932 return err;
933 }
934 }
935
936 return 0;
937 }
938
939
940 /* undo the actions performed by netmap_krings_create */
941 /* call with NMG_LOCK held */
942 void
943 netmap_krings_delete(struct netmap_adapter *na)
944 {
945 struct netmap_kring **kring = na->tx_rings;
946 enum txrx t;
947
948 if (na->tx_rings == NULL) {
949 if (netmap_debug & NM_DEBUG_ON)
950 nm_prerr("warning: krings were already deleted");
951 return;
952 }
953
954 for_rx_tx(t)
955 nm_os_selinfo_uninit(&na->si[t]);
956
957 /* we rely on the krings layout described above */
958 for ( ; kring != na->tailroom; kring++) {
959 if ((*kring)->na != NULL)
960 mtx_destroy(&(*kring)->q_lock);
961 nm_os_selinfo_uninit(&(*kring)->si);
962 }
963 nm_os_free(na->tx_rings);
964 na->tx_rings = na->rx_rings = na->tailroom = NULL;
965 }
966
967
968 /*
969 * Destructor for NIC ports. They also have an mbuf queue
970 * on the rings connected to the host so we need to purge
971 * them first.
972 */
973 /* call with NMG_LOCK held */
974 void
975 netmap_hw_krings_delete(struct netmap_adapter *na)
976 {
977 u_int lim = netmap_real_rings(na, NR_RX), i;
978
979 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
980 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
981 nm_prdis("destroy sw mbq with len %d", mbq_len(q));
982 mbq_purge(q);
983 mbq_safe_fini(q);
984 }
985 netmap_krings_delete(na);
986 }
987
988 void
989 netmap_mem_restore(struct netmap_adapter *na)
990 {
991 if (na->nm_mem_prev) {
992 netmap_mem_put(na->nm_mem);
993 na->nm_mem = na->nm_mem_prev;
994 na->nm_mem_prev = NULL;
995 }
996 }
997
998 static void
999 netmap_mem_drop(struct netmap_adapter *na)
1000 {
1001 netmap_mem_deref(na->nm_mem, na);
1002
1003 if (na->active_fds <= 0) {
1004 /* if the native allocator had been overridden on regif,
1005 * restore it now and drop the temporary one
1006 */
1007 netmap_mem_restore(na);
1008 }
1009 }
1010
1011 static void
1012 netmap_update_hostrings_mode(struct netmap_adapter *na)
1013 {
1014 enum txrx t;
1015 struct netmap_kring *kring;
1016 int i;
1017
1018 for_rx_tx(t) {
1019 for (i = nma_get_nrings(na, t);
1020 i < netmap_real_rings(na, t); i++) {
1021 kring = NMR(na, t)[i];
1022 kring->nr_mode = kring->nr_pending_mode;
1023 }
1024 }
1025 }
1026
1027 /*
1028 * Undo everything that was done in netmap_do_regif(). In particular,
1029 * call nm_register(ifp,0) to stop netmap mode on the interface and
1030 * revert to normal operation.
1031 */
1032 /* call with NMG_LOCK held */
1033 static void netmap_unset_ringid(struct netmap_priv_d *);
1034 static void netmap_krings_put(struct netmap_priv_d *);
1035 void
1036 netmap_do_unregif(struct netmap_priv_d *priv)
1037 {
1038 struct netmap_adapter *na = priv->np_na;
1039
1040 NMG_LOCK_ASSERT();
1041 na->active_fds--;
1042 /* unset nr_pending_mode and possibly release exclusive mode */
1043 netmap_krings_put(priv);
1044
1045 #ifdef WITH_MONITOR
1046 /* XXX check whether we have to do something with monitor
1047 * when rings change nr_mode. */
1048 if (na->active_fds <= 0) {
1049 /* walk through all the rings and tell any monitor
1050 * that the port is going to exit netmap mode
1051 */
1052 netmap_monitor_stop(na);
1053 }
1054 #endif
1055
1056 if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1057 netmap_set_all_rings(na, NM_KR_LOCKED);
1058 na->nm_register(na, 0);
1059 netmap_set_all_rings(na, 0);
1060 }
1061
1062 /* delete rings and buffers that are no longer needed */
1063 netmap_mem_rings_delete(na);
1064
1065 if (na->active_fds <= 0) { /* last instance */
1066 /*
1067 * (TO CHECK) We enter here
1068 * when the last reference to this file descriptor goes
1069 * away. This means we cannot have any pending poll()
1070 * or interrupt routine operating on the structure.
1071 * XXX The file may be closed in a thread while
1072 * another thread is using it.
1073 * Linux keeps the file opened until the last reference
1074 * by any outstanding ioctl/poll or mmap is gone.
1075 * FreeBSD does not track mmap()s (but we do) and
1076 * wakes up any sleeping poll(). Need to check what
1077 * happens if the close() occurs while a concurrent
1078 * syscall is running.
1079 */
1080 if (netmap_debug & NM_DEBUG_ON)
1081 nm_prinf("deleting last instance for %s", na->name);
1082
1083 if (nm_netmap_on(na)) {
1084 nm_prerr("BUG: netmap on while going to delete the krings");
1085 }
1086
1087 na->nm_krings_delete(na);
1088
1089 /* restore the default number of host tx and rx rings */
1090 if (na->na_flags & NAF_HOST_RINGS) {
1091 na->num_host_tx_rings = 1;
1092 na->num_host_rx_rings = 1;
1093 } else {
1094 na->num_host_tx_rings = 0;
1095 na->num_host_rx_rings = 0;
1096 }
1097 }
1098
1099 /* possibly decrement counter of tx_si/rx_si users */
1100 netmap_unset_ringid(priv);
1101 /* delete the nifp */
1102 netmap_mem_if_delete(na, priv->np_nifp);
1103 /* drop the allocator */
1104 netmap_mem_drop(na);
1105 /* mark the priv as unregistered */
1106 priv->np_na = NULL;
1107 priv->np_nifp = NULL;
1108 }
1109
1110 struct netmap_priv_d*
1111 netmap_priv_new(void)
1112 {
1113 struct netmap_priv_d *priv;
1114
1115 priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1116 if (priv == NULL)
1117 return NULL;
1118 priv->np_refs = 1;
1119 nm_os_get_module();
1120 return priv;
1121 }
1122
1123 /*
1124 * Destructor of the netmap_priv_d, called when the fd is closed
1125 * Action: undo all the things done by NIOCREGIF,
1126 * On FreeBSD we need to track whether there are active mmap()s,
1127 * and we use np_active_mmaps for that. On linux, the field is always 0.
1128 * Return: 1 if we can free priv, 0 otherwise.
1129 *
1130 */
1131 /* call with NMG_LOCK held */
1132 void
1133 netmap_priv_delete(struct netmap_priv_d *priv)
1134 {
1135 struct netmap_adapter *na = priv->np_na;
1136
1137 /* number of active references to this fd */
1138 if (--priv->np_refs > 0) {
1139 return;
1140 }
1141 nm_os_put_module();
1142 if (na) {
1143 netmap_do_unregif(priv);
1144 }
1145 netmap_unget_na(na, priv->np_ifp);
1146 bzero(priv, sizeof(*priv)); /* for safety */
1147 nm_os_free(priv);
1148 }
1149
1150
1151 /* call with NMG_LOCK *not* held */
1152 void
1153 netmap_dtor(void *data)
1154 {
1155 struct netmap_priv_d *priv = data;
1156
1157 NMG_LOCK();
1158 netmap_priv_delete(priv);
1159 NMG_UNLOCK();
1160 }
1161
1162
1163 /*
1164 * Handlers for synchronization of the rings from/to the host stack.
1165 * These are associated to a network interface and are just another
1166 * ring pair managed by userspace.
1167 *
1168 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1169 * flags):
1170 *
1171 * - Before releasing buffers on hw RX rings, the application can mark
1172 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1173 * will be forwarded to the host stack, similarly to what happened if
1174 * the application moved them to the host TX ring.
1175 *
1176 * - Before releasing buffers on the host RX ring, the application can
1177 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1178 * they will be forwarded to the hw TX rings, saving the application
1179 * from doing the same task in user-space.
1180 *
1181 * Transparent forwarding can be enabled per-ring, by setting the NR_FORWARD
1182 * flag, or globally with the netmap_fwd sysctl.
1183 *
1184 * The transfer NIC --> host is relatively easy, just encapsulate
1185 * into mbufs and we are done. The host --> NIC side is slightly
1186 * harder because there might not be room in the tx ring so it
1187 * might take a while before releasing the buffer.
1188 */
1189
1190
1191 /*
1192 * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1193 * We do not need to lock because the queue is private.
1194 * After this call the queue is empty.
1195 */
1196 static void
1197 netmap_send_up(struct ifnet *dst, struct mbq *q)
1198 {
1199 struct mbuf *m;
1200 struct mbuf *head = NULL, *prev = NULL;
1201 #ifdef __FreeBSD__
1202 struct epoch_tracker et;
1203
1204 NET_EPOCH_ENTER(et);
1205 #endif /* __FreeBSD__ */
1206 /* Send packets up, outside the lock; head/prev machinery
1207 * is only useful for Windows. */
1208 while ((m = mbq_dequeue(q)) != NULL) {
1209 if (netmap_debug & NM_DEBUG_HOST)
1210 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1211 prev = nm_os_send_up(dst, m, prev);
1212 if (head == NULL)
1213 head = prev;
1214 }
1215 if (head)
1216 nm_os_send_up(dst, NULL, head);
1217 #ifdef __FreeBSD__
1218 NET_EPOCH_EXIT(et);
1219 #endif /* __FreeBSD__ */
1220 mbq_fini(q);
1221 }
1222
1223
1224 /*
1225 * Scan the buffers from hwcur to ring->head, and put a copy of those
1226 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1227 * Drop remaining packets in the unlikely event
1228 * of an mbuf shortage.
1229 */
1230 static void
1231 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1232 {
1233 u_int const lim = kring->nkr_num_slots - 1;
1234 u_int const head = kring->rhead;
1235 u_int n;
1236 struct netmap_adapter *na = kring->na;
1237
1238 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1239 struct mbuf *m;
1240 struct netmap_slot *slot = &kring->ring->slot[n];
1241
1242 if ((slot->flags & NS_FORWARD) == 0 && !force)
1243 continue;
1244 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1245 nm_prlim(5, "bad pkt at %d len %d", n, slot->len);
1246 continue;
1247 }
1248 slot->flags &= ~NS_FORWARD; // XXX needed ?
1249 /* XXX TODO: adapt to the case of a multisegment packet */
1250 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1251
1252 if (m == NULL)
1253 break;
1254 mbq_enqueue(q, m);
1255 }
1256 }
1257
1258 static inline int
1259 _nm_may_forward(struct netmap_kring *kring)
1260 {
1261 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1262 kring->na->na_flags & NAF_HOST_RINGS &&
1263 kring->tx == NR_RX);
1264 }
1265
1266 static inline int
1267 nm_may_forward_up(struct netmap_kring *kring)
1268 {
1269 return _nm_may_forward(kring) &&
1270 kring->ring_id != kring->na->num_rx_rings;
1271 }
1272
1273 static inline int
1274 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1275 {
1276 return _nm_may_forward(kring) &&
1277 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1278 kring->ring_id == kring->na->num_rx_rings;
1279 }
1280
1281 /*
1282 * Send to the NIC rings packets marked NS_FORWARD between
1283 * kring->nr_hwcur and kring->rhead.
1284 * Called under kring->rx_queue.lock on the sw rx ring.
1285 *
1286 * It can only be called if the user opened all the TX hw rings,
1287 * see NAF_CAN_FORWARD_DOWN flag.
1288 * We can touch the TX netmap rings (slots, head and cur) since
1289 * we are in poll/ioctl system call context, and the application
1290 * is not supposed to touch the ring (using a different thread)
1291 * during the execution of the system call.
1292 */
1293 static u_int
1294 netmap_sw_to_nic(struct netmap_adapter *na)
1295 {
1296 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1297 struct netmap_slot *rxslot = kring->ring->slot;
1298 u_int i, rxcur = kring->nr_hwcur;
1299 u_int const head = kring->rhead;
1300 u_int const src_lim = kring->nkr_num_slots - 1;
1301 u_int sent = 0;
1302
1303 /* scan rings to find space, then fill as much as possible */
1304 for (i = 0; i < na->num_tx_rings; i++) {
1305 struct netmap_kring *kdst = na->tx_rings[i];
1306 struct netmap_ring *rdst = kdst->ring;
1307 u_int const dst_lim = kdst->nkr_num_slots - 1;
1308
1309 /* XXX do we trust ring or kring->rcur,rtail ? */
1310 for (; rxcur != head && !nm_ring_empty(rdst);
1311 rxcur = nm_next(rxcur, src_lim) ) {
1312 struct netmap_slot *src, *dst, tmp;
1313 u_int dst_head = rdst->head;
1314
1315 src = &rxslot[rxcur];
1316 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1317 continue;
1318
1319 sent++;
1320
1321 dst = &rdst->slot[dst_head];
1322
1323 tmp = *src;
1324
1325 src->buf_idx = dst->buf_idx;
1326 src->flags = NS_BUF_CHANGED;
1327
1328 dst->buf_idx = tmp.buf_idx;
1329 dst->len = tmp.len;
1330 dst->flags = NS_BUF_CHANGED;
1331
1332 rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1333 }
1334 /* if (sent) XXX txsync ? it would be just an optimization */
1335 }
1336 return sent;
1337 }
1338
1339
1340 /*
1341 * netmap_txsync_to_host() passes packets up. We are called from a
1342 * system call in user process context, and the only contention
1343 * can be among multiple user threads erroneously calling
1344 * this routine concurrently.
1345 */
1346 static int
1347 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1348 {
1349 struct netmap_adapter *na = kring->na;
1350 u_int const lim = kring->nkr_num_slots - 1;
1351 u_int const head = kring->rhead;
1352 struct mbq q;
1353
1354 /* Take packets from hwcur to head and pass them up.
1355 * Force hwcur = head since netmap_grab_packets() stops at head
1356 */
1357 mbq_init(&q);
1358 netmap_grab_packets(kring, &q, 1 /* force */);
1359 nm_prdis("have %d pkts in queue", mbq_len(&q));
1360 kring->nr_hwcur = head;
1361 kring->nr_hwtail = head + lim;
1362 if (kring->nr_hwtail > lim)
1363 kring->nr_hwtail -= lim + 1;
1364
1365 netmap_send_up(na->ifp, &q);
1366 return 0;
1367 }
1368
1369
1370 /*
1371 * rxsync backend for packets coming from the host stack.
1372 * They have been put in kring->rx_queue by netmap_transmit().
1373 * We protect access to the kring using kring->rx_queue.lock
1374 *
1375 * also moves to the nic hw rings any packet the user has marked
1376 * for transparent-mode forwarding, then sets the NR_FORWARD
1377 * flag in the kring to let the caller push them out
1378 */
1379 static int
1380 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1381 {
1382 struct netmap_adapter *na = kring->na;
1383 struct netmap_ring *ring = kring->ring;
1384 u_int nm_i, n;
1385 u_int const lim = kring->nkr_num_slots - 1;
1386 u_int const head = kring->rhead;
1387 int ret = 0;
1388 struct mbq *q = &kring->rx_queue, fq;
1389
1390 mbq_init(&fq); /* fq holds packets to be freed */
1391
1392 mbq_lock(q);
1393
1394 /* First part: import newly received packets */
1395 n = mbq_len(q);
1396 if (n) { /* grab packets from the queue */
1397 struct mbuf *m;
1398 uint32_t stop_i;
1399
1400 nm_i = kring->nr_hwtail;
1401 stop_i = nm_prev(kring->nr_hwcur, lim);
1402 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1403 int len = MBUF_LEN(m);
1404 struct netmap_slot *slot = &ring->slot[nm_i];
1405
1406 m_copydata(m, 0, len, NMB(na, slot));
1407 nm_prdis("nm %d len %d", nm_i, len);
1408 if (netmap_debug & NM_DEBUG_HOST)
1409 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1410
1411 slot->len = len;
1412 slot->flags = 0;
1413 nm_i = nm_next(nm_i, lim);
1414 mbq_enqueue(&fq, m);
1415 }
1416 kring->nr_hwtail = nm_i;
1417 }
1418
1419 /*
1420 * Second part: skip past packets that userspace has released.
1421 */
1422 nm_i = kring->nr_hwcur;
1423 if (nm_i != head) { /* something was released */
1424 if (nm_may_forward_down(kring, flags)) {
1425 ret = netmap_sw_to_nic(na);
1426 if (ret > 0) {
1427 kring->nr_kflags |= NR_FORWARD;
1428 ret = 0;
1429 }
1430 }
1431 kring->nr_hwcur = head;
1432 }
1433
1434 mbq_unlock(q);
1435
1436 mbq_purge(&fq);
1437 mbq_fini(&fq);
1438
1439 return ret;
1440 }
1441
1442
1443 /* Get a netmap adapter for the port.
1444 *
1445 * If it is possible to satisfy the request, return 0
1446 * with *na containing the netmap adapter found.
1447 * Otherwise return an error code, with *na containing NULL.
1448 *
1449 * When the port is attached to a bridge, we always return
1450 * EBUSY.
1451 * Otherwise, if the port is already bound to a file descriptor,
1452 * then we unconditionally return the existing adapter into *na.
1453 * In all the other cases, we return (into *na) either native,
1454 * generic or NULL, according to the following table:
1455 *
1456 * native_support
1457 * active_fds dev.netmap.admode YES NO
1458 * -------------------------------------------------------
1459 * >0 * NA(ifp) NA(ifp)
1460 *
1461 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC
1462 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL
1463 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC
1464 *
1465 */
1466 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1467 int
1468 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1469 {
1470 /* generic support */
1471 int i = netmap_admode; /* Take a snapshot. */
1472 struct netmap_adapter *prev_na;
1473 int error = 0;
1474
1475 *na = NULL; /* default */
1476
1477 /* reset in case of invalid value */
1478 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1479 i = netmap_admode = NETMAP_ADMODE_BEST;
1480
1481 if (NM_NA_VALID(ifp)) {
1482 prev_na = NA(ifp);
1483 /* If an adapter already exists, return it if
1484 * there are active file descriptors or if
1485 * netmap is not forced to use generic
1486 * adapters.
1487 */
1488 if (NETMAP_OWNED_BY_ANY(prev_na)
1489 || i != NETMAP_ADMODE_GENERIC
1490 || prev_na->na_flags & NAF_FORCE_NATIVE
1491 #ifdef WITH_PIPES
1492 /* ugly, but we cannot allow an adapter switch
1493 * if some pipe is referring to this one
1494 */
1495 || prev_na->na_next_pipe > 0
1496 #endif
1497 ) {
1498 *na = prev_na;
1499 goto assign_mem;
1500 }
1501 }
1502
1503 /* If there isn't native support and netmap is not allowed
1504 * to use generic adapters, we cannot satisfy the request.
1505 */
1506 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1507 return EOPNOTSUPP;
1508
1509 /* Otherwise, create a generic adapter and return it,
1510 * saving the previously used netmap adapter, if any.
1511 *
1512 * Note that here 'prev_na', if not NULL, MUST be a
1513 * native adapter, and CANNOT be a generic one. This is
1514 * true because generic adapters are created on demand, and
1515 * destroyed when not used anymore. Therefore, if the adapter
1516 * currently attached to an interface 'ifp' is generic, it
1517 * must be that
1518 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1519 * Consequently, if NA(ifp) is generic, we will enter one of
1520 * the branches above. This ensures that we never override
1521 * a generic adapter with another generic adapter.
1522 */
1523 error = generic_netmap_attach(ifp);
1524 if (error)
1525 return error;
1526
1527 *na = NA(ifp);
1528
1529 assign_mem:
1530 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1531 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1532 (*na)->nm_mem_prev = (*na)->nm_mem;
1533 (*na)->nm_mem = netmap_mem_get(nmd);
1534 }
1535
1536 return 0;
1537 }
1538
1539 /*
1540 * MUST BE CALLED UNDER NMG_LOCK()
1541 *
1542 * Get a refcounted reference to a netmap adapter attached
1543 * to the interface specified by req.
1544 * This is always called in the execution of an ioctl().
1545 *
1546 * Return ENXIO if the interface specified by the request does
1547 * not exist, ENOTSUP if netmap is not supported by the interface,
1548 * EBUSY if the interface is already attached to a bridge,
1549 * EINVAL if parameters are invalid, ENOMEM if needed resources
1550 * could not be allocated.
1551 * If successful, hold a reference to the netmap adapter.
1552 *
1553 * If the interface specified by req is a system one, also keep
1554 * a reference to it and return a valid *ifp.
1555 */
1556 int
1557 netmap_get_na(struct nmreq_header *hdr,
1558 struct netmap_adapter **na, struct ifnet **ifp,
1559 struct netmap_mem_d *nmd, int create)
1560 {
1561 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1562 int error = 0;
1563 struct netmap_adapter *ret = NULL;
1564 int nmd_ref = 0;
1565
1566 *na = NULL; /* default return value */
1567 *ifp = NULL;
1568
1569 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1570 return EINVAL;
1571 }
1572
1573 if (req->nr_mode == NR_REG_PIPE_MASTER ||
1574 req->nr_mode == NR_REG_PIPE_SLAVE) {
1575 /* Do not accept deprecated pipe modes. */
1576 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1577 return EINVAL;
1578 }
1579
1580 NMG_LOCK_ASSERT();
1581
1582 /* if the request contain a memid, try to find the
1583 * corresponding memory region
1584 */
1585 if (nmd == NULL && req->nr_mem_id) {
1586 nmd = netmap_mem_find(req->nr_mem_id);
1587 if (nmd == NULL)
1588 return EINVAL;
1589 /* keep the rereference */
1590 nmd_ref = 1;
1591 }
1592
1593 /* We cascade through all possible types of netmap adapter.
1594 * All netmap_get_*_na() functions return an error and an na,
1595 * with the following combinations:
1596 *
1597 * error na
1598 * 0 NULL type doesn't match
1599 * !0 NULL type matches, but na creation/lookup failed
1600 * 0 !NULL type matches and na created/found
1601 * !0 !NULL impossible
1602 */
1603 error = netmap_get_null_na(hdr, na, nmd, create);
1604 if (error || *na != NULL)
1605 goto out;
1606
1607 /* try to see if this is a monitor port */
1608 error = netmap_get_monitor_na(hdr, na, nmd, create);
1609 if (error || *na != NULL)
1610 goto out;
1611
1612 /* try to see if this is a pipe port */
1613 error = netmap_get_pipe_na(hdr, na, nmd, create);
1614 if (error || *na != NULL)
1615 goto out;
1616
1617 /* try to see if this is a vale port */
1618 error = netmap_get_vale_na(hdr, na, nmd, create);
1619 if (error)
1620 goto out;
1621
1622 if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1623 goto out;
1624
1625 /*
1626 * This must be a hardware na, lookup the name in the system.
1627 * Note that by hardware we actually mean "it shows up in ifconfig".
1628 * This may still be a tap, a veth/epair, or even a
1629 * persistent VALE port.
1630 */
1631 *ifp = ifunit_ref(hdr->nr_name);
1632 if (*ifp == NULL) {
1633 error = ENXIO;
1634 goto out;
1635 }
1636
1637 error = netmap_get_hw_na(*ifp, nmd, &ret);
1638 if (error)
1639 goto out;
1640
1641 *na = ret;
1642 netmap_adapter_get(ret);
1643
1644 /*
1645 * if the adapter supports the host rings and it is not already open,
1646 * try to set the number of host rings as requested by the user
1647 */
1648 if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) {
1649 if (req->nr_host_tx_rings)
1650 (*na)->num_host_tx_rings = req->nr_host_tx_rings;
1651 if (req->nr_host_rx_rings)
1652 (*na)->num_host_rx_rings = req->nr_host_rx_rings;
1653 }
1654 nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings,
1655 (*na)->num_host_rx_rings);
1656
1657 out:
1658 if (error) {
1659 if (ret)
1660 netmap_adapter_put(ret);
1661 if (*ifp) {
1662 if_rele(*ifp);
1663 *ifp = NULL;
1664 }
1665 }
1666 if (nmd_ref)
1667 netmap_mem_put(nmd);
1668
1669 return error;
1670 }
1671
1672 /* undo netmap_get_na() */
1673 void
1674 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1675 {
1676 if (ifp)
1677 if_rele(ifp);
1678 if (na)
1679 netmap_adapter_put(na);
1680 }
1681
1682
1683 #define NM_FAIL_ON(t) do { \
1684 if (unlikely(t)) { \
1685 nm_prlim(5, "%s: fail '" #t "' " \
1686 "h %d c %d t %d " \
1687 "rh %d rc %d rt %d " \
1688 "hc %d ht %d", \
1689 kring->name, \
1690 head, cur, ring->tail, \
1691 kring->rhead, kring->rcur, kring->rtail, \
1692 kring->nr_hwcur, kring->nr_hwtail); \
1693 return kring->nkr_num_slots; \
1694 } \
1695 } while (0)
1696
1697 /*
1698 * validate parameters on entry for *_txsync()
1699 * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1700 * in case of error.
1701 *
1702 * rhead, rcur and rtail=hwtail are stored from previous round.
1703 * hwcur is the next packet to send to the ring.
1704 *
1705 * We want
1706 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1707 *
1708 * hwcur, rhead, rtail and hwtail are reliable
1709 */
1710 u_int
1711 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1712 {
1713 u_int head = NM_ACCESS_ONCE(ring->head);
1714 u_int cur = NM_ACCESS_ONCE(ring->cur);
1715 u_int n = kring->nkr_num_slots;
1716
1717 nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1718 kring->name,
1719 kring->nr_hwcur, kring->nr_hwtail,
1720 ring->head, ring->cur, ring->tail);
1721 #if 1 /* kernel sanity checks; but we can trust the kring. */
1722 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1723 kring->rtail >= n || kring->nr_hwtail >= n);
1724 #endif /* kernel sanity checks */
1725 /*
1726 * user sanity checks. We only use head,
1727 * A, B, ... are possible positions for head:
1728 *
1729 * 0 A rhead B rtail C n-1
1730 * 0 D rtail E rhead F n-1
1731 *
1732 * B, F, D are valid. A, C, E are wrong
1733 */
1734 if (kring->rtail >= kring->rhead) {
1735 /* want rhead <= head <= rtail */
1736 NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1737 /* and also head <= cur <= rtail */
1738 NM_FAIL_ON(cur < head || cur > kring->rtail);
1739 } else { /* here rtail < rhead */
1740 /* we need head outside rtail .. rhead */
1741 NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1742
1743 /* two cases now: head <= rtail or head >= rhead */
1744 if (head <= kring->rtail) {
1745 /* want head <= cur <= rtail */
1746 NM_FAIL_ON(cur < head || cur > kring->rtail);
1747 } else { /* head >= rhead */
1748 /* cur must be outside rtail..head */
1749 NM_FAIL_ON(cur > kring->rtail && cur < head);
1750 }
1751 }
1752 if (ring->tail != kring->rtail) {
1753 nm_prlim(5, "%s tail overwritten was %d need %d", kring->name,
1754 ring->tail, kring->rtail);
1755 ring->tail = kring->rtail;
1756 }
1757 kring->rhead = head;
1758 kring->rcur = cur;
1759 return head;
1760 }
1761
1762
1763 /*
1764 * validate parameters on entry for *_rxsync()
1765 * Returns ring->head if ok, kring->nkr_num_slots on error.
1766 *
1767 * For a valid configuration,
1768 * hwcur <= head <= cur <= tail <= hwtail
1769 *
1770 * We only consider head and cur.
1771 * hwcur and hwtail are reliable.
1772 *
1773 */
1774 u_int
1775 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1776 {
1777 uint32_t const n = kring->nkr_num_slots;
1778 uint32_t head, cur;
1779
1780 nm_prdis(5,"%s kc %d kt %d h %d c %d t %d",
1781 kring->name,
1782 kring->nr_hwcur, kring->nr_hwtail,
1783 ring->head, ring->cur, ring->tail);
1784 /*
1785 * Before storing the new values, we should check they do not
1786 * move backwards. However:
1787 * - head is not an issue because the previous value is hwcur;
1788 * - cur could in principle go back, however it does not matter
1789 * because we are processing a brand new rxsync()
1790 */
1791 cur = kring->rcur = NM_ACCESS_ONCE(ring->cur);
1792 head = kring->rhead = NM_ACCESS_ONCE(ring->head);
1793 #if 1 /* kernel sanity checks */
1794 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1795 #endif /* kernel sanity checks */
1796 /* user sanity checks */
1797 if (kring->nr_hwtail >= kring->nr_hwcur) {
1798 /* want hwcur <= rhead <= hwtail */
1799 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1800 /* and also rhead <= rcur <= hwtail */
1801 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1802 } else {
1803 /* we need rhead outside hwtail..hwcur */
1804 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1805 /* two cases now: head <= hwtail or head >= hwcur */
1806 if (head <= kring->nr_hwtail) {
1807 /* want head <= cur <= hwtail */
1808 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1809 } else {
1810 /* cur must be outside hwtail..head */
1811 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1812 }
1813 }
1814 if (ring->tail != kring->rtail) {
1815 nm_prlim(5, "%s tail overwritten was %d need %d",
1816 kring->name,
1817 ring->tail, kring->rtail);
1818 ring->tail = kring->rtail;
1819 }
1820 return head;
1821 }
1822
1823
1824 /*
1825 * Error routine called when txsync/rxsync detects an error.
1826 * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1827 * Return 1 on reinit.
1828 *
1829 * This routine is only called by the upper half of the kernel.
1830 * It only reads hwcur (which is changed only by the upper half, too)
1831 * and hwtail (which may be changed by the lower half, but only on
1832 * a tx ring and only to increase it, so any error will be recovered
1833 * on the next call). For the above, we don't strictly need to call
1834 * it under lock.
1835 */
1836 int
1837 netmap_ring_reinit(struct netmap_kring *kring)
1838 {
1839 struct netmap_ring *ring = kring->ring;
1840 u_int i, lim = kring->nkr_num_slots - 1;
1841 int errors = 0;
1842
1843 // XXX KASSERT nm_kr_tryget
1844 nm_prlim(10, "called for %s", kring->name);
1845 // XXX probably wrong to trust userspace
1846 kring->rhead = ring->head;
1847 kring->rcur = ring->cur;
1848 kring->rtail = ring->tail;
1849
1850 if (ring->cur > lim)
1851 errors++;
1852 if (ring->head > lim)
1853 errors++;
1854 if (ring->tail > lim)
1855 errors++;
1856 for (i = 0; i <= lim; i++) {
1857 u_int idx = ring->slot[i].buf_idx;
1858 u_int len = ring->slot[i].len;
1859 if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1860 nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1861 ring->slot[i].buf_idx = 0;
1862 ring->slot[i].len = 0;
1863 } else if (len > NETMAP_BUF_SIZE(kring->na)) {
1864 ring->slot[i].len = 0;
1865 nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len);
1866 }
1867 }
1868 if (errors) {
1869 nm_prlim(10, "total %d errors", errors);
1870 nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d",
1871 kring->name,
1872 ring->cur, kring->nr_hwcur,
1873 ring->tail, kring->nr_hwtail);
1874 ring->head = kring->rhead = kring->nr_hwcur;
1875 ring->cur = kring->rcur = kring->nr_hwcur;
1876 ring->tail = kring->rtail = kring->nr_hwtail;
1877 }
1878 return (errors ? 1 : 0);
1879 }
1880
1881 /* interpret the ringid and flags fields of an nmreq, by translating them
1882 * into a pair of intervals of ring indices:
1883 *
1884 * [priv->np_txqfirst, priv->np_txqlast) and
1885 * [priv->np_rxqfirst, priv->np_rxqlast)
1886 *
1887 */
1888 int
1889 netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr)
1890 {
1891 struct netmap_adapter *na = priv->np_na;
1892 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body;
1893 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1894 enum txrx t;
1895 u_int j;
1896 u_int nr_flags = reg->nr_flags, nr_mode = reg->nr_mode,
1897 nr_ringid = reg->nr_ringid;
1898
1899 for_rx_tx(t) {
1900 if (nr_flags & excluded_direction[t]) {
1901 priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1902 continue;
1903 }
1904 switch (nr_mode) {
1905 case NR_REG_ALL_NIC:
1906 case NR_REG_NULL:
1907 priv->np_qfirst[t] = 0;
1908 priv->np_qlast[t] = nma_get_nrings(na, t);
1909 nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1910 priv->np_qfirst[t], priv->np_qlast[t]);
1911 break;
1912 case NR_REG_SW:
1913 case NR_REG_NIC_SW:
1914 if (!(na->na_flags & NAF_HOST_RINGS)) {
1915 nm_prerr("host rings not supported");
1916 return EINVAL;
1917 }
1918 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1919 nma_get_nrings(na, t) : 0);
1920 priv->np_qlast[t] = netmap_all_rings(na, t);
1921 nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1922 nm_txrx2str(t),
1923 priv->np_qfirst[t], priv->np_qlast[t]);
1924 break;
1925 case NR_REG_ONE_NIC:
1926 if (nr_ringid >= na->num_tx_rings &&
1927 nr_ringid >= na->num_rx_rings) {
1928 nm_prerr("invalid ring id %d", nr_ringid);
1929 return EINVAL;
1930 }
1931 /* if not enough rings, use the first one */
1932 j = nr_ringid;
1933 if (j >= nma_get_nrings(na, t))
1934 j = 0;
1935 priv->np_qfirst[t] = j;
1936 priv->np_qlast[t] = j + 1;
1937 nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t),
1938 priv->np_qfirst[t], priv->np_qlast[t]);
1939 break;
1940 case NR_REG_ONE_SW:
1941 if (!(na->na_flags & NAF_HOST_RINGS)) {
1942 nm_prerr("host rings not supported");
1943 return EINVAL;
1944 }
1945 if (nr_ringid >= na->num_host_tx_rings &&
1946 nr_ringid >= na->num_host_rx_rings) {
1947 nm_prerr("invalid ring id %d", nr_ringid);
1948 return EINVAL;
1949 }
1950 /* if not enough rings, use the first one */
1951 j = nr_ringid;
1952 if (j >= nma_get_host_nrings(na, t))
1953 j = 0;
1954 priv->np_qfirst[t] = nma_get_nrings(na, t) + j;
1955 priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1;
1956 nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t),
1957 priv->np_qfirst[t], priv->np_qlast[t]);
1958 break;
1959 default:
1960 nm_prerr("invalid regif type %d", nr_mode);
1961 return EINVAL;
1962 }
1963 }
1964 priv->np_flags = nr_flags;
1965
1966 /* Allow transparent forwarding mode in the host --> nic
1967 * direction only if all the TX hw rings have been opened. */
1968 if (priv->np_qfirst[NR_TX] == 0 &&
1969 priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1970 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1971 }
1972
1973 if (netmap_verbose) {
1974 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1975 na->name,
1976 priv->np_qfirst[NR_TX],
1977 priv->np_qlast[NR_TX],
1978 priv->np_qfirst[NR_RX],
1979 priv->np_qlast[NR_RX],
1980 nr_ringid);
1981 }
1982 return 0;
1983 }
1984
1985
1986 /*
1987 * Set the ring ID. For devices with a single queue, a request
1988 * for all rings is the same as a single ring.
1989 */
1990 static int
1991 netmap_set_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr)
1992 {
1993 struct netmap_adapter *na = priv->np_na;
1994 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body;
1995 int error;
1996 enum txrx t;
1997
1998 error = netmap_interp_ringid(priv, hdr);
1999 if (error) {
2000 return error;
2001 }
2002
2003 priv->np_txpoll = (reg->nr_flags & NR_NO_TX_POLL) ? 0 : 1;
2004
2005 /* optimization: count the users registered for more than
2006 * one ring, which are the ones sleeping on the global queue.
2007 * The default netmap_notify() callback will then
2008 * avoid signaling the global queue if nobody is using it
2009 */
2010 for_rx_tx(t) {
2011 if (nm_si_user(priv, t))
2012 na->si_users[t]++;
2013 }
2014 return 0;
2015 }
2016
2017 static void
2018 netmap_unset_ringid(struct netmap_priv_d *priv)
2019 {
2020 struct netmap_adapter *na = priv->np_na;
2021 enum txrx t;
2022
2023 for_rx_tx(t) {
2024 if (nm_si_user(priv, t))
2025 na->si_users[t]--;
2026 priv->np_qfirst[t] = priv->np_qlast[t] = 0;
2027 }
2028 priv->np_flags = 0;
2029 priv->np_txpoll = 0;
2030 priv->np_kloop_state = 0;
2031 }
2032
2033 #define within_sel(p_, t_, i_) \
2034 ((i_) < (p_)->np_qlast[(t_)])
2035 #define nonempty_sel(p_, t_) \
2036 (within_sel((p_), (t_), (p_)->np_qfirst[(t_)]))
2037 #define foreach_selected_ring(p_, t_, i_, kring_) \
2038 for ((t_) = nonempty_sel((p_), NR_RX) ? NR_RX : NR_TX, \
2039 (i_) = (p_)->np_qfirst[(t_)]; \
2040 (t_ == NR_RX || \
2041 (t == NR_TX && within_sel((p_), (t_), (i_)))) && \
2042 ((kring_) = NMR((p_)->np_na, (t_))[(i_)]); \
2043 (i_) = within_sel((p_), (t_), (i_) + 1) ? (i_) + 1 : \
2044 (++(t_) < NR_TXRX ? (p_)->np_qfirst[(t_)] : (i_)))
2045
2046
2047 /* Set the nr_pending_mode for the requested rings.
2048 * If requested, also try to get exclusive access to the rings, provided
2049 * the rings we want to bind are not exclusively owned by a previous bind.
2050 */
2051 static int
2052 netmap_krings_get(struct netmap_priv_d *priv)
2053 {
2054 struct netmap_adapter *na = priv->np_na;
2055 u_int i;
2056 struct netmap_kring *kring;
2057 int excl = (priv->np_flags & NR_EXCLUSIVE);
2058 enum txrx t;
2059
2060 if (netmap_debug & NM_DEBUG_ON)
2061 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
2062 na->name,
2063 priv->np_qfirst[NR_TX],
2064 priv->np_qlast[NR_TX],
2065 priv->np_qfirst[NR_RX],
2066 priv->np_qlast[NR_RX]);
2067
2068 /* first round: check that all the requested rings
2069 * are neither already exclusively owned, nor we
2070 * want exclusive ownership when they are already in use
2071 */
2072 foreach_selected_ring(priv, t, i, kring) {
2073 if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
2074 (kring->users && excl))
2075 {
2076 nm_prdis("ring %s busy", kring->name);
2077 return EBUSY;
2078 }
2079 }
2080
2081 /* second round: increment usage count (possibly marking them
2082 * as exclusive) and set the nr_pending_mode
2083 */
2084 foreach_selected_ring(priv, t, i, kring) {
2085 kring->users++;
2086 if (excl)
2087 kring->nr_kflags |= NKR_EXCLUSIVE;
2088 kring->nr_pending_mode = NKR_NETMAP_ON;
2089 }
2090
2091 return 0;
2092
2093 }
2094
2095 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
2096 * if was asked on regif, and unset the nr_pending_mode if we are the
2097 * last users of the involved rings. */
2098 static void
2099 netmap_krings_put(struct netmap_priv_d *priv)
2100 {
2101 u_int i;
2102 struct netmap_kring *kring;
2103 int excl = (priv->np_flags & NR_EXCLUSIVE);
2104 enum txrx t;
2105
2106 nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)",
2107 na->name,
2108 priv->np_qfirst[NR_TX],
2109 priv->np_qlast[NR_TX],
2110 priv->np_qfirst[NR_RX],
2111 priv->np_qlast[MR_RX]);
2112
2113 foreach_selected_ring(priv, t, i, kring) {
2114 if (excl)
2115 kring->nr_kflags &= ~NKR_EXCLUSIVE;
2116 kring->users--;
2117 if (kring->users == 0)
2118 kring->nr_pending_mode = NKR_NETMAP_OFF;
2119 }
2120 }
2121
2122 static int
2123 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2124 {
2125 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2126 }
2127
2128 /* Validate the CSB entries for both directions (atok and ktoa).
2129 * To be called under NMG_LOCK(). */
2130 static int
2131 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2132 {
2133 struct nm_csb_atok *csb_atok_base =
2134 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2135 struct nm_csb_ktoa *csb_ktoa_base =
2136 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2137 enum txrx t;
2138 int num_rings[NR_TXRX], tot_rings;
2139 size_t entry_size[2];
2140 void *csb_start[2];
2141 int i;
2142
2143 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2144 nm_prerr("Cannot update CSB while kloop is running");
2145 return EBUSY;
2146 }
2147
2148 tot_rings = 0;
2149 for_rx_tx(t) {
2150 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2151 tot_rings += num_rings[t];
2152 }
2153 if (tot_rings <= 0)
2154 return 0;
2155
2156 if (!(priv->np_flags & NR_EXCLUSIVE)) {
2157 nm_prerr("CSB mode requires NR_EXCLUSIVE");
2158 return EINVAL;
2159 }
2160
2161 entry_size[0] = sizeof(*csb_atok_base);
2162 entry_size[1] = sizeof(*csb_ktoa_base);
2163 csb_start[0] = (void *)csb_atok_base;
2164 csb_start[1] = (void *)csb_ktoa_base;
2165
2166 for (i = 0; i < 2; i++) {
2167 /* On Linux we could use access_ok() to simplify
2168 * the validation. However, the advantage of
2169 * this approach is that it works also on
2170 * FreeBSD. */
2171 size_t csb_size = tot_rings * entry_size[i];
2172 void *tmp;
2173 int err;
2174
2175 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2176 nm_prerr("Unaligned CSB address");
2177 return EINVAL;
2178 }
2179
2180 tmp = nm_os_malloc(csb_size);
2181 if (!tmp)
2182 return ENOMEM;
2183 if (i == 0) {
2184 /* Application --> kernel direction. */
2185 err = copyin(csb_start[i], tmp, csb_size);
2186 } else {
2187 /* Kernel --> application direction. */
2188 memset(tmp, 0, csb_size);
2189 err = copyout(tmp, csb_start[i], csb_size);
2190 }
2191 nm_os_free(tmp);
2192 if (err) {
2193 nm_prerr("Invalid CSB address");
2194 return err;
2195 }
2196 }
2197
2198 priv->np_csb_atok_base = csb_atok_base;
2199 priv->np_csb_ktoa_base = csb_ktoa_base;
2200
2201 /* Initialize the CSB. */
2202 for_rx_tx(t) {
2203 for (i = 0; i < num_rings[t]; i++) {
2204 struct netmap_kring *kring =
2205 NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2206 struct nm_csb_atok *csb_atok = csb_atok_base + i;
2207 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2208
2209 if (t == NR_RX) {
2210 csb_atok += num_rings[NR_TX];
2211 csb_ktoa += num_rings[NR_TX];
2212 }
2213
2214 CSB_WRITE(csb_atok, head, kring->rhead);
2215 CSB_WRITE(csb_atok, cur, kring->rcur);
2216 CSB_WRITE(csb_atok, appl_need_kick, 1);
2217 CSB_WRITE(csb_atok, sync_flags, 1);
2218 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2219 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2220 CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2221
2222 nm_prinf("csb_init for kring %s: head %u, cur %u, "
2223 "hwcur %u, hwtail %u", kring->name,
2224 kring->rhead, kring->rcur, kring->nr_hwcur,
2225 kring->nr_hwtail);
2226 }
2227 }
2228
2229 return 0;
2230 }
2231
2232 /* Ensure that the netmap adapter can support the given MTU.
2233 * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2234 */
2235 int
2236 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2237 unsigned nbs = NETMAP_BUF_SIZE(na);
2238
2239 if (mtu <= na->rx_buf_maxsize) {
2240 /* The MTU fits a single NIC slot. We only
2241 * Need to check that netmap buffers are
2242 * large enough to hold an MTU. NS_MOREFRAG
2243 * cannot be used in this case. */
2244 if (nbs < mtu) {
2245 nm_prerr("error: netmap buf size (%u) "
2246 "< device MTU (%u)", nbs, mtu);
2247 return EINVAL;
2248 }
2249 } else {
2250 /* More NIC slots may be needed to receive
2251 * or transmit a single packet. Check that
2252 * the adapter supports NS_MOREFRAG and that
2253 * netmap buffers are large enough to hold
2254 * the maximum per-slot size. */
2255 if (!(na->na_flags & NAF_MOREFRAG)) {
2256 nm_prerr("error: large MTU (%d) needed "
2257 "but %s does not support "
2258 "NS_MOREFRAG", mtu,
2259 na->ifp->if_xname);
2260 return EINVAL;
2261 } else if (nbs < na->rx_buf_maxsize) {
2262 nm_prerr("error: using NS_MOREFRAG on "
2263 "%s requires netmap buf size "
2264 ">= %u", na->ifp->if_xname,
2265 na->rx_buf_maxsize);
2266 return EINVAL;
2267 } else {
2268 nm_prinf("info: netmap application on "
2269 "%s needs to support "
2270 "NS_MOREFRAG "
2271 "(MTU=%u,netmap_buf_size=%u)",
2272 na->ifp->if_xname, mtu, nbs);
2273 }
2274 }
2275 return 0;
2276 }
2277
2278 /* Handle the offset option, if present in the hdr.
2279 * Returns 0 on success, or an error.
2280 */
2281 static int
2282 netmap_offsets_init(struct netmap_priv_d *priv, struct nmreq_header *hdr)
2283 {
2284 struct nmreq_opt_offsets *opt;
2285 struct netmap_adapter *na = priv->np_na;
2286 struct netmap_kring *kring;
2287 uint64_t mask = 0, bits = 0, maxbits = sizeof(uint64_t) * 8,
2288 max_offset = 0, initial_offset = 0, min_gap = 0;
2289 u_int i;
2290 enum txrx t;
2291 int error = 0;
2292
2293 opt = (struct nmreq_opt_offsets *)
2294 nmreq_getoption(hdr, NETMAP_REQ_OPT_OFFSETS);
2295 if (opt == NULL)
2296 return 0;
2297
2298 if (!(na->na_flags & NAF_OFFSETS)) {
2299 if (netmap_verbose)
2300 nm_prerr("%s does not support offsets",
2301 na->name);
2302 error = EOPNOTSUPP;
2303 goto out;
2304 }
2305
2306 /* check sanity of the opt values */
2307 max_offset = opt->nro_max_offset;
2308 min_gap = opt->nro_min_gap;
2309 initial_offset = opt->nro_initial_offset;
2310 bits = opt->nro_offset_bits;
2311
2312 if (bits > maxbits) {
2313 if (netmap_verbose)
2314 nm_prerr("bits: %llu too large (max %llu)",
2315 (unsigned long long)bits,
2316 (unsigned long long)maxbits);
2317 error = EINVAL;
2318 goto out;
2319 }
2320 /* we take bits == 0 as a request to use the entire field */
2321 if (bits == 0 || bits == maxbits) {
2322 /* shifting a type by sizeof(type) is undefined */
2323 bits = maxbits;
2324 mask = 0xffffffffffffffff;
2325 } else {
2326 mask = (1ULL << bits) - 1;
2327 }
2328 if (max_offset > NETMAP_BUF_SIZE(na)) {
2329 if (netmap_verbose)
2330 nm_prerr("max offset %llu > buf size %u",
2331 (unsigned long long)max_offset, NETMAP_BUF_SIZE(na));
2332 error = EINVAL;
2333 goto out;
2334 }
2335 if ((max_offset & mask) != max_offset) {
2336 if (netmap_verbose)
2337 nm_prerr("max offset %llu to large for %llu bits",
2338 (unsigned long long)max_offset,
2339 (unsigned long long)bits);
2340 error = EINVAL;
2341 goto out;
2342 }
2343 if (initial_offset > max_offset) {
2344 if (netmap_verbose)
2345 nm_prerr("initial offset %llu > max offset %llu",
2346 (unsigned long long)initial_offset,
2347 (unsigned long long)max_offset);
2348 error = EINVAL;
2349 goto out;
2350 }
2351
2352 /* initialize the kring and ring fields. */
2353 foreach_selected_ring(priv, t, i, kring) {
2354 struct netmap_kring *kring = NMR(na, t)[i];
2355 struct netmap_ring *ring = kring->ring;
2356 u_int j;
2357
2358 /* it the ring is already in use we check that the
2359 * new request is compatible with the existing one
2360 */
2361 if (kring->offset_mask) {
2362 if ((kring->offset_mask & mask) != mask ||
2363 kring->offset_max < max_offset) {
2364 if (netmap_verbose)
2365 nm_prinf("%s: cannot increase"
2366 "offset mask and/or max"
2367 "(current: mask=%llx,max=%llu",
2368 kring->name,
2369 (unsigned long long)kring->offset_mask,
2370 (unsigned long long)kring->offset_max);
2371 error = EBUSY;
2372 goto out;
2373 }
2374 mask = kring->offset_mask;
2375 max_offset = kring->offset_max;
2376 } else {
2377 kring->offset_mask = mask;
2378 *(uint64_t *)(uintptr_t)&ring->offset_mask = mask;
2379 kring->offset_max = max_offset;
2380 kring->offset_gap = min_gap;
2381 }
2382
2383 /* if there is an initial offset, put it into
2384 * all the slots
2385 *
2386 * Note: we cannot change the offsets if the
2387 * ring is already in use.
2388 */
2389 if (!initial_offset || kring->users > 1)
2390 continue;
2391
2392 for (j = 0; j < kring->nkr_num_slots; j++) {
2393 struct netmap_slot *slot = ring->slot + j;
2394
2395 nm_write_offset(kring, slot, initial_offset);
2396 }
2397 }
2398
2399 out:
2400 opt->nro_opt.nro_status = error;
2401 if (!error) {
2402 opt->nro_max_offset = max_offset;
2403 }
2404 return error;
2405
2406 }
2407
2408
2409 /* set the hardware buffer length in each one of the newly opened rings
2410 * (hwbuf_len field in the kring struct). The purpose it to select
2411 * the maximum supported input buffer lenght that will not cause writes
2412 * outside of the available space, even when offsets are in use.
2413 */
2414 static int
2415 netmap_compute_buf_len(struct netmap_priv_d *priv)
2416 {
2417 enum txrx t;
2418 u_int i;
2419 struct netmap_kring *kring;
2420 int error = 0;
2421 unsigned mtu = 0;
2422 struct netmap_adapter *na = priv->np_na;
2423 uint64_t target;
2424
2425 foreach_selected_ring(priv, t, i, kring) {
2426 /* rings that are already active have their hwbuf_len
2427 * already set and we cannot change it.
2428 */
2429 if (kring->users > 1)
2430 continue;
2431
2432 /* For netmap buffers which are not shared among several ring
2433 * slots (the normal case), the available space is the buf size
2434 * minus the max offset declared by the user at open time. If
2435 * the user plans to have several slots pointing to different
2436 * offsets into the same large buffer, she must also declare a
2437 * "minimum gap" between two such consecutive offsets. In this
2438 * case the user-declared 'offset_gap' is taken as the
2439 * available space and offset_max is ignored.
2440 */
2441
2442 /* start with the normal case (unshared buffers) */
2443 target = NETMAP_BUF_SIZE(kring->na) -
2444 kring->offset_max;
2445 /* if offset_gap is zero, the user does not intend to use
2446 * shared buffers. In this case the minimum gap between
2447 * two consective offsets into the same buffer can be
2448 * assumed to be equal to the buffer size. In this way
2449 * offset_gap always contains the available space ignoring
2450 * offset_max. This may be used by drivers of NICs that
2451 * are guaranteed to never write more than MTU bytes, even
2452 * if the input buffer is larger: if the MTU is less
2453 * than the target they can set hwbuf_len to offset_gap.
2454 */
2455 if (!kring->offset_gap)
2456 kring->offset_gap =
2457 NETMAP_BUF_SIZE(kring->na);
2458
2459 if (kring->offset_gap < target)
2460 target = kring->offset_gap;
2461 error = kring->nm_bufcfg(kring, target);
2462 if (error)
2463 goto out;
2464
2465 *(uint64_t *)(uintptr_t)&kring->ring->buf_align = kring->buf_align;
2466
2467 if (mtu && t == NR_RX && kring->hwbuf_len < mtu) {
2468 if (!(na->na_flags & NAF_MOREFRAG)) {
2469 nm_prerr("error: large MTU (%d) needed "
2470 "but %s does not support "
2471 "NS_MOREFRAG", mtu,
2472 na->name);
2473 error = EINVAL;
2474 goto out;
2475 } else {
2476 nm_prinf("info: netmap application on "
2477 "%s needs to support "
2478 "NS_MOREFRAG "
2479 "(MTU=%u,buf_size=%llu)",
2480 kring->name, mtu,
2481 (unsigned long long)kring->hwbuf_len);
2482 }
2483 }
2484 }
2485 out:
2486 return error;
2487 }
2488
2489 /*
2490 * possibly move the interface to netmap-mode.
2491 * If success it returns a pointer to netmap_if, otherwise NULL.
2492 * This must be called with NMG_LOCK held.
2493 *
2494 * The following na callbacks are called in the process:
2495 *
2496 * na->nm_config() [by netmap_update_config]
2497 * (get current number and size of rings)
2498 *
2499 * We have a generic one for linux (netmap_linux_config).
2500 * The bwrap has to override this, since it has to forward
2501 * the request to the wrapped adapter (netmap_bwrap_config).
2502 *
2503 *
2504 * na->nm_krings_create()
2505 * (create and init the krings array)
2506 *
2507 * One of the following:
2508 *
2509 * * netmap_hw_krings_create, (hw ports)
2510 * creates the standard layout for the krings
2511 * and adds the mbq (used for the host rings).
2512 *
2513 * * netmap_vp_krings_create (VALE ports)
2514 * add leases and scratchpads
2515 *
2516 * * netmap_pipe_krings_create (pipes)
2517 * create the krings and rings of both ends and
2518 * cross-link them
2519 *
2520 * * netmap_monitor_krings_create (monitors)
2521 * avoid allocating the mbq
2522 *
2523 * * netmap_bwrap_krings_create (bwraps)
2524 * create both the brap krings array,
2525 * the krings array of the wrapped adapter, and
2526 * (if needed) the fake array for the host adapter
2527 *
2528 * na->nm_register(, 1)
2529 * (put the adapter in netmap mode)
2530 *
2531 * This may be one of the following:
2532 *
2533 * * netmap_hw_reg (hw ports)
2534 * checks that the ifp is still there, then calls
2535 * the hardware specific callback;
2536 *
2537 * * netmap_vp_reg (VALE ports)
2538 * If the port is connected to a bridge,
2539 * set the NAF_NETMAP_ON flag under the
2540 * bridge write lock.
2541 *
2542 * * netmap_pipe_reg (pipes)
2543 * inform the other pipe end that it is no
2544 * longer responsible for the lifetime of this
2545 * pipe end
2546 *
2547 * * netmap_monitor_reg (monitors)
2548 * intercept the sync callbacks of the monitored
2549 * rings
2550 *
2551 * * netmap_bwrap_reg (bwraps)
2552 * cross-link the bwrap and hwna rings,
2553 * forward the request to the hwna, override
2554 * the hwna notify callback (to get the frames
2555 * coming from outside go through the bridge).
2556 *
2557 *
2558 */
2559 int
2560 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2561 struct nmreq_header *hdr)
2562 {
2563 struct netmap_if *nifp = NULL;
2564 int error;
2565
2566 NMG_LOCK_ASSERT();
2567 priv->np_na = na; /* store the reference */
2568 error = netmap_mem_finalize(na->nm_mem, na);
2569 if (error)
2570 goto err;
2571
2572 if (na->active_fds == 0) {
2573
2574 /* cache the allocator info in the na */
2575 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2576 if (error)
2577 goto err_drop_mem;
2578 nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2579 na->na_lut.objsize);
2580
2581 /* ring configuration may have changed, fetch from the card */
2582 netmap_update_config(na);
2583 }
2584
2585 /* compute the range of tx and rx rings to monitor */
2586 error = netmap_set_ringid(priv, hdr);
2587 if (error)
2588 goto err_put_lut;
2589
2590 if (na->active_fds == 0) {
2591 /*
2592 * If this is the first registration of the adapter,
2593 * perform sanity checks and create the in-kernel view
2594 * of the netmap rings (the netmap krings).
2595 */
2596 if (na->ifp && nm_priv_rx_enabled(priv)) {
2597 /* This netmap adapter is attached to an ifnet. */
2598 unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2599
2600 nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2601 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2602
2603 if (na->rx_buf_maxsize == 0) {
2604 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2605 error = EIO;
2606 goto err_drop_mem;
2607 }
2608
2609 error = netmap_buf_size_validate(na, mtu);
2610 if (error)
2611 goto err_drop_mem;
2612 }
2613
2614 /*
2615 * Depending on the adapter, this may also create
2616 * the netmap rings themselves
2617 */
2618 error = na->nm_krings_create(na);
2619 if (error)
2620 goto err_put_lut;
2621
2622 }
2623
2624 /* now the krings must exist and we can check whether some
2625 * previous bind has exclusive ownership on them, and set
2626 * nr_pending_mode
2627 */
2628 error = netmap_krings_get(priv);
2629 if (error)
2630 goto err_del_krings;
2631
2632 /* create all needed missing netmap rings */
2633 error = netmap_mem_rings_create(na);
2634 if (error)
2635 goto err_rel_excl;
2636
2637 /* initialize offsets if requested */
2638 error = netmap_offsets_init(priv, hdr);
2639 if (error)
2640 goto err_rel_excl;
2641
2642 /* compute and validate the buf lengths */
2643 error = netmap_compute_buf_len(priv);
2644 if (error)
2645 goto err_rel_excl;
2646
2647 /* in all cases, create a new netmap if */
2648 nifp = netmap_mem_if_new(na, priv);
2649 if (nifp == NULL) {
2650 error = ENOMEM;
2651 goto err_rel_excl;
2652 }
2653
2654 if (nm_kring_pending(priv)) {
2655 /* Some kring is switching mode, tell the adapter to
2656 * react on this. */
2657 netmap_set_all_rings(na, NM_KR_LOCKED);
2658 error = na->nm_register(na, 1);
2659 netmap_set_all_rings(na, 0);
2660 if (error)
2661 goto err_del_if;
2662 }
2663
2664 /* Commit the reference. */
2665 na->active_fds++;
2666
2667 /*
2668 * advertise that the interface is ready by setting np_nifp.
2669 * The barrier is needed because readers (poll, *SYNC and mmap)
2670 * check for priv->np_nifp != NULL without locking
2671 */
2672 mb(); /* make sure previous writes are visible to all CPUs */
2673 priv->np_nifp = nifp;
2674
2675 return 0;
2676
2677 err_del_if:
2678 netmap_mem_if_delete(na, nifp);
2679 err_rel_excl:
2680 netmap_krings_put(priv);
2681 netmap_mem_rings_delete(na);
2682 err_del_krings:
2683 if (na->active_fds == 0)
2684 na->nm_krings_delete(na);
2685 err_put_lut:
2686 if (na->active_fds == 0)
2687 memset(&na->na_lut, 0, sizeof(na->na_lut));
2688 err_drop_mem:
2689 netmap_mem_drop(na);
2690 err:
2691 priv->np_na = NULL;
2692 return error;
2693 }
2694
2695
2696 /*
2697 * update kring and ring at the end of rxsync/txsync.
2698 */
2699 static inline void
2700 nm_sync_finalize(struct netmap_kring *kring)
2701 {
2702 /*
2703 * Update ring tail to what the kernel knows
2704 * After txsync: head/rhead/hwcur might be behind cur/rcur
2705 * if no carrier.
2706 */
2707 kring->ring->tail = kring->rtail = kring->nr_hwtail;
2708
2709 nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2710 kring->name, kring->nr_hwcur, kring->nr_hwtail,
2711 kring->rhead, kring->rcur, kring->rtail);
2712 }
2713
2714 /* set ring timestamp */
2715 static inline void
2716 ring_timestamp_set(struct netmap_ring *ring)
2717 {
2718 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2719 microtime(&ring->ts);
2720 }
2721 }
2722
2723 static int nmreq_copyin(struct nmreq_header *, int);
2724 static int nmreq_copyout(struct nmreq_header *, int);
2725 static int nmreq_checkoptions(struct nmreq_header *);
2726
2727 /*
2728 * ioctl(2) support for the "netmap" device.
2729 *
2730 * Following a list of accepted commands:
2731 * - NIOCCTRL device control API
2732 * - NIOCTXSYNC sync TX rings
2733 * - NIOCRXSYNC sync RX rings
2734 * - SIOCGIFADDR just for convenience
2735 * - NIOCGINFO deprecated (legacy API)
2736 * - NIOCREGIF deprecated (legacy API)
2737 *
2738 * Return 0 on success, errno otherwise.
2739 */
2740 int
2741 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2742 struct thread *td, int nr_body_is_user)
2743 {
2744 struct mbq q; /* packets from RX hw queues to host stack */
2745 struct netmap_adapter *na = NULL;
2746 struct netmap_mem_d *nmd = NULL;
2747 struct ifnet *ifp = NULL;
2748 int error = 0;
2749 u_int i, qfirst, qlast;
2750 struct netmap_kring **krings;
2751 int sync_flags;
2752 enum txrx t;
2753
2754 switch (cmd) {
2755 case NIOCCTRL: {
2756 struct nmreq_header *hdr = (struct nmreq_header *)data;
2757
2758 if (hdr->nr_version < NETMAP_MIN_API ||
2759 hdr->nr_version > NETMAP_MAX_API) {
2760 nm_prerr("API mismatch: got %d need %d",
2761 hdr->nr_version, NETMAP_API);
2762 return EINVAL;
2763 }
2764
2765 /* Make a kernel-space copy of the user-space nr_body.
2766 * For convenience, the nr_body pointer and the pointers
2767 * in the options list will be replaced with their
2768 * kernel-space counterparts. The original pointers are
2769 * saved internally and later restored by nmreq_copyout
2770 */
2771 error = nmreq_copyin(hdr, nr_body_is_user);
2772 if (error) {
2773 return error;
2774 }
2775
2776 /* Sanitize hdr->nr_name. */
2777 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2778
2779 switch (hdr->nr_reqtype) {
2780 case NETMAP_REQ_REGISTER: {
2781 struct nmreq_register *req =
2782 (struct nmreq_register *)(uintptr_t)hdr->nr_body;
2783 struct netmap_if *nifp;
2784
2785 /* Protect access to priv from concurrent requests. */
2786 NMG_LOCK();
2787 do {
2788 struct nmreq_option *opt;
2789 u_int memflags;
2790
2791 if (priv->np_nifp != NULL) { /* thread already registered */
2792 error = EBUSY;
2793 break;
2794 }
2795
2796 #ifdef WITH_EXTMEM
2797 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM);
2798 if (opt != NULL) {
2799 struct nmreq_opt_extmem *e =
2800 (struct nmreq_opt_extmem *)opt;
2801
2802 nmd = netmap_mem_ext_create(e->nro_usrptr,
2803 &e->nro_info, &error);
2804 opt->nro_status = error;
2805 if (nmd == NULL)
2806 break;
2807 }
2808 #endif /* WITH_EXTMEM */
2809
2810 if (nmd == NULL && req->nr_mem_id) {
2811 /* find the allocator and get a reference */
2812 nmd = netmap_mem_find(req->nr_mem_id);
2813 if (nmd == NULL) {
2814 if (netmap_verbose) {
2815 nm_prerr("%s: failed to find mem_id %u",
2816 hdr->nr_name, req->nr_mem_id);
2817 }
2818 error = EINVAL;
2819 break;
2820 }
2821 }
2822 /* find the interface and a reference */
2823 error = netmap_get_na(hdr, &na, &ifp, nmd,
2824 1 /* create */); /* keep reference */
2825 if (error)
2826 break;
2827 if (NETMAP_OWNED_BY_KERN(na)) {
2828 error = EBUSY;
2829 break;
2830 }
2831
2832 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2833 nm_prerr("virt_hdr_len=%d, but application does "
2834 "not accept it", na->virt_hdr_len);
2835 error = EIO;
2836 break;
2837 }
2838
2839 error = netmap_do_regif(priv, na, hdr);
2840 if (error) { /* reg. failed, release priv and ref */
2841 break;
2842 }
2843
2844 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2845 if (opt != NULL) {
2846 struct nmreq_opt_csb *csbo =
2847 (struct nmreq_opt_csb *)opt;
2848 error = netmap_csb_validate(priv, csbo);
2849 opt->nro_status = error;
2850 if (error) {
2851 netmap_do_unregif(priv);
2852 break;
2853 }
2854 }
2855
2856 nifp = priv->np_nifp;
2857
2858 /* return the offset of the netmap_if object */
2859 req->nr_rx_rings = na->num_rx_rings;
2860 req->nr_tx_rings = na->num_tx_rings;
2861 req->nr_rx_slots = na->num_rx_desc;
2862 req->nr_tx_slots = na->num_tx_desc;
2863 req->nr_host_tx_rings = na->num_host_tx_rings;
2864 req->nr_host_rx_rings = na->num_host_rx_rings;
2865 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2866 &req->nr_mem_id);
2867 if (error) {
2868 netmap_do_unregif(priv);
2869 break;
2870 }
2871 if (memflags & NETMAP_MEM_PRIVATE) {
2872 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2873 }
2874 for_rx_tx(t) {
2875 priv->np_si[t] = nm_si_user(priv, t) ?
2876 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2877 }
2878
2879 if (req->nr_extra_bufs) {
2880 if (netmap_verbose)
2881 nm_prinf("requested %d extra buffers",
2882 req->nr_extra_bufs);
2883 req->nr_extra_bufs = netmap_extra_alloc(na,
2884 &nifp->ni_bufs_head, req->nr_extra_bufs);
2885 if (netmap_verbose)
2886 nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2887 } else {
2888 nifp->ni_bufs_head = 0;
2889 }
2890 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2891
2892 error = nmreq_checkoptions(hdr);
2893 if (error) {
2894 netmap_do_unregif(priv);
2895 break;
2896 }
2897
2898 /* store ifp reference so that priv destructor may release it */
2899 priv->np_ifp = ifp;
2900 } while (0);
2901 if (error) {
2902 netmap_unget_na(na, ifp);
2903 }
2904 /* release the reference from netmap_mem_find() or
2905 * netmap_mem_ext_create()
2906 */
2907 if (nmd)
2908 netmap_mem_put(nmd);
2909 NMG_UNLOCK();
2910 break;
2911 }
2912
2913 case NETMAP_REQ_PORT_INFO_GET: {
2914 struct nmreq_port_info_get *req =
2915 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2916 int nmd_ref = 0;
2917
2918 NMG_LOCK();
2919 do {
2920 u_int memflags;
2921
2922 if (hdr->nr_name[0] != '\0') {
2923 /* Build a nmreq_register out of the nmreq_port_info_get,
2924 * so that we can call netmap_get_na(). */
2925 struct nmreq_register regreq;
2926 bzero(®req, sizeof(regreq));
2927 regreq.nr_mode = NR_REG_ALL_NIC;
2928 regreq.nr_tx_slots = req->nr_tx_slots;
2929 regreq.nr_rx_slots = req->nr_rx_slots;
2930 regreq.nr_tx_rings = req->nr_tx_rings;
2931 regreq.nr_rx_rings = req->nr_rx_rings;
2932 regreq.nr_host_tx_rings = req->nr_host_tx_rings;
2933 regreq.nr_host_rx_rings = req->nr_host_rx_rings;
2934 regreq.nr_mem_id = req->nr_mem_id;
2935
2936 /* get a refcount */
2937 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2938 hdr->nr_body = (uintptr_t)®req;
2939 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2940 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2941 hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2942 if (error) {
2943 na = NULL;
2944 ifp = NULL;
2945 break;
2946 }
2947 nmd = na->nm_mem; /* get memory allocator */
2948 } else {
2949 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2950 if (nmd == NULL) {
2951 if (netmap_verbose)
2952 nm_prerr("%s: failed to find mem_id %u",
2953 hdr->nr_name,
2954 req->nr_mem_id ? req->nr_mem_id : 1);
2955 error = EINVAL;
2956 break;
2957 }
2958 nmd_ref = 1;
2959 }
2960
2961 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2962 &req->nr_mem_id);
2963 if (error)
2964 break;
2965 if (na == NULL) /* only memory info */
2966 break;
2967 netmap_update_config(na);
2968 req->nr_rx_rings = na->num_rx_rings;
2969 req->nr_tx_rings = na->num_tx_rings;
2970 req->nr_rx_slots = na->num_rx_desc;
2971 req->nr_tx_slots = na->num_tx_desc;
2972 req->nr_host_tx_rings = na->num_host_tx_rings;
2973 req->nr_host_rx_rings = na->num_host_rx_rings;
2974 } while (0);
2975 netmap_unget_na(na, ifp);
2976 if (nmd_ref)
2977 netmap_mem_put(nmd);
2978 NMG_UNLOCK();
2979 break;
2980 }
2981 #ifdef WITH_VALE
2982 case NETMAP_REQ_VALE_ATTACH: {
2983 error = netmap_bdg_attach(hdr, NULL /* userspace request */);
2984 break;
2985 }
2986
2987 case NETMAP_REQ_VALE_DETACH: {
2988 error = netmap_bdg_detach(hdr, NULL /* userspace request */);
2989 break;
2990 }
2991
2992 case NETMAP_REQ_PORT_HDR_SET: {
2993 struct nmreq_port_hdr *req =
2994 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2995 /* Build a nmreq_register out of the nmreq_port_hdr,
2996 * so that we can call netmap_get_bdg_na(). */
2997 struct nmreq_register regreq;
2998 bzero(®req, sizeof(regreq));
2999 regreq.nr_mode = NR_REG_ALL_NIC;
3000
3001 /* For now we only support virtio-net headers, and only for
3002 * VALE ports, but this may change in future. Valid lengths
3003 * for the virtio-net header are 0 (no header), 10 and 12. */
3004 if (req->nr_hdr_len != 0 &&
3005 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
3006 req->nr_hdr_len != 12) {
3007 if (netmap_verbose)
3008 nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
3009 error = EINVAL;
3010 break;
3011 }
3012 NMG_LOCK();
3013 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3014 hdr->nr_body = (uintptr_t)®req;
3015 error = netmap_get_vale_na(hdr, &na, NULL, 0);
3016 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
3017 hdr->nr_body = (uintptr_t)req;
3018 if (na && !error) {
3019 struct netmap_vp_adapter *vpna =
3020 (struct netmap_vp_adapter *)na;
3021 na->virt_hdr_len = req->nr_hdr_len;
3022 if (na->virt_hdr_len) {
3023 vpna->mfs = NETMAP_BUF_SIZE(na);
3024 }
3025 if (netmap_verbose)
3026 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
3027 netmap_adapter_put(na);
3028 } else if (!na) {
3029 error = ENXIO;
3030 }
3031 NMG_UNLOCK();
3032 break;
3033 }
3034
3035 case NETMAP_REQ_PORT_HDR_GET: {
3036 /* Get vnet-header length for this netmap port */
3037 struct nmreq_port_hdr *req =
3038 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
3039 /* Build a nmreq_register out of the nmreq_port_hdr,
3040 * so that we can call netmap_get_bdg_na(). */
3041 struct nmreq_register regreq;
3042 struct ifnet *ifp;
3043
3044 bzero(®req, sizeof(regreq));
3045 regreq.nr_mode = NR_REG_ALL_NIC;
3046 NMG_LOCK();
3047 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3048 hdr->nr_body = (uintptr_t)®req;
3049 error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
3050 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
3051 hdr->nr_body = (uintptr_t)req;
3052 if (na && !error) {
3053 req->nr_hdr_len = na->virt_hdr_len;
3054 }
3055 netmap_unget_na(na, ifp);
3056 NMG_UNLOCK();
3057 break;
3058 }
3059
3060 case NETMAP_REQ_VALE_LIST: {
3061 error = netmap_vale_list(hdr);
3062 break;
3063 }
3064
3065 case NETMAP_REQ_VALE_NEWIF: {
3066 error = nm_vi_create(hdr);
3067 break;
3068 }
3069
3070 case NETMAP_REQ_VALE_DELIF: {
3071 error = nm_vi_destroy(hdr->nr_name);
3072 break;
3073 }
3074 #endif /* WITH_VALE */
3075
3076 case NETMAP_REQ_VALE_POLLING_ENABLE:
3077 case NETMAP_REQ_VALE_POLLING_DISABLE: {
3078 error = nm_bdg_polling(hdr);
3079 break;
3080 }
3081 case NETMAP_REQ_POOLS_INFO_GET: {
3082 /* Get information from the memory allocator used for
3083 * hdr->nr_name. */
3084 struct nmreq_pools_info *req =
3085 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
3086 NMG_LOCK();
3087 do {
3088 /* Build a nmreq_register out of the nmreq_pools_info,
3089 * so that we can call netmap_get_na(). */
3090 struct nmreq_register regreq;
3091 bzero(®req, sizeof(regreq));
3092 regreq.nr_mem_id = req->nr_mem_id;
3093 regreq.nr_mode = NR_REG_ALL_NIC;
3094
3095 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3096 hdr->nr_body = (uintptr_t)®req;
3097 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
3098 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
3099 hdr->nr_body = (uintptr_t)req; /* reset nr_body */
3100 if (error) {
3101 na = NULL;
3102 ifp = NULL;
3103 break;
3104 }
3105 nmd = na->nm_mem; /* grab the memory allocator */
3106 if (nmd == NULL) {
3107 error = EINVAL;
3108 break;
3109 }
3110
3111 /* Finalize the memory allocator, get the pools
3112 * information and release the allocator. */
3113 error = netmap_mem_finalize(nmd, na);
3114 if (error) {
3115 break;
3116 }
3117 error = netmap_mem_pools_info_get(req, nmd);
3118 netmap_mem_drop(na);
3119 } while (0);
3120 netmap_unget_na(na, ifp);
3121 NMG_UNLOCK();
3122 break;
3123 }
3124
3125 case NETMAP_REQ_CSB_ENABLE: {
3126 struct nmreq_option *opt;
3127
3128 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
3129 if (opt == NULL) {
3130 error = EINVAL;
3131 } else {
3132 struct nmreq_opt_csb *csbo =
3133 (struct nmreq_opt_csb *)opt;
3134 NMG_LOCK();
3135 error = netmap_csb_validate(priv, csbo);
3136 NMG_UNLOCK();
3137 opt->nro_status = error;
3138 }
3139 break;
3140 }
3141
3142 case NETMAP_REQ_SYNC_KLOOP_START: {
3143 error = netmap_sync_kloop(priv, hdr);
3144 break;
3145 }
3146
3147 case NETMAP_REQ_SYNC_KLOOP_STOP: {
3148 error = netmap_sync_kloop_stop(priv);
3149 break;
3150 }
3151
3152 default: {
3153 error = EINVAL;
3154 break;
3155 }
3156 }
3157 /* Write back request body to userspace and reset the
3158 * user-space pointer. */
3159 error = nmreq_copyout(hdr, error);
3160 break;
3161 }
3162
3163 case NIOCTXSYNC:
3164 case NIOCRXSYNC: {
3165 if (unlikely(priv->np_nifp == NULL)) {
3166 error = ENXIO;
3167 break;
3168 }
3169 mb(); /* make sure following reads are not from cache */
3170
3171 if (unlikely(priv->np_csb_atok_base)) {
3172 nm_prerr("Invalid sync in CSB mode");
3173 error = EBUSY;
3174 break;
3175 }
3176
3177 na = priv->np_na; /* we have a reference */
3178
3179 mbq_init(&q);
3180 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
3181 krings = NMR(na, t);
3182 qfirst = priv->np_qfirst[t];
3183 qlast = priv->np_qlast[t];
3184 sync_flags = priv->np_sync_flags;
3185
3186 for (i = qfirst; i < qlast; i++) {
3187 struct netmap_kring *kring = krings[i];
3188 struct netmap_ring *ring = kring->ring;
3189
3190 if (unlikely(nm_kr_tryget(kring, 1, &error))) {
3191 error = (error ? EIO : 0);
3192 continue;
3193 }
3194
3195 if (cmd == NIOCTXSYNC) {
3196 if (netmap_debug & NM_DEBUG_TXSYNC)
3197 nm_prinf("pre txsync ring %d cur %d hwcur %d",
3198 i, ring->cur,
3199 kring->nr_hwcur);
3200 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3201 netmap_ring_reinit(kring);
3202 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
3203 nm_sync_finalize(kring);
3204 }
3205 if (netmap_debug & NM_DEBUG_TXSYNC)
3206 nm_prinf("post txsync ring %d cur %d hwcur %d",
3207 i, ring->cur,
3208 kring->nr_hwcur);
3209 } else {
3210 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3211 netmap_ring_reinit(kring);
3212 }
3213 if (nm_may_forward_up(kring)) {
3214 /* transparent forwarding, see netmap_poll() */
3215 netmap_grab_packets(kring, &q, netmap_fwd);
3216 }
3217 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
3218 nm_sync_finalize(kring);
3219 }
3220 ring_timestamp_set(ring);
3221 }
3222 nm_kr_put(kring);
3223 }
3224
3225 if (mbq_peek(&q)) {
3226 netmap_send_up(na->ifp, &q);
3227 }
3228
3229 break;
3230 }
3231
3232 default: {
3233 return netmap_ioctl_legacy(priv, cmd, data, td);
3234 break;
3235 }
3236 }
3237
3238 return (error);
3239 }
3240
3241 size_t
3242 nmreq_size_by_type(uint16_t nr_reqtype)
3243 {
3244 switch (nr_reqtype) {
3245 case NETMAP_REQ_REGISTER:
3246 return sizeof(struct nmreq_register);
3247 case NETMAP_REQ_PORT_INFO_GET:
3248 return sizeof(struct nmreq_port_info_get);
3249 case NETMAP_REQ_VALE_ATTACH:
3250 return sizeof(struct nmreq_vale_attach);
3251 case NETMAP_REQ_VALE_DETACH:
3252 return sizeof(struct nmreq_vale_detach);
3253 case NETMAP_REQ_VALE_LIST:
3254 return sizeof(struct nmreq_vale_list);
3255 case NETMAP_REQ_PORT_HDR_SET:
3256 case NETMAP_REQ_PORT_HDR_GET:
3257 return sizeof(struct nmreq_port_hdr);
3258 case NETMAP_REQ_VALE_NEWIF:
3259 return sizeof(struct nmreq_vale_newif);
3260 case NETMAP_REQ_VALE_DELIF:
3261 case NETMAP_REQ_SYNC_KLOOP_STOP:
3262 case NETMAP_REQ_CSB_ENABLE:
3263 return 0;
3264 case NETMAP_REQ_VALE_POLLING_ENABLE:
3265 case NETMAP_REQ_VALE_POLLING_DISABLE:
3266 return sizeof(struct nmreq_vale_polling);
3267 case NETMAP_REQ_POOLS_INFO_GET:
3268 return sizeof(struct nmreq_pools_info);
3269 case NETMAP_REQ_SYNC_KLOOP_START:
3270 return sizeof(struct nmreq_sync_kloop_start);
3271 }
3272 return 0;
3273 }
3274
3275 static size_t
3276 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
3277 {
3278 size_t rv = sizeof(struct nmreq_option);
3279 #ifdef NETMAP_REQ_OPT_DEBUG
3280 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
3281 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
3282 #endif /* NETMAP_REQ_OPT_DEBUG */
3283 switch (nro_reqtype) {
3284 #ifdef WITH_EXTMEM
3285 case NETMAP_REQ_OPT_EXTMEM:
3286 rv = sizeof(struct nmreq_opt_extmem);
3287 break;
3288 #endif /* WITH_EXTMEM */
3289 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
3290 if (nro_size >= rv)
3291 rv = nro_size;
3292 break;
3293 case NETMAP_REQ_OPT_CSB:
3294 rv = sizeof(struct nmreq_opt_csb);
3295 break;
3296 case NETMAP_REQ_OPT_SYNC_KLOOP_MODE:
3297 rv = sizeof(struct nmreq_opt_sync_kloop_mode);
3298 break;
3299 case NETMAP_REQ_OPT_OFFSETS:
3300 rv = sizeof(struct nmreq_opt_offsets);
3301 break;
3302 }
3303 /* subtract the common header */
3304 return rv - sizeof(struct nmreq_option);
3305 }
3306
3307 /*
3308 * nmreq_copyin: create an in-kernel version of the request.
3309 *
3310 * We build the following data structure:
3311 *
3312 * hdr -> +-------+ buf
3313 * | | +---------------+
3314 * +-------+ |usr body ptr |
3315 * |options|-. +---------------+
3316 * +-------+ | |usr options ptr|
3317 * |body |--------->+---------------+
3318 * +-------+ | | |
3319 * | | copy of body |
3320 * | | |
3321 * | +---------------+
3322 * | | NULL |
3323 * | +---------------+
3324 * | .---| |\
3325 * | | +---------------+ |
3326 * | .------| | |
3327 * | | | +---------------+ \ option table
3328 * | | | | ... | / indexed by option
3329 * | | | +---------------+ | type
3330 * | | | | | |
3331 * | | | +---------------+/
3332 * | | | |usr next ptr 1 |
3333 * `-|----->+---------------+
3334 * | | | copy of opt 1 |
3335 * | | | |
3336 * | | .-| nro_next |
3337 * | | | +---------------+
3338 * | | | |usr next ptr 2 |
3339 * | `-`>+---------------+
3340 * | | copy of opt 2 |
3341 * | | |
3342 * | .-| nro_next |
3343 * | | +---------------+
3344 * | | | |
3345 * ~ ~ ~ ... ~
3346 * | .-| |
3347 * `----->+---------------+
3348 * | |usr next ptr n |
3349 * `>+---------------+
3350 * | copy of opt n |
3351 * | |
3352 * | nro_next(NULL)|
3353 * +---------------+
3354 *
3355 * The options and body fields of the hdr structure are overwritten
3356 * with in-kernel valid pointers inside the buf. The original user
3357 * pointers are saved in the buf and restored on copyout.
3358 * The list of options is copied and the pointers adjusted. The
3359 * original pointers are saved before the option they belonged.
3360 *
3361 * The option table has an entry for every available option. Entries
3362 * for options that have not been passed contain NULL.
3363 *
3364 */
3365
3366 int
3367 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
3368 {
3369 size_t rqsz, optsz, bufsz;
3370 int error = 0;
3371 char *ker = NULL, *p;
3372 struct nmreq_option **next, *src, **opt_tab;
3373 uint64_t *ptrs;
3374
3375 if (hdr->nr_reserved) {
3376 if (netmap_verbose)
3377 nm_prerr("nr_reserved must be zero");
3378 return EINVAL;
3379 }
3380
3381 if (!nr_body_is_user)
3382 return 0;
3383
3384 hdr->nr_reserved = nr_body_is_user;
3385
3386 /* compute the total size of the buffer */
3387 rqsz = nmreq_size_by_type(hdr->nr_reqtype);
3388 if (rqsz > NETMAP_REQ_MAXSIZE) {
3389 error = EMSGSIZE;
3390 goto out_err;
3391 }
3392 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
3393 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3394 /* Request body expected, but not found; or
3395 * request body found but unexpected. */
3396 if (netmap_verbose)
3397 nm_prerr("nr_body expected but not found, or vice versa");
3398 error = EINVAL;
3399 goto out_err;
3400 }
3401
3402 /*
3403 * The buffer size must be large enough to store the request body,
3404 * all the possible options and the additional user pointers
3405 * (2+NETMAP_REQ_OPT_MAX). Note that the maximum size of body plus
3406 * options can not exceed NETMAP_REQ_MAXSIZE;
3407 */
3408 bufsz = (2 + NETMAP_REQ_OPT_MAX) * sizeof(void *) + NETMAP_REQ_MAXSIZE +
3409 NETMAP_REQ_OPT_MAX * sizeof(opt_tab);
3410
3411 ker = nm_os_malloc(bufsz);
3412 if (ker == NULL) {
3413 error = ENOMEM;
3414 goto out_err;
3415 }
3416 p = ker; /* write pointer into the buffer */
3417
3418 /* make a copy of the user pointers */
3419 ptrs = (uint64_t*)p;
3420 *ptrs++ = hdr->nr_body;
3421 *ptrs++ = hdr->nr_options;
3422 p = (char *)ptrs;
3423
3424 /* copy the body */
3425 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
3426 if (error)
3427 goto out_restore;
3428 /* overwrite the user pointer with the in-kernel one */
3429 hdr->nr_body = (uintptr_t)p;
3430 p += rqsz;
3431 /* start of the options table */
3432 opt_tab = (struct nmreq_option **)p;
3433 p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX;
3434
3435 /* copy the options */
3436 next = (struct nmreq_option **)&hdr->nr_options;
3437 src = *next;
3438 while (src) {
3439 struct nmreq_option *opt;
3440
3441 /* copy the option header */
3442 ptrs = (uint64_t *)p;
3443 opt = (struct nmreq_option *)(ptrs + 1);
3444 error = copyin(src, opt, sizeof(*src));
3445 if (error)
3446 goto out_restore;
3447 rqsz += sizeof(*src);
3448 /* make a copy of the user next pointer */
3449 *ptrs = opt->nro_next;
3450 /* overwrite the user pointer with the in-kernel one */
3451 *next = opt;
3452
3453 /* initialize the option as not supported.
3454 * Recognized options will update this field.
3455 */
3456 opt->nro_status = EOPNOTSUPP;
3457
3458 /* check for invalid types */
3459 if (opt->nro_reqtype < 1) {
3460 if (netmap_verbose)
3461 nm_prinf("invalid option type: %u", opt->nro_reqtype);
3462 opt->nro_status = EINVAL;
3463 error = EINVAL;
3464 goto next;
3465 }
3466
3467 if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) {
3468 /* opt->nro_status is already EOPNOTSUPP */
3469 error = EOPNOTSUPP;
3470 goto next;
3471 }
3472
3473 /* if the type is valid, index the option in the table
3474 * unless it is a duplicate.
3475 */
3476 if (opt_tab[opt->nro_reqtype] != NULL) {
3477 if (netmap_verbose)
3478 nm_prinf("duplicate option: %u", opt->nro_reqtype);
3479 opt->nro_status = EINVAL;
3480 opt_tab[opt->nro_reqtype]->nro_status = EINVAL;
3481 error = EINVAL;
3482 goto next;
3483 }
3484 opt_tab[opt->nro_reqtype] = opt;
3485
3486 p = (char *)(opt + 1);
3487
3488 /* copy the option body */
3489 optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3490 opt->nro_size);
3491 /* check optsz and nro_size to avoid for possible integer overflows of rqsz */
3492 if ((optsz > NETMAP_REQ_MAXSIZE) || (opt->nro_size > NETMAP_REQ_MAXSIZE)
3493 || (rqsz + optsz > NETMAP_REQ_MAXSIZE)
3494 || (optsz > 0 && rqsz + optsz <= rqsz)) {
3495 error = EMSGSIZE;
3496 goto out_restore;
3497 }
3498 rqsz += optsz;
3499 if (optsz) {
3500 /* the option body follows the option header */
3501 error = copyin(src + 1, p, optsz);
3502 if (error)
3503 goto out_restore;
3504 p += optsz;
3505 }
3506
3507 next:
3508 /* move to next option */
3509 next = (struct nmreq_option **)&opt->nro_next;
3510 src = *next;
3511 }
3512 if (error)
3513 nmreq_copyout(hdr, error);
3514 return error;
3515
3516 out_restore:
3517 ptrs = (uint64_t *)ker;
3518 hdr->nr_body = *ptrs++;
3519 hdr->nr_options = *ptrs++;
3520 hdr->nr_reserved = 0;
3521 nm_os_free(ker);
3522 out_err:
3523 return error;
3524 }
3525
3526 static int
3527 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3528 {
3529 struct nmreq_option *src, *dst;
3530 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3531 uint64_t *ptrs;
3532 size_t bodysz;
3533 int error;
3534
3535 if (!hdr->nr_reserved)
3536 return rerror;
3537
3538 /* restore the user pointers in the header */
3539 ptrs = (uint64_t *)ker - 2;
3540 bufstart = ptrs;
3541 hdr->nr_body = *ptrs++;
3542 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3543 hdr->nr_options = *ptrs;
3544
3545 if (!rerror) {
3546 /* copy the body */
3547 bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3548 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3549 if (error) {
3550 rerror = error;
3551 goto out;
3552 }
3553 }
3554
3555 /* copy the options */
3556 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3557 while (src) {
3558 size_t optsz;
3559 uint64_t next;
3560
3561 /* restore the user pointer */
3562 next = src->nro_next;
3563 ptrs = (uint64_t *)src - 1;
3564 src->nro_next = *ptrs;
3565
3566 /* always copy the option header */
3567 error = copyout(src, dst, sizeof(*src));
3568 if (error) {
3569 rerror = error;
3570 goto out;
3571 }
3572
3573 /* copy the option body only if there was no error */
3574 if (!rerror && !src->nro_status) {
3575 optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3576 src->nro_size);
3577 if (optsz) {
3578 error = copyout(src + 1, dst + 1, optsz);
3579 if (error) {
3580 rerror = error;
3581 goto out;
3582 }
3583 }
3584 }
3585 src = (struct nmreq_option *)(uintptr_t)next;
3586 dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3587 }
3588
3589
3590 out:
3591 hdr->nr_reserved = 0;
3592 nm_os_free(bufstart);
3593 return rerror;
3594 }
3595
3596 struct nmreq_option *
3597 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype)
3598 {
3599 struct nmreq_option **opt_tab;
3600
3601 if (!hdr->nr_options)
3602 return NULL;
3603
3604 opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) -
3605 (NETMAP_REQ_OPT_MAX + 1);
3606 return opt_tab[reqtype];
3607 }
3608
3609 static int
3610 nmreq_checkoptions(struct nmreq_header *hdr)
3611 {
3612 struct nmreq_option *opt;
3613 /* return error if there is still any option
3614 * marked as not supported
3615 */
3616
3617 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3618 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3619 if (opt->nro_status == EOPNOTSUPP)
3620 return EOPNOTSUPP;
3621
3622 return 0;
3623 }
3624
3625 /*
3626 * select(2) and poll(2) handlers for the "netmap" device.
3627 *
3628 * Can be called for one or more queues.
3629 * Return true the event mask corresponding to ready events.
3630 * If there are no ready events (and 'sr' is not NULL), do a
3631 * selrecord on either individual selinfo or on the global one.
3632 * Device-dependent parts (locking and sync of tx/rx rings)
3633 * are done through callbacks.
3634 *
3635 * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3636 * The first one is remapped to pwait as selrecord() uses the name as an
3637 * hidden argument.
3638 */
3639 int
3640 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3641 {
3642 struct netmap_adapter *na;
3643 struct netmap_kring *kring;
3644 struct netmap_ring *ring;
3645 u_int i, want[NR_TXRX], revents = 0;
3646 NM_SELINFO_T *si[NR_TXRX];
3647 #define want_tx want[NR_TX]
3648 #define want_rx want[NR_RX]
3649 struct mbq q; /* packets from RX hw queues to host stack */
3650
3651 /*
3652 * In order to avoid nested locks, we need to "double check"
3653 * txsync and rxsync if we decide to do a selrecord().
3654 * retry_tx (and retry_rx, later) prevent looping forever.
3655 */
3656 int retry_tx = 1, retry_rx = 1;
3657
3658 /* Transparent mode: send_down is 1 if we have found some
3659 * packets to forward (host RX ring --> NIC) during the rx
3660 * scan and we have not sent them down to the NIC yet.
3661 * Transparent mode requires to bind all rings to a single
3662 * file descriptor.
3663 */
3664 int send_down = 0;
3665 int sync_flags = priv->np_sync_flags;
3666
3667 mbq_init(&q);
3668
3669 if (unlikely(priv->np_nifp == NULL)) {
3670 return POLLERR;
3671 }
3672 mb(); /* make sure following reads are not from cache */
3673
3674 na = priv->np_na;
3675
3676 if (unlikely(!nm_netmap_on(na)))
3677 return POLLERR;
3678
3679 if (unlikely(priv->np_csb_atok_base)) {
3680 nm_prerr("Invalid poll in CSB mode");
3681 return POLLERR;
3682 }
3683
3684 if (netmap_debug & NM_DEBUG_ON)
3685 nm_prinf("device %s events 0x%x", na->name, events);
3686 want_tx = events & (POLLOUT | POLLWRNORM);
3687 want_rx = events & (POLLIN | POLLRDNORM);
3688
3689 /*
3690 * If the card has more than one queue AND the file descriptor is
3691 * bound to all of them, we sleep on the "global" selinfo, otherwise
3692 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3693 * per file descriptor).
3694 * The interrupt routine in the driver wake one or the other
3695 * (or both) depending on which clients are active.
3696 *
3697 * rxsync() is only called if we run out of buffers on a POLLIN.
3698 * txsync() is called if we run out of buffers on POLLOUT, or
3699 * there are pending packets to send. The latter can be disabled
3700 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3701 */
3702 si[NR_RX] = priv->np_si[NR_RX];
3703 si[NR_TX] = priv->np_si[NR_TX];
3704
3705 #ifdef __FreeBSD__
3706 /*
3707 * We start with a lock free round which is cheap if we have
3708 * slots available. If this fails, then lock and call the sync
3709 * routines. We can't do this on Linux, as the contract says
3710 * that we must call nm_os_selrecord() unconditionally.
3711 */
3712 if (want_tx) {
3713 const enum txrx t = NR_TX;
3714 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3715 kring = NMR(na, t)[i];
3716 if (kring->ring->cur != kring->ring->tail) {
3717 /* Some unseen TX space is available, so what
3718 * we don't need to run txsync. */
3719 revents |= want[t];
3720 want[t] = 0;
3721 break;
3722 }
3723 }
3724 }
3725 if (want_rx) {
3726 const enum txrx t = NR_RX;
3727 int rxsync_needed = 0;
3728
3729 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3730 kring = NMR(na, t)[i];
3731 if (kring->ring->cur == kring->ring->tail
3732 || kring->rhead != kring->ring->head) {
3733 /* There are no unseen packets on this ring,
3734 * or there are some buffers to be returned
3735 * to the netmap port. We therefore go ahead
3736 * and run rxsync. */
3737 rxsync_needed = 1;
3738 break;
3739 }
3740 }
3741 if (!rxsync_needed) {
3742 revents |= want_rx;
3743 want_rx = 0;
3744 }
3745 }
3746 #endif
3747
3748 #ifdef linux
3749 /* The selrecord must be unconditional on linux. */
3750 nm_os_selrecord(sr, si[NR_RX]);
3751 nm_os_selrecord(sr, si[NR_TX]);
3752 #endif /* linux */
3753
3754 /*
3755 * If we want to push packets out (priv->np_txpoll) or
3756 * want_tx is still set, we must issue txsync calls
3757 * (on all rings, to avoid that the tx rings stall).
3758 * Fortunately, normal tx mode has np_txpoll set.
3759 */
3760 if (priv->np_txpoll || want_tx) {
3761 /*
3762 * The first round checks if anyone is ready, if not
3763 * do a selrecord and another round to handle races.
3764 * want_tx goes to 0 if any space is found, and is
3765 * used to skip rings with no pending transmissions.
3766 */
3767 flush_tx:
3768 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3769 int found = 0;
3770
3771 kring = na->tx_rings[i];
3772 ring = kring->ring;
3773
3774 /*
3775 * Don't try to txsync this TX ring if we already found some
3776 * space in some of the TX rings (want_tx == 0) and there are no
3777 * TX slots in this ring that need to be flushed to the NIC
3778 * (head == hwcur).
3779 */
3780 if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3781 continue;
3782
3783 if (nm_kr_tryget(kring, 1, &revents))
3784 continue;
3785
3786 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3787 netmap_ring_reinit(kring);
3788 revents |= POLLERR;
3789 } else {
3790 if (kring->nm_sync(kring, sync_flags))
3791 revents |= POLLERR;
3792 else
3793 nm_sync_finalize(kring);
3794 }
3795
3796 /*
3797 * If we found new slots, notify potential
3798 * listeners on the same ring.
3799 * Since we just did a txsync, look at the copies
3800 * of cur,tail in the kring.
3801 */
3802 found = kring->rcur != kring->rtail;
3803 nm_kr_put(kring);
3804 if (found) { /* notify other listeners */
3805 revents |= want_tx;
3806 want_tx = 0;
3807 #ifndef linux
3808 kring->nm_notify(kring, 0);
3809 #endif /* linux */
3810 }
3811 }
3812 /* if there were any packet to forward we must have handled them by now */
3813 send_down = 0;
3814 if (want_tx && retry_tx && sr) {
3815 #ifndef linux
3816 nm_os_selrecord(sr, si[NR_TX]);
3817 #endif /* !linux */
3818 retry_tx = 0;
3819 goto flush_tx;
3820 }
3821 }
3822
3823 /*
3824 * If want_rx is still set scan receive rings.
3825 * Do it on all rings because otherwise we starve.
3826 */
3827 if (want_rx) {
3828 /* two rounds here for race avoidance */
3829 do_retry_rx:
3830 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3831 int found = 0;
3832
3833 kring = na->rx_rings[i];
3834 ring = kring->ring;
3835
3836 if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3837 continue;
3838
3839 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3840 netmap_ring_reinit(kring);
3841 revents |= POLLERR;
3842 }
3843 /* now we can use kring->rcur, rtail */
3844
3845 /*
3846 * transparent mode support: collect packets from
3847 * hw rxring(s) that have been released by the user
3848 */
3849 if (nm_may_forward_up(kring)) {
3850 netmap_grab_packets(kring, &q, netmap_fwd);
3851 }
3852
3853 /* Clear the NR_FORWARD flag anyway, it may be set by
3854 * the nm_sync() below only on for the host RX ring (see
3855 * netmap_rxsync_from_host()). */
3856 kring->nr_kflags &= ~NR_FORWARD;
3857 if (kring->nm_sync(kring, sync_flags))
3858 revents |= POLLERR;
3859 else
3860 nm_sync_finalize(kring);
3861 send_down |= (kring->nr_kflags & NR_FORWARD);
3862 ring_timestamp_set(ring);
3863 found = kring->rcur != kring->rtail;
3864 nm_kr_put(kring);
3865 if (found) {
3866 revents |= want_rx;
3867 retry_rx = 0;
3868 #ifndef linux
3869 kring->nm_notify(kring, 0);
3870 #endif /* linux */
3871 }
3872 }
3873
3874 #ifndef linux
3875 if (retry_rx && sr) {
3876 nm_os_selrecord(sr, si[NR_RX]);
3877 }
3878 #endif /* !linux */
3879 if (send_down || retry_rx) {
3880 retry_rx = 0;
3881 if (send_down)
3882 goto flush_tx; /* and retry_rx */
3883 else
3884 goto do_retry_rx;
3885 }
3886 }
3887
3888 /*
3889 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3890 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3891 * to the host stack.
3892 */
3893
3894 if (mbq_peek(&q)) {
3895 netmap_send_up(na->ifp, &q);
3896 }
3897
3898 return (revents);
3899 #undef want_tx
3900 #undef want_rx
3901 }
3902
3903 int
3904 nma_intr_enable(struct netmap_adapter *na, int onoff)
3905 {
3906 bool changed = false;
3907 enum txrx t;
3908 int i;
3909
3910 for_rx_tx(t) {
3911 for (i = 0; i < nma_get_nrings(na, t); i++) {
3912 struct netmap_kring *kring = NMR(na, t)[i];
3913 int on = !(kring->nr_kflags & NKR_NOINTR);
3914
3915 if (!!onoff != !!on) {
3916 changed = true;
3917 }
3918 if (onoff) {
3919 kring->nr_kflags &= ~NKR_NOINTR;
3920 } else {
3921 kring->nr_kflags |= NKR_NOINTR;
3922 }
3923 }
3924 }
3925
3926 if (!changed) {
3927 return 0; /* nothing to do */
3928 }
3929
3930 if (!na->nm_intr) {
3931 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3932 na->name);
3933 return -1;
3934 }
3935
3936 na->nm_intr(na, onoff);
3937
3938 return 0;
3939 }
3940
3941
3942 /*-------------------- driver support routines -------------------*/
3943
3944 /* default notify callback */
3945 static int
3946 netmap_notify(struct netmap_kring *kring, int flags)
3947 {
3948 struct netmap_adapter *na = kring->notify_na;
3949 enum txrx t = kring->tx;
3950
3951 nm_os_selwakeup(&kring->si);
3952 /* optimization: avoid a wake up on the global
3953 * queue if nobody has registered for more
3954 * than one ring
3955 */
3956 if (na->si_users[t] > 0)
3957 nm_os_selwakeup(&na->si[t]);
3958
3959 return NM_IRQ_COMPLETED;
3960 }
3961
3962 /* called by all routines that create netmap_adapters.
3963 * provide some defaults and get a reference to the
3964 * memory allocator
3965 */
3966 int
3967 netmap_attach_common(struct netmap_adapter *na)
3968 {
3969 if (!na->rx_buf_maxsize) {
3970 /* Set a conservative default (larger is safer). */
3971 na->rx_buf_maxsize = PAGE_SIZE;
3972 }
3973
3974 #ifdef __FreeBSD__
3975 if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3976 na->if_input = na->ifp->if_input; /* for netmap_send_up */
3977 }
3978 na->pdev = na; /* make sure netmap_mem_map() is called */
3979 #endif /* __FreeBSD__ */
3980 if (na->na_flags & NAF_HOST_RINGS) {
3981 if (na->num_host_rx_rings == 0)
3982 na->num_host_rx_rings = 1;
3983 if (na->num_host_tx_rings == 0)
3984 na->num_host_tx_rings = 1;
3985 }
3986 if (na->nm_krings_create == NULL) {
3987 /* we assume that we have been called by a driver,
3988 * since other port types all provide their own
3989 * nm_krings_create
3990 */
3991 na->nm_krings_create = netmap_hw_krings_create;
3992 na->nm_krings_delete = netmap_hw_krings_delete;
3993 }
3994 if (na->nm_notify == NULL)
3995 na->nm_notify = netmap_notify;
3996 na->active_fds = 0;
3997
3998 if (na->nm_mem == NULL) {
3999 /* use iommu or global allocator */
4000 na->nm_mem = netmap_mem_get_iommu(na);
4001 }
4002 if (na->nm_bdg_attach == NULL)
4003 /* no special nm_bdg_attach callback. On VALE
4004 * attach, we need to interpose a bwrap
4005 */
4006 na->nm_bdg_attach = netmap_default_bdg_attach;
4007
4008 return 0;
4009 }
4010
4011 /* Wrapper for the register callback provided netmap-enabled
4012 * hardware drivers.
4013 * nm_iszombie(na) means that the driver module has been
4014 * unloaded, so we cannot call into it.
4015 * nm_os_ifnet_lock() must guarantee mutual exclusion with
4016 * module unloading.
4017 */
4018 static int
4019 netmap_hw_reg(struct netmap_adapter *na, int onoff)
4020 {
4021 struct netmap_hw_adapter *hwna =
4022 (struct netmap_hw_adapter*)na;
4023 int error = 0;
4024
4025 nm_os_ifnet_lock();
4026
4027 if (nm_iszombie(na)) {
4028 if (onoff) {
4029 error = ENXIO;
4030 } else if (na != NULL) {
4031 na->na_flags &= ~NAF_NETMAP_ON;
4032 }
4033 goto out;
4034 }
4035
4036 error = hwna->nm_hw_register(na, onoff);
4037
4038 out:
4039 nm_os_ifnet_unlock();
4040
4041 return error;
4042 }
4043
4044 static void
4045 netmap_hw_dtor(struct netmap_adapter *na)
4046 {
4047 if (na->ifp == NULL)
4048 return;
4049
4050 NM_DETACH_NA(na->ifp);
4051 }
4052
4053
4054 /*
4055 * Allocate a netmap_adapter object, and initialize it from the
4056 * 'arg' passed by the driver on attach.
4057 * We allocate a block of memory of 'size' bytes, which has room
4058 * for struct netmap_adapter plus additional room private to
4059 * the caller.
4060 * Return 0 on success, ENOMEM otherwise.
4061 */
4062 int
4063 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
4064 {
4065 struct netmap_hw_adapter *hwna = NULL;
4066 struct ifnet *ifp = NULL;
4067
4068 if (size < sizeof(struct netmap_hw_adapter)) {
4069 if (netmap_debug & NM_DEBUG_ON)
4070 nm_prerr("Invalid netmap adapter size %d", (int)size);
4071 return EINVAL;
4072 }
4073
4074 if (arg == NULL || arg->ifp == NULL) {
4075 if (netmap_debug & NM_DEBUG_ON)
4076 nm_prerr("either arg or arg->ifp is NULL");
4077 return EINVAL;
4078 }
4079
4080 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
4081 if (netmap_debug & NM_DEBUG_ON)
4082 nm_prerr("%s: invalid rings tx %d rx %d",
4083 arg->name, arg->num_tx_rings, arg->num_rx_rings);
4084 return EINVAL;
4085 }
4086
4087 ifp = arg->ifp;
4088 if (NM_NA_CLASH(ifp)) {
4089 /* If NA(ifp) is not null but there is no valid netmap
4090 * adapter it means that someone else is using the same
4091 * pointer (e.g. ax25_ptr on linux). This happens for
4092 * instance when also PF_RING is in use. */
4093 nm_prerr("Error: netmap adapter hook is busy");
4094 return EBUSY;
4095 }
4096
4097 hwna = nm_os_malloc(size);
4098 if (hwna == NULL)
4099 goto fail;
4100 hwna->up = *arg;
4101 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
4102 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
4103 if (override_reg) {
4104 hwna->nm_hw_register = hwna->up.nm_register;
4105 hwna->up.nm_register = netmap_hw_reg;
4106 }
4107 if (netmap_attach_common(&hwna->up)) {
4108 nm_os_free(hwna);
4109 goto fail;
4110 }
4111 netmap_adapter_get(&hwna->up);
4112
4113 NM_ATTACH_NA(ifp, &hwna->up);
4114
4115 nm_os_onattach(ifp);
4116
4117 if (arg->nm_dtor == NULL) {
4118 hwna->up.nm_dtor = netmap_hw_dtor;
4119 }
4120
4121 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
4122 hwna->up.num_tx_rings, hwna->up.num_tx_desc,
4123 hwna->up.num_rx_rings, hwna->up.num_rx_desc);
4124 return 0;
4125
4126 fail:
4127 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
4128 return (hwna ? EINVAL : ENOMEM);
4129 }
4130
4131
4132 int
4133 netmap_attach(struct netmap_adapter *arg)
4134 {
4135 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
4136 1 /* override nm_reg */);
4137 }
4138
4139
4140 void
4141 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
4142 {
4143 if (!na) {
4144 return;
4145 }
4146
4147 refcount_acquire(&na->na_refcount);
4148 }
4149
4150
4151 /* returns 1 iff the netmap_adapter is destroyed */
4152 int
4153 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
4154 {
4155 if (!na)
4156 return 1;
4157
4158 if (!refcount_release(&na->na_refcount))
4159 return 0;
4160
4161 if (na->nm_dtor)
4162 na->nm_dtor(na);
4163
4164 if (na->tx_rings) { /* XXX should not happen */
4165 if (netmap_debug & NM_DEBUG_ON)
4166 nm_prerr("freeing leftover tx_rings");
4167 na->nm_krings_delete(na);
4168 }
4169 netmap_pipe_dealloc(na);
4170 if (na->nm_mem)
4171 netmap_mem_put(na->nm_mem);
4172 bzero(na, sizeof(*na));
4173 nm_os_free(na);
4174
4175 return 1;
4176 }
4177
4178 /* nm_krings_create callback for all hardware native adapters */
4179 int
4180 netmap_hw_krings_create(struct netmap_adapter *na)
4181 {
4182 int ret = netmap_krings_create(na, 0);
4183 if (ret == 0) {
4184 /* initialize the mbq for the sw rx ring */
4185 u_int lim = netmap_real_rings(na, NR_RX), i;
4186 for (i = na->num_rx_rings; i < lim; i++) {
4187 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
4188 }
4189 nm_prdis("initialized sw rx queue %d", na->num_rx_rings);
4190 }
4191 return ret;
4192 }
4193
4194
4195
4196 /*
4197 * Called on module unload by the netmap-enabled drivers
4198 */
4199 void
4200 netmap_detach(struct ifnet *ifp)
4201 {
4202 struct netmap_adapter *na;
4203
4204 NMG_LOCK();
4205
4206 if (!NM_NA_VALID(ifp)) {
4207 NMG_UNLOCK();
4208 return;
4209 }
4210
4211 na = NA(ifp);
4212 netmap_set_all_rings(na, NM_KR_LOCKED);
4213 /*
4214 * if the netmap adapter is not native, somebody
4215 * changed it, so we can not release it here.
4216 * The NAF_ZOMBIE flag will notify the new owner that
4217 * the driver is gone.
4218 */
4219 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
4220 na->na_flags |= NAF_ZOMBIE;
4221 }
4222 /* give active users a chance to notice that NAF_ZOMBIE has been
4223 * turned on, so that they can stop and return an error to userspace.
4224 * Note that this becomes a NOP if there are no active users and,
4225 * therefore, the put() above has deleted the na, since now NA(ifp) is
4226 * NULL.
4227 */
4228 netmap_enable_all_rings(ifp);
4229 NMG_UNLOCK();
4230 }
4231
4232
4233 /*
4234 * Intercept packets from the network stack and pass them
4235 * to netmap as incoming packets on the 'software' ring.
4236 *
4237 * We only store packets in a bounded mbq and then copy them
4238 * in the relevant rxsync routine.
4239 *
4240 * We rely on the OS to make sure that the ifp and na do not go
4241 * away (typically the caller checks for IFF_DRV_RUNNING or the like).
4242 * In nm_register() or whenever there is a reinitialization,
4243 * we make sure to make the mode change visible here.
4244 */
4245 int
4246 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
4247 {
4248 struct netmap_adapter *na = NA(ifp);
4249 struct netmap_kring *kring, *tx_kring;
4250 u_int len = MBUF_LEN(m);
4251 u_int error = ENOBUFS;
4252 unsigned int txr;
4253 struct mbq *q;
4254 int busy;
4255 u_int i;
4256
4257 i = MBUF_TXQ(m);
4258 if (i >= na->num_host_rx_rings) {
4259 i = i % na->num_host_rx_rings;
4260 }
4261 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
4262
4263 // XXX [Linux] we do not need this lock
4264 // if we follow the down/configure/up protocol -gl
4265 // mtx_lock(&na->core_lock);
4266
4267 if (!nm_netmap_on(na)) {
4268 nm_prerr("%s not in netmap mode anymore", na->name);
4269 error = ENXIO;
4270 goto done;
4271 }
4272
4273 txr = MBUF_TXQ(m);
4274 if (txr >= na->num_tx_rings) {
4275 txr %= na->num_tx_rings;
4276 }
4277 tx_kring = NMR(na, NR_TX)[txr];
4278
4279 if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
4280 return MBUF_TRANSMIT(na, ifp, m);
4281 }
4282
4283 q = &kring->rx_queue;
4284
4285 // XXX reconsider long packets if we handle fragments
4286 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
4287 nm_prerr("%s from_host, drop packet size %d > %d", na->name,
4288 len, NETMAP_BUF_SIZE(na));
4289 goto done;
4290 }
4291
4292 if (!netmap_generic_hwcsum) {
4293 if (nm_os_mbuf_has_csum_offld(m)) {
4294 nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name);
4295 goto done;
4296 }
4297 }
4298
4299 if (nm_os_mbuf_has_seg_offld(m)) {
4300 nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name);
4301 goto done;
4302 }
4303
4304 #ifdef __FreeBSD__
4305 ETHER_BPF_MTAP(ifp, m);
4306 #endif /* __FreeBSD__ */
4307
4308 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
4309 * and maybe other instances of netmap_transmit (the latter
4310 * not possible on Linux).
4311 * We enqueue the mbuf only if we are sure there is going to be
4312 * enough room in the host RX ring, otherwise we drop it.
4313 */
4314 mbq_lock(q);
4315
4316 busy = kring->nr_hwtail - kring->nr_hwcur;
4317 if (busy < 0)
4318 busy += kring->nkr_num_slots;
4319 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
4320 nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
4321 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
4322 } else {
4323 mbq_enqueue(q, m);
4324 nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q));
4325 /* notify outside the lock */
4326 m = NULL;
4327 error = 0;
4328 }
4329 mbq_unlock(q);
4330
4331 done:
4332 if (m) {
4333 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4334 m_freem(m);
4335 }
4336 /* unconditionally wake up listeners */
4337 kring->nm_notify(kring, 0);
4338 /* this is normally netmap_notify(), but for nics
4339 * connected to a bridge it is netmap_bwrap_intr_notify(),
4340 * that possibly forwards the frames through the switch
4341 */
4342
4343 return (error);
4344 }
4345
4346
4347 /*
4348 * Reset function to be called by the driver routines when reinitializing
4349 * a hardware ring. The driver is in charge of locking to protect the kring
4350 * while this operation is being performed. This is normally achieved by
4351 * calling netmap_disable_all_rings() before triggering a reset.
4352 * If the kring is not in netmap mode, return NULL to inform the caller
4353 * that this is the case.
4354 * If the kring is in netmap mode, set hwofs so that the netmap indices
4355 * seen by userspace (head/cut/tail) do not change, although the internal
4356 * NIC indices have been reset to 0.
4357 * In any case, adjust kring->nr_mode.
4358 */
4359 struct netmap_slot *
4360 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
4361 u_int new_cur)
4362 {
4363 struct netmap_kring *kring;
4364 u_int new_hwtail, new_hwofs;
4365
4366 if (!nm_native_on(na)) {
4367 nm_prdis("interface not in native netmap mode");
4368 return NULL; /* nothing to reinitialize */
4369 }
4370
4371 if (tx == NR_TX) {
4372 if (n >= na->num_tx_rings)
4373 return NULL;
4374 kring = na->tx_rings[n];
4375 /*
4376 * Set hwofs to rhead, so that slots[rhead] is mapped to
4377 * the NIC internal slot 0, and thus the netmap buffer
4378 * at rhead is the next to be transmitted. Transmissions
4379 * that were pending before the reset are considered as
4380 * sent, so that we can have hwcur = rhead. All the slots
4381 * are now owned by the user, so we can also reinit hwtail.
4382 */
4383 new_hwofs = kring->rhead;
4384 new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1);
4385 } else {
4386 if (n >= na->num_rx_rings)
4387 return NULL;
4388 kring = na->rx_rings[n];
4389 /*
4390 * Set hwofs to hwtail, so that slots[hwtail] is mapped to
4391 * the NIC internal slot 0, and thus the netmap buffer
4392 * at hwtail is the next to be given to the NIC.
4393 * Unread slots (the ones in [rhead,hwtail[) are owned by
4394 * the user, and thus the caller cannot give them
4395 * to the NIC right now.
4396 */
4397 new_hwofs = kring->nr_hwtail;
4398 new_hwtail = kring->nr_hwtail;
4399 }
4400 if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4401 kring->nr_mode = NKR_NETMAP_OFF;
4402 return NULL;
4403 }
4404 if (netmap_verbose) {
4405 nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name,
4406 kring->nr_hwcur, kring->rhead,
4407 kring->nr_hwtail, new_hwtail,
4408 kring->nkr_hwofs, new_hwofs);
4409 }
4410 kring->nr_hwcur = kring->rhead;
4411 kring->nr_hwtail = new_hwtail;
4412 kring->nkr_hwofs = new_hwofs;
4413
4414 /*
4415 * Wakeup on the individual and global selwait
4416 * We do the wakeup here, but the ring is not yet reconfigured.
4417 * However, we are under lock so there are no races.
4418 */
4419 kring->nr_mode = NKR_NETMAP_ON;
4420 kring->nm_notify(kring, 0);
4421 return kring->ring->slot;
4422 }
4423
4424
4425 /*
4426 * Dispatch rx/tx interrupts to the netmap rings.
4427 *
4428 * "work_done" is non-null on the RX path, NULL for the TX path.
4429 * We rely on the OS to make sure that there is only one active
4430 * instance per queue, and that there is appropriate locking.
4431 *
4432 * The 'notify' routine depends on what the ring is attached to.
4433 * - for a netmap file descriptor, do a selwakeup on the individual
4434 * waitqueue, plus one on the global one if needed
4435 * (see netmap_notify)
4436 * - for a nic connected to a switch, call the proper forwarding routine
4437 * (see netmap_bwrap_intr_notify)
4438 */
4439 int
4440 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4441 {
4442 struct netmap_kring *kring;
4443 enum txrx t = (work_done ? NR_RX : NR_TX);
4444
4445 q &= NETMAP_RING_MASK;
4446
4447 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4448 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4449 }
4450
4451 if (q >= nma_get_nrings(na, t))
4452 return NM_IRQ_PASS; // not a physical queue
4453
4454 kring = NMR(na, t)[q];
4455
4456 if (kring->nr_mode == NKR_NETMAP_OFF) {
4457 return NM_IRQ_PASS;
4458 }
4459
4460 if (t == NR_RX) {
4461 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ?
4462 *work_done = 1; /* do not fire napi again */
4463 }
4464
4465 return kring->nm_notify(kring, 0);
4466 }
4467
4468
4469 /*
4470 * Default functions to handle rx/tx interrupts from a physical device.
4471 * "work_done" is non-null on the RX path, NULL for the TX path.
4472 *
4473 * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4474 * so that the caller proceeds with regular processing.
4475 * Otherwise call netmap_common_irq().
4476 *
4477 * If the card is connected to a netmap file descriptor,
4478 * do a selwakeup on the individual queue, plus one on the global one
4479 * if needed (multiqueue card _and_ there are multiqueue listeners),
4480 * and return NR_IRQ_COMPLETED.
4481 *
4482 * Finally, if called on rx from an interface connected to a switch,
4483 * calls the proper forwarding routine.
4484 */
4485 int
4486 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
4487 {
4488 struct netmap_adapter *na = NA(ifp);
4489
4490 /*
4491 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4492 * we still use the regular driver even though the previous
4493 * check fails. It is unclear whether we should use
4494 * nm_native_on() here.
4495 */
4496 if (!nm_netmap_on(na))
4497 return NM_IRQ_PASS;
4498
4499 if (na->na_flags & NAF_SKIP_INTR) {
4500 nm_prdis("use regular interrupt");
4501 return NM_IRQ_PASS;
4502 }
4503
4504 return netmap_common_irq(na, q, work_done);
4505 }
4506
4507 /* set/clear native flags and if_transmit/netdev_ops */
4508 void
4509 nm_set_native_flags(struct netmap_adapter *na)
4510 {
4511 struct ifnet *ifp = na->ifp;
4512
4513 /* We do the setup for intercepting packets only if we are the
4514 * first user of this adapter. */
4515 if (na->active_fds > 0) {
4516 return;
4517 }
4518
4519 na->na_flags |= NAF_NETMAP_ON;
4520 nm_os_onenter(ifp);
4521 netmap_update_hostrings_mode(na);
4522 }
4523
4524 void
4525 nm_clear_native_flags(struct netmap_adapter *na)
4526 {
4527 struct ifnet *ifp = na->ifp;
4528
4529 /* We undo the setup for intercepting packets only if we are the
4530 * last user of this adapter. */
4531 if (na->active_fds > 0) {
4532 return;
4533 }
4534
4535 netmap_update_hostrings_mode(na);
4536 nm_os_onexit(ifp);
4537
4538 na->na_flags &= ~NAF_NETMAP_ON;
4539 }
4540
4541 void
4542 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff)
4543 {
4544 enum txrx t;
4545
4546 for_rx_tx(t) {
4547 int i;
4548
4549 for (i = 0; i < netmap_real_rings(na, t); i++) {
4550 struct netmap_kring *kring = NMR(na, t)[i];
4551
4552 if (onoff && nm_kring_pending_on(kring))
4553 kring->nr_mode = NKR_NETMAP_ON;
4554 else if (!onoff && nm_kring_pending_off(kring))
4555 kring->nr_mode = NKR_NETMAP_OFF;
4556 }
4557 }
4558 }
4559
4560 /*
4561 * Module loader and unloader
4562 *
4563 * netmap_init() creates the /dev/netmap device and initializes
4564 * all global variables. Returns 0 on success, errno on failure
4565 * (but there is no chance)
4566 *
4567 * netmap_fini() destroys everything.
4568 */
4569
4570 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4571 extern struct cdevsw netmap_cdevsw;
4572
4573
4574 void
4575 netmap_fini(void)
4576 {
4577 if (netmap_dev)
4578 destroy_dev(netmap_dev);
4579 /* we assume that there are no longer netmap users */
4580 nm_os_ifnet_fini();
4581 netmap_uninit_bridges();
4582 netmap_mem_fini();
4583 NMG_LOCK_DESTROY();
4584 nm_prinf("netmap: unloaded module.");
4585 }
4586
4587
4588 int
4589 netmap_init(void)
4590 {
4591 int error;
4592
4593 NMG_LOCK_INIT();
4594
4595 error = netmap_mem_init();
4596 if (error != 0)
4597 goto fail;
4598 /*
4599 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4600 * when the module is compiled in.
4601 * XXX could use make_dev_credv() to get error number
4602 */
4603 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4604 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4605 "netmap");
4606 if (!netmap_dev)
4607 goto fail;
4608
4609 error = netmap_init_bridges();
4610 if (error)
4611 goto fail;
4612
4613 #ifdef __FreeBSD__
4614 nm_os_vi_init_index();
4615 #endif
4616
4617 error = nm_os_ifnet_init();
4618 if (error)
4619 goto fail;
4620
4621 #if !defined(__FreeBSD__) || defined(KLD_MODULE)
4622 nm_prinf("netmap: loaded module");
4623 #endif
4624 return (0);
4625 fail:
4626 netmap_fini();
4627 return (EINVAL); /* may be incorrect */
4628 }
Cache object: 83b513b259c8271a9786219eb48ce807
|