The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netmap/netmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved.
    3  * 
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  *   1. Redistributions of source code must retain the above copyright
    8  *      notice, this list of conditions and the following disclaimer.
    9  *   2. Redistributions in binary form must reproduce the above copyright
   10  *      notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  * 
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 /*
   27  * $FreeBSD: releng/8.4/sys/dev/netmap/netmap.c 231742 2012-02-15 06:16:52Z luigi $
   28  * $Id: netmap.c 9795 2011-12-02 11:39:08Z luigi $
   29  *
   30  * This module supports memory mapped access to network devices,
   31  * see netmap(4).
   32  *
   33  * The module uses a large, memory pool allocated by the kernel
   34  * and accessible as mmapped memory by multiple userspace threads/processes.
   35  * The memory pool contains packet buffers and "netmap rings",
   36  * i.e. user-accessible copies of the interface's queues.
   37  *
   38  * Access to the network card works like this:
   39  * 1. a process/thread issues one or more open() on /dev/netmap, to create
   40  *    select()able file descriptor on which events are reported.
   41  * 2. on each descriptor, the process issues an ioctl() to identify
   42  *    the interface that should report events to the file descriptor.
   43  * 3. on each descriptor, the process issues an mmap() request to
   44  *    map the shared memory region within the process' address space.
   45  *    The list of interesting queues is indicated by a location in
   46  *    the shared memory region.
   47  * 4. using the functions in the netmap(4) userspace API, a process
   48  *    can look up the occupation state of a queue, access memory buffers,
   49  *    and retrieve received packets or enqueue packets to transmit.
   50  * 5. using some ioctl()s the process can synchronize the userspace view
   51  *    of the queue with the actual status in the kernel. This includes both
   52  *    receiving the notification of new packets, and transmitting new
   53  *    packets on the output interface.
   54  * 6. select() or poll() can be used to wait for events on individual
   55  *    transmit or receive queues (or all queues for a given interface).
   56  */
   57 
   58 #include <sys/cdefs.h> /* prerequisite */
   59 __FBSDID("$FreeBSD: releng/8.4/sys/dev/netmap/netmap.c 231742 2012-02-15 06:16:52Z luigi $");
   60 
   61 #include <sys/types.h>
   62 #include <sys/module.h>
   63 #include <sys/errno.h>
   64 #include <sys/param.h>  /* defines used in kernel.h */
   65 #include <sys/jail.h>
   66 #include <sys/kernel.h> /* types used in module initialization */
   67 #include <sys/conf.h>   /* cdevsw struct */
   68 #include <sys/uio.h>    /* uio struct */
   69 #include <sys/sockio.h>
   70 #include <sys/socketvar.h>      /* struct socket */
   71 #include <sys/malloc.h>
   72 #include <sys/mman.h>   /* PROT_EXEC */
   73 #include <sys/poll.h>
   74 #include <sys/proc.h>
   75 #include <vm/vm.h>      /* vtophys */
   76 #include <vm/pmap.h>    /* vtophys */
   77 #include <sys/socket.h> /* sockaddrs */
   78 #include <machine/bus.h>
   79 #include <sys/selinfo.h>
   80 #include <sys/sysctl.h>
   81 #include <net/if.h>
   82 #include <net/bpf.h>            /* BIOCIMMEDIATE */
   83 #include <net/vnet.h>
   84 #include <net/netmap.h>
   85 #include <dev/netmap/netmap_kern.h>
   86 #include <machine/bus.h>        /* bus_dmamap_* */
   87 
   88 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
   89 
   90 /*
   91  * lock and unlock for the netmap memory allocator
   92  */
   93 #define NMA_LOCK()      mtx_lock(&netmap_mem_d->nm_mtx);
   94 #define NMA_UNLOCK()    mtx_unlock(&netmap_mem_d->nm_mtx);
   95 struct netmap_mem_d;
   96 static struct netmap_mem_d *netmap_mem_d;       /* Our memory allocator. */
   97 
   98 u_int netmap_total_buffers;
   99 char *netmap_buffer_base;       /* address of an invalid buffer */
  100 
  101 /* user-controlled variables */
  102 int netmap_verbose;
  103 
  104 static int netmap_no_timestamp; /* don't timestamp on rxsync */
  105 
  106 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
  107 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
  108     CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
  109 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
  110     CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
  111 int netmap_buf_size = 2048;
  112 TUNABLE_INT("hw.netmap.buf_size", &netmap_buf_size);
  113 SYSCTL_INT(_dev_netmap, OID_AUTO, buf_size,
  114     CTLFLAG_RD, &netmap_buf_size, 0, "Size of packet buffers");
  115 int netmap_mitigate = 1;
  116 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
  117 int netmap_no_pendintr;
  118 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
  119     CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
  120 
  121 
  122 
  123 /*----- memory allocator -----------------*/
  124 /*
  125  * Here we have the low level routines for memory allocator
  126  * and its primary users.
  127  */
  128 
  129 /*
  130  * Default amount of memory pre-allocated by the module.
  131  * We start with a large size and then shrink our demand
  132  * according to what is avalable when the module is loaded.
  133  * At the moment the block is contiguous, but we can easily
  134  * restrict our demand to smaller units (16..64k)
  135  */
  136 #define NETMAP_MEMORY_SIZE (64 * 1024 * 4096)
  137 static void * netmap_malloc(size_t size, const char *msg);
  138 static void netmap_free(void *addr, const char *msg);
  139 
  140 #define netmap_if_malloc(len)   netmap_malloc(len, "nifp")
  141 #define netmap_if_free(v)       netmap_free((v), "nifp")
  142 
  143 #define netmap_ring_malloc(len) netmap_malloc(len, "ring")
  144 #define netmap_free_rings(na)           \
  145         netmap_free((na)->tx_rings[0].ring, "shadow rings");
  146 
  147 /*
  148  * Allocator for a pool of packet buffers. For each buffer we have
  149  * one entry in the bitmap to signal the state. Allocation scans
  150  * the bitmap, but since this is done only on attach, we are not
  151  * too worried about performance
  152  * XXX if we need to allocate small blocks, a translation
  153  * table is used both for kernel virtual address and physical
  154  * addresses.
  155  */
  156 struct netmap_buf_pool {
  157         u_int total_buffers;    /* total buffers. */
  158         u_int free;
  159         u_int bufsize;
  160         char *base;             /* buffer base address */
  161         uint32_t *bitmap;       /* one bit per buffer, 1 means free */
  162 };
  163 struct netmap_buf_pool nm_buf_pool;
  164 SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers,
  165     CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers");
  166 SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers,
  167     CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers");
  168 
  169 
  170 
  171 
  172 /*
  173  * Allocate n buffers from the ring, and fill the slot.
  174  * Buffer 0 is the 'junk' buffer.
  175  */
  176 static void
  177 netmap_new_bufs(struct netmap_if *nifp __unused,
  178                 struct netmap_slot *slot, u_int n)
  179 {
  180         struct netmap_buf_pool *p = &nm_buf_pool;
  181         uint32_t bi = 0;                /* index in the bitmap */
  182         uint32_t mask, j, i = 0;        /* slot counter */
  183 
  184         if (n > p->free) {
  185                 D("only %d out of %d buffers available", i, n);
  186                 return;
  187         }
  188         /* termination is guaranteed by p->free */
  189         while (i < n && p->free > 0) {
  190                 uint32_t cur = p->bitmap[bi];
  191                 if (cur == 0) { /* bitmask is fully used */
  192                         bi++;
  193                         continue;
  194                 }
  195                 /* locate a slot */
  196                 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ;
  197                 p->bitmap[bi] &= ~mask;         /* slot in use */
  198                 p->free--;
  199                 slot[i].buf_idx = bi*32+j;
  200                 slot[i].len = p->bufsize;
  201                 slot[i].flags = NS_BUF_CHANGED;
  202                 i++;
  203         }
  204         ND("allocated %d buffers, %d available", n, p->free);
  205 }
  206 
  207 
  208 static void
  209 netmap_free_buf(struct netmap_if *nifp __unused, uint32_t i)
  210 {
  211         struct netmap_buf_pool *p = &nm_buf_pool;
  212 
  213         uint32_t pos, mask;
  214         if (i >= p->total_buffers) {
  215                 D("invalid free index %d", i);
  216                 return;
  217         }
  218         pos = i / 32;
  219         mask = 1 << (i % 32);
  220         if (p->bitmap[pos] & mask) {
  221                 D("slot %d already free", i);
  222                 return;
  223         }
  224         p->bitmap[pos] |= mask;
  225         p->free++;
  226 }
  227 
  228 
  229 /* Descriptor of the memory objects handled by our memory allocator. */
  230 struct netmap_mem_obj {
  231         TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the
  232                                                  chain. */
  233         int nmo_used; /* flag set on used memory objects. */
  234         size_t nmo_size; /* size of the memory area reserved for the
  235                             object. */
  236         void *nmo_data; /* pointer to the memory area. */
  237 };
  238 
  239 /* Wrap our memory objects to make them ``chainable``. */
  240 TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj);
  241 
  242 
  243 /* Descriptor of our custom memory allocator. */
  244 struct netmap_mem_d {
  245         struct mtx nm_mtx; /* lock used to handle the chain of memory
  246                               objects. */
  247         struct netmap_mem_obj_h nm_molist; /* list of memory objects */
  248         size_t nm_size; /* total amount of memory used for rings etc. */
  249         size_t nm_totalsize; /* total amount of allocated memory
  250                 (the difference is used for buffers) */
  251         size_t nm_buf_start; /* offset of packet buffers.
  252                         This is page-aligned. */
  253         size_t nm_buf_len; /* total memory for buffers */
  254         void *nm_buffer; /* pointer to the whole pre-allocated memory
  255                             area. */
  256 };
  257 
  258 /* Shorthand to compute a netmap interface offset. */
  259 #define netmap_if_offset(v)                                     \
  260     ((char *) (v) - (char *) netmap_mem_d->nm_buffer)
  261 /* .. and get a physical address given a memory offset */
  262 #define netmap_ofstophys(o)                                     \
  263     (vtophys(netmap_mem_d->nm_buffer) + (o))
  264 
  265 
  266 /*------ netmap memory allocator -------*/
  267 /*
  268  * Request for a chunk of memory.
  269  *
  270  * Memory objects are arranged into a list, hence we need to walk this
  271  * list until we find an object with the needed amount of data free. 
  272  * This sounds like a completely inefficient implementation, but given
  273  * the fact that data allocation is done once, we can handle it
  274  * flawlessly.
  275  *
  276  * Return NULL on failure.
  277  */
  278 static void *
  279 netmap_malloc(size_t size, __unused const char *msg)
  280 {
  281         struct netmap_mem_obj *mem_obj, *new_mem_obj;
  282         void *ret = NULL;
  283 
  284         NMA_LOCK();
  285         TAILQ_FOREACH(mem_obj, &netmap_mem_d->nm_molist, nmo_next) {
  286                 if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size)
  287                         continue;
  288 
  289                 new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP,
  290                                      M_WAITOK | M_ZERO);
  291                 TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next);
  292 
  293                 new_mem_obj->nmo_used = 1;
  294                 new_mem_obj->nmo_size = size;
  295                 new_mem_obj->nmo_data = mem_obj->nmo_data;
  296                 memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size);
  297 
  298                 mem_obj->nmo_size -= size;
  299                 mem_obj->nmo_data = (char *) mem_obj->nmo_data + size;
  300                 if (mem_obj->nmo_size == 0) {
  301                         TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj,
  302                                      nmo_next);
  303                         free(mem_obj, M_NETMAP);
  304                 }
  305 
  306                 ret = new_mem_obj->nmo_data;
  307 
  308                 break;
  309         }
  310         NMA_UNLOCK();
  311         ND("%s: %d bytes at %p", msg, size, ret);
  312 
  313         return (ret);
  314 }
  315 
  316 /*
  317  * Return the memory to the allocator.
  318  *
  319  * While freeing a memory object, we try to merge adjacent chunks in
  320  * order to reduce memory fragmentation.
  321  */
  322 static void
  323 netmap_free(void *addr, const char *msg)
  324 {
  325         size_t size;
  326         struct netmap_mem_obj *cur, *prev, *next;
  327 
  328         if (addr == NULL) {
  329                 D("NULL addr for %s", msg);
  330                 return;
  331         }
  332 
  333         NMA_LOCK();
  334         TAILQ_FOREACH(cur, &netmap_mem_d->nm_molist, nmo_next) {
  335                 if (cur->nmo_data == addr && cur->nmo_used)
  336                         break;
  337         }
  338         if (cur == NULL) {
  339                 NMA_UNLOCK();
  340                 D("invalid addr %s %p", msg, addr);
  341                 return;
  342         }
  343 
  344         size = cur->nmo_size;
  345         cur->nmo_used = 0;
  346 
  347         /* merge current chunk of memory with the previous one,
  348            if present. */
  349         prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next);
  350         if (prev && prev->nmo_used == 0) {
  351                 TAILQ_REMOVE(&netmap_mem_d->nm_molist, cur, nmo_next);
  352                 prev->nmo_size += cur->nmo_size;
  353                 free(cur, M_NETMAP);
  354                 cur = prev;
  355         }
  356 
  357         /* merge with the next one */
  358         next = TAILQ_NEXT(cur, nmo_next);
  359         if (next && next->nmo_used == 0) {
  360                 TAILQ_REMOVE(&netmap_mem_d->nm_molist, next, nmo_next);
  361                 cur->nmo_size += next->nmo_size;
  362                 free(next, M_NETMAP);
  363         }
  364         NMA_UNLOCK();
  365         ND("freed %s %d bytes at %p", msg, size, addr);
  366 }
  367 
  368 
  369 /*
  370  * Create and return a new ``netmap_if`` object, and possibly also
  371  * rings and packet buffors.
  372  *
  373  * Return NULL on failure.
  374  */
  375 static void *
  376 netmap_if_new(const char *ifname, struct netmap_adapter *na)
  377 {
  378         struct netmap_if *nifp;
  379         struct netmap_ring *ring;
  380         char *buff;
  381         u_int i, len, ofs;
  382         u_int n = na->num_queues + 1; /* shorthand, include stack queue */
  383 
  384         /*
  385          * the descriptor is followed inline by an array of offsets
  386          * to the tx and rx rings in the shared memory region.
  387          */
  388         len = sizeof(struct netmap_if) + 2 * n * sizeof(ssize_t);
  389         nifp = netmap_if_malloc(len);
  390         if (nifp == NULL)
  391                 return (NULL);
  392 
  393         /* initialize base fields */
  394         *(int *)(uintptr_t)&nifp->ni_num_queues = na->num_queues;
  395         strncpy(nifp->ni_name, ifname, IFNAMSIZ);
  396 
  397         (na->refcount)++;       /* XXX atomic ? we are under lock */
  398         if (na->refcount > 1)
  399                 goto final;
  400 
  401         /*
  402          * If this is the first instance, allocate the shadow rings and
  403          * buffers for this card (one for each hw queue, one for the host).
  404          * The rings are contiguous, but have variable size.
  405          * The entire block is reachable at
  406          *      na->tx_rings[0].ring
  407          */
  408 
  409         len = n * (2 * sizeof(struct netmap_ring) +
  410                   (na->num_tx_desc + na->num_rx_desc) *
  411                    sizeof(struct netmap_slot) );
  412         buff = netmap_ring_malloc(len);
  413         if (buff == NULL) {
  414                 D("failed to allocate %d bytes for %s shadow ring",
  415                         len, ifname);
  416 error:
  417                 (na->refcount)--;
  418                 netmap_if_free(nifp);
  419                 return (NULL);
  420         }
  421         /* do we have the bufers ? we are in need of num_tx_desc buffers for
  422          * each tx ring and num_tx_desc buffers for each rx ring. */
  423         len = n * (na->num_tx_desc + na->num_rx_desc);
  424         NMA_LOCK();
  425         if (nm_buf_pool.free < len) {
  426                 NMA_UNLOCK();
  427                 netmap_free(buff, "not enough bufs");
  428                 goto error;
  429         }
  430         /*
  431          * in the kring, store the pointers to the shared rings
  432          * and initialize the rings. We are under NMA_LOCK().
  433          */
  434         ofs = 0;
  435         for (i = 0; i < n; i++) {
  436                 struct netmap_kring *kring;
  437                 int numdesc;
  438 
  439                 /* Transmit rings */
  440                 kring = &na->tx_rings[i];
  441                 numdesc = na->num_tx_desc;
  442                 bzero(kring, sizeof(*kring));
  443                 kring->na = na;
  444 
  445                 ring = kring->ring = (struct netmap_ring *)(buff + ofs);
  446                 *(ssize_t *)(uintptr_t)&ring->buf_ofs =
  447                         nm_buf_pool.base - (char *)ring;
  448                 ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs);
  449                 *(uint32_t *)(uintptr_t)&ring->num_slots =
  450                         kring->nkr_num_slots = numdesc;
  451 
  452                 /*
  453                  * IMPORTANT:
  454                  * Always keep one slot empty, so we can detect new
  455                  * transmissions comparing cur and nr_hwcur (they are
  456                  * the same only if there are no new transmissions).
  457                  */
  458                 ring->avail = kring->nr_hwavail = numdesc - 1;
  459                 ring->cur = kring->nr_hwcur = 0;
  460                 *(uint16_t *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
  461                 netmap_new_bufs(nifp, ring->slot, numdesc);
  462 
  463                 ofs += sizeof(struct netmap_ring) +
  464                         numdesc * sizeof(struct netmap_slot);
  465 
  466                 /* Receive rings */
  467                 kring = &na->rx_rings[i];
  468                 numdesc = na->num_rx_desc;
  469                 bzero(kring, sizeof(*kring));
  470                 kring->na = na;
  471 
  472                 ring = kring->ring = (struct netmap_ring *)(buff + ofs);
  473                 *(ssize_t *)(uintptr_t)&ring->buf_ofs =
  474                         nm_buf_pool.base - (char *)ring;
  475                 ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs);
  476                 *(uint32_t *)(uintptr_t)&ring->num_slots =
  477                         kring->nkr_num_slots = numdesc;
  478                 ring->cur = kring->nr_hwcur = 0;
  479                 ring->avail = kring->nr_hwavail = 0; /* empty */
  480                 *(uint16_t *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
  481                 netmap_new_bufs(nifp, ring->slot, numdesc);
  482                 ofs += sizeof(struct netmap_ring) +
  483                         numdesc * sizeof(struct netmap_slot);
  484         }
  485         NMA_UNLOCK();
  486         for (i = 0; i < n+1; i++) {
  487                 // XXX initialize the selrecord structs.
  488         }
  489 final:
  490         /*
  491          * fill the slots for the rx and tx queues. They contain the offset
  492          * between the ring and nifp, so the information is usable in
  493          * userspace to reach the ring from the nifp.
  494          */
  495         for (i = 0; i < n; i++) {
  496                 char *base = (char *)nifp;
  497                 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
  498                         (char *)na->tx_rings[i].ring - base;
  499                 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n] =
  500                         (char *)na->rx_rings[i].ring - base;
  501         }
  502         return (nifp);
  503 }
  504 
  505 /*
  506  * Initialize the memory allocator.
  507  *
  508  * Create the descriptor for the memory , allocate the pool of memory
  509  * and initialize the list of memory objects with a single chunk
  510  * containing the whole pre-allocated memory marked as free.
  511  *
  512  * Start with a large size, then halve as needed if we fail to
  513  * allocate the block. While halving, always add one extra page
  514  * because buffers 0 and 1 are used for special purposes.
  515  * Return 0 on success, errno otherwise.
  516  */
  517 static int
  518 netmap_memory_init(void)
  519 {
  520         struct netmap_mem_obj *mem_obj;
  521         void *buf = NULL;
  522         int i, n, sz = NETMAP_MEMORY_SIZE;
  523         int extra_sz = 0; // space for rings and two spare buffers
  524 
  525         for (; sz >= 1<<20; sz >>=1) {
  526                 extra_sz = sz/200;
  527                 extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1);
  528                 buf = contigmalloc(sz + extra_sz,
  529                              M_NETMAP,
  530                              M_WAITOK | M_ZERO,
  531                              0, /* low address */
  532                              -1UL, /* high address */
  533                              PAGE_SIZE, /* alignment */
  534                              0 /* boundary */
  535                             );
  536                 if (buf)
  537                         break;
  538         } 
  539         if (buf == NULL)
  540                 return (ENOMEM);
  541         sz += extra_sz;
  542         netmap_mem_d = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
  543                               M_WAITOK | M_ZERO);
  544         mtx_init(&netmap_mem_d->nm_mtx, "netmap memory allocator lock", NULL,
  545                  MTX_DEF);
  546         TAILQ_INIT(&netmap_mem_d->nm_molist);
  547         netmap_mem_d->nm_buffer = buf;
  548         netmap_mem_d->nm_totalsize = sz;
  549 
  550         /*
  551          * A buffer takes 2k, a slot takes 8 bytes + ring overhead,
  552          * so the ratio is 200:1. In other words, we can use 1/200 of
  553          * the memory for the rings, and the rest for the buffers,
  554          * and be sure we never run out.
  555          */
  556         netmap_mem_d->nm_size = sz/200;
  557         netmap_mem_d->nm_buf_start =
  558                 (netmap_mem_d->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1);
  559         netmap_mem_d->nm_buf_len = sz - netmap_mem_d->nm_buf_start;
  560 
  561         nm_buf_pool.base = netmap_mem_d->nm_buffer;
  562         nm_buf_pool.base += netmap_mem_d->nm_buf_start;
  563         netmap_buffer_base = nm_buf_pool.base;
  564         D("netmap_buffer_base %p (offset %d)",
  565                 netmap_buffer_base, (int)netmap_mem_d->nm_buf_start);
  566         /* number of buffers, they all start as free */
  567 
  568         netmap_total_buffers = nm_buf_pool.total_buffers =
  569                 netmap_mem_d->nm_buf_len / NETMAP_BUF_SIZE;
  570         nm_buf_pool.bufsize = NETMAP_BUF_SIZE;
  571 
  572         D("Have %d MB, use %dKB for rings, %d buffers at %p",
  573                 (sz >> 20), (int)(netmap_mem_d->nm_size >> 10),
  574                 nm_buf_pool.total_buffers, nm_buf_pool.base);
  575 
  576         /* allocate and initialize the bitmap. Entry 0 is considered
  577          * always busy (used as default when there are no buffers left).
  578          */
  579         n = (nm_buf_pool.total_buffers + 31) / 32;
  580         nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP,
  581                          M_WAITOK | M_ZERO);
  582         nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */
  583         for (i = 1; i < n; i++)
  584                 nm_buf_pool.bitmap[i] = ~0;
  585         nm_buf_pool.free = nm_buf_pool.total_buffers - 2;
  586         
  587         mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP,
  588                          M_WAITOK | M_ZERO);
  589         TAILQ_INSERT_HEAD(&netmap_mem_d->nm_molist, mem_obj, nmo_next);
  590         mem_obj->nmo_used = 0;
  591         mem_obj->nmo_size = netmap_mem_d->nm_size;
  592         mem_obj->nmo_data = netmap_mem_d->nm_buffer;
  593 
  594         return (0);
  595 }
  596 
  597 
  598 /*
  599  * Finalize the memory allocator.
  600  *
  601  * Free all the memory objects contained inside the list, and deallocate
  602  * the pool of memory; finally free the memory allocator descriptor.
  603  */
  604 static void
  605 netmap_memory_fini(void)
  606 {
  607         struct netmap_mem_obj *mem_obj;
  608 
  609         while (!TAILQ_EMPTY(&netmap_mem_d->nm_molist)) {
  610                 mem_obj = TAILQ_FIRST(&netmap_mem_d->nm_molist);
  611                 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next);
  612                 if (mem_obj->nmo_used == 1) {
  613                         printf("netmap: leaked %d bytes at %p\n",
  614                                (int)mem_obj->nmo_size,
  615                                mem_obj->nmo_data);
  616                 }
  617                 free(mem_obj, M_NETMAP);
  618         }
  619         contigfree(netmap_mem_d->nm_buffer, netmap_mem_d->nm_totalsize, M_NETMAP);
  620         // XXX mutex_destroy(nm_mtx);
  621         free(netmap_mem_d, M_NETMAP);
  622 }
  623 /*------------- end of memory allocator -----------------*/
  624 
  625 
  626 /* Structure associated to each thread which registered an interface. */
  627 struct netmap_priv_d {
  628         struct netmap_if *np_nifp;      /* netmap interface descriptor. */
  629 
  630         struct ifnet    *np_ifp;        /* device for which we hold a reference */
  631         int             np_ringid;      /* from the ioctl */
  632         u_int           np_qfirst, np_qlast;    /* range of rings to scan */
  633         uint16_t        np_txpoll;
  634 };
  635 
  636 
  637 static struct cdev *netmap_dev; /* /dev/netmap character device. */
  638 
  639 
  640 static d_mmap_t netmap_mmap;
  641 static d_ioctl_t netmap_ioctl;
  642 static d_poll_t netmap_poll;
  643 
  644 #ifdef NETMAP_KEVENT
  645 static d_kqfilter_t netmap_kqfilter;
  646 #endif
  647 
  648 static struct cdevsw netmap_cdevsw = {
  649         .d_version = D_VERSION,
  650         .d_name = "netmap",
  651         .d_mmap = netmap_mmap,
  652         .d_ioctl = netmap_ioctl,
  653         .d_poll = netmap_poll,
  654 #ifdef NETMAP_KEVENT
  655         .d_kqfilter = netmap_kqfilter,
  656 #endif
  657 };
  658 
  659 #ifdef NETMAP_KEVENT
  660 static int              netmap_kqread(struct knote *, long);
  661 static int              netmap_kqwrite(struct knote *, long);
  662 static void             netmap_kqdetach(struct knote *);
  663 
  664 static struct filterops netmap_read_filterops = {
  665         .f_isfd =       1,
  666         .f_attach =     NULL,
  667         .f_detach =     netmap_kqdetach,
  668         .f_event =      netmap_kqread,
  669 };
  670   
  671 static struct filterops netmap_write_filterops = {
  672         .f_isfd =       1,
  673         .f_attach =     NULL,
  674         .f_detach =     netmap_kqdetach,
  675         .f_event =      netmap_kqwrite,
  676 };
  677 
  678 /*
  679  * support for the kevent() system call.
  680  *
  681  * This is the kevent filter, and is executed each time a new event
  682  * is triggered on the device. This function execute some operation
  683  * depending on the received filter.
  684  *
  685  * The implementation should test the filters and should implement
  686  * filter operations we are interested on (a full list in /sys/event.h).
  687  *
  688  * On a match we should:
  689  * - set kn->kn_fop
  690  * - set kn->kn_hook
  691  * - call knlist_add() to deliver the event to the application.
  692  *
  693  * Return 0 if the event should be delivered to the application.
  694  */
  695 static int
  696 netmap_kqfilter(struct cdev *dev, struct knote *kn)
  697 {
  698         /* declare variables needed to read/write */
  699 
  700         switch(kn->kn_filter) {
  701         case EVFILT_READ:
  702                 if (netmap_verbose)
  703                         D("%s kqfilter: EVFILT_READ" ifp->if_xname);
  704 
  705                 /* read operations */
  706                 kn->kn_fop = &netmap_read_filterops;
  707                 break;
  708 
  709         case EVFILT_WRITE:
  710                 if (netmap_verbose)
  711                         D("%s kqfilter: EVFILT_WRITE" ifp->if_xname);
  712 
  713                 /* write operations */
  714                 kn->kn_fop = &netmap_write_filterops;
  715                 break;
  716   
  717         default:
  718                 if (netmap_verbose)
  719                         D("%s kqfilter: invalid filter" ifp->if_xname);
  720                 return(EINVAL);
  721         }
  722   
  723         kn->kn_hook = 0;//
  724         knlist_add(&netmap_sc->tun_rsel.si_note, kn, 0);
  725 
  726         return (0);
  727 }
  728 #endif /* NETMAP_KEVENT */
  729 
  730 
  731 /*
  732  * File descriptor's private data destructor.
  733  *
  734  * Call nm_register(ifp,0) to stop netmap mode on the interface and
  735  * revert to normal operation. We expect that np_ifp has not gone.
  736  */
  737 static void
  738 netmap_dtor_locked(void *data)
  739 {
  740         struct netmap_priv_d *priv = data;
  741         struct ifnet *ifp = priv->np_ifp;
  742         struct netmap_adapter *na = NA(ifp);
  743         struct netmap_if *nifp = priv->np_nifp;
  744 
  745         na->refcount--;
  746         if (na->refcount <= 0) {        /* last instance */
  747                 u_int i;
  748 
  749                 D("deleting last netmap instance for %s", ifp->if_xname);
  750                 /*
  751                  * there is a race here with *_netmap_task() and
  752                  * netmap_poll(), which don't run under NETMAP_REG_LOCK.
  753                  * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP
  754                  * (aka NETMAP_DELETING(na)) are a unique marker that the
  755                  * device is dying.
  756                  * Before destroying stuff we sleep a bit, and then complete
  757                  * the job. NIOCREG should realize the condition and
  758                  * loop until they can continue; the other routines
  759                  * should check the condition at entry and quit if
  760                  * they cannot run.
  761                  */
  762                 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
  763                 tsleep(na, 0, "NIOCUNREG", 4);
  764                 na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
  765                 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */
  766                 /* Wake up any sleeping threads. netmap_poll will
  767                  * then return POLLERR
  768                  */
  769                 for (i = 0; i < na->num_queues + 2; i++) {
  770                         selwakeuppri(&na->tx_rings[i].si, PI_NET);
  771                         selwakeuppri(&na->rx_rings[i].si, PI_NET);
  772                 }
  773                 /* release all buffers */
  774                 NMA_LOCK();
  775                 for (i = 0; i < na->num_queues + 1; i++) {
  776                         int j, lim;
  777                         struct netmap_ring *ring;
  778 
  779                         ND("tx queue %d", i);
  780                         ring = na->tx_rings[i].ring;
  781                         lim = na->tx_rings[i].nkr_num_slots;
  782                         for (j = 0; j < lim; j++)
  783                                 netmap_free_buf(nifp, ring->slot[j].buf_idx);
  784 
  785                         ND("rx queue %d", i);
  786                         ring = na->rx_rings[i].ring;
  787                         lim = na->rx_rings[i].nkr_num_slots;
  788                         for (j = 0; j < lim; j++)
  789                                 netmap_free_buf(nifp, ring->slot[j].buf_idx);
  790                 }
  791                 NMA_UNLOCK();
  792                 netmap_free_rings(na);
  793                 wakeup(na);
  794         }
  795         netmap_if_free(nifp);
  796 }
  797 
  798 
  799 static void
  800 netmap_dtor(void *data)
  801 {
  802         struct netmap_priv_d *priv = data;
  803         struct ifnet *ifp = priv->np_ifp;
  804         struct netmap_adapter *na = NA(ifp);
  805 
  806         na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
  807         netmap_dtor_locked(data);
  808         na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 
  809 
  810         if_rele(ifp);
  811         bzero(priv, sizeof(*priv));     /* XXX for safety */
  812         free(priv, M_DEVBUF);
  813 }
  814 
  815 
  816 /*
  817  * mmap(2) support for the "netmap" device.
  818  *
  819  * Expose all the memory previously allocated by our custom memory
  820  * allocator: this way the user has only to issue a single mmap(2), and
  821  * can work on all the data structures flawlessly.
  822  *
  823  * Return 0 on success, -1 otherwise.
  824  */
  825 static int
  826 #if __FreeBSD_version < 900000
  827 netmap_mmap(__unused struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr,
  828             int nprot)
  829 #else
  830 netmap_mmap(__unused struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
  831             int nprot, __unused vm_memattr_t *memattr)
  832 #endif
  833 {
  834         if (nprot & PROT_EXEC)
  835                 return (-1);    // XXX -1 or EINVAL ?
  836 
  837         ND("request for offset 0x%x", (uint32_t)offset);
  838         *paddr = netmap_ofstophys(offset);
  839 
  840         return (0);
  841 }
  842 
  843 
  844 /*
  845  * Handlers for synchronization of the queues from/to the host.
  846  *
  847  * netmap_sync_to_host() passes packets up. We are called from a
  848  * system call in user process context, and the only contention
  849  * can be among multiple user threads erroneously calling
  850  * this routine concurrently. In principle we should not even
  851  * need to lock.
  852  */
  853 static void
  854 netmap_sync_to_host(struct netmap_adapter *na)
  855 {
  856         struct netmap_kring *kring = &na->tx_rings[na->num_queues];
  857         struct netmap_ring *ring = kring->ring;
  858         struct mbuf *head = NULL, *tail = NULL, *m;
  859         u_int k, n, lim = kring->nkr_num_slots - 1;
  860 
  861         k = ring->cur;
  862         if (k > lim) {
  863                 netmap_ring_reinit(kring);
  864                 return;
  865         }
  866         // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
  867 
  868         /* Take packets from hwcur to cur and pass them up.
  869          * In case of no buffers we give up. At the end of the loop,
  870          * the queue is drained in all cases.
  871          */
  872         for (n = kring->nr_hwcur; n != k;) {
  873                 struct netmap_slot *slot = &ring->slot[n];
  874 
  875                 n = (n == lim) ? 0 : n + 1;
  876                 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) {
  877                         D("bad pkt at %d len %d", n, slot->len);
  878                         continue;
  879                 }
  880                 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL);
  881 
  882                 if (m == NULL)
  883                         break;
  884                 if (tail)
  885                         tail->m_nextpkt = m;
  886                 else
  887                         head = m;
  888                 tail = m;
  889                 m->m_nextpkt = NULL;
  890         }
  891         kring->nr_hwcur = k;
  892         kring->nr_hwavail = ring->avail = lim;
  893         // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
  894 
  895         /* send packets up, outside the lock */
  896         while ((m = head) != NULL) {
  897                 head = head->m_nextpkt;
  898                 m->m_nextpkt = NULL;
  899                 if (netmap_verbose & NM_VERB_HOST)
  900                         D("sending up pkt %p size %d", m, MBUF_LEN(m));
  901                 NM_SEND_UP(na->ifp, m);
  902         }
  903 }
  904 
  905 /*
  906  * rxsync backend for packets coming from the host stack.
  907  * They have been put in the queue by netmap_start() so we
  908  * need to protect access to the kring using a lock.
  909  *
  910  * This routine also does the selrecord if called from the poll handler
  911  * (we know because td != NULL).
  912  */
  913 static void
  914 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td)
  915 {
  916         struct netmap_kring *kring = &na->rx_rings[na->num_queues];
  917         struct netmap_ring *ring = kring->ring;
  918         int error = 1, delta;
  919         u_int k = ring->cur, lim = kring->nkr_num_slots;
  920 
  921         na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
  922         if (k >= lim) /* bad value */
  923                 goto done;
  924         delta = k - kring->nr_hwcur;
  925         if (delta < 0)
  926                 delta += lim;
  927         kring->nr_hwavail -= delta;
  928         if (kring->nr_hwavail < 0)      /* error */
  929                 goto done;
  930         kring->nr_hwcur = k;
  931         error = 0;
  932         k = ring->avail = kring->nr_hwavail;
  933         if (k == 0 && td)
  934                 selrecord(td, &kring->si);
  935         if (k && (netmap_verbose & NM_VERB_HOST))
  936                 D("%d pkts from stack", k);
  937 done:
  938         na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
  939         if (error)
  940                 netmap_ring_reinit(kring);
  941 }
  942 
  943 
  944 /*
  945  * get a refcounted reference to an interface.
  946  * Return ENXIO if the interface does not exist, EINVAL if netmap
  947  * is not supported by the interface.
  948  * If successful, hold a reference.
  949  */
  950 static int
  951 get_ifp(const char *name, struct ifnet **ifp)
  952 {
  953         *ifp = ifunit_ref(name);
  954         if (*ifp == NULL)
  955                 return (ENXIO);
  956         /* can do this if the capability exists and if_pspare[0]
  957          * points to the netmap descriptor.
  958          */
  959         if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp))
  960                 return 0;       /* valid pointer, we hold the refcount */
  961         if_rele(*ifp);
  962         return EINVAL;  // not NETMAP capable
  963 }
  964 
  965 
  966 /*
  967  * Error routine called when txsync/rxsync detects an error.
  968  * Can't do much more than resetting cur = hwcur, avail = hwavail.
  969  * Return 1 on reinit.
  970  *
  971  * This routine is only called by the upper half of the kernel.
  972  * It only reads hwcur (which is changed only by the upper half, too)
  973  * and hwavail (which may be changed by the lower half, but only on
  974  * a tx ring and only to increase it, so any error will be recovered
  975  * on the next call). For the above, we don't strictly need to call
  976  * it under lock.
  977  */
  978 int
  979 netmap_ring_reinit(struct netmap_kring *kring)
  980 {
  981         struct netmap_ring *ring = kring->ring;
  982         u_int i, lim = kring->nkr_num_slots - 1;
  983         int errors = 0;
  984 
  985         D("called for %s", kring->na->ifp->if_xname);
  986         if (ring->cur > lim)
  987                 errors++;
  988         for (i = 0; i <= lim; i++) {
  989                 u_int idx = ring->slot[i].buf_idx;
  990                 u_int len = ring->slot[i].len;
  991                 if (idx < 2 || idx >= netmap_total_buffers) {
  992                         if (!errors++)
  993                                 D("bad buffer at slot %d idx %d len %d ", i, idx, len);
  994                         ring->slot[i].buf_idx = 0;
  995                         ring->slot[i].len = 0;
  996                 } else if (len > NETMAP_BUF_SIZE) {
  997                         ring->slot[i].len = 0;
  998                         if (!errors++)
  999                                 D("bad len %d at slot %d idx %d",
 1000                                         len, i, idx);
 1001                 }
 1002         }
 1003         if (errors) {
 1004                 int pos = kring - kring->na->tx_rings;
 1005                 int n = kring->na->num_queues + 2;
 1006 
 1007                 D("total %d errors", errors);
 1008                 errors++;
 1009                 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
 1010                         kring->na->ifp->if_xname,
 1011                         pos < n ?  "TX" : "RX", pos < n ? pos : pos - n, 
 1012                         ring->cur, kring->nr_hwcur,
 1013                         ring->avail, kring->nr_hwavail);
 1014                 ring->cur = kring->nr_hwcur;
 1015                 ring->avail = kring->nr_hwavail;
 1016         }
 1017         return (errors ? 1 : 0);
 1018 }
 1019 
 1020 
 1021 /*
 1022  * Set the ring ID. For devices with a single queue, a request
 1023  * for all rings is the same as a single ring.
 1024  */
 1025 static int
 1026 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
 1027 {
 1028         struct ifnet *ifp = priv->np_ifp;
 1029         struct netmap_adapter *na = NA(ifp);
 1030         u_int i = ringid & NETMAP_RING_MASK;
 1031         /* first time we don't lock */
 1032         int need_lock = (priv->np_qfirst != priv->np_qlast);
 1033 
 1034         if ( (ringid & NETMAP_HW_RING) && i >= na->num_queues) {
 1035                 D("invalid ring id %d", i);
 1036                 return (EINVAL);
 1037         }
 1038         if (need_lock)
 1039                 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
 1040         priv->np_ringid = ringid;
 1041         if (ringid & NETMAP_SW_RING) {
 1042                 priv->np_qfirst = na->num_queues;
 1043                 priv->np_qlast = na->num_queues + 1;
 1044         } else if (ringid & NETMAP_HW_RING) {
 1045                 priv->np_qfirst = i;
 1046                 priv->np_qlast = i + 1;
 1047         } else {
 1048                 priv->np_qfirst = 0;
 1049                 priv->np_qlast = na->num_queues;
 1050         }
 1051         priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
 1052         if (need_lock)
 1053                 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
 1054         if (ringid & NETMAP_SW_RING)
 1055                 D("ringid %s set to SW RING", ifp->if_xname);
 1056         else if (ringid & NETMAP_HW_RING)
 1057                 D("ringid %s set to HW RING %d", ifp->if_xname,
 1058                         priv->np_qfirst);
 1059         else
 1060                 D("ringid %s set to all %d HW RINGS", ifp->if_xname,
 1061                         priv->np_qlast);
 1062         return 0;
 1063 }
 1064 
 1065 /*
 1066  * ioctl(2) support for the "netmap" device.
 1067  *
 1068  * Following a list of accepted commands:
 1069  * - NIOCGINFO
 1070  * - SIOCGIFADDR        just for convenience
 1071  * - NIOCREGIF
 1072  * - NIOCUNREGIF
 1073  * - NIOCTXSYNC
 1074  * - NIOCRXSYNC
 1075  *
 1076  * Return 0 on success, errno otherwise.
 1077  */
 1078 static int
 1079 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data,
 1080         __unused int fflag, struct thread *td)
 1081 {
 1082         struct netmap_priv_d *priv = NULL;
 1083         struct ifnet *ifp;
 1084         struct nmreq *nmr = (struct nmreq *) data;
 1085         struct netmap_adapter *na;
 1086         int error;
 1087         u_int i;
 1088         struct netmap_if *nifp;
 1089 
 1090         CURVNET_SET(TD_TO_VNET(td));
 1091 
 1092         error = devfs_get_cdevpriv((void **)&priv);
 1093         if (error != ENOENT && error != 0) {
 1094                 CURVNET_RESTORE();
 1095                 return (error);
 1096         }
 1097 
 1098         error = 0;      /* Could be ENOENT */
 1099         switch (cmd) {
 1100         case NIOCGINFO:         /* return capabilities etc */
 1101                 /* memsize is always valid */
 1102                 nmr->nr_memsize = netmap_mem_d->nm_totalsize;
 1103                 nmr->nr_offset = 0;
 1104                 nmr->nr_numrings = 0;
 1105                 nmr->nr_numslots = 0;
 1106                 if (nmr->nr_name[0] == '\0')    /* just get memory info */
 1107                         break;
 1108                 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */
 1109                 if (error)
 1110                         break;
 1111                 na = NA(ifp); /* retrieve netmap_adapter */
 1112                 nmr->nr_numrings = na->num_queues;
 1113                 nmr->nr_numslots = na->num_tx_desc;
 1114                 if_rele(ifp);   /* return the refcount */
 1115                 break;
 1116 
 1117         case NIOCREGIF:
 1118                 if (priv != NULL) {     /* thread already registered */
 1119                         error = netmap_set_ringid(priv, nmr->nr_ringid);
 1120                         break;
 1121                 }
 1122                 /* find the interface and a reference */
 1123                 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
 1124                 if (error)
 1125                         break;
 1126                 na = NA(ifp); /* retrieve netmap adapter */
 1127                 /*
 1128                  * Allocate the private per-thread structure.
 1129                  * XXX perhaps we can use a blocking malloc ?
 1130                  */
 1131                 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
 1132                               M_NOWAIT | M_ZERO);
 1133                 if (priv == NULL) {
 1134                         error = ENOMEM;
 1135                         if_rele(ifp);   /* return the refcount */
 1136                         break;
 1137                 }
 1138 
 1139                 for (i = 10; i > 0; i--) {
 1140                         na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
 1141                         if (!NETMAP_DELETING(na))
 1142                                 break;
 1143                         na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
 1144                         tsleep(na, 0, "NIOCREGIF", hz/10);
 1145                 }
 1146                 if (i == 0) {
 1147                         D("too many NIOCREGIF attempts, give up");
 1148                         error = EINVAL;
 1149                         free(priv, M_DEVBUF);
 1150                         if_rele(ifp);   /* return the refcount */
 1151                         break;
 1152                 }
 1153 
 1154                 priv->np_ifp = ifp;     /* store the reference */
 1155                 error = netmap_set_ringid(priv, nmr->nr_ringid);
 1156                 if (error)
 1157                         goto error;
 1158                 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na);
 1159                 if (nifp == NULL) { /* allocation failed */
 1160                         error = ENOMEM;
 1161                 } else if (ifp->if_capenable & IFCAP_NETMAP) {
 1162                         /* was already set */
 1163                 } else {
 1164                         /* Otherwise set the card in netmap mode
 1165                          * and make it use the shared buffers.
 1166                          */
 1167                         error = na->nm_register(ifp, 1); /* mode on */
 1168                         if (error)
 1169                                 netmap_dtor_locked(priv);
 1170                 }
 1171 
 1172                 if (error) {    /* reg. failed, release priv and ref */
 1173 error:
 1174                         na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
 1175                         if_rele(ifp);   /* return the refcount */
 1176                         bzero(priv, sizeof(*priv));
 1177                         free(priv, M_DEVBUF);
 1178                         break;
 1179                 }
 1180 
 1181                 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
 1182                 error = devfs_set_cdevpriv(priv, netmap_dtor);
 1183 
 1184                 if (error != 0) {
 1185                         /* could not assign the private storage for the
 1186                          * thread, call the destructor explicitly.
 1187                          */
 1188                         netmap_dtor(priv);
 1189                         break;
 1190                 }
 1191 
 1192                 /* return the offset of the netmap_if object */
 1193                 nmr->nr_numrings = na->num_queues;
 1194                 nmr->nr_numslots = na->num_tx_desc;
 1195                 nmr->nr_memsize = netmap_mem_d->nm_totalsize;
 1196                 nmr->nr_offset = netmap_if_offset(nifp);
 1197                 break;
 1198 
 1199         case NIOCUNREGIF:
 1200                 if (priv == NULL) {
 1201                         error = ENXIO;
 1202                         break;
 1203                 }
 1204 
 1205                 /* the interface is unregistered inside the
 1206                    destructor of the private data. */
 1207                 devfs_clear_cdevpriv();
 1208                 break;
 1209 
 1210         case NIOCTXSYNC:
 1211         case NIOCRXSYNC:
 1212                 if (priv == NULL) {
 1213                         error = ENXIO;
 1214                         break;
 1215                 }
 1216                 ifp = priv->np_ifp;     /* we have a reference */
 1217                 na = NA(ifp); /* retrieve netmap adapter */
 1218 
 1219                 if (priv->np_qfirst == na->num_queues) {
 1220                         /* queues to/from host */
 1221                         if (cmd == NIOCTXSYNC)
 1222                                 netmap_sync_to_host(na);
 1223                         else
 1224                                 netmap_sync_from_host(na, NULL);
 1225                         break;
 1226                 }
 1227 
 1228                 for (i = priv->np_qfirst; i < priv->np_qlast; i++) {
 1229                     if (cmd == NIOCTXSYNC) {
 1230                         struct netmap_kring *kring = &na->tx_rings[i];
 1231                         if (netmap_verbose & NM_VERB_TXSYNC)
 1232                                 D("sync tx ring %d cur %d hwcur %d",
 1233                                         i, kring->ring->cur,
 1234                                         kring->nr_hwcur);
 1235                         na->nm_txsync(ifp, i, 1 /* do lock */);
 1236                         if (netmap_verbose & NM_VERB_TXSYNC)
 1237                                 D("after sync tx ring %d cur %d hwcur %d",
 1238                                         i, kring->ring->cur,
 1239                                         kring->nr_hwcur);
 1240                     } else {
 1241                         na->nm_rxsync(ifp, i, 1 /* do lock */);
 1242                         microtime(&na->rx_rings[i].ring->ts);
 1243                     }
 1244                 }
 1245 
 1246                 break;
 1247 
 1248         case BIOCIMMEDIATE:
 1249         case BIOCGHDRCMPLT:
 1250         case BIOCSHDRCMPLT:
 1251         case BIOCSSEESENT:
 1252                 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
 1253                 break;
 1254 
 1255         default:
 1256             {
 1257                 /*
 1258                  * allow device calls
 1259                  */
 1260                 struct socket so;
 1261                 bzero(&so, sizeof(so));
 1262                 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
 1263                 if (error)
 1264                         break;
 1265                 so.so_vnet = ifp->if_vnet;
 1266                 // so->so_proto not null.
 1267                 error = ifioctl(&so, cmd, data, td);
 1268                 if_rele(ifp);
 1269             }
 1270         }
 1271 
 1272         CURVNET_RESTORE();
 1273         return (error);
 1274 }
 1275 
 1276 
 1277 /*
 1278  * select(2) and poll(2) handlers for the "netmap" device.
 1279  *
 1280  * Can be called for one or more queues.
 1281  * Return true the event mask corresponding to ready events.
 1282  * If there are no ready events, do a selrecord on either individual
 1283  * selfd or on the global one.
 1284  * Device-dependent parts (locking and sync of tx/rx rings)
 1285  * are done through callbacks.
 1286  */
 1287 static int
 1288 netmap_poll(__unused struct cdev *dev, int events, struct thread *td)
 1289 {
 1290         struct netmap_priv_d *priv = NULL;
 1291         struct netmap_adapter *na;
 1292         struct ifnet *ifp;
 1293         struct netmap_kring *kring;
 1294         u_int core_lock, i, check_all, want_tx, want_rx, revents = 0;
 1295         enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */
 1296 
 1297         if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL)
 1298                 return POLLERR;
 1299 
 1300         ifp = priv->np_ifp;
 1301         // XXX check for deleting() ?
 1302         if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
 1303                 return POLLERR;
 1304 
 1305         if (netmap_verbose & 0x8000)
 1306                 D("device %s events 0x%x", ifp->if_xname, events);
 1307         want_tx = events & (POLLOUT | POLLWRNORM);
 1308         want_rx = events & (POLLIN | POLLRDNORM);
 1309 
 1310         na = NA(ifp); /* retrieve netmap adapter */
 1311 
 1312         /* how many queues we are scanning */
 1313         i = priv->np_qfirst;
 1314         if (i == na->num_queues) { /* from/to host */
 1315                 if (priv->np_txpoll || want_tx) {
 1316                         /* push any packets up, then we are always ready */
 1317                         kring = &na->tx_rings[i];
 1318                         netmap_sync_to_host(na);
 1319                         revents |= want_tx;
 1320                 }
 1321                 if (want_rx) {
 1322                         kring = &na->rx_rings[i];
 1323                         if (kring->ring->avail == 0)
 1324                                 netmap_sync_from_host(na, td);
 1325                         if (kring->ring->avail > 0) {
 1326                                 revents |= want_rx;
 1327                         }
 1328                 }
 1329                 return (revents);
 1330         }
 1331 
 1332         /*
 1333          * check_all is set if the card has more than one queue and
 1334          * the client is polling all of them. If true, we sleep on
 1335          * the "global" selfd, otherwise we sleep on individual selfd
 1336          * (we can only sleep on one of them per direction).
 1337          * The interrupt routine in the driver should always wake on
 1338          * the individual selfd, and also on the global one if the card
 1339          * has more than one ring.
 1340          *
 1341          * If the card has only one lock, we just use that.
 1342          * If the card has separate ring locks, we just use those
 1343          * unless we are doing check_all, in which case the whole
 1344          * loop is wrapped by the global lock.
 1345          * We acquire locks only when necessary: if poll is called
 1346          * when buffers are available, we can just return without locks.
 1347          *
 1348          * rxsync() is only called if we run out of buffers on a POLLIN.
 1349          * txsync() is called if we run out of buffers on POLLOUT, or
 1350          * there are pending packets to send. The latter can be disabled
 1351          * passing NETMAP_NO_TX_POLL in the NIOCREG call.
 1352          */
 1353         check_all = (i + 1 != priv->np_qlast);
 1354 
 1355         /*
 1356          * core_lock indicates what to do with the core lock.
 1357          * The core lock is used when either the card has no individual
 1358          * locks, or it has individual locks but we are cheking all
 1359          * rings so we need the core lock to avoid missing wakeup events.
 1360          *
 1361          * It has three possible states:
 1362          * NO_CL        we don't need to use the core lock, e.g.
 1363          *              because we are protected by individual locks.
 1364          * NEED_CL      we need the core lock. In this case, when we
 1365          *              call the lock routine, move to LOCKED_CL
 1366          *              to remember to release the lock once done.
 1367          * LOCKED_CL    core lock is set, so we need to release it.
 1368          */
 1369         core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL;
 1370         /*
 1371          * We start with a lock free round which is good if we have
 1372          * data available. If this fails, then lock and call the sync
 1373          * routines.
 1374          */
 1375                 for (i = priv->np_qfirst; want_rx && i < priv->np_qlast; i++) {
 1376                         kring = &na->rx_rings[i];
 1377                         if (kring->ring->avail > 0) {
 1378                                 revents |= want_rx;
 1379                                 want_rx = 0;    /* also breaks the loop */
 1380                         }
 1381                 }
 1382                 for (i = priv->np_qfirst; want_tx && i < priv->np_qlast; i++) {
 1383                         kring = &na->tx_rings[i];
 1384                         if (kring->ring->avail > 0) {
 1385                                 revents |= want_tx;
 1386                                 want_tx = 0;    /* also breaks the loop */
 1387                         }
 1388                 }
 1389 
 1390         /*
 1391          * If we to push packets out (priv->np_txpoll) or want_tx is
 1392          * still set, we do need to run the txsync calls (on all rings,
 1393          * to avoid that the tx rings stall).
 1394          */
 1395         if (priv->np_txpoll || want_tx) {
 1396                 for (i = priv->np_qfirst; i < priv->np_qlast; i++) {
 1397                         kring = &na->tx_rings[i];
 1398                         /*
 1399                          * Skip the current ring if want_tx == 0
 1400                          * (we have already done a successful sync on
 1401                          * a previous ring) AND kring->cur == kring->hwcur
 1402                          * (there are no pending transmissions for this ring).
 1403                          */
 1404                         if (!want_tx && kring->ring->cur == kring->nr_hwcur)
 1405                                 continue;
 1406                         if (core_lock == NEED_CL) {
 1407                                 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
 1408                                 core_lock = LOCKED_CL;
 1409                         }
 1410                         if (na->separate_locks)
 1411                                 na->nm_lock(ifp, NETMAP_TX_LOCK, i);
 1412                         if (netmap_verbose & NM_VERB_TXSYNC)
 1413                                 D("send %d on %s %d",
 1414                                         kring->ring->cur,
 1415                                         ifp->if_xname, i);
 1416                         if (na->nm_txsync(ifp, i, 0 /* no lock */))
 1417                                 revents |= POLLERR;
 1418 
 1419                         /* Check avail/call selrecord only if called with POLLOUT */
 1420                         if (want_tx) {
 1421                                 if (kring->ring->avail > 0) {
 1422                                         /* stop at the first ring. We don't risk
 1423                                          * starvation.
 1424                                          */
 1425                                         revents |= want_tx;
 1426                                         want_tx = 0;
 1427                                 } else if (!check_all)
 1428                                         selrecord(td, &kring->si);
 1429                         }
 1430                         if (na->separate_locks)
 1431                                 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i);
 1432                 }
 1433         }
 1434 
 1435         /*
 1436          * now if want_rx is still set we need to lock and rxsync.
 1437          * Do it on all rings because otherwise we starve.
 1438          */
 1439         if (want_rx) {
 1440                 for (i = priv->np_qfirst; i < priv->np_qlast; i++) {
 1441                         kring = &na->rx_rings[i];
 1442                         if (core_lock == NEED_CL) {
 1443                                 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
 1444                                 core_lock = LOCKED_CL;
 1445                         }
 1446                         if (na->separate_locks)
 1447                                 na->nm_lock(ifp, NETMAP_RX_LOCK, i);
 1448 
 1449                         if (na->nm_rxsync(ifp, i, 0 /* no lock */))
 1450                                 revents |= POLLERR;
 1451                         if (netmap_no_timestamp == 0 ||
 1452                                         kring->ring->flags & NR_TIMESTAMP) {
 1453                                 microtime(&kring->ring->ts);
 1454                         }
 1455 
 1456                         if (kring->ring->avail > 0)
 1457                                 revents |= want_rx;
 1458                         else if (!check_all)
 1459                                 selrecord(td, &kring->si);
 1460                         if (na->separate_locks)
 1461                                 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i);
 1462                 }
 1463         }
 1464         if (check_all && revents == 0) {
 1465                 i = na->num_queues + 1; /* the global queue */
 1466                 if (want_tx)
 1467                         selrecord(td, &na->tx_rings[i].si);
 1468                 if (want_rx)
 1469                         selrecord(td, &na->rx_rings[i].si);
 1470         }
 1471         if (core_lock == LOCKED_CL)
 1472                 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
 1473 
 1474         return (revents);
 1475 }
 1476 
 1477 /*------- driver support routines ------*/
 1478 
 1479 /*
 1480  * default lock wrapper. On linux we use mostly netmap-specific locks.
 1481  */
 1482 static void
 1483 netmap_lock_wrapper(struct ifnet *_a, int what, u_int queueid)
 1484 {
 1485         struct netmap_adapter *na = NA(_a);
 1486 
 1487         switch (what) {
 1488 #ifndef __FreeBSD__     /* some system do not need lock on register */
 1489         case NETMAP_REG_LOCK:
 1490         case NETMAP_REG_UNLOCK:
 1491                 break;
 1492 #endif
 1493 
 1494         case NETMAP_CORE_LOCK:
 1495                 mtx_lock(&na->core_lock);
 1496                 break;
 1497 
 1498         case NETMAP_CORE_UNLOCK:
 1499                 mtx_unlock(&na->core_lock);
 1500                 break;
 1501 
 1502         case NETMAP_TX_LOCK:
 1503                 mtx_lock(&na->tx_rings[queueid].q_lock);
 1504                 break;
 1505 
 1506         case NETMAP_TX_UNLOCK:
 1507                 mtx_unlock(&na->tx_rings[queueid].q_lock);
 1508                 break;
 1509 
 1510         case NETMAP_RX_LOCK:
 1511                 mtx_lock(&na->rx_rings[queueid].q_lock);
 1512                 break;
 1513 
 1514         case NETMAP_RX_UNLOCK:
 1515                 mtx_unlock(&na->rx_rings[queueid].q_lock);
 1516                 break;
 1517         }
 1518 }
 1519 
 1520 
 1521 /*
 1522  * Initialize a ``netmap_adapter`` object created by driver on attach.
 1523  * We allocate a block of memory with room for a struct netmap_adapter
 1524  * plus two sets of N+2 struct netmap_kring (where N is the number
 1525  * of hardware rings):
 1526  * krings       0..N-1  are for the hardware queues.
 1527  * kring        N       is for the host stack queue
 1528  * kring        N+1     is only used for the selinfo for all queues.
 1529  * Return 0 on success, ENOMEM otherwise.
 1530  */
 1531 int
 1532 netmap_attach(struct netmap_adapter *na, int num_queues)
 1533 {
 1534         int n = num_queues + 2;
 1535         int size = sizeof(*na) + 2 * n * sizeof(struct netmap_kring);
 1536         void *buf;
 1537         struct ifnet *ifp = na->ifp;
 1538         int i;
 1539 
 1540         if (ifp == NULL) {
 1541                 D("ifp not set, giving up");
 1542                 return EINVAL;
 1543         }
 1544         na->refcount = 0;
 1545         na->num_queues = num_queues;
 1546 
 1547         buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
 1548         if (buf) {
 1549                 WNA(ifp) = buf;
 1550                 na->tx_rings = (void *)((char *)buf + sizeof(*na));
 1551                 na->rx_rings = na->tx_rings + n;
 1552                 na->buff_size = NETMAP_BUF_SIZE;
 1553                 bcopy(na, buf, sizeof(*na));
 1554                 ifp->if_capabilities |= IFCAP_NETMAP;
 1555 
 1556                 na = buf;
 1557                 if (na->nm_lock == NULL)
 1558                         na->nm_lock = netmap_lock_wrapper;
 1559                 mtx_init(&na->core_lock, "netmap core lock", NULL, MTX_DEF);
 1560                 for (i = 0 ; i < num_queues; i++)
 1561                         mtx_init(&na->tx_rings[i].q_lock, "netmap txq lock", NULL, MTX_DEF);
 1562                 for (i = 0 ; i < num_queues; i++)
 1563                         mtx_init(&na->rx_rings[i].q_lock, "netmap rxq lock", NULL, MTX_DEF);
 1564         }
 1565         D("%s for %s", buf ? "ok" : "failed", ifp->if_xname);
 1566 
 1567         return (buf ? 0 : ENOMEM);
 1568 }
 1569 
 1570 
 1571 /*
 1572  * Free the allocated memory linked to the given ``netmap_adapter``
 1573  * object.
 1574  */
 1575 void
 1576 netmap_detach(struct ifnet *ifp)
 1577 {
 1578         u_int i;
 1579         struct netmap_adapter *na = NA(ifp);
 1580 
 1581         if (!na)
 1582                 return;
 1583 
 1584         for (i = 0; i < na->num_queues + 2; i++) {
 1585                 knlist_destroy(&na->tx_rings[i].si.si_note);
 1586                 knlist_destroy(&na->rx_rings[i].si.si_note);
 1587         }
 1588         bzero(na, sizeof(*na));
 1589         WNA(ifp) = NULL;
 1590         free(na, M_DEVBUF);
 1591 }
 1592 
 1593 
 1594 /*
 1595  * Intercept packets from the network stack and pass them
 1596  * to netmap as incoming packets on the 'software' ring.
 1597  * We are not locked when called.
 1598  */
 1599 int
 1600 netmap_start(struct ifnet *ifp, struct mbuf *m)
 1601 {
 1602         struct netmap_adapter *na = NA(ifp);
 1603         struct netmap_kring *kring = &na->rx_rings[na->num_queues];
 1604         u_int i, len = MBUF_LEN(m);
 1605         int error = EBUSY, lim = kring->nkr_num_slots - 1;
 1606         struct netmap_slot *slot;
 1607 
 1608         if (netmap_verbose & NM_VERB_HOST)
 1609                 D("%s packet %d len %d from the stack", ifp->if_xname,
 1610                         kring->nr_hwcur + kring->nr_hwavail, len);
 1611         na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
 1612         if (kring->nr_hwavail >= lim) {
 1613                 D("stack ring %s full\n", ifp->if_xname);
 1614                 goto done;      /* no space */
 1615         }
 1616         if (len > na->buff_size) {
 1617                 D("drop packet size %d > %d", len, na->buff_size);
 1618                 goto done;      /* too long for us */
 1619         }
 1620 
 1621         /* compute the insert position */
 1622         i = kring->nr_hwcur + kring->nr_hwavail;
 1623         if (i > lim)
 1624                 i -= lim + 1;
 1625         slot = &kring->ring->slot[i];
 1626         m_copydata(m, 0, len, NMB(slot));
 1627         slot->len = len;
 1628         kring->nr_hwavail++;
 1629         if (netmap_verbose  & NM_VERB_HOST)
 1630                 D("wake up host ring %s %d", na->ifp->if_xname, na->num_queues);
 1631         selwakeuppri(&kring->si, PI_NET);
 1632         error = 0;
 1633 done:
 1634         na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
 1635 
 1636         /* release the mbuf in either cases of success or failure. As an
 1637          * alternative, put the mbuf in a free list and free the list
 1638          * only when really necessary.
 1639          */
 1640         m_freem(m);
 1641 
 1642         return (error);
 1643 }
 1644 
 1645 
 1646 /*
 1647  * netmap_reset() is called by the driver routines when reinitializing
 1648  * a ring. The driver is in charge of locking to protect the kring.
 1649  * If netmap mode is not set just return NULL.
 1650  */
 1651 struct netmap_slot *
 1652 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n,
 1653         u_int new_cur)
 1654 {
 1655         struct netmap_kring *kring;
 1656         struct netmap_ring *ring;
 1657         int new_hwofs, lim;
 1658 
 1659         if (na == NULL)
 1660                 return NULL;    /* no netmap support here */
 1661         if (!(na->ifp->if_capenable & IFCAP_NETMAP))
 1662                 return NULL;    /* nothing to reinitialize */
 1663         kring = tx == NR_TX ?  na->tx_rings + n : na->rx_rings + n;
 1664         ring = kring->ring;
 1665         lim = kring->nkr_num_slots - 1;
 1666 
 1667         if (tx == NR_TX)
 1668                 new_hwofs = kring->nr_hwcur - new_cur;
 1669         else
 1670                 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
 1671         if (new_hwofs > lim)
 1672                 new_hwofs -= lim + 1;
 1673 
 1674         /* Alwayws set the new offset value and realign the ring. */
 1675         kring->nkr_hwofs = new_hwofs;
 1676         if (tx == NR_TX)
 1677                 kring->nr_hwavail = kring->nkr_num_slots - 1;
 1678         D("new hwofs %d on %s %s[%d]",
 1679                         kring->nkr_hwofs, na->ifp->if_xname,
 1680                         tx == NR_TX ? "TX" : "RX", n);
 1681 
 1682         /*
 1683          * We do the wakeup here, but the ring is not yet reconfigured.
 1684          * However, we are under lock so there are no races.
 1685          */
 1686         selwakeuppri(&kring->si, PI_NET);
 1687         selwakeuppri(&kring[na->num_queues + 1 - n].si, PI_NET);
 1688         return kring->ring->slot;
 1689 }
 1690 
 1691 
 1692 /*
 1693  * Default functions to handle rx/tx interrupts
 1694  * we have 4 cases:
 1695  * 1 ring, single lock:
 1696  *     lock(core); wake(i=0); unlock(core)
 1697  * N rings, single lock:
 1698  *     lock(core); wake(i); wake(N+1) unlock(core)
 1699  * 1 ring, separate locks: (i=0)
 1700  *     lock(i); wake(i); unlock(i)
 1701  * N rings, separate locks:
 1702  *     lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core)
 1703  */
 1704 int netmap_rx_irq(struct ifnet *ifp, int q, int *work_done)
 1705 {
 1706         struct netmap_adapter *na;
 1707         struct netmap_kring *r;
 1708 
 1709         if (!(ifp->if_capenable & IFCAP_NETMAP))
 1710                 return 0;
 1711         na = NA(ifp);
 1712         r = work_done ? na->rx_rings : na->tx_rings;
 1713         if (na->separate_locks) {
 1714                 mtx_lock(&r[q].q_lock);
 1715                 selwakeuppri(&r[q].si, PI_NET);
 1716                 mtx_unlock(&r[q].q_lock);
 1717                 if (na->num_queues > 1) {
 1718                         mtx_lock(&na->core_lock);
 1719                         selwakeuppri(&r[na->num_queues + 1].si, PI_NET);
 1720                         mtx_unlock(&na->core_lock);
 1721                 }
 1722         } else {
 1723                 mtx_lock(&na->core_lock);
 1724                 selwakeuppri(&r[q].si, PI_NET);
 1725                 if (na->num_queues > 1)
 1726                         selwakeuppri(&r[na->num_queues + 1].si, PI_NET);
 1727                 mtx_unlock(&na->core_lock);
 1728         }
 1729         if (work_done)
 1730                 *work_done = 1; /* do not fire napi again */
 1731         return 1;
 1732 }
 1733 
 1734 /*
 1735  * Module loader.
 1736  *
 1737  * Create the /dev/netmap device and initialize all global
 1738  * variables.
 1739  *
 1740  * Return 0 on success, errno on failure.
 1741  */
 1742 static int
 1743 netmap_init(void)
 1744 {
 1745         int error;
 1746 
 1747 
 1748         error = netmap_memory_init();
 1749         if (error != 0) {
 1750                 printf("netmap: unable to initialize the memory allocator.");
 1751                 return (error);
 1752         }
 1753         printf("netmap: loaded module with %d Mbytes\n",
 1754                 (int)(netmap_mem_d->nm_totalsize >> 20));
 1755 
 1756         netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
 1757                               "netmap");
 1758 
 1759         return (0);
 1760 }
 1761 
 1762 
 1763 /*
 1764  * Module unloader.
 1765  *
 1766  * Free all the memory, and destroy the ``/dev/netmap`` device.
 1767  */
 1768 static void
 1769 netmap_fini(void)
 1770 {
 1771         destroy_dev(netmap_dev);
 1772 
 1773         netmap_memory_fini();
 1774 
 1775         printf("netmap: unloaded module.\n");
 1776 }
 1777 
 1778 
 1779 /*
 1780  * Kernel entry point.
 1781  *
 1782  * Initialize/finalize the module and return.
 1783  *
 1784  * Return 0 on success, errno on failure.
 1785  */
 1786 static int
 1787 netmap_loader(__unused struct module *module, int event, __unused void *arg)
 1788 {
 1789         int error = 0;
 1790 
 1791         switch (event) {
 1792         case MOD_LOAD:
 1793                 error = netmap_init();
 1794                 break;
 1795 
 1796         case MOD_UNLOAD:
 1797                 netmap_fini();
 1798                 break;
 1799 
 1800         default:
 1801                 error = EOPNOTSUPP;
 1802                 break;
 1803         }
 1804 
 1805         return (error);
 1806 }
 1807 
 1808 
 1809 DEV_MODULE(netmap, netmap_loader, NULL);

Cache object: 3535dd63f976761d0bbbf59fe029c81c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.