The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netmap/netmap_freebsd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  *   1. Redistributions of source code must retain the above copyright
   10  *      notice, this list of conditions and the following disclaimer.
   11  *   2. Redistributions in binary form must reproduce the above copyright
   12  *      notice, this list of conditions and the following disclaimer in the
   13  *      documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /* $FreeBSD$ */
   29 #include "opt_inet.h"
   30 #include "opt_inet6.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/module.h>
   34 #include <sys/errno.h>
   35 #include <sys/eventhandler.h>
   36 #include <sys/jail.h>
   37 #include <sys/poll.h>  /* POLLIN, POLLOUT */
   38 #include <sys/kernel.h> /* types used in module initialization */
   39 #include <sys/conf.h>   /* DEV_MODULE_ORDERED */
   40 #include <sys/endian.h>
   41 #include <sys/syscallsubr.h> /* kern_ioctl() */
   42 
   43 #include <sys/rwlock.h>
   44 
   45 #include <vm/vm.h>      /* vtophys */
   46 #include <vm/pmap.h>    /* vtophys */
   47 #include <vm/vm_param.h>
   48 #include <vm/vm_object.h>
   49 #include <vm/vm_page.h>
   50 #include <vm/vm_pager.h>
   51 #include <vm/uma.h>
   52 
   53 
   54 #include <sys/malloc.h>
   55 #include <sys/socket.h> /* sockaddrs */
   56 #include <sys/selinfo.h>
   57 #include <sys/kthread.h> /* kthread_add() */
   58 #include <sys/proc.h> /* PROC_LOCK() */
   59 #include <sys/unistd.h> /* RFNOWAIT */
   60 #include <sys/sched.h> /* sched_bind() */
   61 #include <sys/smp.h> /* mp_maxid */
   62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
   63 #include <net/if.h>
   64 #include <net/if_var.h>
   65 #include <net/if_types.h> /* IFT_ETHER */
   66 #include <net/ethernet.h> /* ether_ifdetach */
   67 #include <net/if_dl.h> /* LLADDR */
   68 #include <machine/bus.h>        /* bus_dmamap_* */
   69 #include <netinet/in.h>         /* in6_cksum_pseudo() */
   70 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
   71 
   72 #include <net/netmap.h>
   73 #include <dev/netmap/netmap_kern.h>
   74 #include <net/netmap_virt.h>
   75 #include <dev/netmap/netmap_mem2.h>
   76 
   77 
   78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
   79 
   80 static void
   81 nm_kqueue_notify(void *opaque, int pending)
   82 {
   83         struct nm_selinfo *si = opaque;
   84 
   85         /* We use a non-zero hint to distinguish this notification call
   86          * from the call done in kqueue_scan(), which uses hint=0.
   87          */
   88         KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
   89 }
   90 
   91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
   92         int err;
   93 
   94         TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
   95         si->ntfytq = taskqueue_create(name, M_NOWAIT,
   96             taskqueue_thread_enqueue, &si->ntfytq);
   97         if (si->ntfytq == NULL)
   98                 return -ENOMEM;
   99         err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
  100         if (err) {
  101                 taskqueue_free(si->ntfytq);
  102                 si->ntfytq = NULL;
  103                 return err;
  104         }
  105 
  106         snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
  107         mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
  108         knlist_init_mtx(&si->si.si_note, &si->m);
  109         si->kqueue_users = 0;
  110 
  111         return (0);
  112 }
  113 
  114 void
  115 nm_os_selinfo_uninit(NM_SELINFO_T *si)
  116 {
  117         if (si->ntfytq == NULL) {
  118                 return; /* si was not initialized */
  119         }
  120         taskqueue_drain(si->ntfytq, &si->ntfytask);
  121         taskqueue_free(si->ntfytq);
  122         si->ntfytq = NULL;
  123         knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
  124         knlist_destroy(&si->si.si_note);
  125         /* now we don't need the mutex anymore */
  126         mtx_destroy(&si->m);
  127 }
  128 
  129 void *
  130 nm_os_malloc(size_t size)
  131 {
  132         return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
  133 }
  134 
  135 void *
  136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
  137 {
  138         return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
  139 }
  140 
  141 void
  142 nm_os_free(void *addr)
  143 {
  144         free(addr, M_DEVBUF);
  145 }
  146 
  147 void
  148 nm_os_ifnet_lock(void)
  149 {
  150         IFNET_RLOCK();
  151 }
  152 
  153 void
  154 nm_os_ifnet_unlock(void)
  155 {
  156         IFNET_RUNLOCK();
  157 }
  158 
  159 static int netmap_use_count = 0;
  160 
  161 void
  162 nm_os_get_module(void)
  163 {
  164         netmap_use_count++;
  165 }
  166 
  167 void
  168 nm_os_put_module(void)
  169 {
  170         netmap_use_count--;
  171 }
  172 
  173 static void
  174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
  175 {
  176         netmap_undo_zombie(ifp);
  177 }
  178 
  179 static void
  180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
  181 {
  182         netmap_make_zombie(ifp);
  183 }
  184 
  185 static eventhandler_tag nm_ifnet_ah_tag;
  186 static eventhandler_tag nm_ifnet_dh_tag;
  187 
  188 int
  189 nm_os_ifnet_init(void)
  190 {
  191         nm_ifnet_ah_tag =
  192                 EVENTHANDLER_REGISTER(ifnet_arrival_event,
  193                                 netmap_ifnet_arrival_handler,
  194                                 NULL, EVENTHANDLER_PRI_ANY);
  195         nm_ifnet_dh_tag =
  196                 EVENTHANDLER_REGISTER(ifnet_departure_event,
  197                                 netmap_ifnet_departure_handler,
  198                                 NULL, EVENTHANDLER_PRI_ANY);
  199         return 0;
  200 }
  201 
  202 void
  203 nm_os_ifnet_fini(void)
  204 {
  205         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
  206                         nm_ifnet_ah_tag);
  207         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
  208                         nm_ifnet_dh_tag);
  209 }
  210 
  211 unsigned
  212 nm_os_ifnet_mtu(struct ifnet *ifp)
  213 {
  214         return ifp->if_mtu;
  215 }
  216 
  217 rawsum_t
  218 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
  219 {
  220         /* TODO XXX please use the FreeBSD implementation for this. */
  221         uint16_t *words = (uint16_t *)data;
  222         int nw = len / 2;
  223         int i;
  224 
  225         for (i = 0; i < nw; i++)
  226                 cur_sum += be16toh(words[i]);
  227 
  228         if (len & 1)
  229                 cur_sum += (data[len-1] << 8);
  230 
  231         return cur_sum;
  232 }
  233 
  234 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
  235  * return value is in network byte order.
  236  */
  237 uint16_t
  238 nm_os_csum_fold(rawsum_t cur_sum)
  239 {
  240         /* TODO XXX please use the FreeBSD implementation for this. */
  241         while (cur_sum >> 16)
  242                 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
  243 
  244         return htobe16((~cur_sum) & 0xFFFF);
  245 }
  246 
  247 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
  248 {
  249 #if 0
  250         return in_cksum_hdr((void *)iph);
  251 #else
  252         return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
  253 #endif
  254 }
  255 
  256 void
  257 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
  258                                         size_t datalen, uint16_t *check)
  259 {
  260 #ifdef INET
  261         uint16_t pseudolen = datalen + iph->protocol;
  262 
  263         /* Compute and insert the pseudo-header checksum. */
  264         *check = in_pseudo(iph->saddr, iph->daddr,
  265                                  htobe16(pseudolen));
  266         /* Compute the checksum on TCP/UDP header + payload
  267          * (includes the pseudo-header).
  268          */
  269         *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
  270 #else
  271         static int notsupported = 0;
  272         if (!notsupported) {
  273                 notsupported = 1;
  274                 nm_prerr("inet4 segmentation not supported");
  275         }
  276 #endif
  277 }
  278 
  279 void
  280 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
  281                                         size_t datalen, uint16_t *check)
  282 {
  283 #ifdef INET6
  284         *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
  285         *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
  286 #else
  287         static int notsupported = 0;
  288         if (!notsupported) {
  289                 notsupported = 1;
  290                 nm_prerr("inet6 segmentation not supported");
  291         }
  292 #endif
  293 }
  294 
  295 /* on FreeBSD we send up one packet at a time */
  296 void *
  297 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
  298 {
  299         NA(ifp)->if_input(ifp, m);
  300         return NULL;
  301 }
  302 
  303 int
  304 nm_os_mbuf_has_csum_offld(struct mbuf *m)
  305 {
  306         return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
  307                                          CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
  308                                          CSUM_SCTP_IPV6);
  309 }
  310 
  311 int
  312 nm_os_mbuf_has_seg_offld(struct mbuf *m)
  313 {
  314         return m->m_pkthdr.csum_flags & CSUM_TSO;
  315 }
  316 
  317 static void
  318 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
  319 {
  320         int stolen;
  321 
  322         if (unlikely(!NM_NA_VALID(ifp))) {
  323                 nm_prlim(1, "Warning: RX packet intercepted, but no"
  324                                 " emulated adapter");
  325                 return;
  326         }
  327 
  328         stolen = generic_rx_handler(ifp, m);
  329         if (!stolen) {
  330                 struct netmap_generic_adapter *gna =
  331                                 (struct netmap_generic_adapter *)NA(ifp);
  332                 gna->save_if_input(ifp, m);
  333         }
  334 }
  335 
  336 /*
  337  * Intercept the rx routine in the standard device driver.
  338  * Second argument is non-zero to intercept, 0 to restore
  339  */
  340 int
  341 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
  342 {
  343         struct netmap_adapter *na = &gna->up.up;
  344         struct ifnet *ifp = na->ifp;
  345         int ret = 0;
  346 
  347         nm_os_ifnet_lock();
  348         if (intercept) {
  349                 if (gna->save_if_input) {
  350                         nm_prerr("RX on %s already intercepted", na->name);
  351                         ret = EBUSY; /* already set */
  352                         goto out;
  353                 }
  354 
  355                 ifp->if_capenable |= IFCAP_NETMAP;
  356                 gna->save_if_input = ifp->if_input;
  357                 ifp->if_input = freebsd_generic_rx_handler;
  358         } else {
  359                 if (!gna->save_if_input) {
  360                         nm_prerr("Failed to undo RX intercept on %s",
  361                                 na->name);
  362                         ret = EINVAL;  /* not saved */
  363                         goto out;
  364                 }
  365 
  366                 ifp->if_capenable &= ~IFCAP_NETMAP;
  367                 ifp->if_input = gna->save_if_input;
  368                 gna->save_if_input = NULL;
  369         }
  370 out:
  371         nm_os_ifnet_unlock();
  372 
  373         return ret;
  374 }
  375 
  376 
  377 /*
  378  * Intercept the packet steering routine in the tx path,
  379  * so that we can decide which queue is used for an mbuf.
  380  * Second argument is non-zero to intercept, 0 to restore.
  381  * On freebsd we just intercept if_transmit.
  382  */
  383 int
  384 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
  385 {
  386         struct netmap_adapter *na = &gna->up.up;
  387         struct ifnet *ifp = netmap_generic_getifp(gna);
  388 
  389         nm_os_ifnet_lock();
  390         if (intercept) {
  391                 na->if_transmit = ifp->if_transmit;
  392                 ifp->if_transmit = netmap_transmit;
  393         } else {
  394                 ifp->if_transmit = na->if_transmit;
  395         }
  396         nm_os_ifnet_unlock();
  397 
  398         return 0;
  399 }
  400 
  401 
  402 /*
  403  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
  404  * and non-zero on error (which may be packet drops or other errors).
  405  * addr and len identify the netmap buffer, m is the (preallocated)
  406  * mbuf to use for transmissions.
  407  *
  408  * We should add a reference to the mbuf so the m_freem() at the end
  409  * of the transmission does not consume resources.
  410  *
  411  * On FreeBSD, and on multiqueue cards, we can force the queue using
  412  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
  413  *              i = m->m_pkthdr.flowid % adapter->num_queues;
  414  *      else
  415  *              i = curcpu % adapter->num_queues;
  416  *
  417  */
  418 int
  419 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
  420 {
  421         int ret;
  422         u_int len = a->len;
  423         struct ifnet *ifp = a->ifp;
  424         struct mbuf *m = a->m;
  425 
  426         /* Link the external storage to
  427          * the netmap buffer, so that no copy is necessary. */
  428         m->m_ext.ext_buf = m->m_data = a->addr;
  429         m->m_ext.ext_size = len;
  430 
  431         m->m_flags |= M_PKTHDR;
  432         m->m_len = m->m_pkthdr.len = len;
  433 
  434         /* mbuf refcnt is not contended, no need to use atomic
  435          * (a memory barrier is enough). */
  436         SET_MBUF_REFCNT(m, 2);
  437         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
  438         m->m_pkthdr.flowid = a->ring_nr;
  439         m->m_pkthdr.rcvif = ifp; /* used for tx notification */
  440         CURVNET_SET(ifp->if_vnet);
  441         ret = NA(ifp)->if_transmit(ifp, m);
  442         CURVNET_RESTORE();
  443         return ret ? -1 : 0;
  444 }
  445 
  446 
  447 struct netmap_adapter *
  448 netmap_getna(if_t ifp)
  449 {
  450         return (NA((struct ifnet *)ifp));
  451 }
  452 
  453 /*
  454  * The following two functions are empty until we have a generic
  455  * way to extract the info from the ifp
  456  */
  457 int
  458 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
  459 {
  460         return 0;
  461 }
  462 
  463 
  464 void
  465 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
  466 {
  467         unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
  468 
  469         *txq = num_rings;
  470         *rxq = num_rings;
  471 }
  472 
  473 void
  474 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
  475 {
  476 
  477         gna->rxsg = 1; /* Supported through m_copydata. */
  478         gna->txqdisc = 0; /* Not supported. */
  479 }
  480 
  481 void
  482 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
  483 {
  484         mit->mit_pending = 0;
  485         mit->mit_ring_idx = idx;
  486         mit->mit_na = na;
  487 }
  488 
  489 
  490 void
  491 nm_os_mitigation_start(struct nm_generic_mit *mit)
  492 {
  493 }
  494 
  495 
  496 void
  497 nm_os_mitigation_restart(struct nm_generic_mit *mit)
  498 {
  499 }
  500 
  501 
  502 int
  503 nm_os_mitigation_active(struct nm_generic_mit *mit)
  504 {
  505 
  506         return 0;
  507 }
  508 
  509 
  510 void
  511 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
  512 {
  513 }
  514 
  515 static int
  516 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
  517 {
  518 
  519         return EINVAL;
  520 }
  521 
  522 static void
  523 nm_vi_start(struct ifnet *ifp)
  524 {
  525         panic("nm_vi_start() must not be called");
  526 }
  527 
  528 /*
  529  * Index manager of persistent virtual interfaces.
  530  * It is used to decide the lowest byte of the MAC address.
  531  * We use the same algorithm with management of bridge port index.
  532  */
  533 #define NM_VI_MAX       255
  534 static struct {
  535         uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
  536         uint8_t active;
  537         struct mtx lock;
  538 } nm_vi_indices;
  539 
  540 void
  541 nm_os_vi_init_index(void)
  542 {
  543         int i;
  544         for (i = 0; i < NM_VI_MAX; i++)
  545                 nm_vi_indices.index[i] = i;
  546         nm_vi_indices.active = 0;
  547         mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
  548 }
  549 
  550 /* return -1 if no index available */
  551 static int
  552 nm_vi_get_index(void)
  553 {
  554         int ret;
  555 
  556         mtx_lock(&nm_vi_indices.lock);
  557         ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
  558                 nm_vi_indices.index[nm_vi_indices.active++];
  559         mtx_unlock(&nm_vi_indices.lock);
  560         return ret;
  561 }
  562 
  563 static void
  564 nm_vi_free_index(uint8_t val)
  565 {
  566         int i, lim;
  567 
  568         mtx_lock(&nm_vi_indices.lock);
  569         lim = nm_vi_indices.active;
  570         for (i = 0; i < lim; i++) {
  571                 if (nm_vi_indices.index[i] == val) {
  572                         /* swap index[lim-1] and j */
  573                         int tmp = nm_vi_indices.index[lim-1];
  574                         nm_vi_indices.index[lim-1] = val;
  575                         nm_vi_indices.index[i] = tmp;
  576                         nm_vi_indices.active--;
  577                         break;
  578                 }
  579         }
  580         if (lim == nm_vi_indices.active)
  581                 nm_prerr("Index %u not found", val);
  582         mtx_unlock(&nm_vi_indices.lock);
  583 }
  584 #undef NM_VI_MAX
  585 
  586 /*
  587  * Implementation of a netmap-capable virtual interface that
  588  * registered to the system.
  589  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
  590  *
  591  * Note: Linux sets refcount to 0 on allocation of net_device,
  592  * then increments it on registration to the system.
  593  * FreeBSD sets refcount to 1 on if_alloc(), and does not
  594  * increment this refcount on if_attach().
  595  */
  596 int
  597 nm_os_vi_persist(const char *name, struct ifnet **ret)
  598 {
  599         struct ifnet *ifp;
  600         u_short macaddr_hi;
  601         uint32_t macaddr_mid;
  602         u_char eaddr[6];
  603         int unit = nm_vi_get_index(); /* just to decide MAC address */
  604 
  605         if (unit < 0)
  606                 return EBUSY;
  607         /*
  608          * We use the same MAC address generation method with tap
  609          * except for the highest octet is 00:be instead of 00:bd
  610          */
  611         macaddr_hi = htons(0x00be); /* XXX tap + 1 */
  612         macaddr_mid = (uint32_t) ticks;
  613         bcopy(&macaddr_hi, eaddr, sizeof(short));
  614         bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
  615         eaddr[5] = (uint8_t)unit;
  616 
  617         ifp = if_alloc(IFT_ETHER);
  618         if (ifp == NULL) {
  619                 nm_prerr("if_alloc failed");
  620                 return ENOMEM;
  621         }
  622         if_initname(ifp, name, IF_DUNIT_NONE);
  623         ifp->if_mtu = 65536;
  624         ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
  625         ifp->if_init = (void *)nm_vi_dummy;
  626         ifp->if_ioctl = nm_vi_dummy;
  627         ifp->if_start = nm_vi_start;
  628         ifp->if_mtu = ETHERMTU;
  629         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  630         ifp->if_capabilities |= IFCAP_LINKSTATE;
  631         ifp->if_capenable |= IFCAP_LINKSTATE;
  632 
  633         ether_ifattach(ifp, eaddr);
  634         *ret = ifp;
  635         return 0;
  636 }
  637 
  638 /* unregister from the system and drop the final refcount */
  639 void
  640 nm_os_vi_detach(struct ifnet *ifp)
  641 {
  642         nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
  643         ether_ifdetach(ifp);
  644         if_free(ifp);
  645 }
  646 
  647 #ifdef WITH_EXTMEM
  648 #include <vm/vm_map.h>
  649 #include <vm/vm_extern.h>
  650 #include <vm/vm_kern.h>
  651 struct nm_os_extmem {
  652         vm_object_t obj;
  653         vm_offset_t kva;
  654         vm_offset_t size;
  655         uintptr_t scan;
  656 };
  657 
  658 void
  659 nm_os_extmem_delete(struct nm_os_extmem *e)
  660 {
  661         nm_prinf("freeing %zx bytes", (size_t)e->size);
  662         vm_map_remove(kernel_map, e->kva, e->kva + e->size);
  663         nm_os_free(e);
  664 }
  665 
  666 char *
  667 nm_os_extmem_nextpage(struct nm_os_extmem *e)
  668 {
  669         char *rv = NULL;
  670         if (e->scan < e->kva + e->size) {
  671                 rv = (char *)e->scan;
  672                 e->scan += PAGE_SIZE;
  673         }
  674         return rv;
  675 }
  676 
  677 int
  678 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
  679 {
  680         return (e1->obj == e2->obj);
  681 }
  682 
  683 int
  684 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
  685 {
  686         return e->size >> PAGE_SHIFT;
  687 }
  688 
  689 struct nm_os_extmem *
  690 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
  691 {
  692         vm_map_t map;
  693         vm_map_entry_t entry;
  694         vm_object_t obj;
  695         vm_prot_t prot;
  696         vm_pindex_t index;
  697         boolean_t wired;
  698         struct nm_os_extmem *e = NULL;
  699         int rv, error = 0;
  700 
  701         e = nm_os_malloc(sizeof(*e));
  702         if (e == NULL) {
  703                 error = ENOMEM;
  704                 goto out;
  705         }
  706 
  707         map = &curthread->td_proc->p_vmspace->vm_map;
  708         rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
  709                         &obj, &index, &prot, &wired);
  710         if (rv != KERN_SUCCESS) {
  711                 nm_prerr("address %lx not found", p);
  712                 error = vm_mmap_to_errno(rv);
  713                 goto out_free;
  714         }
  715         vm_object_reference(obj);
  716 
  717         /* check that we are given the whole vm_object ? */
  718         vm_map_lookup_done(map, entry);
  719 
  720         e->obj = obj;
  721         /* Wire the memory and add the vm_object to the kernel map,
  722          * to make sure that it is not freed even if all the processes
  723          * that are mmap()ing should munmap() it.
  724          */
  725         e->kva = vm_map_min(kernel_map);
  726         e->size = obj->size << PAGE_SHIFT;
  727         rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
  728                         VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
  729                         VM_PROT_READ | VM_PROT_WRITE, 0);
  730         if (rv != KERN_SUCCESS) {
  731                 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
  732                 error = vm_mmap_to_errno(rv);
  733                 goto out_rel;
  734         }
  735         rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
  736                         VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  737         if (rv != KERN_SUCCESS) {
  738                 nm_prerr("vm_map_wire failed");
  739                 error = vm_mmap_to_errno(rv);
  740                 goto out_rem;
  741         }
  742 
  743         e->scan = e->kva;
  744 
  745         return e;
  746 
  747 out_rem:
  748         vm_map_remove(kernel_map, e->kva, e->kva + e->size);
  749 out_rel:
  750         vm_object_deallocate(e->obj);
  751         e->obj = NULL;
  752 out_free:
  753         nm_os_free(e);
  754 out:
  755         if (perror)
  756                 *perror = error;
  757         return NULL;
  758 }
  759 #endif /* WITH_EXTMEM */
  760 
  761 /* ================== PTNETMAP GUEST SUPPORT ==================== */
  762 
  763 #ifdef WITH_PTNETMAP
  764 #include <sys/bus.h>
  765 #include <sys/rman.h>
  766 #include <machine/bus.h>        /* bus_dmamap_* */
  767 #include <machine/resource.h>
  768 #include <dev/pci/pcivar.h>
  769 #include <dev/pci/pcireg.h>
  770 /*
  771  * ptnetmap memory device (memdev) for freebsd guest,
  772  * ssed to expose host netmap memory to the guest through a PCI BAR.
  773  */
  774 
  775 /*
  776  * ptnetmap memdev private data structure
  777  */
  778 struct ptnetmap_memdev {
  779         device_t dev;
  780         struct resource *pci_io;
  781         struct resource *pci_mem;
  782         struct netmap_mem_d *nm_mem;
  783 };
  784 
  785 static int      ptn_memdev_probe(device_t);
  786 static int      ptn_memdev_attach(device_t);
  787 static int      ptn_memdev_detach(device_t);
  788 static int      ptn_memdev_shutdown(device_t);
  789 
  790 static device_method_t ptn_memdev_methods[] = {
  791         DEVMETHOD(device_probe, ptn_memdev_probe),
  792         DEVMETHOD(device_attach, ptn_memdev_attach),
  793         DEVMETHOD(device_detach, ptn_memdev_detach),
  794         DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
  795         DEVMETHOD_END
  796 };
  797 
  798 static driver_t ptn_memdev_driver = {
  799         PTNETMAP_MEMDEV_NAME,
  800         ptn_memdev_methods,
  801         sizeof(struct ptnetmap_memdev),
  802 };
  803 
  804 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
  805  * below. */
  806 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL,
  807                       SI_ORDER_MIDDLE + 1);
  808 
  809 /*
  810  * Map host netmap memory through PCI-BAR in the guest OS,
  811  * returning physical (nm_paddr) and virtual (nm_addr) addresses
  812  * of the netmap memory mapped in the guest.
  813  */
  814 int
  815 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
  816                       void **nm_addr, uint64_t *mem_size)
  817 {
  818         int rid;
  819 
  820         nm_prinf("ptn_memdev_driver iomap");
  821 
  822         rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
  823         *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
  824         *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
  825                         (*mem_size << 32);
  826 
  827         /* map memory allocator */
  828         ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
  829                         &rid, 0, ~0, *mem_size, RF_ACTIVE);
  830         if (ptn_dev->pci_mem == NULL) {
  831                 *nm_paddr = 0;
  832                 *nm_addr = NULL;
  833                 return ENOMEM;
  834         }
  835 
  836         *nm_paddr = rman_get_start(ptn_dev->pci_mem);
  837         *nm_addr = rman_get_virtual(ptn_dev->pci_mem);
  838 
  839         nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
  840                         PTNETMAP_MEM_PCI_BAR,
  841                         (unsigned long)(*nm_paddr),
  842                         (unsigned long)rman_get_size(ptn_dev->pci_mem),
  843                         (unsigned long)*mem_size);
  844         return (0);
  845 }
  846 
  847 uint32_t
  848 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
  849 {
  850         return bus_read_4(ptn_dev->pci_io, reg);
  851 }
  852 
  853 /* Unmap host netmap memory. */
  854 void
  855 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
  856 {
  857         nm_prinf("ptn_memdev_driver iounmap");
  858 
  859         if (ptn_dev->pci_mem) {
  860                 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
  861                         PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
  862                 ptn_dev->pci_mem = NULL;
  863         }
  864 }
  865 
  866 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
  867  * positive on failure */
  868 static int
  869 ptn_memdev_probe(device_t dev)
  870 {
  871         char desc[256];
  872 
  873         if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
  874                 return (ENXIO);
  875         if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
  876                 return (ENXIO);
  877 
  878         snprintf(desc, sizeof(desc), "%s PCI adapter",
  879                         PTNETMAP_MEMDEV_NAME);
  880         device_set_desc_copy(dev, desc);
  881 
  882         return (BUS_PROBE_DEFAULT);
  883 }
  884 
  885 /* Device initialization routine. */
  886 static int
  887 ptn_memdev_attach(device_t dev)
  888 {
  889         struct ptnetmap_memdev *ptn_dev;
  890         int rid;
  891         uint16_t mem_id;
  892 
  893         ptn_dev = device_get_softc(dev);
  894         ptn_dev->dev = dev;
  895 
  896         pci_enable_busmaster(dev);
  897 
  898         rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
  899         ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
  900                                                  RF_ACTIVE);
  901         if (ptn_dev->pci_io == NULL) {
  902                 device_printf(dev, "cannot map I/O space\n");
  903                 return (ENXIO);
  904         }
  905 
  906         mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
  907 
  908         /* create guest allocator */
  909         ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
  910         if (ptn_dev->nm_mem == NULL) {
  911                 ptn_memdev_detach(dev);
  912                 return (ENOMEM);
  913         }
  914         netmap_mem_get(ptn_dev->nm_mem);
  915 
  916         nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
  917 
  918         return (0);
  919 }
  920 
  921 /* Device removal routine. */
  922 static int
  923 ptn_memdev_detach(device_t dev)
  924 {
  925         struct ptnetmap_memdev *ptn_dev;
  926 
  927         ptn_dev = device_get_softc(dev);
  928 
  929         if (ptn_dev->nm_mem) {
  930                 nm_prinf("ptnetmap memdev detached, host memid %u",
  931                         netmap_mem_get_id(ptn_dev->nm_mem));
  932                 netmap_mem_put(ptn_dev->nm_mem);
  933                 ptn_dev->nm_mem = NULL;
  934         }
  935         if (ptn_dev->pci_mem) {
  936                 bus_release_resource(dev, SYS_RES_MEMORY,
  937                         PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
  938                 ptn_dev->pci_mem = NULL;
  939         }
  940         if (ptn_dev->pci_io) {
  941                 bus_release_resource(dev, SYS_RES_IOPORT,
  942                         PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
  943                 ptn_dev->pci_io = NULL;
  944         }
  945 
  946         return (0);
  947 }
  948 
  949 static int
  950 ptn_memdev_shutdown(device_t dev)
  951 {
  952         return bus_generic_shutdown(dev);
  953 }
  954 
  955 #endif /* WITH_PTNETMAP */
  956 
  957 /*
  958  * In order to track whether pages are still mapped, we hook into
  959  * the standard cdev_pager and intercept the constructor and
  960  * destructor.
  961  */
  962 
  963 struct netmap_vm_handle_t {
  964         struct cdev             *dev;
  965         struct netmap_priv_d    *priv;
  966 };
  967 
  968 
  969 static int
  970 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
  971                 vm_ooffset_t foff, struct ucred *cred, u_short *color)
  972 {
  973         struct netmap_vm_handle_t *vmh = handle;
  974 
  975         if (netmap_verbose)
  976                 nm_prinf("handle %p size %jd prot %d foff %jd",
  977                         handle, (intmax_t)size, prot, (intmax_t)foff);
  978         if (color)
  979                 *color = 0;
  980         dev_ref(vmh->dev);
  981         return 0;
  982 }
  983 
  984 
  985 static void
  986 netmap_dev_pager_dtor(void *handle)
  987 {
  988         struct netmap_vm_handle_t *vmh = handle;
  989         struct cdev *dev = vmh->dev;
  990         struct netmap_priv_d *priv = vmh->priv;
  991 
  992         if (netmap_verbose)
  993                 nm_prinf("handle %p", handle);
  994         netmap_dtor(priv);
  995         free(vmh, M_DEVBUF);
  996         dev_rel(dev);
  997 }
  998 
  999 
 1000 static int
 1001 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
 1002         int prot, vm_page_t *mres)
 1003 {
 1004         struct netmap_vm_handle_t *vmh = object->handle;
 1005         struct netmap_priv_d *priv = vmh->priv;
 1006         struct netmap_adapter *na = priv->np_na;
 1007         vm_paddr_t paddr;
 1008         vm_page_t page;
 1009         vm_memattr_t memattr;
 1010 
 1011         nm_prdis("object %p offset %jd prot %d mres %p",
 1012                         object, (intmax_t)offset, prot, mres);
 1013         memattr = object->memattr;
 1014         paddr = netmap_mem_ofstophys(na->nm_mem, offset);
 1015         if (paddr == 0)
 1016                 return VM_PAGER_FAIL;
 1017 
 1018         if (((*mres)->flags & PG_FICTITIOUS) != 0) {
 1019                 /*
 1020                  * If the passed in result page is a fake page, update it with
 1021                  * the new physical address.
 1022                  */
 1023                 page = *mres;
 1024                 vm_page_updatefake(page, paddr, memattr);
 1025         } else {
 1026                 /*
 1027                  * Replace the passed in reqpage page with our own fake page and
 1028                  * free up the all of the original pages.
 1029                  */
 1030 #ifndef VM_OBJECT_WUNLOCK       /* FreeBSD < 10.x */
 1031 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
 1032 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK
 1033 #endif /* VM_OBJECT_WUNLOCK */
 1034 
 1035                 VM_OBJECT_WUNLOCK(object);
 1036                 page = vm_page_getfake(paddr, memattr);
 1037                 VM_OBJECT_WLOCK(object);
 1038                 vm_page_replace(page, object, (*mres)->pindex, *mres);
 1039                 *mres = page;
 1040         }
 1041         page->valid = VM_PAGE_BITS_ALL;
 1042         return (VM_PAGER_OK);
 1043 }
 1044 
 1045 
 1046 static struct cdev_pager_ops netmap_cdev_pager_ops = {
 1047         .cdev_pg_ctor = netmap_dev_pager_ctor,
 1048         .cdev_pg_dtor = netmap_dev_pager_dtor,
 1049         .cdev_pg_fault = netmap_dev_pager_fault,
 1050 };
 1051 
 1052 
 1053 static int
 1054 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
 1055         vm_size_t objsize,  vm_object_t *objp, int prot)
 1056 {
 1057         int error;
 1058         struct netmap_vm_handle_t *vmh;
 1059         struct netmap_priv_d *priv;
 1060         vm_object_t obj;
 1061 
 1062         if (netmap_verbose)
 1063                 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
 1064                     (intmax_t )*foff, (intmax_t )objsize, objp, prot);
 1065 
 1066         vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
 1067                               M_NOWAIT | M_ZERO);
 1068         if (vmh == NULL)
 1069                 return ENOMEM;
 1070         vmh->dev = cdev;
 1071 
 1072         NMG_LOCK();
 1073         error = devfs_get_cdevpriv((void**)&priv);
 1074         if (error)
 1075                 goto err_unlock;
 1076         if (priv->np_nifp == NULL) {
 1077                 error = EINVAL;
 1078                 goto err_unlock;
 1079         }
 1080         vmh->priv = priv;
 1081         priv->np_refs++;
 1082         NMG_UNLOCK();
 1083 
 1084         obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
 1085                 &netmap_cdev_pager_ops, objsize, prot,
 1086                 *foff, NULL);
 1087         if (obj == NULL) {
 1088                 nm_prerr("cdev_pager_allocate failed");
 1089                 error = EINVAL;
 1090                 goto err_deref;
 1091         }
 1092 
 1093         *objp = obj;
 1094         return 0;
 1095 
 1096 err_deref:
 1097         NMG_LOCK();
 1098         priv->np_refs--;
 1099 err_unlock:
 1100         NMG_UNLOCK();
 1101 // err:
 1102         free(vmh, M_DEVBUF);
 1103         return error;
 1104 }
 1105 
 1106 /*
 1107  * On FreeBSD the close routine is only called on the last close on
 1108  * the device (/dev/netmap) so we cannot do anything useful.
 1109  * To track close() on individual file descriptors we pass netmap_dtor() to
 1110  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
 1111  * when the last fd pointing to the device is closed.
 1112  *
 1113  * Note that FreeBSD does not even munmap() on close() so we also have
 1114  * to track mmap() ourselves, and postpone the call to
 1115  * netmap_dtor() is called when the process has no open fds and no active
 1116  * memory maps on /dev/netmap, as in linux.
 1117  */
 1118 static int
 1119 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
 1120 {
 1121         if (netmap_verbose)
 1122                 nm_prinf("dev %p fflag 0x%x devtype %d td %p",
 1123                         dev, fflag, devtype, td);
 1124         return 0;
 1125 }
 1126 
 1127 
 1128 static int
 1129 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
 1130 {
 1131         struct netmap_priv_d *priv;
 1132         int error;
 1133 
 1134         (void)dev;
 1135         (void)oflags;
 1136         (void)devtype;
 1137         (void)td;
 1138 
 1139         NMG_LOCK();
 1140         priv = netmap_priv_new();
 1141         if (priv == NULL) {
 1142                 error = ENOMEM;
 1143                 goto out;
 1144         }
 1145         error = devfs_set_cdevpriv(priv, netmap_dtor);
 1146         if (error) {
 1147                 netmap_priv_delete(priv);
 1148         }
 1149 out:
 1150         NMG_UNLOCK();
 1151         return error;
 1152 }
 1153 
 1154 /******************** kthread wrapper ****************/
 1155 #include <sys/sysproto.h>
 1156 u_int
 1157 nm_os_ncpus(void)
 1158 {
 1159         return mp_maxid + 1;
 1160 }
 1161 
 1162 struct nm_kctx_ctx {
 1163         /* Userspace thread (kthread creator). */
 1164         struct thread *user_td;
 1165 
 1166         /* worker function and parameter */
 1167         nm_kctx_worker_fn_t worker_fn;
 1168         void *worker_private;
 1169 
 1170         struct nm_kctx *nmk;
 1171 
 1172         /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
 1173         long type;
 1174 };
 1175 
 1176 struct nm_kctx {
 1177         struct thread *worker;
 1178         struct mtx worker_lock;
 1179         struct nm_kctx_ctx worker_ctx;
 1180         int run;                        /* used to stop kthread */
 1181         int attach_user;                /* kthread attached to user_process */
 1182         int affinity;
 1183 };
 1184 
 1185 static void
 1186 nm_kctx_worker(void *data)
 1187 {
 1188         struct nm_kctx *nmk = data;
 1189         struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
 1190 
 1191         if (nmk->affinity >= 0) {
 1192                 thread_lock(curthread);
 1193                 sched_bind(curthread, nmk->affinity);
 1194                 thread_unlock(curthread);
 1195         }
 1196 
 1197         while (nmk->run) {
 1198                 /*
 1199                  * check if the parent process dies
 1200                  * (when kthread is attached to user process)
 1201                  */
 1202                 if (ctx->user_td) {
 1203                         PROC_LOCK(curproc);
 1204                         thread_suspend_check(0);
 1205                         PROC_UNLOCK(curproc);
 1206                 } else {
 1207                         kthread_suspend_check();
 1208                 }
 1209 
 1210                 /* Continuously execute worker process. */
 1211                 ctx->worker_fn(ctx->worker_private); /* worker body */
 1212         }
 1213 
 1214         kthread_exit();
 1215 }
 1216 
 1217 void
 1218 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
 1219 {
 1220         nmk->affinity = affinity;
 1221 }
 1222 
 1223 struct nm_kctx *
 1224 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
 1225 {
 1226         struct nm_kctx *nmk = NULL;
 1227 
 1228         nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
 1229         if (!nmk)
 1230                 return NULL;
 1231 
 1232         mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
 1233         nmk->worker_ctx.worker_fn = cfg->worker_fn;
 1234         nmk->worker_ctx.worker_private = cfg->worker_private;
 1235         nmk->worker_ctx.type = cfg->type;
 1236         nmk->affinity = -1;
 1237 
 1238         /* attach kthread to user process (ptnetmap) */
 1239         nmk->attach_user = cfg->attach_user;
 1240 
 1241         return nmk;
 1242 }
 1243 
 1244 int
 1245 nm_os_kctx_worker_start(struct nm_kctx *nmk)
 1246 {
 1247         struct proc *p = NULL;
 1248         int error = 0;
 1249 
 1250         /* Temporarily disable this function as it is currently broken
 1251          * and causes kernel crashes. The failure can be triggered by
 1252          * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
 1253         return EOPNOTSUPP;
 1254 
 1255         if (nmk->worker)
 1256                 return EBUSY;
 1257 
 1258         /* check if we want to attach kthread to user process */
 1259         if (nmk->attach_user) {
 1260                 nmk->worker_ctx.user_td = curthread;
 1261                 p = curthread->td_proc;
 1262         }
 1263 
 1264         /* enable kthread main loop */
 1265         nmk->run = 1;
 1266         /* create kthread */
 1267         if((error = kthread_add(nm_kctx_worker, nmk, p,
 1268                         &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
 1269                         nmk->worker_ctx.type))) {
 1270                 goto err;
 1271         }
 1272 
 1273         nm_prinf("nm_kthread started td %p", nmk->worker);
 1274 
 1275         return 0;
 1276 err:
 1277         nm_prerr("nm_kthread start failed err %d", error);
 1278         nmk->worker = NULL;
 1279         return error;
 1280 }
 1281 
 1282 void
 1283 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
 1284 {
 1285         if (!nmk->worker)
 1286                 return;
 1287 
 1288         /* tell to kthread to exit from main loop */
 1289         nmk->run = 0;
 1290 
 1291         /* wake up kthread if it sleeps */
 1292         kthread_resume(nmk->worker);
 1293 
 1294         nmk->worker = NULL;
 1295 }
 1296 
 1297 void
 1298 nm_os_kctx_destroy(struct nm_kctx *nmk)
 1299 {
 1300         if (!nmk)
 1301                 return;
 1302 
 1303         if (nmk->worker)
 1304                 nm_os_kctx_worker_stop(nmk);
 1305 
 1306         free(nmk, M_DEVBUF);
 1307 }
 1308 
 1309 /******************** kqueue support ****************/
 1310 
 1311 /*
 1312  * In addition to calling selwakeuppri(), nm_os_selwakeup() also
 1313  * needs to call knote() to wake up kqueue listeners.
 1314  * This operation is deferred to a taskqueue in order to avoid possible
 1315  * lock order reversals; these may happen because knote() grabs a
 1316  * private lock associated to the 'si' (see struct selinfo,
 1317  * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
 1318  * can be called while holding the lock associated to a different
 1319  * 'si'.
 1320  * When calling knote() we use a non-zero 'hint' argument to inform
 1321  * the netmap_knrw() function that it is being called from
 1322  * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
 1323  * called by the kevent subsystem (i.e. kevent_scan()) we also need to
 1324  * call netmap_poll().
 1325  *
 1326  * The netmap_kqfilter() function registers one or another f_event
 1327  * depending on read or write mode. A pointer to the struct
 1328  * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
 1329  * be passed to netmap_poll(). We pass NULL as a third argument to
 1330  * netmap_poll(), so that the latter only runs the txsync/rxsync
 1331  * (if necessary), and skips the nm_os_selrecord() calls.
 1332  */
 1333 
 1334 
 1335 void
 1336 nm_os_selwakeup(struct nm_selinfo *si)
 1337 {
 1338         selwakeuppri(&si->si, PI_NET);
 1339         if (si->kqueue_users > 0) {
 1340                 taskqueue_enqueue(si->ntfytq, &si->ntfytask);
 1341         }
 1342 }
 1343 
 1344 void
 1345 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
 1346 {
 1347         selrecord(td, &si->si);
 1348 }
 1349 
 1350 static void
 1351 netmap_knrdetach(struct knote *kn)
 1352 {
 1353         struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
 1354         struct nm_selinfo *si = priv->np_si[NR_RX];
 1355 
 1356         knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
 1357         NMG_LOCK();
 1358         KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
 1359             si->mtxname));
 1360         si->kqueue_users--;
 1361         nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
 1362         NMG_UNLOCK();
 1363 }
 1364 
 1365 static void
 1366 netmap_knwdetach(struct knote *kn)
 1367 {
 1368         struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
 1369         struct nm_selinfo *si = priv->np_si[NR_TX];
 1370 
 1371         knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
 1372         NMG_LOCK();
 1373         si->kqueue_users--;
 1374         nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
 1375         NMG_UNLOCK();
 1376 }
 1377 
 1378 /*
 1379  * Callback triggered by netmap notifications (see netmap_notify()),
 1380  * and by the application calling kevent(). In the former case we
 1381  * just return 1 (events ready), since we are not able to do better.
 1382  * In the latter case we use netmap_poll() to see which events are
 1383  * ready.
 1384  */
 1385 static int
 1386 netmap_knrw(struct knote *kn, long hint, int events)
 1387 {
 1388         struct netmap_priv_d *priv;
 1389         int revents;
 1390 
 1391         if (hint != 0) {
 1392                 /* Called from netmap_notify(), typically from a
 1393                  * thread different from the one issuing kevent().
 1394                  * Assume we are ready. */
 1395                 return 1;
 1396         }
 1397 
 1398         /* Called from kevent(). */
 1399         priv = kn->kn_hook;
 1400         revents = netmap_poll(priv, events, /*thread=*/NULL);
 1401 
 1402         return (events & revents) ? 1 : 0;
 1403 }
 1404 
 1405 static int
 1406 netmap_knread(struct knote *kn, long hint)
 1407 {
 1408         return netmap_knrw(kn, hint, POLLIN);
 1409 }
 1410 
 1411 static int
 1412 netmap_knwrite(struct knote *kn, long hint)
 1413 {
 1414         return netmap_knrw(kn, hint, POLLOUT);
 1415 }
 1416 
 1417 static struct filterops netmap_rfiltops = {
 1418         .f_isfd = 1,
 1419         .f_detach = netmap_knrdetach,
 1420         .f_event = netmap_knread,
 1421 };
 1422 
 1423 static struct filterops netmap_wfiltops = {
 1424         .f_isfd = 1,
 1425         .f_detach = netmap_knwdetach,
 1426         .f_event = netmap_knwrite,
 1427 };
 1428 
 1429 
 1430 /*
 1431  * This is called when a thread invokes kevent() to record
 1432  * a change in the configuration of the kqueue().
 1433  * The 'priv' is the one associated to the open netmap device.
 1434  */
 1435 static int
 1436 netmap_kqfilter(struct cdev *dev, struct knote *kn)
 1437 {
 1438         struct netmap_priv_d *priv;
 1439         int error;
 1440         struct netmap_adapter *na;
 1441         struct nm_selinfo *si;
 1442         int ev = kn->kn_filter;
 1443 
 1444         if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
 1445                 nm_prerr("bad filter request %d", ev);
 1446                 return 1;
 1447         }
 1448         error = devfs_get_cdevpriv((void**)&priv);
 1449         if (error) {
 1450                 nm_prerr("device not yet setup");
 1451                 return 1;
 1452         }
 1453         na = priv->np_na;
 1454         if (na == NULL) {
 1455                 nm_prerr("no netmap adapter for this file descriptor");
 1456                 return 1;
 1457         }
 1458         /* the si is indicated in the priv */
 1459         si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
 1460         kn->kn_fop = (ev == EVFILT_WRITE) ?
 1461                 &netmap_wfiltops : &netmap_rfiltops;
 1462         kn->kn_hook = priv;
 1463         NMG_LOCK();
 1464         si->kqueue_users++;
 1465         nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
 1466         NMG_UNLOCK();
 1467         knlist_add(&si->si.si_note, kn, /*islocked=*/0);
 1468 
 1469         return 0;
 1470 }
 1471 
 1472 static int
 1473 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
 1474 {
 1475         struct netmap_priv_d *priv;
 1476         if (devfs_get_cdevpriv((void **)&priv)) {
 1477                 return POLLERR;
 1478         }
 1479         return netmap_poll(priv, events, td);
 1480 }
 1481 
 1482 static int
 1483 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
 1484                 int ffla __unused, struct thread *td)
 1485 {
 1486         int error;
 1487         struct netmap_priv_d *priv;
 1488 
 1489         CURVNET_SET(TD_TO_VNET(td));
 1490         error = devfs_get_cdevpriv((void **)&priv);
 1491         if (error) {
 1492                 /* XXX ENOENT should be impossible, since the priv
 1493                  * is now created in the open */
 1494                 if (error == ENOENT)
 1495                         error = ENXIO;
 1496                 goto out;
 1497         }
 1498         error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
 1499 out:
 1500         CURVNET_RESTORE();
 1501 
 1502         return error;
 1503 }
 1504 
 1505 void
 1506 nm_os_onattach(struct ifnet *ifp)
 1507 {
 1508         ifp->if_capabilities |= IFCAP_NETMAP;
 1509 }
 1510 
 1511 void
 1512 nm_os_onenter(struct ifnet *ifp)
 1513 {
 1514         struct netmap_adapter *na = NA(ifp);
 1515 
 1516         na->if_transmit = ifp->if_transmit;
 1517         ifp->if_transmit = netmap_transmit;
 1518         ifp->if_capenable |= IFCAP_NETMAP;
 1519 }
 1520 
 1521 void
 1522 nm_os_onexit(struct ifnet *ifp)
 1523 {
 1524         struct netmap_adapter *na = NA(ifp);
 1525 
 1526         ifp->if_transmit = na->if_transmit;
 1527         ifp->if_capenable &= ~IFCAP_NETMAP;
 1528 }
 1529 
 1530 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
 1531 struct cdevsw netmap_cdevsw = {
 1532         .d_version = D_VERSION,
 1533         .d_name = "netmap",
 1534         .d_open = netmap_open,
 1535         .d_mmap_single = netmap_mmap_single,
 1536         .d_ioctl = freebsd_netmap_ioctl,
 1537         .d_poll = freebsd_netmap_poll,
 1538         .d_kqfilter = netmap_kqfilter,
 1539         .d_close = netmap_close,
 1540 };
 1541 /*--- end of kqueue support ----*/
 1542 
 1543 /*
 1544  * Kernel entry point.
 1545  *
 1546  * Initialize/finalize the module and return.
 1547  *
 1548  * Return 0 on success, errno on failure.
 1549  */
 1550 static int
 1551 netmap_loader(__unused struct module *module, int event, __unused void *arg)
 1552 {
 1553         int error = 0;
 1554 
 1555         switch (event) {
 1556         case MOD_LOAD:
 1557                 error = netmap_init();
 1558                 break;
 1559 
 1560         case MOD_UNLOAD:
 1561                 /*
 1562                  * if some one is still using netmap,
 1563                  * then the module can not be unloaded.
 1564                  */
 1565                 if (netmap_use_count) {
 1566                         nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
 1567                                         netmap_use_count);
 1568                         error = EBUSY;
 1569                         break;
 1570                 }
 1571                 netmap_fini();
 1572                 break;
 1573 
 1574         default:
 1575                 error = EOPNOTSUPP;
 1576                 break;
 1577         }
 1578 
 1579         return (error);
 1580 }
 1581 
 1582 #ifdef DEV_MODULE_ORDERED
 1583 /*
 1584  * The netmap module contains three drivers: (i) the netmap character device
 1585  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
 1586  * device driver. The attach() routines of both (ii) and (iii) need the
 1587  * lock of the global allocator, and such lock is initialized in netmap_init(),
 1588  * which is part of (i).
 1589  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
 1590  * the 'order' parameter of driver declaration macros. For (i), we specify
 1591  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
 1592  * macros for (ii) and (iii).
 1593  */
 1594 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
 1595 #else /* !DEV_MODULE_ORDERED */
 1596 DEV_MODULE(netmap, netmap_loader, NULL);
 1597 #endif /* DEV_MODULE_ORDERED  */
 1598 MODULE_DEPEND(netmap, pci, 1, 1, 1);
 1599 MODULE_VERSION(netmap, 1);
 1600 /* reduce conditional code */
 1601 // linux API, use for the knlist in FreeBSD
 1602 /* use a private mutex for the knlist */

Cache object: 48696e49366f05905c07b4865697fc1e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.