1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2013-2016 Vincenzo Maffione
5 * Copyright (C) 2013-2016 Luigi Rizzo
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * This module implements netmap support on top of standard,
32 * unmodified device drivers.
33 *
34 * A NIOCREGIF request is handled here if the device does not
35 * have native support. TX and RX rings are emulated as follows:
36 *
37 * NIOCREGIF
38 * We preallocate a block of TX mbufs (roughly as many as
39 * tx descriptors; the number is not critical) to speed up
40 * operation during transmissions. The refcount on most of
41 * these buffers is artificially bumped up so we can recycle
42 * them more easily. Also, the destructor is intercepted
43 * so we use it as an interrupt notification to wake up
44 * processes blocked on a poll().
45 *
46 * For each receive ring we allocate one "struct mbq"
47 * (an mbuf tailq plus a spinlock). We intercept packets
48 * (through if_input)
49 * on the receive path and put them in the mbq from which
50 * netmap receive routines can grab them.
51 *
52 * TX:
53 * in the generic_txsync() routine, netmap buffers are copied
54 * (or linked, in a future) to the preallocated mbufs
55 * and pushed to the transmit queue. Some of these mbufs
56 * (those with NS_REPORT, or otherwise every half ring)
57 * have the refcount=1, others have refcount=2.
58 * When the destructor is invoked, we take that as
59 * a notification that all mbufs up to that one in
60 * the specific ring have been completed, and generate
61 * the equivalent of a transmit interrupt.
62 *
63 * RX:
64 *
65 */
66
67 #ifdef __FreeBSD__
68
69 #include <sys/cdefs.h> /* prerequisite */
70 __FBSDID("$FreeBSD$");
71
72 #include <sys/types.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/lock.h> /* PROT_EXEC */
76 #include <sys/rwlock.h>
77 #include <sys/socket.h> /* sockaddrs */
78 #include <sys/selinfo.h>
79 #include <net/if.h>
80 #include <net/if_types.h>
81 #include <net/if_var.h>
82 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */
83
84 #include <net/netmap.h>
85 #include <dev/netmap/netmap_kern.h>
86 #include <dev/netmap/netmap_mem2.h>
87
88 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid)
89 #define smp_mb()
90
91 #elif defined _WIN32
92
93 #include "win_glue.h"
94
95 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid)
96 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid)
97 #define smp_mb() //XXX: to be correctly defined
98
99 #else /* linux */
100
101 #include "bsd_glue.h"
102
103 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */
104 #include <linux/hrtimer.h>
105
106 static inline struct mbuf *
107 nm_os_get_mbuf(struct ifnet *ifp, int len)
108 {
109 return alloc_skb(LL_RESERVED_SPACE(ifp) + len +
110 ifp->needed_tailroom, GFP_ATOMIC);
111 }
112
113 #endif /* linux */
114
115
116 /* Common headers. */
117 #include <net/netmap.h>
118 #include <dev/netmap/netmap_kern.h>
119 #include <dev/netmap/netmap_mem2.h>
120
121
122 #define for_each_kring_n(_i, _k, _karr, _n) \
123 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
124
125 #define for_each_tx_kring(_i, _k, _na) \
126 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
127 #define for_each_tx_kring_h(_i, _k, _na) \
128 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
129
130 #define for_each_rx_kring(_i, _k, _na) \
131 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
132 #define for_each_rx_kring_h(_i, _k, _na) \
133 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
134
135
136 /* ======================== PERFORMANCE STATISTICS =========================== */
137
138 #ifdef RATE_GENERIC
139 #define IFRATE(x) x
140 struct rate_stats {
141 unsigned long txpkt;
142 unsigned long txsync;
143 unsigned long txirq;
144 unsigned long txrepl;
145 unsigned long txdrop;
146 unsigned long rxpkt;
147 unsigned long rxirq;
148 unsigned long rxsync;
149 };
150
151 struct rate_context {
152 unsigned refcount;
153 struct timer_list timer;
154 struct rate_stats new;
155 struct rate_stats old;
156 };
157
158 #define RATE_PRINTK(_NAME_) \
159 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
160 #define RATE_PERIOD 2
161 static void rate_callback(unsigned long arg)
162 {
163 struct rate_context * ctx = (struct rate_context *)arg;
164 struct rate_stats cur = ctx->new;
165 int r;
166
167 RATE_PRINTK(txpkt);
168 RATE_PRINTK(txsync);
169 RATE_PRINTK(txirq);
170 RATE_PRINTK(txrepl);
171 RATE_PRINTK(txdrop);
172 RATE_PRINTK(rxpkt);
173 RATE_PRINTK(rxsync);
174 RATE_PRINTK(rxirq);
175 printk("\n");
176
177 ctx->old = cur;
178 r = mod_timer(&ctx->timer, jiffies +
179 msecs_to_jiffies(RATE_PERIOD * 1000));
180 if (unlikely(r))
181 nm_prerr("mod_timer() failed");
182 }
183
184 static struct rate_context rate_ctx;
185
186 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
187 {
188 if (txp) rate_ctx.new.txpkt++;
189 if (txs) rate_ctx.new.txsync++;
190 if (txi) rate_ctx.new.txirq++;
191 if (rxp) rate_ctx.new.rxpkt++;
192 if (rxs) rate_ctx.new.rxsync++;
193 if (rxi) rate_ctx.new.rxirq++;
194 }
195
196 #else /* !RATE */
197 #define IFRATE(x)
198 #endif /* !RATE */
199
200
201 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
202
203 /*
204 * Wrapper used by the generic adapter layer to notify
205 * the poller threads. Differently from netmap_rx_irq(), we check
206 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
207 */
208 void
209 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
210 {
211 if (unlikely(!nm_netmap_on(na)))
212 return;
213
214 netmap_common_irq(na, q, work_done);
215 #ifdef RATE_GENERIC
216 if (work_done)
217 rate_ctx.new.rxirq++;
218 else
219 rate_ctx.new.txirq++;
220 #endif /* RATE_GENERIC */
221 }
222
223 static int
224 generic_netmap_unregister(struct netmap_adapter *na)
225 {
226 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
227 struct netmap_kring *kring = NULL;
228 int i, r;
229
230 if (na->active_fds == 0) {
231 na->na_flags &= ~NAF_NETMAP_ON;
232
233 /* Stop intercepting packets on the RX path. */
234 nm_os_catch_rx(gna, 0);
235
236 /* Release packet steering control. */
237 nm_os_catch_tx(gna, 0);
238 }
239
240 netmap_krings_mode_commit(na, /*onoff=*/0);
241
242 for_each_rx_kring(r, kring, na) {
243 /* Free the mbufs still pending in the RX queues,
244 * that did not end up into the corresponding netmap
245 * RX rings. */
246 mbq_safe_purge(&kring->rx_queue);
247 nm_os_mitigation_cleanup(&gna->mit[r]);
248 }
249
250 /* Decrement reference counter for the mbufs in the
251 * TX pools. These mbufs can be still pending in drivers,
252 * (e.g. this happens with virtio-net driver, which
253 * does lazy reclaiming of transmitted mbufs). */
254 for_each_tx_kring(r, kring, na) {
255 /* We must remove the destructor on the TX event,
256 * because the destructor invokes netmap code, and
257 * the netmap module may disappear before the
258 * TX event is consumed. */
259 mtx_lock_spin(&kring->tx_event_lock);
260 if (kring->tx_event) {
261 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL);
262 }
263 kring->tx_event = NULL;
264 mtx_unlock_spin(&kring->tx_event_lock);
265 }
266
267 if (na->active_fds == 0) {
268 nm_os_free(gna->mit);
269
270 for_each_rx_kring(r, kring, na) {
271 mbq_safe_fini(&kring->rx_queue);
272 }
273
274 for_each_tx_kring(r, kring, na) {
275 mtx_destroy(&kring->tx_event_lock);
276 if (kring->tx_pool == NULL) {
277 continue;
278 }
279
280 for (i=0; i<na->num_tx_desc; i++) {
281 if (kring->tx_pool[i]) {
282 m_freem(kring->tx_pool[i]);
283 }
284 }
285 nm_os_free(kring->tx_pool);
286 kring->tx_pool = NULL;
287 }
288
289 #ifdef RATE_GENERIC
290 if (--rate_ctx.refcount == 0) {
291 nm_prinf("del_timer()");
292 del_timer(&rate_ctx.timer);
293 }
294 #endif
295 nm_prinf("Emulated adapter for %s deactivated", na->name);
296 }
297
298 return 0;
299 }
300
301 /* Enable/disable netmap mode for a generic network interface. */
302 static int
303 generic_netmap_register(struct netmap_adapter *na, int enable)
304 {
305 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
306 struct netmap_kring *kring = NULL;
307 int error;
308 int i, r;
309
310 if (!na) {
311 return EINVAL;
312 }
313
314 if (!enable) {
315 /* This is actually an unregif. */
316 return generic_netmap_unregister(na);
317 }
318
319 if (na->active_fds == 0) {
320 nm_prinf("Emulated adapter for %s activated", na->name);
321 /* Do all memory allocations when (na->active_fds == 0), to
322 * simplify error management. */
323
324 /* Allocate memory for mitigation support on all the rx queues. */
325 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
326 if (!gna->mit) {
327 nm_prerr("mitigation allocation failed");
328 error = ENOMEM;
329 goto out;
330 }
331
332 for_each_rx_kring(r, kring, na) {
333 /* Init mitigation support. */
334 nm_os_mitigation_init(&gna->mit[r], r, na);
335
336 /* Initialize the rx queue, as generic_rx_handler() can
337 * be called as soon as nm_os_catch_rx() returns.
338 */
339 mbq_safe_init(&kring->rx_queue);
340 }
341
342 /*
343 * Prepare mbuf pools (parallel to the tx rings), for packet
344 * transmission. Don't preallocate the mbufs here, it's simpler
345 * to leave this task to txsync.
346 */
347 for_each_tx_kring(r, kring, na) {
348 kring->tx_pool = NULL;
349 }
350 for_each_tx_kring(r, kring, na) {
351 kring->tx_pool =
352 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
353 if (!kring->tx_pool) {
354 nm_prerr("tx_pool allocation failed");
355 error = ENOMEM;
356 goto free_tx_pools;
357 }
358 mtx_init(&kring->tx_event_lock, "tx_event_lock",
359 NULL, MTX_SPIN);
360 }
361 }
362
363 netmap_krings_mode_commit(na, /*onoff=*/1);
364
365 for_each_tx_kring(r, kring, na) {
366 /* Initialize tx_pool and tx_event. */
367 for (i=0; i<na->num_tx_desc; i++) {
368 kring->tx_pool[i] = NULL;
369 }
370
371 kring->tx_event = NULL;
372 }
373
374 if (na->active_fds == 0) {
375 /* Prepare to intercept incoming traffic. */
376 error = nm_os_catch_rx(gna, 1);
377 if (error) {
378 nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
379 goto free_tx_pools;
380 }
381
382 /* Let netmap control the packet steering. */
383 error = nm_os_catch_tx(gna, 1);
384 if (error) {
385 nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
386 goto catch_rx;
387 }
388
389 na->na_flags |= NAF_NETMAP_ON;
390
391 #ifdef RATE_GENERIC
392 if (rate_ctx.refcount == 0) {
393 nm_prinf("setup_timer()");
394 memset(&rate_ctx, 0, sizeof(rate_ctx));
395 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
396 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
397 nm_prerr("Error: mod_timer()");
398 }
399 }
400 rate_ctx.refcount++;
401 #endif /* RATE */
402 }
403
404 return 0;
405
406 /* Here (na->active_fds == 0) holds. */
407 catch_rx:
408 nm_os_catch_rx(gna, 0);
409 free_tx_pools:
410 for_each_tx_kring(r, kring, na) {
411 mtx_destroy(&kring->tx_event_lock);
412 if (kring->tx_pool == NULL) {
413 continue;
414 }
415 nm_os_free(kring->tx_pool);
416 kring->tx_pool = NULL;
417 }
418 for_each_rx_kring(r, kring, na) {
419 mbq_safe_fini(&kring->rx_queue);
420 }
421 nm_os_free(gna->mit);
422 out:
423
424 return error;
425 }
426
427 /*
428 * Callback invoked when the device driver frees an mbuf used
429 * by netmap to transmit a packet. This usually happens when
430 * the NIC notifies the driver that transmission is completed.
431 */
432 static void
433 generic_mbuf_destructor(struct mbuf *m)
434 {
435 struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
436 struct netmap_kring *kring;
437 unsigned int r = MBUF_TXQ(m);
438 unsigned int r_orig = r;
439
440 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
441 nm_prerr("Error: no netmap adapter on device %p",
442 GEN_TX_MBUF_IFP(m));
443 return;
444 }
445
446 /*
447 * First, clear the event mbuf.
448 * In principle, the event 'm' should match the one stored
449 * on ring 'r'. However we check it explicitly to stay
450 * safe against lower layers (qdisc, driver, etc.) changing
451 * MBUF_TXQ(m) under our feet. If the match is not found
452 * on 'r', we try to see if it belongs to some other ring.
453 */
454 for (;;) {
455 bool match = false;
456
457 kring = na->tx_rings[r];
458 mtx_lock_spin(&kring->tx_event_lock);
459 if (kring->tx_event == m) {
460 kring->tx_event = NULL;
461 match = true;
462 }
463 mtx_unlock_spin(&kring->tx_event_lock);
464
465 if (match) {
466 if (r != r_orig) {
467 nm_prlim(1, "event %p migrated: ring %u --> %u",
468 m, r_orig, r);
469 }
470 break;
471 }
472
473 if (++r == na->num_tx_rings) r = 0;
474
475 if (r == r_orig) {
476 nm_prlim(1, "Cannot match event %p", m);
477 return;
478 }
479 }
480
481 /* Second, wake up clients. They will reclaim the event through
482 * txsync. */
483 netmap_generic_irq(na, r, NULL);
484 #ifdef __FreeBSD__
485 void_mbuf_dtor(m);
486 #endif
487 }
488
489 /* Record completed transmissions and update hwtail.
490 *
491 * The oldest tx buffer not yet completed is at nr_hwtail + 1,
492 * nr_hwcur is the first unsent buffer.
493 */
494 static u_int
495 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
496 {
497 u_int const lim = kring->nkr_num_slots - 1;
498 u_int nm_i = nm_next(kring->nr_hwtail, lim);
499 u_int hwcur = kring->nr_hwcur;
500 u_int n = 0;
501 struct mbuf **tx_pool = kring->tx_pool;
502
503 nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
504
505 while (nm_i != hwcur) { /* buffers not completed */
506 struct mbuf *m = tx_pool[nm_i];
507
508 if (txqdisc) {
509 if (m == NULL) {
510 /* Nothing to do, this is going
511 * to be replenished. */
512 nm_prlim(3, "Is this happening?");
513
514 } else if (MBUF_QUEUED(m)) {
515 break; /* Not dequeued yet. */
516
517 } else if (MBUF_REFCNT(m) != 1) {
518 /* This mbuf has been dequeued but is still busy
519 * (refcount is 2).
520 * Leave it to the driver and replenish. */
521 m_freem(m);
522 tx_pool[nm_i] = NULL;
523 }
524
525 } else {
526 if (unlikely(m == NULL)) {
527 int event_consumed;
528
529 /* This slot was used to place an event. */
530 mtx_lock_spin(&kring->tx_event_lock);
531 event_consumed = (kring->tx_event == NULL);
532 mtx_unlock_spin(&kring->tx_event_lock);
533 if (!event_consumed) {
534 /* The event has not been consumed yet,
535 * still busy in the driver. */
536 break;
537 }
538 /* The event has been consumed, we can go
539 * ahead. */
540
541 } else if (MBUF_REFCNT(m) != 1) {
542 /* This mbuf is still busy: its refcnt is 2. */
543 break;
544 }
545 }
546
547 n++;
548 nm_i = nm_next(nm_i, lim);
549 }
550 kring->nr_hwtail = nm_prev(nm_i, lim);
551 nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
552
553 return n;
554 }
555
556 /* Compute a slot index in the middle between inf and sup. */
557 static inline u_int
558 ring_middle(u_int inf, u_int sup, u_int lim)
559 {
560 u_int n = lim + 1;
561 u_int e;
562
563 if (sup >= inf) {
564 e = (sup + inf) / 2;
565 } else { /* wrap around */
566 e = (sup + n + inf) / 2;
567 if (e >= n) {
568 e -= n;
569 }
570 }
571
572 if (unlikely(e >= n)) {
573 nm_prerr("This cannot happen");
574 e = 0;
575 }
576
577 return e;
578 }
579
580 static void
581 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
582 {
583 u_int lim = kring->nkr_num_slots - 1;
584 struct mbuf *m;
585 u_int e;
586 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
587
588 if (ntc == hwcur) {
589 return; /* all buffers are free */
590 }
591
592 /*
593 * We have pending packets in the driver between hwtail+1
594 * and hwcur, and we have to chose one of these slot to
595 * generate a notification.
596 * There is a race but this is only called within txsync which
597 * does a double check.
598 */
599 #if 0
600 /* Choose a slot in the middle, so that we don't risk ending
601 * up in a situation where the client continuously wake up,
602 * fills one or a few TX slots and go to sleep again. */
603 e = ring_middle(ntc, hwcur, lim);
604 #else
605 /* Choose the first pending slot, to be safe against driver
606 * reordering mbuf transmissions. */
607 e = ntc;
608 #endif
609
610 m = kring->tx_pool[e];
611 if (m == NULL) {
612 /* An event is already in place. */
613 return;
614 }
615
616 mtx_lock_spin(&kring->tx_event_lock);
617 if (kring->tx_event) {
618 /* An event is already in place. */
619 mtx_unlock_spin(&kring->tx_event_lock);
620 return;
621 }
622
623 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
624 kring->tx_event = m;
625 mtx_unlock_spin(&kring->tx_event_lock);
626
627 kring->tx_pool[e] = NULL;
628
629 nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
630
631 /* Decrement the refcount. This will free it if we lose the race
632 * with the driver. */
633 m_freem(m);
634 smp_mb();
635 }
636
637
638 /*
639 * generic_netmap_txsync() transforms netmap buffers into mbufs
640 * and passes them to the standard device driver
641 * (ndo_start_xmit() or ifp->if_transmit() ).
642 * On linux this is not done directly, but using dev_queue_xmit(),
643 * since it implements the TX flow control (and takes some locks).
644 */
645 static int
646 generic_netmap_txsync(struct netmap_kring *kring, int flags)
647 {
648 struct netmap_adapter *na = kring->na;
649 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
650 struct ifnet *ifp = na->ifp;
651 struct netmap_ring *ring = kring->ring;
652 u_int nm_i; /* index into the netmap ring */ // j
653 u_int const lim = kring->nkr_num_slots - 1;
654 u_int const head = kring->rhead;
655 u_int ring_nr = kring->ring_id;
656
657 IFRATE(rate_ctx.new.txsync++);
658
659 rmb();
660
661 /*
662 * First part: process new packets to send.
663 */
664 nm_i = kring->nr_hwcur;
665 if (nm_i != head) { /* we have new packets to send */
666 struct nm_os_gen_arg a;
667 u_int event = -1;
668 #ifdef __FreeBSD__
669 struct epoch_tracker et;
670
671 NET_EPOCH_ENTER(et);
672 #endif
673
674 if (gna->txqdisc && nm_kr_txempty(kring)) {
675 /* In txqdisc mode, we ask for a delayed notification,
676 * but only when cur == hwtail, which means that the
677 * client is going to block. */
678 event = ring_middle(nm_i, head, lim);
679 nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
680 "head=%u,hwtail=%u)", nm_i, event, head,
681 kring->nr_hwtail);
682 }
683
684 a.ifp = ifp;
685 a.ring_nr = ring_nr;
686 a.head = a.tail = NULL;
687
688 while (nm_i != head) {
689 struct netmap_slot *slot = &ring->slot[nm_i];
690 u_int len = slot->len;
691 void *addr = NMB(na, slot);
692 /* device-specific */
693 struct mbuf *m;
694 int tx_ret;
695
696 NM_CHECK_ADDR_LEN(na, addr, len);
697
698 /* Tale a mbuf from the tx pool (replenishing the pool
699 * entry if necessary) and copy in the user packet. */
700 m = kring->tx_pool[nm_i];
701 if (unlikely(m == NULL)) {
702 kring->tx_pool[nm_i] = m =
703 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
704 if (m == NULL) {
705 nm_prlim(2, "Failed to replenish mbuf");
706 /* Here we could schedule a timer which
707 * retries to replenish after a while,
708 * and notifies the client when it
709 * manages to replenish some slots. In
710 * any case we break early to avoid
711 * crashes. */
712 break;
713 }
714 IFRATE(rate_ctx.new.txrepl++);
715 }
716
717 a.m = m;
718 a.addr = addr;
719 a.len = len;
720 a.qevent = (nm_i == event);
721 /* When not in txqdisc mode, we should ask
722 * notifications when NS_REPORT is set, or roughly
723 * every half ring. To optimize this, we set a
724 * notification event when the client runs out of
725 * TX ring space, or when transmission fails. In
726 * the latter case we also break early.
727 */
728 tx_ret = nm_os_generic_xmit_frame(&a);
729 if (unlikely(tx_ret)) {
730 if (!gna->txqdisc) {
731 /*
732 * No room for this mbuf in the device driver.
733 * Request a notification FOR A PREVIOUS MBUF,
734 * then call generic_netmap_tx_clean(kring) to do the
735 * double check and see if we can free more buffers.
736 * If there is space continue, else break;
737 * NOTE: the double check is necessary if the problem
738 * occurs in the txsync call after selrecord().
739 * Also, we need some way to tell the caller that not
740 * all buffers were queued onto the device (this was
741 * not a problem with native netmap driver where space
742 * is preallocated). The bridge has a similar problem
743 * and we solve it there by dropping the excess packets.
744 */
745 generic_set_tx_event(kring, nm_i);
746 if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
747 /* space now available */
748 continue;
749 } else {
750 break;
751 }
752 }
753
754 /* In txqdisc mode, the netmap-aware qdisc
755 * queue has the same length as the number of
756 * netmap slots (N). Since tail is advanced
757 * only when packets are dequeued, qdisc
758 * queue overrun cannot happen, so
759 * nm_os_generic_xmit_frame() did not fail
760 * because of that.
761 * However, packets can be dropped because
762 * carrier is off, or because our qdisc is
763 * being deactivated, or possibly for other
764 * reasons. In these cases, we just let the
765 * packet to be dropped. */
766 IFRATE(rate_ctx.new.txdrop++);
767 }
768
769 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
770 nm_i = nm_next(nm_i, lim);
771 IFRATE(rate_ctx.new.txpkt++);
772 }
773 if (a.head != NULL) {
774 a.addr = NULL;
775 nm_os_generic_xmit_frame(&a);
776 }
777 /* Update hwcur to the next slot to transmit. Here nm_i
778 * is not necessarily head, we could break early. */
779 kring->nr_hwcur = nm_i;
780
781 #ifdef __FreeBSD__
782 NET_EPOCH_EXIT(et);
783 #endif
784 }
785
786 /*
787 * Second, reclaim completed buffers
788 */
789 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
790 /* No more available slots? Set a notification event
791 * on a netmap slot that will be cleaned in the future.
792 * No doublecheck is performed, since txsync() will be
793 * called twice by netmap_poll().
794 */
795 generic_set_tx_event(kring, nm_i);
796 }
797
798 generic_netmap_tx_clean(kring, gna->txqdisc);
799
800 return 0;
801 }
802
803
804 /*
805 * This handler is registered (through nm_os_catch_rx())
806 * within the attached network interface
807 * in the RX subsystem, so that every mbuf passed up by
808 * the driver can be stolen to the network stack.
809 * Stolen packets are put in a queue where the
810 * generic_netmap_rxsync() callback can extract them.
811 * Returns 1 if the packet was stolen, 0 otherwise.
812 */
813 int
814 generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
815 {
816 struct netmap_adapter *na = NA(ifp);
817 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
818 struct netmap_kring *kring;
819 u_int work_done;
820 u_int r = MBUF_RXQ(m); /* receive ring number */
821
822 if (r >= na->num_rx_rings) {
823 r = r % na->num_rx_rings;
824 }
825
826 kring = na->rx_rings[r];
827
828 if (kring->nr_mode == NKR_NETMAP_OFF) {
829 /* We must not intercept this mbuf. */
830 return 0;
831 }
832
833 /* limit the size of the queue */
834 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
835 /* This may happen when GRO/LRO features are enabled for
836 * the NIC driver when the generic adapter does not
837 * support RX scatter-gather. */
838 nm_prlim(2, "Warning: driver pushed up big packet "
839 "(size=%d)", (int)MBUF_LEN(m));
840 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
841 m_freem(m);
842 } else if (unlikely(mbq_len(&kring->rx_queue) > na->num_rx_desc)) {
843 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
844 m_freem(m);
845 } else {
846 mbq_safe_enqueue(&kring->rx_queue, m);
847 }
848
849 if (netmap_generic_mit < 32768) {
850 /* no rx mitigation, pass notification up */
851 netmap_generic_irq(na, r, &work_done);
852 } else {
853 /* same as send combining, filter notification if there is a
854 * pending timer, otherwise pass it up and start a timer.
855 */
856 if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
857 /* Record that there is some pending work. */
858 gna->mit[r].mit_pending = 1;
859 } else {
860 netmap_generic_irq(na, r, &work_done);
861 nm_os_mitigation_start(&gna->mit[r]);
862 }
863 }
864
865 /* We have intercepted the mbuf. */
866 return 1;
867 }
868
869 /*
870 * generic_netmap_rxsync() extracts mbufs from the queue filled by
871 * generic_netmap_rx_handler() and puts their content in the netmap
872 * receive ring.
873 * Access must be protected because the rx handler is asynchronous,
874 */
875 static int
876 generic_netmap_rxsync(struct netmap_kring *kring, int flags)
877 {
878 struct netmap_ring *ring = kring->ring;
879 struct netmap_adapter *na = kring->na;
880 u_int nm_i; /* index into the netmap ring */ //j,
881 u_int n;
882 u_int const lim = kring->nkr_num_slots - 1;
883 u_int const head = kring->rhead;
884 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
885
886 /* Adapter-specific variables. */
887 u_int nm_buf_len = NETMAP_BUF_SIZE(na);
888 struct mbq tmpq;
889 struct mbuf *m;
890 int avail; /* in bytes */
891 int mlen;
892 int copy;
893
894 if (head > lim)
895 return netmap_ring_reinit(kring);
896
897 IFRATE(rate_ctx.new.rxsync++);
898
899 /*
900 * First part: skip past packets that userspace has released.
901 * This can possibly make room for the second part.
902 */
903 nm_i = kring->nr_hwcur;
904 if (nm_i != head) {
905 /* Userspace has released some packets. */
906 for (n = 0; nm_i != head; n++) {
907 struct netmap_slot *slot = &ring->slot[nm_i];
908
909 slot->flags &= ~NS_BUF_CHANGED;
910 nm_i = nm_next(nm_i, lim);
911 }
912 kring->nr_hwcur = head;
913 }
914
915 /*
916 * Second part: import newly received packets.
917 */
918 if (!netmap_no_pendintr && !force_update) {
919 return 0;
920 }
921
922 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
923
924 /* Compute the available space (in bytes) in this netmap ring.
925 * The first slot that is not considered in is the one before
926 * nr_hwcur. */
927
928 avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
929 if (avail < 0)
930 avail += lim + 1;
931 avail *= nm_buf_len;
932
933 /* First pass: While holding the lock on the RX mbuf queue,
934 * extract as many mbufs as they fit the available space,
935 * and put them in a temporary queue.
936 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
937 * to update avail, we do the update in a while loop that we
938 * also use to set the RX slots, but without performing the copy. */
939 mbq_init(&tmpq);
940 mbq_lock(&kring->rx_queue);
941 for (n = 0;; n++) {
942 m = mbq_peek(&kring->rx_queue);
943 if (!m) {
944 /* No more packets from the driver. */
945 break;
946 }
947
948 mlen = MBUF_LEN(m);
949 if (mlen > avail) {
950 /* No more space in the ring. */
951 break;
952 }
953
954 mbq_dequeue(&kring->rx_queue);
955
956 while (mlen) {
957 copy = nm_buf_len;
958 if (mlen < copy) {
959 copy = mlen;
960 }
961 mlen -= copy;
962 avail -= nm_buf_len;
963
964 ring->slot[nm_i].len = copy;
965 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
966 nm_i = nm_next(nm_i, lim);
967 }
968
969 mbq_enqueue(&tmpq, m);
970 }
971 mbq_unlock(&kring->rx_queue);
972
973 /* Second pass: Drain the temporary queue, going over the used RX slots,
974 * and perform the copy out of the RX queue lock. */
975 nm_i = kring->nr_hwtail;
976
977 for (;;) {
978 void *nmaddr;
979 int ofs = 0;
980 int morefrag;
981
982 m = mbq_dequeue(&tmpq);
983 if (!m) {
984 break;
985 }
986
987 do {
988 nmaddr = NMB(na, &ring->slot[nm_i]);
989 /* We only check the address here on generic rx rings. */
990 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
991 m_freem(m);
992 mbq_purge(&tmpq);
993 mbq_fini(&tmpq);
994 return netmap_ring_reinit(kring);
995 }
996
997 copy = ring->slot[nm_i].len;
998 m_copydata(m, ofs, copy, nmaddr);
999 ofs += copy;
1000 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
1001 nm_i = nm_next(nm_i, lim);
1002 } while (morefrag);
1003
1004 m_freem(m);
1005 }
1006
1007 mbq_fini(&tmpq);
1008
1009 if (n) {
1010 kring->nr_hwtail = nm_i;
1011 IFRATE(rate_ctx.new.rxpkt += n);
1012 }
1013 kring->nr_kflags &= ~NKR_PENDINTR;
1014
1015 return 0;
1016 }
1017
1018 static void
1019 generic_netmap_dtor(struct netmap_adapter *na)
1020 {
1021 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1022 struct ifnet *ifp = netmap_generic_getifp(gna);
1023 struct netmap_adapter *prev_na = gna->prev;
1024
1025 if (prev_na != NULL) {
1026 netmap_adapter_put(prev_na);
1027 if (nm_iszombie(na)) {
1028 /*
1029 * The driver has been removed without releasing
1030 * the reference so we need to do it here.
1031 */
1032 netmap_adapter_put(prev_na);
1033 }
1034 nm_prinf("Native netmap adapter for %s restored", prev_na->name);
1035 }
1036 NM_RESTORE_NA(ifp, prev_na);
1037 /*
1038 * netmap_detach_common(), that it's called after this function,
1039 * overrides WNA(ifp) if na->ifp is not NULL.
1040 */
1041 na->ifp = NULL;
1042 nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1043 }
1044
1045 int
1046 na_is_generic(struct netmap_adapter *na)
1047 {
1048 return na->nm_register == generic_netmap_register;
1049 }
1050
1051 /*
1052 * generic_netmap_attach() makes it possible to use netmap on
1053 * a device without native netmap support.
1054 * This is less performant than native support but potentially
1055 * faster than raw sockets or similar schemes.
1056 *
1057 * In this "emulated" mode, netmap rings do not necessarily
1058 * have the same size as those in the NIC. We use a default
1059 * value and possibly override it if the OS has ways to fetch the
1060 * actual configuration.
1061 */
1062 int
1063 generic_netmap_attach(struct ifnet *ifp)
1064 {
1065 struct netmap_adapter *na;
1066 struct netmap_generic_adapter *gna;
1067 int retval;
1068 u_int num_tx_desc, num_rx_desc;
1069
1070 #ifdef __FreeBSD__
1071 if (ifp->if_type == IFT_LOOP) {
1072 nm_prerr("if_loop is not supported by %s", __func__);
1073 return EINVAL;
1074 }
1075 #endif
1076
1077 if (NM_NA_CLASH(ifp)) {
1078 /* If NA(ifp) is not null but there is no valid netmap
1079 * adapter it means that someone else is using the same
1080 * pointer (e.g. ax25_ptr on linux). This happens for
1081 * instance when also PF_RING is in use. */
1082 nm_prerr("Error: netmap adapter hook is busy");
1083 return EBUSY;
1084 }
1085
1086 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1087
1088 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1089 if (num_tx_desc == 0 || num_rx_desc == 0) {
1090 nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1091 return EINVAL;
1092 }
1093
1094 gna = nm_os_malloc(sizeof(*gna));
1095 if (gna == NULL) {
1096 nm_prerr("no memory on attach, give up");
1097 return ENOMEM;
1098 }
1099 na = (struct netmap_adapter *)gna;
1100 strlcpy(na->name, ifp->if_xname, sizeof(na->name));
1101 na->ifp = ifp;
1102 na->num_tx_desc = num_tx_desc;
1103 na->num_rx_desc = num_rx_desc;
1104 na->rx_buf_maxsize = 32768;
1105 na->nm_register = &generic_netmap_register;
1106 na->nm_txsync = &generic_netmap_txsync;
1107 na->nm_rxsync = &generic_netmap_rxsync;
1108 na->nm_dtor = &generic_netmap_dtor;
1109 /* when using generic, NAF_NETMAP_ON is set so we force
1110 * NAF_SKIP_INTR to use the regular interrupt handler
1111 */
1112 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1113
1114 nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1115 ifp->num_tx_queues, ifp->real_num_tx_queues,
1116 ifp->tx_queue_len);
1117 nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1118 ifp->num_rx_queues, ifp->real_num_rx_queues);
1119
1120 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1121
1122 retval = netmap_attach_common(na);
1123 if (retval) {
1124 nm_os_free(gna);
1125 return retval;
1126 }
1127
1128 if (NM_NA_VALID(ifp)) {
1129 gna->prev = NA(ifp); /* save old na */
1130 netmap_adapter_get(gna->prev);
1131 }
1132 NM_ATTACH_NA(ifp, na);
1133
1134 nm_os_generic_set_features(gna);
1135
1136 nm_prinf("Emulated adapter for %s created (prev was %s)", na->name,
1137 gna->prev ? gna->prev->name : "NULL");
1138
1139 return retval;
1140 }
Cache object: a39cc254d137940e3aec77ecb42e8e54
|