1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5 * Copyright (C) 2013-2016 Universita` di Pisa
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * $FreeBSD$
32 *
33 * The header contains the definitions of constants and function
34 * prototypes used only in kernelspace.
35 */
36
37 #ifndef _NET_NETMAP_KERN_H_
38 #define _NET_NETMAP_KERN_H_
39
40 #if defined(linux)
41
42 #if defined(CONFIG_NETMAP_EXTMEM)
43 #define WITH_EXTMEM
44 #endif
45 #if defined(CONFIG_NETMAP_VALE)
46 #define WITH_VALE
47 #endif
48 #if defined(CONFIG_NETMAP_PIPE)
49 #define WITH_PIPES
50 #endif
51 #if defined(CONFIG_NETMAP_MONITOR)
52 #define WITH_MONITOR
53 #endif
54 #if defined(CONFIG_NETMAP_GENERIC)
55 #define WITH_GENERIC
56 #endif
57 #if defined(CONFIG_NETMAP_PTNETMAP)
58 #define WITH_PTNETMAP
59 #endif
60 #if defined(CONFIG_NETMAP_SINK)
61 #define WITH_SINK
62 #endif
63 #if defined(CONFIG_NETMAP_NULL)
64 #define WITH_NMNULL
65 #endif
66
67 #elif defined (_WIN32)
68 #define WITH_VALE // comment out to disable VALE support
69 #define WITH_PIPES
70 #define WITH_MONITOR
71 #define WITH_GENERIC
72 #define WITH_NMNULL
73
74 #else /* neither linux nor windows */
75 #define WITH_VALE // comment out to disable VALE support
76 #define WITH_PIPES
77 #define WITH_MONITOR
78 #define WITH_GENERIC
79 #define WITH_EXTMEM
80 #define WITH_NMNULL
81 #endif
82
83 #if defined(__FreeBSD__)
84 #include <sys/selinfo.h>
85
86 #define likely(x) __builtin_expect((long)!!(x), 1L)
87 #define unlikely(x) __builtin_expect((long)!!(x), 0L)
88 #define __user
89
90 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */
91
92 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */
93 #define NM_MTX_INIT(m) sx_init(&(m), #m)
94 #define NM_MTX_DESTROY(m) sx_destroy(&(m))
95 #define NM_MTX_LOCK(m) sx_xlock(&(m))
96 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ;
97 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m))
98 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED)
99
100 #define NM_SELINFO_T struct nm_selinfo
101 #define NM_SELRECORD_T struct thread
102 #define MBUF_LEN(m) ((m)->m_pkthdr.len)
103 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid)
104 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m))
105 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif)
106
107 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */
108 /* atomic operations */
109 #include <machine/atomic.h>
110 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1))
111 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0)
112
113 #define WNA(_ifp) (_ifp)->if_netmap
114
115 struct netmap_adapter *netmap_getna(if_t ifp);
116
117 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count)
118 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x
119
120 #define MBUF_QUEUED(m) 1
121
122 struct nm_selinfo {
123 /* Support for select(2) and poll(2). */
124 struct selinfo si;
125 /* Support for kqueue(9). See comments in netmap_freebsd.c */
126 struct taskqueue *ntfytq;
127 struct task ntfytask;
128 struct mtx m;
129 char mtxname[32];
130 int kqueue_users;
131 };
132
133
134 struct hrtimer {
135 /* Not used in FreeBSD. */
136 };
137
138 #define NM_BNS_GET(b)
139 #define NM_BNS_PUT(b)
140
141 #elif defined (linux)
142
143 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h
144 #define NM_SELINFO_T wait_queue_head_t
145 #define MBUF_LEN(m) ((m)->len)
146 #define MBUF_TRANSMIT(na, ifp, m) \
147 ({ \
148 /* Avoid infinite recursion with generic. */ \
149 m->priority = NM_MAGIC_PRIORITY_TX; \
150 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \
151 0; \
152 })
153
154 /* See explanation in nm_os_generic_xmit_frame. */
155 #define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg)
156
157 #define NM_ATOMIC_T volatile long unsigned int
158
159 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */
160 #define NM_MTX_INIT(m) mutex_init(&(m))
161 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
162 #define NM_MTX_LOCK(m) mutex_lock(&(m))
163 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m))
164 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m))
165
166 #ifndef DEV_NETMAP
167 #define DEV_NETMAP
168 #endif /* DEV_NETMAP */
169
170 #elif defined (__APPLE__)
171
172 #warning apple support is incomplete.
173 #define likely(x) __builtin_expect(!!(x), 1)
174 #define unlikely(x) __builtin_expect(!!(x), 0)
175 #define NM_LOCK_T IOLock *
176 #define NM_SELINFO_T struct selinfo
177 #define MBUF_LEN(m) ((m)->m_pkthdr.len)
178
179 #elif defined (_WIN32)
180 #include "../../../WINDOWS/win_glue.h"
181
182 #define NM_SELRECORD_T IO_STACK_LOCATION
183 #define NM_SELINFO_T win_SELINFO // see win_glue.h
184 #define NM_LOCK_T win_spinlock_t // see win_glue.h
185 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */
186
187 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m);
188 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
189 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m))
190 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m))
191 #define NM_MTX_ASSERT(m) assert(&m.Count>0)
192
193 //These linknames are for the NDIS driver
194 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS"
195 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS"
196
197 //Definition of internal driver-to-driver ioctl codes
198 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180)
199 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195)
200
201 typedef struct hrtimer{
202 KTIMER timer;
203 BOOLEAN active;
204 KDPC deferred_proc;
205 };
206
207 /* MSVC does not have likely/unlikely support */
208 #ifdef _MSC_VER
209 #define likely(x) (x)
210 #define unlikely(x) (x)
211 #else
212 #define likely(x) __builtin_expect((long)!!(x), 1L)
213 #define unlikely(x) __builtin_expect((long)!!(x), 0L)
214 #endif //_MSC_VER
215
216 #else
217
218 #error unsupported platform
219
220 #endif /* end - platform-specific code */
221
222 #ifndef _WIN32 /* support for emulated sysctl */
223 #define SYSBEGIN(x)
224 #define SYSEND
225 #endif /* _WIN32 */
226
227 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))
228
229 #define NMG_LOCK_T NM_MTX_T
230 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock)
231 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock)
232 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock)
233 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock)
234 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock)
235
236 #if defined(__FreeBSD__)
237 #define nm_prerr_int printf
238 #define nm_prinf_int printf
239 #elif defined (_WIN32)
240 #define nm_prerr_int DbgPrint
241 #define nm_prinf_int DbgPrint
242 #elif defined(linux)
243 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg)
244 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg)
245 #endif
246
247 #define nm_prinf(format, ...) \
248 do { \
249 struct timeval __xxts; \
250 microtime(&__xxts); \
251 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
252 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
253 __LINE__, __FUNCTION__, ##__VA_ARGS__); \
254 } while (0)
255
256 #define nm_prerr(format, ...) \
257 do { \
258 struct timeval __xxts; \
259 microtime(&__xxts); \
260 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
261 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
262 __LINE__, __FUNCTION__, ##__VA_ARGS__); \
263 } while (0)
264
265 /* Disabled printf (used to be nm_prdis). */
266 #define nm_prdis(format, ...)
267
268 /* Rate limited, lps indicates how many per second. */
269 #define nm_prlim(lps, format, ...) \
270 do { \
271 static int t0, __cnt; \
272 if (t0 != time_second) { \
273 t0 = time_second; \
274 __cnt = 0; \
275 } \
276 if (__cnt++ < lps) \
277 nm_prinf(format, ##__VA_ARGS__); \
278 } while (0)
279
280 struct netmap_adapter;
281 struct nm_bdg_fwd;
282 struct nm_bridge;
283 struct netmap_priv_d;
284 struct nm_bdg_args;
285
286 /* os-specific NM_SELINFO_T initialization/destruction functions */
287 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
288 void nm_os_selinfo_uninit(NM_SELINFO_T *);
289
290 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
291
292 void nm_os_selwakeup(NM_SELINFO_T *si);
293 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
294
295 int nm_os_ifnet_init(void);
296 void nm_os_ifnet_fini(void);
297 void nm_os_ifnet_lock(void);
298 void nm_os_ifnet_unlock(void);
299
300 unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
301
302 void nm_os_get_module(void);
303 void nm_os_put_module(void);
304
305 void netmap_make_zombie(struct ifnet *);
306 void netmap_undo_zombie(struct ifnet *);
307
308 /* os independent alloc/realloc/free */
309 void *nm_os_malloc(size_t);
310 void *nm_os_vmalloc(size_t);
311 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
312 void nm_os_free(void *);
313 void nm_os_vfree(void *);
314
315 /* os specific attach/detach enter/exit-netmap-mode routines */
316 void nm_os_onattach(struct ifnet *);
317 void nm_os_ondetach(struct ifnet *);
318 void nm_os_onenter(struct ifnet *);
319 void nm_os_onexit(struct ifnet *);
320
321 /* passes a packet up to the host stack.
322 * If the packet is sent (or dropped) immediately it returns NULL,
323 * otherwise it links the packet to prev and returns m.
324 * In this case, a final call with m=NULL and prev != NULL will send up
325 * the entire chain to the host stack.
326 */
327 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
328
329 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
330 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
331
332 #include "netmap_mbq.h"
333
334 extern NMG_LOCK_T netmap_global_lock;
335
336 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
337
338 static __inline const char*
339 nm_txrx2str(enum txrx t)
340 {
341 return (t== NR_RX ? "RX" : "TX");
342 }
343
344 static __inline enum txrx
345 nm_txrx_swap(enum txrx t)
346 {
347 return (t== NR_RX ? NR_TX : NR_RX);
348 }
349
350 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++)
351
352 #ifdef WITH_MONITOR
353 struct netmap_zmon_list {
354 struct netmap_kring *next;
355 struct netmap_kring *prev;
356 };
357 #endif /* WITH_MONITOR */
358
359 /*
360 * private, kernel view of a ring. Keeps track of the status of
361 * a ring across system calls.
362 *
363 * nr_hwcur index of the next buffer to refill.
364 * It corresponds to ring->head
365 * at the time the system call returns.
366 *
367 * nr_hwtail index of the first buffer owned by the kernel.
368 * On RX, hwcur->hwtail are receive buffers
369 * not yet released. hwcur is advanced following
370 * ring->head, hwtail is advanced on incoming packets,
371 * and a wakeup is generated when hwtail passes ring->cur
372 * On TX, hwcur->rcur have been filled by the sender
373 * but not sent yet to the NIC; rcur->hwtail are available
374 * for new transmissions, and hwtail->hwcur-1 are pending
375 * transmissions not yet acknowledged.
376 *
377 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
378 * This is so that, on a reset, buffers owned by userspace are not
379 * modified by the kernel. In particular:
380 * RX rings: the next empty buffer (hwtail + hwofs) coincides with
381 * the next empty buffer as known by the hardware (next_to_check or so).
382 * TX rings: hwcur + hwofs coincides with next_to_send
383 *
384 * The following fields are used to implement lock-free copy of packets
385 * from input to output ports in VALE switch:
386 * nkr_hwlease buffer after the last one being copied.
387 * A writer in nm_bdg_flush reserves N buffers
388 * from nr_hwlease, advances it, then does the
389 * copy outside the lock.
390 * In RX rings (used for VALE ports),
391 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
392 * In TX rings (used for NIC or host stack ports)
393 * nkr_hwcur <= nkr_hwlease < nkr_hwtail
394 * nkr_leases array of nkr_num_slots where writers can report
395 * completion of their block. NR_NOSLOT (~0) indicates
396 * that the writer has not finished yet
397 * nkr_lease_idx index of next free slot in nr_leases, to be assigned
398 *
399 * The kring is manipulated by txsync/rxsync and generic netmap function.
400 *
401 * Concurrent rxsync or txsync on the same ring are prevented through
402 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
403 * for NIC rings, and for TX rings attached to the host stack.
404 *
405 * RX rings attached to the host stack use an mbq (rx_queue) on both
406 * rxsync_from_host() and netmap_transmit(). The mbq is protected
407 * by its internal lock.
408 *
409 * RX rings attached to the VALE switch are accessed by both senders
410 * and receiver. They are protected through the q_lock on the RX ring.
411 */
412 struct netmap_kring {
413 struct netmap_ring *ring;
414
415 uint32_t nr_hwcur; /* should be nr_hwhead */
416 uint32_t nr_hwtail;
417
418 /*
419 * Copies of values in user rings, so we do not need to look
420 * at the ring (which could be modified). These are set in the
421 * *sync_prologue()/finalize() routines.
422 */
423 uint32_t rhead;
424 uint32_t rcur;
425 uint32_t rtail;
426
427 uint32_t nr_kflags; /* private driver flags */
428 #define NKR_PENDINTR 0x1 // Pending interrupt.
429 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */
430 #define NKR_FORWARD 0x4 /* (host ring only) there are
431 packets to forward
432 */
433 #define NKR_NEEDRING 0x8 /* ring needed even if users==0
434 * (used internally by pipes and
435 * by ptnetmap host ports)
436 */
437 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */
438 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */
439
440 uint32_t nr_mode;
441 uint32_t nr_pending_mode;
442 #define NKR_NETMAP_OFF 0x0
443 #define NKR_NETMAP_ON 0x1
444
445 uint32_t nkr_num_slots;
446
447 /*
448 * On a NIC reset, the NIC ring indexes may be reset but the
449 * indexes in the netmap rings remain the same. nkr_hwofs
450 * keeps track of the offset between the two.
451 *
452 * Moreover, during reset, we can restore only the subset of
453 * the NIC ring that corresponds to the kernel-owned part of
454 * the netmap ring. The rest of the slots must be restored
455 * by the *sync routines when the user releases more slots.
456 * The nkr_to_refill field keeps track of the number of slots
457 * that still need to be restored.
458 */
459 int32_t nkr_hwofs;
460 int32_t nkr_to_refill;
461
462 /* last_reclaim is opaque marker to help reduce the frequency
463 * of operations such as reclaiming tx buffers. A possible use
464 * is set it to ticks and do the reclaim only once per tick.
465 */
466 uint64_t last_reclaim;
467
468
469 NM_SELINFO_T si; /* poll/select wait queue */
470 NM_LOCK_T q_lock; /* protects kring and ring. */
471 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */
472
473 /* the adapter the owns this kring */
474 struct netmap_adapter *na;
475
476 /* the adapter that wants to be notified when this kring has
477 * new slots available. This is usually the same as the above,
478 * but wrappers may let it point to themselves
479 */
480 struct netmap_adapter *notify_na;
481
482 /* The following fields are for VALE switch support */
483 struct nm_bdg_fwd *nkr_ft;
484 uint32_t *nkr_leases;
485 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */
486 uint32_t nkr_hwlease;
487 uint32_t nkr_lease_idx;
488
489 /* while nkr_stopped is set, no new [tr]xsync operations can
490 * be started on this kring.
491 * This is used by netmap_disable_all_rings()
492 * to find a synchronization point where critical data
493 * structures pointed to by the kring can be added or removed
494 */
495 volatile int nkr_stopped;
496
497 /* Support for adapters without native netmap support.
498 * On tx rings we preallocate an array of tx buffers
499 * (same size as the netmap ring), on rx rings we
500 * store incoming mbufs in a queue that is drained by
501 * a rxsync.
502 */
503 struct mbuf **tx_pool;
504 struct mbuf *tx_event; /* TX event used as a notification */
505 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */
506 struct mbq rx_queue; /* intercepted rx mbufs. */
507
508 uint32_t users; /* existing bindings for this ring */
509
510 uint32_t ring_id; /* kring identifier */
511 enum txrx tx; /* kind of ring (tx or rx) */
512 char name[64]; /* diagnostic */
513
514 /* [tx]sync callback for this kring.
515 * The default nm_kring_create callback (netmap_krings_create)
516 * sets the nm_sync callback of each hardware tx(rx) kring to
517 * the corresponding nm_txsync(nm_rxsync) taken from the
518 * netmap_adapter; moreover, it sets the sync callback
519 * of the host tx(rx) ring to netmap_txsync_to_host
520 * (netmap_rxsync_from_host).
521 *
522 * Overrides: the above configuration is not changed by
523 * any of the nm_krings_create callbacks.
524 */
525 int (*nm_sync)(struct netmap_kring *kring, int flags);
526 int (*nm_notify)(struct netmap_kring *kring, int flags);
527
528 #ifdef WITH_PIPES
529 struct netmap_kring *pipe; /* if this is a pipe ring,
530 * pointer to the other end
531 */
532 uint32_t pipe_tail; /* hwtail updated by the other end */
533 #endif /* WITH_PIPES */
534
535 /* mask for the offset-related part of the ptr field in the slots */
536 uint64_t offset_mask;
537 /* maximum user-specified offset, as stipulated at bind time.
538 * Larger offset requests will be silently capped to offset_max.
539 */
540 uint64_t offset_max;
541 /* minimum gap between two consecutive offsets into the same
542 * buffer, as stipulated at bind time. This is used to choose
543 * the hwbuf_len, but is not otherwise checked for compliance
544 * at runtime.
545 */
546 uint64_t offset_gap;
547
548 /* size of hardware buffer. This may be less than the size of
549 * the netmap buffers because of non-zero offsets, or because
550 * the netmap buffer size exceeds the capability of the hardware.
551 */
552 uint64_t hwbuf_len;
553
554 /* required alignment (in bytes) for the buffers used by this ring.
555 * Netmap buffers are aligned to cachelines, which should suffice
556 * for most NICs. If the user is passing offsets, though, we need
557 * to check that the resulting buf address complies with any
558 * alignment restriction.
559 */
560 uint64_t buf_align;
561
562 /* hardware specific logic for the selection of the hwbuf_len */
563 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
564
565 int (*save_notify)(struct netmap_kring *kring, int flags);
566
567 #ifdef WITH_MONITOR
568 /* array of krings that are monitoring this kring */
569 struct netmap_kring **monitors;
570 uint32_t max_monitors; /* current size of the monitors array */
571 uint32_t n_monitors; /* next unused entry in the monitor array */
572 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
573 uint32_t mon_tail; /* last seen slot on rx */
574
575 /* circular list of zero-copy monitors */
576 struct netmap_zmon_list zmon_list[NR_TXRX];
577
578 /*
579 * Monitors work by intercepting the sync and notify callbacks of the
580 * monitored krings. This is implemented by replacing the pointers
581 * above and saving the previous ones in mon_* pointers below
582 */
583 int (*mon_sync)(struct netmap_kring *kring, int flags);
584 int (*mon_notify)(struct netmap_kring *kring, int flags);
585
586 #endif
587 }
588 #ifdef _WIN32
589 __declspec(align(64));
590 #else
591 __attribute__((__aligned__(64)));
592 #endif
593
594 /* return 1 iff the kring needs to be turned on */
595 static inline int
596 nm_kring_pending_on(struct netmap_kring *kring)
597 {
598 return kring->nr_pending_mode == NKR_NETMAP_ON &&
599 kring->nr_mode == NKR_NETMAP_OFF;
600 }
601
602 /* return 1 iff the kring needs to be turned off */
603 static inline int
604 nm_kring_pending_off(struct netmap_kring *kring)
605 {
606 return kring->nr_pending_mode == NKR_NETMAP_OFF &&
607 kring->nr_mode == NKR_NETMAP_ON;
608 }
609
610 /* return the next index, with wraparound */
611 static inline uint32_t
612 nm_next(uint32_t i, uint32_t lim)
613 {
614 return unlikely (i == lim) ? 0 : i + 1;
615 }
616
617
618 /* return the previous index, with wraparound */
619 static inline uint32_t
620 nm_prev(uint32_t i, uint32_t lim)
621 {
622 return unlikely (i == 0) ? lim : i - 1;
623 }
624
625
626 /*
627 *
628 * Here is the layout for the Rx and Tx rings.
629
630 RxRING TxRING
631
632 +-----------------+ +-----------------+
633 | | | |
634 | free | | free |
635 +-----------------+ +-----------------+
636 head->| owned by user |<-hwcur | not sent to nic |<-hwcur
637 | | | yet |
638 +-----------------+ | |
639 cur->| available to | | |
640 | user, not read | +-----------------+
641 | yet | cur->| (being |
642 | | | prepared) |
643 | | | |
644 +-----------------+ + ------ +
645 tail->| |<-hwtail | |<-hwlease
646 | (being | ... | | ...
647 | prepared) | ... | | ...
648 +-----------------+ ... | | ...
649 | |<-hwlease +-----------------+
650 | | tail->| |<-hwtail
651 | | | |
652 | | | |
653 | | | |
654 +-----------------+ +-----------------+
655
656 * The cur/tail (user view) and hwcur/hwtail (kernel view)
657 * are used in the normal operation of the card.
658 *
659 * When a ring is the output of a switch port (Rx ring for
660 * a VALE port, Tx ring for the host stack or NIC), slots
661 * are reserved in blocks through 'hwlease' which points
662 * to the next unused slot.
663 * On an Rx ring, hwlease is always after hwtail,
664 * and completions cause hwtail to advance.
665 * On a Tx ring, hwlease is always between cur and hwtail,
666 * and completions cause cur to advance.
667 *
668 * nm_kr_space() returns the maximum number of slots that
669 * can be assigned.
670 * nm_kr_lease() reserves the required number of buffers,
671 * advances nkr_hwlease and also returns an entry in
672 * a circular array where completions should be reported.
673 */
674
675 struct lut_entry;
676 #ifdef __FreeBSD__
677 #define plut_entry lut_entry
678 #endif
679
680 struct netmap_lut {
681 struct lut_entry *lut;
682 struct plut_entry *plut;
683 uint32_t objtotal; /* max buffer index */
684 uint32_t objsize; /* buffer size */
685 };
686
687 struct netmap_vp_adapter; // forward
688 struct nm_bridge;
689
690 /* Struct to be filled by nm_config callbacks. */
691 struct nm_config_info {
692 unsigned num_tx_rings;
693 unsigned num_rx_rings;
694 unsigned num_tx_descs;
695 unsigned num_rx_descs;
696 unsigned rx_buf_maxsize;
697 };
698
699 /*
700 * default type for the magic field.
701 * May be overridden in glue code.
702 */
703 #ifndef NM_OS_MAGIC
704 #define NM_OS_MAGIC uint32_t
705 #endif /* !NM_OS_MAGIC */
706
707 /*
708 * The "struct netmap_adapter" extends the "struct adapter"
709 * (or equivalent) device descriptor.
710 * It contains all base fields needed to support netmap operation.
711 * There are in fact different types of netmap adapters
712 * (native, generic, VALE switch...) so a netmap_adapter is
713 * just the first field in the derived type.
714 */
715 struct netmap_adapter {
716 /*
717 * On linux we do not have a good way to tell if an interface
718 * is netmap-capable. So we always use the following trick:
719 * NA(ifp) points here, and the first entry (which hopefully
720 * always exists and is at least 32 bits) contains a magic
721 * value which we can use to detect that the interface is good.
722 */
723 NM_OS_MAGIC magic;
724 uint32_t na_flags; /* enabled, and other flags */
725 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler.
726 * useful during initialization
727 */
728 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */
729 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when
730 * forwarding packets coming from this
731 * interface
732 */
733 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area
734 * that cannot be changed
735 */
736 #define NAF_NATIVE 16 /* the adapter is native.
737 * Virtual ports (non persistent vale ports,
738 * pipes, monitors...) should never use
739 * this flag.
740 */
741 #define NAF_NETMAP_ON 32 /* netmap is active (either native or
742 * emulated). Where possible (e.g. FreeBSD)
743 * IFCAP_NETMAP also mirrors this flag.
744 */
745 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */
746 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */
747 /* free */
748 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */
749 #define NAF_OFFSETS 1024 /* the adapter supports the slot offsets */
750 #define NAF_HOST_ALL 2048 /* the adapter wants as many host rings as hw */
751 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */
752 #define NAF_BUSY (1U<<31) /* the adapter is used internally and
753 * cannot be registered from userspace
754 */
755 int active_fds; /* number of user-space descriptors using this
756 interface, which is equal to the number of
757 struct netmap_if objs in the mapped region. */
758
759 u_int num_rx_rings; /* number of adapter receive rings */
760 u_int num_tx_rings; /* number of adapter transmit rings */
761 u_int num_host_rx_rings; /* number of host receive rings */
762 u_int num_host_tx_rings; /* number of host transmit rings */
763
764 u_int num_tx_desc; /* number of descriptor in each queue */
765 u_int num_rx_desc;
766
767 /* tx_rings and rx_rings are private but allocated as a
768 * contiguous chunk of memory. Each array has N+K entries,
769 * N for the hardware rings and K for the host rings.
770 */
771 struct netmap_kring **tx_rings; /* array of TX rings. */
772 struct netmap_kring **rx_rings; /* array of RX rings. */
773
774 void *tailroom; /* space below the rings array */
775 /* (used for leases) */
776
777
778 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */
779
780 /* count users of the global wait queues */
781 int si_users[NR_TXRX];
782
783 void *pdev; /* used to store pci device */
784
785 /* copy of if_qflush and if_transmit pointers, to intercept
786 * packets from the network stack when netmap is active.
787 */
788 int (*if_transmit)(struct ifnet *, struct mbuf *);
789
790 /* copy of if_input for netmap_send_up() */
791 void (*if_input)(struct ifnet *, struct mbuf *);
792
793 /* Back reference to the parent ifnet struct. Used for
794 * hardware ports (emulated netmap included). */
795 struct ifnet *ifp; /* adapter is ifp->if_softc */
796
797 /*---- callbacks for this netmap adapter -----*/
798 /*
799 * nm_dtor() is the cleanup routine called when destroying
800 * the adapter.
801 * Called with NMG_LOCK held.
802 *
803 * nm_register() is called on NIOCREGIF and close() to enter
804 * or exit netmap mode on the NIC
805 * Called with NNG_LOCK held.
806 *
807 * nm_txsync() pushes packets to the underlying hw/switch
808 *
809 * nm_rxsync() collects packets from the underlying hw/switch
810 *
811 * nm_config() returns configuration information from the OS
812 * Called with NMG_LOCK held.
813 *
814 * nm_bufcfg()
815 * the purpose of this callback is to fill the kring->hwbuf_len
816 * (l) and kring->buf_align fields. The l value is most important
817 * for RX rings, where we want to disallow writes outside of the
818 * netmap buffer. The l value must be computed taking into account
819 * the stipulated max_offset (o), possibly increased if there are
820 * alignment constraints, the maxframe (m), if known, and the
821 * current NETMAP_BUF_SIZE (b) of the memory region used by the
822 * adapter. We want the largest supported l such that o + l <= b.
823 * If m is known to be <= b - o, the callback may also choose the
824 * largest l <= m, ignoring the offset. The buf_align field is
825 * most important for TX rings when there are offsets. The user
826 * will see this value in the ring->buf_align field. Misaligned
827 * offsets will cause the corresponding packets to be silently
828 * dropped.
829 *
830 * nm_krings_create() create and init the tx_rings and
831 * rx_rings arrays of kring structures. In particular,
832 * set the nm_sync callbacks for each ring.
833 * There is no need to also allocate the corresponding
834 * netmap_rings, since netmap_mem_rings_create() will always
835 * be called to provide the missing ones.
836 * Called with NNG_LOCK held.
837 *
838 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
839 * arrays
840 * Called with NMG_LOCK held.
841 *
842 * nm_notify() is used to act after data have become available
843 * (or the stopped state of the ring has changed)
844 * For hw devices this is typically a selwakeup(),
845 * but for NIC/host ports attached to a switch (or vice-versa)
846 * we also need to invoke the 'txsync' code downstream.
847 * This callback pointer is actually used only to initialize
848 * kring->nm_notify.
849 * Return values are the same as for netmap_rx_irq().
850 */
851 void (*nm_dtor)(struct netmap_adapter *);
852
853 int (*nm_register)(struct netmap_adapter *, int onoff);
854 void (*nm_intr)(struct netmap_adapter *, int onoff);
855
856 int (*nm_txsync)(struct netmap_kring *kring, int flags);
857 int (*nm_rxsync)(struct netmap_kring *kring, int flags);
858 int (*nm_notify)(struct netmap_kring *kring, int flags);
859 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
860 #define NAF_FORCE_READ 1
861 #define NAF_FORCE_RECLAIM 2
862 #define NAF_CAN_FORWARD_DOWN 4
863 /* return configuration information */
864 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
865 int (*nm_krings_create)(struct netmap_adapter *);
866 void (*nm_krings_delete)(struct netmap_adapter *);
867 /*
868 * nm_bdg_attach() initializes the na_vp field to point
869 * to an adapter that can be attached to a VALE switch. If the
870 * current adapter is already a VALE port, na_vp is simply a cast;
871 * otherwise, na_vp points to a netmap_bwrap_adapter.
872 * If applicable, this callback also initializes na_hostvp,
873 * that can be used to connect the adapter host rings to the
874 * switch.
875 * Called with NMG_LOCK held.
876 *
877 * nm_bdg_ctl() is called on the actual attach/detach to/from
878 * to/from the switch, to perform adapter-specific
879 * initializations
880 * Called with NMG_LOCK held.
881 */
882 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
883 struct nm_bridge *);
884 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
885
886 /* adapter used to attach this adapter to a VALE switch (if any) */
887 struct netmap_vp_adapter *na_vp;
888 /* adapter used to attach the host rings of this adapter
889 * to a VALE switch (if any) */
890 struct netmap_vp_adapter *na_hostvp;
891
892 /* standard refcount to control the lifetime of the adapter
893 * (it should be equal to the lifetime of the corresponding ifp)
894 */
895 int na_refcount;
896
897 /* memory allocator (opaque)
898 * We also cache a pointer to the lut_entry for translating
899 * buffer addresses, the total number of buffers and the buffer size.
900 */
901 struct netmap_mem_d *nm_mem;
902 struct netmap_mem_d *nm_mem_prev;
903 struct netmap_lut na_lut;
904
905 /* additional information attached to this adapter
906 * by other netmap subsystems. Currently used by
907 * bwrap, LINUX/v1000 and ptnetmap
908 */
909 void *na_private;
910
911 /* array of pipes that have this adapter as a parent */
912 struct netmap_pipe_adapter **na_pipes;
913 int na_next_pipe; /* next free slot in the array */
914 int na_max_pipes; /* size of the array */
915
916 /* Offset of ethernet header for each packet. */
917 u_int virt_hdr_len;
918
919 /* Max number of bytes that the NIC can store in the buffer
920 * referenced by each RX descriptor. This translates to the maximum
921 * bytes that a single netmap slot can reference. Larger packets
922 * require NS_MOREFRAG support. */
923 unsigned rx_buf_maxsize;
924
925 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
926
927 #ifdef WITH_MONITOR
928 unsigned long monitor_id; /* debugging */
929 #endif
930 };
931
932 static __inline u_int
933 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
934 {
935 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
936 }
937
938 static __inline void
939 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
940 {
941 if (t == NR_TX)
942 na->num_tx_desc = v;
943 else
944 na->num_rx_desc = v;
945 }
946
947 static __inline u_int
948 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
949 {
950 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
951 }
952
953 static __inline u_int
954 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
955 {
956 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
957 }
958
959 static __inline void
960 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
961 {
962 if (t == NR_TX)
963 na->num_tx_rings = v;
964 else
965 na->num_rx_rings = v;
966 }
967
968 static __inline void
969 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
970 {
971 if (t == NR_TX)
972 na->num_host_tx_rings = v;
973 else
974 na->num_host_rx_rings = v;
975 }
976
977 static __inline struct netmap_kring**
978 NMR(struct netmap_adapter *na, enum txrx t)
979 {
980 return (t == NR_TX ? na->tx_rings : na->rx_rings);
981 }
982
983 int nma_intr_enable(struct netmap_adapter *na, int onoff);
984
985 /*
986 * If the NIC is owned by the kernel
987 * (i.e., bridge), neither another bridge nor user can use it;
988 * if the NIC is owned by a user, only users can share it.
989 * Evaluation must be done under NMG_LOCK().
990 */
991 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY)
992 #define NETMAP_OWNED_BY_ANY(na) \
993 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
994
995 /*
996 * derived netmap adapters for various types of ports
997 */
998 struct netmap_vp_adapter { /* VALE software port */
999 struct netmap_adapter up;
1000
1001 /*
1002 * Bridge support:
1003 *
1004 * bdg_port is the port number used in the bridge;
1005 * na_bdg points to the bridge this NA is attached to.
1006 */
1007 int bdg_port;
1008 struct nm_bridge *na_bdg;
1009 int retry;
1010 int autodelete; /* remove the ifp on last reference */
1011
1012 /* Maximum Frame Size, used in bdg_mismatch_datapath() */
1013 u_int mfs;
1014 /* Last source MAC on this port */
1015 uint64_t last_smac;
1016 };
1017
1018
1019 struct netmap_hw_adapter { /* physical device */
1020 struct netmap_adapter up;
1021
1022 #ifdef linux
1023 struct net_device_ops nm_ndo;
1024 struct ethtool_ops nm_eto;
1025 #endif
1026 const struct ethtool_ops* save_ethtool;
1027
1028 int (*nm_hw_register)(struct netmap_adapter *, int onoff);
1029 };
1030
1031 #ifdef WITH_GENERIC
1032 /* Mitigation support. */
1033 struct nm_generic_mit {
1034 struct hrtimer mit_timer;
1035 int mit_pending;
1036 int mit_ring_idx; /* index of the ring being mitigated */
1037 struct netmap_adapter *mit_na; /* backpointer */
1038 };
1039
1040 struct netmap_generic_adapter { /* emulated device */
1041 struct netmap_hw_adapter up;
1042
1043 /* Pointer to a previously used netmap adapter. */
1044 struct netmap_adapter *prev;
1045
1046 /* Emulated netmap adapters support:
1047 * - save_if_input saves the if_input hook (FreeBSD);
1048 * - mit implements rx interrupt mitigation;
1049 */
1050 void (*save_if_input)(struct ifnet *, struct mbuf *);
1051
1052 struct nm_generic_mit *mit;
1053 #ifdef linux
1054 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
1055 #endif
1056 /* Is the adapter able to use multiple RX slots to scatter
1057 * each packet pushed up by the driver? */
1058 int rxsg;
1059
1060 /* Is the transmission path controlled by a netmap-aware
1061 * device queue (i.e. qdisc on linux)? */
1062 int txqdisc;
1063 };
1064 #endif /* WITH_GENERIC */
1065
1066 static __inline u_int
1067 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1068 {
1069 return nma_get_nrings(na, t) +
1070 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1071 }
1072
1073 /* account for fake rings */
1074 static __inline u_int
1075 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1076 {
1077 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1078 }
1079
1080 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1081 struct nm_bridge *);
1082 struct nm_bdg_polling_state;
1083 /*
1084 * Bridge wrapper for non VALE ports attached to a VALE switch.
1085 *
1086 * The real device must already have its own netmap adapter (hwna).
1087 * The bridge wrapper and the hwna adapter share the same set of
1088 * netmap rings and buffers, but they have two separate sets of
1089 * krings descriptors, with tx/rx meanings swapped:
1090 *
1091 * netmap
1092 * bwrap krings rings krings hwna
1093 * +------+ +------+ +-----+ +------+ +------+
1094 * |tx_rings->| |\ /| |----| |<-tx_rings|
1095 * | | +------+ \ / +-----+ +------+ | |
1096 * | | X | |
1097 * | | / \ | |
1098 * | | +------+/ \+-----+ +------+ | |
1099 * |rx_rings->| | | |----| |<-rx_rings|
1100 * | | +------+ +-----+ +------+ | |
1101 * +------+ +------+
1102 *
1103 * - packets coming from the bridge go to the brwap rx rings,
1104 * which are also the hwna tx rings. The bwrap notify callback
1105 * will then complete the hwna tx (see netmap_bwrap_notify).
1106 *
1107 * - packets coming from the outside go to the hwna rx rings,
1108 * which are also the bwrap tx rings. The (overwritten) hwna
1109 * notify method will then complete the bridge tx
1110 * (see netmap_bwrap_intr_notify).
1111 *
1112 * The bridge wrapper may optionally connect the hwna 'host' rings
1113 * to the bridge. This is done by using a second port in the
1114 * bridge and connecting it to the 'host' netmap_vp_adapter
1115 * contained in the netmap_bwrap_adapter. The brwap host adapter
1116 * cross-links the hwna host rings in the same way as shown above.
1117 *
1118 * - packets coming from the bridge and directed to the host stack
1119 * are handled by the bwrap host notify callback
1120 * (see netmap_bwrap_host_notify)
1121 *
1122 * - packets coming from the host stack are still handled by the
1123 * overwritten hwna notify callback (netmap_bwrap_intr_notify),
1124 * but are diverted to the host adapter depending on the ring number.
1125 *
1126 */
1127 struct netmap_bwrap_adapter {
1128 struct netmap_vp_adapter up;
1129 struct netmap_vp_adapter host; /* for host rings */
1130 struct netmap_adapter *hwna; /* the underlying device */
1131
1132 /*
1133 * When we attach a physical interface to the bridge, we
1134 * allow the controlling process to terminate, so we need
1135 * a place to store the n_detmap_priv_d data structure.
1136 * This is only done when physical interfaces
1137 * are attached to a bridge.
1138 */
1139 struct netmap_priv_d *na_kpriv;
1140 struct nm_bdg_polling_state *na_polling_state;
1141 /* we overwrite the hwna->na_vp pointer, so we save
1142 * here its original value, to be restored at detach
1143 */
1144 struct netmap_vp_adapter *saved_na_vp;
1145 int (*nm_intr_notify)(struct netmap_kring *kring, int flags);
1146 };
1147 int nm_is_bwrap(struct netmap_adapter *na);
1148 int nm_bdg_polling(struct nmreq_header *hdr);
1149
1150 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token);
1151 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token);
1152 #ifdef WITH_VALE
1153 int netmap_vale_list(struct nmreq_header *hdr);
1154 int netmap_vi_create(struct nmreq_header *hdr, int);
1155 int nm_vi_create(struct nmreq_header *);
1156 int nm_vi_destroy(const char *name);
1157 #else /* !WITH_VALE */
1158 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1159 #endif /* WITH_VALE */
1160
1161 #ifdef WITH_PIPES
1162
1163 #define NM_MAXPIPES 64 /* max number of pipes per adapter */
1164
1165 struct netmap_pipe_adapter {
1166 /* pipe identifier is up.name */
1167 struct netmap_adapter up;
1168
1169 #define NM_PIPE_ROLE_MASTER 0x1
1170 #define NM_PIPE_ROLE_SLAVE 0x2
1171 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1172
1173 struct netmap_adapter *parent; /* adapter that owns the memory */
1174 struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1175 int peer_ref; /* 1 iff we are holding a ref to the peer */
1176 struct ifnet *parent_ifp; /* maybe null */
1177
1178 u_int parent_slot; /* index in the parent pipe array */
1179 };
1180
1181 #endif /* WITH_PIPES */
1182
1183 #ifdef WITH_NMNULL
1184 struct netmap_null_adapter {
1185 struct netmap_adapter up;
1186 };
1187 #endif /* WITH_NMNULL */
1188
1189
1190 /* return slots reserved to rx clients; used in drivers */
1191 static inline uint32_t
1192 nm_kr_rxspace(struct netmap_kring *k)
1193 {
1194 int space = k->nr_hwtail - k->nr_hwcur;
1195 if (space < 0)
1196 space += k->nkr_num_slots;
1197 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1198
1199 return space;
1200 }
1201
1202 /* return slots reserved to tx clients */
1203 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1204
1205
1206 /* True if no space in the tx ring, only valid after txsync_prologue */
1207 static inline int
1208 nm_kr_txempty(struct netmap_kring *kring)
1209 {
1210 return kring->rhead == kring->nr_hwtail;
1211 }
1212
1213 /* True if no more completed slots in the rx ring, only valid after
1214 * rxsync_prologue */
1215 #define nm_kr_rxempty(_k) nm_kr_txempty(_k)
1216
1217 /* True if the application needs to wait for more space on the ring
1218 * (more received packets or more free tx slots).
1219 * Only valid after *xsync_prologue. */
1220 static inline int
1221 nm_kr_wouldblock(struct netmap_kring *kring)
1222 {
1223 return kring->rcur == kring->nr_hwtail;
1224 }
1225
1226 /*
1227 * protect against multiple threads using the same ring.
1228 * also check that the ring has not been stopped or locked
1229 */
1230 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */
1231 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */
1232 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */
1233
1234
1235 /* release the previously acquired right to use the *sync() methods of the ring */
1236 static __inline void nm_kr_put(struct netmap_kring *kr)
1237 {
1238 NM_ATOMIC_CLEAR(&kr->nr_busy);
1239 }
1240
1241
1242 /* true if the ifp that backed the adapter has disappeared (e.g., the
1243 * driver has been unloaded)
1244 */
1245 static inline int nm_iszombie(struct netmap_adapter *na);
1246
1247 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1248 * The right is obtained and must be later relinquished via nm_kr_put() if and
1249 * only if nm_kr_tryget() returns 0.
1250 * If can_sleep is 1 there are only two other possible outcomes:
1251 * - the function returns NM_KR_BUSY
1252 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1253 * (if non-null)
1254 * In both cases the caller will typically skip the ring, possibly collecting
1255 * errors along the way.
1256 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1257 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1258 * untouched: ideally, the caller should try again at a later time.
1259 */
1260 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1261 {
1262 int busy = 1, stopped;
1263 /* check a first time without taking the lock
1264 * to avoid starvation for nm_kr_get()
1265 */
1266 retry:
1267 stopped = kr->nkr_stopped;
1268 if (unlikely(stopped)) {
1269 goto stop;
1270 }
1271 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1272 /* we should not return NM_KR_BUSY if the ring was
1273 * actually stopped, so check another time after
1274 * the barrier provided by the atomic operation
1275 */
1276 stopped = kr->nkr_stopped;
1277 if (unlikely(stopped)) {
1278 goto stop;
1279 }
1280
1281 if (unlikely(nm_iszombie(kr->na))) {
1282 stopped = NM_KR_STOPPED;
1283 goto stop;
1284 }
1285
1286 return unlikely(busy) ? NM_KR_BUSY : 0;
1287
1288 stop:
1289 if (!busy)
1290 nm_kr_put(kr);
1291 if (stopped == NM_KR_STOPPED) {
1292 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1293 * Otherwise, any non-zero value will do.
1294 */
1295 #ifdef POLLERR
1296 #define NM_POLLERR POLLERR
1297 #else
1298 #define NM_POLLERR 1
1299 #endif /* POLLERR */
1300 if (perr)
1301 *perr |= NM_POLLERR;
1302 #undef NM_POLLERR
1303 } else if (can_sleep) {
1304 tsleep(kr, 0, "NM_KR_TRYGET", 4);
1305 goto retry;
1306 }
1307 return stopped;
1308 }
1309
1310 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1311 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1312 */
1313 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1314 {
1315 kr->nkr_stopped = stopped;
1316 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1317 tsleep(kr, 0, "NM_KR_GET", 4);
1318 }
1319
1320 /* restart a ring after a stop */
1321 static __inline void nm_kr_start(struct netmap_kring *kr)
1322 {
1323 kr->nkr_stopped = 0;
1324 nm_kr_put(kr);
1325 }
1326
1327
1328 /*
1329 * The following functions are used by individual drivers to
1330 * support netmap operation.
1331 *
1332 * netmap_attach() initializes a struct netmap_adapter, allocating the
1333 * struct netmap_ring's and the struct selinfo.
1334 *
1335 * netmap_detach() frees the memory allocated by netmap_attach().
1336 *
1337 * netmap_transmit() replaces the if_transmit routine of the interface,
1338 * and is used to intercept packets coming from the stack.
1339 *
1340 * netmap_load_map/netmap_reload_map are helper routines to set/reset
1341 * the dmamap for a packet buffer
1342 *
1343 * netmap_reset() is a helper routine to be called in the hw driver
1344 * when reinitializing a ring. It should not be called by
1345 * virtual ports (vale, pipes, monitor)
1346 */
1347 int netmap_attach(struct netmap_adapter *);
1348 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1349 void netmap_detach(struct ifnet *);
1350 int netmap_transmit(struct ifnet *, struct mbuf *);
1351 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1352 enum txrx tx, u_int n, u_int new_cur);
1353 int netmap_ring_reinit(struct netmap_kring *);
1354 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1355
1356 /* Return codes for netmap_*x_irq. */
1357 enum {
1358 /* Driver should do normal interrupt processing, e.g. because
1359 * the interface is not in netmap mode. */
1360 NM_IRQ_PASS = 0,
1361 /* Port is in netmap mode, and the interrupt work has been
1362 * completed. The driver does not have to notify netmap
1363 * again before the next interrupt. */
1364 NM_IRQ_COMPLETED = -1,
1365 /* Port is in netmap mode, but the interrupt work has not been
1366 * completed. The driver has to make sure netmap will be
1367 * notified again soon, even if no more interrupts come (e.g.
1368 * on Linux the driver should not call napi_complete()). */
1369 NM_IRQ_RESCHED = -2,
1370 };
1371
1372 /* default functions to handle rx/tx interrupts */
1373 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
1374 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1375 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1376
1377
1378 #ifdef WITH_VALE
1379 /* functions used by external modules to interface with VALE */
1380 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp)
1381 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp)
1382 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1383 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port)
1384 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1385 #else /* !WITH_VALE */
1386 #define netmap_vp_to_ifp(_vp) NULL
1387 #define netmap_ifp_to_vp(_ifp) NULL
1388 #define netmap_ifp_to_host_vp(_ifp) NULL
1389 #define netmap_bdg_idx(_vp) -1
1390 #endif /* WITH_VALE */
1391
1392 static inline int
1393 nm_netmap_on(struct netmap_adapter *na)
1394 {
1395 return na && na->na_flags & NAF_NETMAP_ON;
1396 }
1397
1398 static inline int
1399 nm_native_on(struct netmap_adapter *na)
1400 {
1401 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1402 }
1403
1404 static inline struct netmap_kring *
1405 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t)
1406 {
1407 struct netmap_kring *kring = NULL;
1408
1409 if (!nm_native_on(na))
1410 return NULL;
1411
1412 if (t == NR_RX && q < na->num_rx_rings)
1413 kring = na->rx_rings[q];
1414 else if (t == NR_TX && q < na->num_tx_rings)
1415 kring = na->tx_rings[q];
1416 else
1417 return NULL;
1418
1419 return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL;
1420 }
1421
1422 static inline int
1423 nm_iszombie(struct netmap_adapter *na)
1424 {
1425 return na == NULL || (na->na_flags & NAF_ZOMBIE);
1426 }
1427
1428 void nm_set_native_flags(struct netmap_adapter *);
1429 void nm_clear_native_flags(struct netmap_adapter *);
1430
1431 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
1432
1433 /*
1434 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1435 * kthreads.
1436 * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1437 * from host kring.
1438 * The user-space ring pointers (head/cur/tail) are shared through
1439 * CSB between host and guest.
1440 */
1441
1442 /*
1443 * validates parameters in the ring/kring, returns a value for head
1444 * If any error, returns ring_size to force a reinit.
1445 */
1446 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1447
1448
1449 /*
1450 * validates parameters in the ring/kring, returns a value for head
1451 * If any error, returns ring_size lim to force a reinit.
1452 */
1453 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1454
1455
1456 /* check/fix address and len in tx rings */
1457 #if 1 /* debug version */
1458 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
1459 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \
1460 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \
1461 kring->ring_id, nm_i, slot->buf_idx, len); \
1462 if (_l > NETMAP_BUF_SIZE(_na)) \
1463 _l = NETMAP_BUF_SIZE(_na); \
1464 } } while (0)
1465 #else /* no debug version */
1466 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
1467 if (_l > NETMAP_BUF_SIZE(_na)) \
1468 _l = NETMAP_BUF_SIZE(_na); \
1469 } while (0)
1470 #endif
1471
1472 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do { \
1473 if ((l_) + (o_) < (l_) || \
1474 (l_) + (o_) > NETMAP_BUF_SIZE(na_)) { \
1475 (l_) = NETMAP_BUF_SIZE(na_) - (o_); \
1476 } } while (0)
1477
1478
1479 /*---------------------------------------------------------------*/
1480 /*
1481 * Support routines used by netmap subsystems
1482 * (native drivers, VALE, generic, pipes, monitors, ...)
1483 */
1484
1485
1486 /* common routine for all functions that create a netmap adapter. It performs
1487 * two main tasks:
1488 * - if the na points to an ifp, mark the ifp as netmap capable
1489 * using na as its native adapter;
1490 * - provide defaults for the setup callbacks and the memory allocator
1491 */
1492 int netmap_attach_common(struct netmap_adapter *);
1493 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1494 * coming from a struct nmreq_register
1495 */
1496 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr);
1497 /* update the ring parameters (number and size of tx and rx rings).
1498 * It calls the nm_config callback, if available.
1499 */
1500 int netmap_update_config(struct netmap_adapter *na);
1501 /* create and initialize the common fields of the krings array.
1502 * using the information that must be already available in the na.
1503 * tailroom can be used to request the allocation of additional
1504 * tailroom bytes after the krings array. This is used by
1505 * netmap_vp_adapter's (i.e., VALE ports) to make room for
1506 * leasing-related data structures
1507 */
1508 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1509 /* deletes the kring array of the adapter. The array must have
1510 * been created using netmap_krings_create
1511 */
1512 void netmap_krings_delete(struct netmap_adapter *na);
1513
1514 int netmap_hw_krings_create(struct netmap_adapter *na);
1515 void netmap_hw_krings_delete(struct netmap_adapter *na);
1516
1517 /* set the stopped/enabled status of ring
1518 * When stopping, they also wait for all current activity on the ring to
1519 * terminate. The status change is then notified using the na nm_notify
1520 * callback.
1521 */
1522 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1523 /* set the stopped/enabled status of all rings of the adapter. */
1524 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1525 /* convenience wrappers for netmap_set_all_rings */
1526 void netmap_disable_all_rings(struct ifnet *);
1527 void netmap_enable_all_rings(struct ifnet *);
1528
1529 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1530 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1531 struct nmreq_header *);
1532 void netmap_do_unregif(struct netmap_priv_d *priv);
1533
1534 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1535 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1536 struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
1537 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
1538 int netmap_get_hw_na(struct ifnet *ifp,
1539 struct netmap_mem_d *nmd, struct netmap_adapter **na);
1540 void netmap_mem_restore(struct netmap_adapter *na);
1541
1542 #ifdef WITH_VALE
1543 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1544 struct netmap_vp_adapter *, void *private_data);
1545
1546 /* these are redefined in case of no VALE support */
1547 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1548 struct netmap_mem_d *nmd, int create);
1549 void *netmap_vale_create(const char *bdg_name, int *return_status);
1550 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1551
1552 extern unsigned int vale_max_bridges;
1553
1554 #else /* !WITH_VALE */
1555 #define netmap_bdg_learning(_1, _2, _3, _4) 0
1556 #define netmap_get_vale_na(_1, _2, _3, _4) 0
1557 #define netmap_bdg_create(_1, _2) NULL
1558 #define netmap_bdg_destroy(_1, _2) 0
1559 #define vale_max_bridges 1
1560 #endif /* !WITH_VALE */
1561
1562 #ifdef WITH_PIPES
1563 /* max number of pipes per device */
1564 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */
1565 void netmap_pipe_dealloc(struct netmap_adapter *);
1566 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1567 struct netmap_mem_d *nmd, int create);
1568 #else /* !WITH_PIPES */
1569 #define NM_MAXPIPES 0
1570 #define netmap_pipe_alloc(_1, _2) 0
1571 #define netmap_pipe_dealloc(_1)
1572 #define netmap_get_pipe_na(hdr, _2, _3, _4) \
1573 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1574 #endif
1575
1576 #ifdef WITH_MONITOR
1577 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1578 struct netmap_mem_d *nmd, int create);
1579 void netmap_monitor_stop(struct netmap_adapter *na);
1580 #else
1581 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1582 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1583 #endif
1584
1585 #ifdef WITH_NMNULL
1586 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1587 struct netmap_mem_d *nmd, int create);
1588 #else /* !WITH_NMNULL */
1589 #define netmap_get_null_na(hdr, _2, _3, _4) \
1590 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1591 #endif /* WITH_NMNULL */
1592
1593 #ifdef CONFIG_NET_NS
1594 struct net *netmap_bns_get(void);
1595 void netmap_bns_put(struct net *);
1596 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1597 #else
1598 extern struct nm_bridge *nm_bridges;
1599 #define netmap_bns_get()
1600 #define netmap_bns_put(_1)
1601 #define netmap_bns_getbridges(b, n) \
1602 do { *b = nm_bridges; *n = vale_max_bridges; } while (0)
1603 #endif
1604
1605 /* Various prototypes */
1606 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1607 int netmap_init(void);
1608 void netmap_fini(void);
1609 int netmap_get_memory(struct netmap_priv_d* p);
1610 void netmap_dtor(void *data);
1611
1612 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1613 struct thread *, int nr_body_is_user);
1614 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1615 struct thread *td);
1616 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1617
1618 /* netmap_adapter creation/destruction */
1619
1620 // #define NM_DEBUG_PUTGET 1
1621
1622 #ifdef NM_DEBUG_PUTGET
1623
1624 #define NM_DBG(f) __##f
1625
1626 void __netmap_adapter_get(struct netmap_adapter *na);
1627
1628 #define netmap_adapter_get(na) \
1629 do { \
1630 struct netmap_adapter *__na = na; \
1631 __netmap_adapter_get(__na); \
1632 nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount); \
1633 } while (0)
1634
1635 int __netmap_adapter_put(struct netmap_adapter *na);
1636
1637 #define netmap_adapter_put(na) \
1638 ({ \
1639 struct netmap_adapter *__na = na; \
1640 if (__na == NULL) \
1641 nm_prinf("putting NULL"); \
1642 else \
1643 nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1); \
1644 __netmap_adapter_put(__na); \
1645 })
1646
1647 #else /* !NM_DEBUG_PUTGET */
1648
1649 #define NM_DBG(f) f
1650 void netmap_adapter_get(struct netmap_adapter *na);
1651 int netmap_adapter_put(struct netmap_adapter *na);
1652
1653 #endif /* !NM_DEBUG_PUTGET */
1654
1655
1656 /*
1657 * module variables
1658 */
1659 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr)
1660 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize)
1661 extern int netmap_no_pendintr;
1662 extern int netmap_verbose;
1663 #ifdef CONFIG_NETMAP_DEBUG
1664 extern int netmap_debug; /* for debugging */
1665 #else /* !CONFIG_NETMAP_DEBUG */
1666 #define netmap_debug (0)
1667 #endif /* !CONFIG_NETMAP_DEBUG */
1668 enum { /* debug flags */
1669 NM_DEBUG_ON = 1, /* generic debug messages */
1670 NM_DEBUG_HOST = 0x2, /* debug host stack */
1671 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */
1672 NM_DEBUG_TXSYNC = 0x20,
1673 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */
1674 NM_DEBUG_TXINTR = 0x200,
1675 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */
1676 NM_DEBUG_NIC_TXSYNC = 0x2000,
1677 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */
1678 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */
1679 NM_DEBUG_BDG = NM_DEBUG_VALE,
1680 };
1681
1682 extern int netmap_txsync_retry;
1683 extern int netmap_generic_hwcsum;
1684 extern int netmap_generic_mit;
1685 extern int netmap_generic_ringsize;
1686 extern int netmap_generic_rings;
1687 #ifdef linux
1688 extern int netmap_generic_txqdisc;
1689 #endif
1690
1691 /*
1692 * NA returns a pointer to the struct netmap adapter from the ifp.
1693 * WNA is os-specific and must be defined in glue code.
1694 */
1695 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp))
1696
1697 /*
1698 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1699 * based on the WNA field.
1700 * Glue code may override this by defining its own NM_ATTACH_NA
1701 */
1702 #ifndef NM_ATTACH_NA
1703 /*
1704 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1705 * overload another pointer in the netdev.
1706 *
1707 * We check if NA(ifp) is set and its first element has a related
1708 * magic value. The capenable is within the struct netmap_adapter.
1709 */
1710 #define NETMAP_MAGIC 0x52697a7a
1711
1712 #define NM_NA_VALID(ifp) (NA(ifp) && \
1713 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1714
1715 #define NM_ATTACH_NA(ifp, na) do { \
1716 WNA(ifp) = na; \
1717 if (NA(ifp)) \
1718 NA(ifp)->magic = \
1719 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \
1720 } while(0)
1721 #define NM_RESTORE_NA(ifp, na) WNA(ifp) = na;
1722
1723 #define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0)
1724 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp))
1725 #endif /* !NM_ATTACH_NA */
1726
1727
1728 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1729
1730 #if defined(__FreeBSD__)
1731
1732 /* Assigns the device IOMMU domain to an allocator.
1733 * Returns -ENOMEM in case the domain is different */
1734 #define nm_iommu_group_id(dev) (-1)
1735
1736 /* Callback invoked by the dma machinery after a successful dmamap_load */
1737 static void netmap_dmamap_cb(__unused void *arg,
1738 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1739 {
1740 }
1741
1742 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1743 * XXX can we do it without a callback ?
1744 */
1745 static inline int
1746 netmap_load_map(struct netmap_adapter *na,
1747 bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1748 {
1749 if (map)
1750 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1751 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1752 return 0;
1753 }
1754
1755 static inline void
1756 netmap_unload_map(struct netmap_adapter *na,
1757 bus_dma_tag_t tag, bus_dmamap_t map)
1758 {
1759 if (map)
1760 bus_dmamap_unload(tag, map);
1761 }
1762
1763 #define netmap_sync_map(na, tag, map, sz, t)
1764
1765 /* update the map when a buffer changes. */
1766 static inline void
1767 netmap_reload_map(struct netmap_adapter *na,
1768 bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1769 {
1770 if (map) {
1771 bus_dmamap_unload(tag, map);
1772 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1773 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1774 }
1775 }
1776
1777 #elif defined(_WIN32)
1778
1779 #else /* linux */
1780
1781 int nm_iommu_group_id(bus_dma_tag_t dev);
1782 #include <linux/dma-mapping.h>
1783
1784 /*
1785 * on linux we need
1786 * dma_map_single(&pdev->dev, virt_addr, len, direction)
1787 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1788 */
1789 #if 0
1790 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l];
1791 /* set time_stamp *before* dma to help avoid a possible race */
1792 buffer_info->time_stamp = jiffies;
1793 buffer_info->mapped_as_page = false;
1794 buffer_info->length = len;
1795 //buffer_info->next_to_watch = l;
1796 /* reload dma map */
1797 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1798 NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1799 buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1800 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1801
1802 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1803 nm_prerr("dma mapping error");
1804 /* goto dma_error; See e1000_put_txbuf() */
1805 /* XXX reset */
1806 }
1807 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1808
1809 #endif
1810
1811 static inline int
1812 netmap_load_map(struct netmap_adapter *na,
1813 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1814 {
1815 if (map) {
1816 *map = dma_map_single(na->pdev, buf, size,
1817 DMA_BIDIRECTIONAL);
1818 if (dma_mapping_error(na->pdev, *map)) {
1819 *map = 0;
1820 return ENOMEM;
1821 }
1822 }
1823 return 0;
1824 }
1825
1826 static inline void
1827 netmap_unload_map(struct netmap_adapter *na,
1828 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1829 {
1830 if (*map) {
1831 dma_unmap_single(na->pdev, *map, sz,
1832 DMA_BIDIRECTIONAL);
1833 }
1834 }
1835
1836 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1837 static inline void
1838 netmap_sync_map_cpu(struct netmap_adapter *na,
1839 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1840 {
1841 if (*map) {
1842 dma_sync_single_for_cpu(na->pdev, *map, sz,
1843 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1844 }
1845 }
1846
1847 static inline void
1848 netmap_sync_map_dev(struct netmap_adapter *na,
1849 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1850 {
1851 if (*map) {
1852 dma_sync_single_for_device(na->pdev, *map, sz,
1853 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1854 }
1855 }
1856
1857 static inline void
1858 netmap_reload_map(struct netmap_adapter *na,
1859 bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1860 {
1861 u_int sz = NETMAP_BUF_SIZE(na);
1862
1863 if (*map) {
1864 dma_unmap_single(na->pdev, *map, sz,
1865 DMA_BIDIRECTIONAL);
1866 }
1867
1868 *map = dma_map_single(na->pdev, buf, sz,
1869 DMA_BIDIRECTIONAL);
1870 }
1871 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1872 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1873 #define netmap_sync_map_dev(na, tag, map, sz, t)
1874 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1875
1876 #endif /* linux */
1877
1878
1879 /*
1880 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1881 */
1882 static inline int
1883 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1884 {
1885 int n = kr->nkr_num_slots;
1886
1887 if (likely(kr->nkr_hwofs == 0)) {
1888 return idx;
1889 }
1890
1891 idx += kr->nkr_hwofs;
1892 if (idx < 0)
1893 return idx + n;
1894 else if (idx < n)
1895 return idx;
1896 else
1897 return idx - n;
1898 }
1899
1900
1901 static inline int
1902 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1903 {
1904 int n = kr->nkr_num_slots;
1905
1906 if (likely(kr->nkr_hwofs == 0)) {
1907 return idx;
1908 }
1909
1910 idx -= kr->nkr_hwofs;
1911 if (idx < 0)
1912 return idx + n;
1913 else if (idx < n)
1914 return idx;
1915 else
1916 return idx - n;
1917 }
1918
1919
1920 /* Entries of the look-up table. */
1921 #ifdef __FreeBSD__
1922 struct lut_entry {
1923 void *vaddr; /* virtual address. */
1924 vm_paddr_t paddr; /* physical address. */
1925 };
1926 #else /* linux & _WIN32 */
1927 /* dma-mapping in linux can assign a buffer a different address
1928 * depending on the device, so we need to have a separate
1929 * physical-address look-up table for each na.
1930 * We can still share the vaddrs, though, therefore we split
1931 * the lut_entry structure.
1932 */
1933 struct lut_entry {
1934 void *vaddr; /* virtual address. */
1935 };
1936
1937 struct plut_entry {
1938 vm_paddr_t paddr; /* physical address. */
1939 };
1940 #endif /* linux & _WIN32 */
1941
1942 struct netmap_obj_pool;
1943
1944 /* alignment for netmap buffers */
1945 #define NM_BUF_ALIGN 64
1946
1947 /*
1948 * NMB return the virtual address of a buffer (buffer 0 on bad index)
1949 * PNMB also fills the physical address
1950 */
1951 static inline void *
1952 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1953 {
1954 struct lut_entry *lut = na->na_lut.lut;
1955 uint32_t i = slot->buf_idx;
1956 return (unlikely(i >= na->na_lut.objtotal)) ?
1957 lut[0].vaddr : lut[i].vaddr;
1958 }
1959
1960 static inline void *
1961 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1962 {
1963 uint32_t i = slot->buf_idx;
1964 struct lut_entry *lut = na->na_lut.lut;
1965 struct plut_entry *plut = na->na_lut.plut;
1966 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1967
1968 #ifdef _WIN32
1969 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1970 #else
1971 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1972 #endif
1973 return ret;
1974 }
1975
1976 static inline void
1977 nm_write_offset(struct netmap_kring *kring,
1978 struct netmap_slot *slot, uint64_t offset)
1979 {
1980 slot->ptr = (slot->ptr & ~kring->offset_mask) |
1981 (offset & kring->offset_mask);
1982 }
1983
1984 static inline uint64_t
1985 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot)
1986 {
1987 uint64_t offset = (slot->ptr & kring->offset_mask);
1988 if (unlikely(offset > kring->offset_max))
1989 offset = kring->offset_max;
1990 return offset;
1991 }
1992
1993 static inline void *
1994 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot)
1995 {
1996 void *addr = NMB(kring->na, slot);
1997 return (char *)addr + nm_get_offset(kring, slot);
1998 }
1999
2000 static inline void *
2001 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp)
2002 {
2003 void *addr = PNMB(kring->na, slot, pp);
2004 uint64_t offset = nm_get_offset(kring, slot);
2005 addr = (char *)addr + offset;
2006 *pp += offset;
2007 return addr;
2008 }
2009
2010
2011 /*
2012 * Structure associated to each netmap file descriptor.
2013 * It is created on open and left unbound (np_nifp == NULL).
2014 * A successful NIOCREGIF will set np_nifp and the first few fields;
2015 * this is protected by a global lock (NMG_LOCK) due to low contention.
2016 *
2017 * np_refs counts the number of references to the structure: one for the fd,
2018 * plus (on FreeBSD) one for each active mmap which we track ourselves
2019 * (linux automatically tracks them, but FreeBSD does not).
2020 * np_refs is protected by NMG_LOCK.
2021 *
2022 * Read access to the structure is lock free, because ni_nifp once set
2023 * can only go to 0 when nobody is using the entry anymore. Readers
2024 * must check that np_nifp != NULL before using the other fields.
2025 */
2026 struct netmap_priv_d {
2027 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */
2028
2029 struct netmap_adapter *np_na;
2030 struct ifnet *np_ifp;
2031 uint32_t np_flags; /* from the ioctl */
2032 u_int np_qfirst[NR_TXRX],
2033 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
2034 uint16_t np_txpoll;
2035 uint16_t np_kloop_state; /* use with NMG_LOCK held */
2036 #define NM_SYNC_KLOOP_RUNNING (1 << 0)
2037 #define NM_SYNC_KLOOP_STOPPING (1 << 1)
2038 int np_sync_flags; /* to be passed to nm_sync */
2039
2040 int np_refs; /* use with NMG_LOCK held */
2041
2042 /* pointers to the selinfo to be used for selrecord.
2043 * Either the local or the global one depending on the
2044 * number of rings.
2045 */
2046 NM_SELINFO_T *np_si[NR_TXRX];
2047
2048 /* In the optional CSB mode, the user must specify the start address
2049 * of two arrays of Communication Status Block (CSB) entries, for the
2050 * two directions (kernel read application write, and kernel write
2051 * application read).
2052 * The number of entries must agree with the number of rings bound to
2053 * the netmap file descriptor. The entries corresponding to the TX
2054 * rings are laid out before the ones corresponding to the RX rings.
2055 *
2056 * Array of CSB entries for application --> kernel communication
2057 * (N entries). */
2058 struct nm_csb_atok *np_csb_atok_base;
2059 /* Array of CSB entries for kernel --> application communication
2060 * (N entries). */
2061 struct nm_csb_ktoa *np_csb_ktoa_base;
2062
2063 #ifdef linux
2064 struct file *np_filp; /* used by sync kloop */
2065 #endif /* linux */
2066 };
2067
2068 struct netmap_priv_d *netmap_priv_new(void);
2069 void netmap_priv_delete(struct netmap_priv_d *);
2070
2071 static inline int nm_kring_pending(struct netmap_priv_d *np)
2072 {
2073 struct netmap_adapter *na = np->np_na;
2074 enum txrx t;
2075 int i;
2076
2077 for_rx_tx(t) {
2078 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
2079 struct netmap_kring *kring = NMR(na, t)[i];
2080 if (kring->nr_mode != kring->nr_pending_mode) {
2081 return 1;
2082 }
2083 }
2084 }
2085 return 0;
2086 }
2087
2088 /* call with NMG_LOCK held */
2089 static __inline int
2090 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
2091 {
2092 return (priv->np_na != NULL &&
2093 (priv->np_qlast[t] - priv->np_qfirst[t] > 1));
2094 }
2095
2096 #ifdef WITH_PIPES
2097 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
2098 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
2099 int netmap_pipe_krings_create_both(struct netmap_adapter *na,
2100 struct netmap_adapter *ona);
2101 void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
2102 struct netmap_adapter *ona);
2103 int netmap_pipe_reg_both(struct netmap_adapter *na,
2104 struct netmap_adapter *ona);
2105 #endif /* WITH_PIPES */
2106
2107 #ifdef WITH_MONITOR
2108
2109 struct netmap_monitor_adapter {
2110 struct netmap_adapter up;
2111
2112 struct netmap_priv_d priv;
2113 uint32_t flags;
2114 };
2115
2116 #endif /* WITH_MONITOR */
2117
2118
2119 #ifdef WITH_GENERIC
2120 /*
2121 * generic netmap emulation for devices that do not have
2122 * native netmap support.
2123 */
2124 int generic_netmap_attach(struct ifnet *ifp);
2125 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);
2126
2127 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2128 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2129
2130 int na_is_generic(struct netmap_adapter *na);
2131
2132 /*
2133 * the generic transmit routine is passed a structure to optionally
2134 * build a queue of descriptors, in an OS-specific way.
2135 * The payload is at addr, if non-null, and the routine should send or queue
2136 * the packet, returning 0 if successful, 1 on failure.
2137 *
2138 * At the end, if head is non-null, there will be an additional call
2139 * to the function with addr = NULL; this should tell the OS-specific
2140 * routine to send the queue and free any resources. Failure is ignored.
2141 */
2142 struct nm_os_gen_arg {
2143 struct ifnet *ifp;
2144 void *m; /* os-specific mbuf-like object */
2145 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2146 void *addr; /* payload of current packet */
2147 u_int len; /* packet length */
2148 u_int ring_nr; /* transmit ring index */
2149 u_int qevent; /* in txqdisc mode, place an event on this mbuf */
2150 };
2151
2152 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2153 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
2154 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
2155 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2156
2157 static inline struct ifnet*
2158 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2159 {
2160 if (gna->prev)
2161 return gna->prev->ifp;
2162
2163 return gna->up.up.ifp;
2164 }
2165
2166 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2167
2168 //#define RATE_GENERIC /* Enables communication statistics for generic. */
2169 #ifdef RATE_GENERIC
2170 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2171 #else
2172 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2173 #endif
2174
2175 /*
2176 * netmap_mitigation API. This is used by the generic adapter
2177 * to reduce the number of interrupt requests/selwakeup
2178 * to clients on incoming packets.
2179 */
2180 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2181 struct netmap_adapter *na);
2182 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2183 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2184 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2185 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2186 #else /* !WITH_GENERIC */
2187 #define generic_netmap_attach(ifp) (EOPNOTSUPP)
2188 #define na_is_generic(na) (0)
2189 #endif /* WITH_GENERIC */
2190
2191 /* Shared declarations for the VALE switch. */
2192
2193 /*
2194 * Each transmit queue accumulates a batch of packets into
2195 * a structure before forwarding. Packets to the same
2196 * destination are put in a list using ft_next as a link field.
2197 * ft_frags and ft_next are valid only on the first fragment.
2198 */
2199 struct nm_bdg_fwd { /* forwarding entry for a bridge */
2200 void *ft_buf; /* netmap or indirect buffer */
2201 uint8_t ft_frags; /* how many fragments (only on 1st frag) */
2202 uint16_t ft_offset; /* dst port (unused) */
2203 uint16_t ft_flags; /* flags, e.g. indirect */
2204 uint16_t ft_len; /* src fragment len */
2205 uint16_t ft_next; /* next packet to same destination */
2206 };
2207
2208 /* struct 'virtio_net_hdr' from linux. */
2209 struct nm_vnet_hdr {
2210 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */
2211 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */
2212 uint8_t flags;
2213 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */
2214 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */
2215 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */
2216 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */
2217 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */
2218 uint8_t gso_type;
2219 uint16_t hdr_len;
2220 uint16_t gso_size;
2221 uint16_t csum_start;
2222 uint16_t csum_offset;
2223 };
2224
2225 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */
2226
2227 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2228
2229 struct nm_iphdr {
2230 uint8_t version_ihl;
2231 uint8_t tos;
2232 uint16_t tot_len;
2233 uint16_t id;
2234 uint16_t frag_off;
2235 uint8_t ttl;
2236 uint8_t protocol;
2237 uint16_t check;
2238 uint32_t saddr;
2239 uint32_t daddr;
2240 /*The options start here. */
2241 };
2242
2243 struct nm_tcphdr {
2244 uint16_t source;
2245 uint16_t dest;
2246 uint32_t seq;
2247 uint32_t ack_seq;
2248 uint8_t doff; /* Data offset + Reserved */
2249 uint8_t flags;
2250 uint16_t window;
2251 uint16_t check;
2252 uint16_t urg_ptr;
2253 };
2254
2255 struct nm_udphdr {
2256 uint16_t source;
2257 uint16_t dest;
2258 uint16_t len;
2259 uint16_t check;
2260 };
2261
2262 struct nm_ipv6hdr {
2263 uint8_t priority_version;
2264 uint8_t flow_lbl[3];
2265
2266 uint16_t payload_len;
2267 uint8_t nexthdr;
2268 uint8_t hop_limit;
2269
2270 uint8_t saddr[16];
2271 uint8_t daddr[16];
2272 };
2273
2274 /* Type used to store a checksum (in host byte order) that hasn't been
2275 * folded yet.
2276 */
2277 #define rawsum_t uint32_t
2278
2279 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2280 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2281 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2282 size_t datalen, uint16_t *check);
2283 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2284 size_t datalen, uint16_t *check);
2285 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2286
2287 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2288 struct netmap_vp_adapter *dst_na,
2289 const struct nm_bdg_fwd *ft_p,
2290 struct netmap_ring *dst_ring,
2291 u_int *j, u_int lim, u_int *howmany);
2292
2293 /* persistent virtual port routines */
2294 int nm_os_vi_persist(const char *, struct ifnet **);
2295 void nm_os_vi_detach(struct ifnet *);
2296 void nm_os_vi_init_index(void);
2297
2298 /*
2299 * kernel thread routines
2300 */
2301 struct nm_kctx; /* OS-specific kernel context - opaque */
2302 typedef void (*nm_kctx_worker_fn_t)(void *data);
2303
2304 /* kthread configuration */
2305 struct nm_kctx_cfg {
2306 long type; /* kthread type/identifier */
2307 nm_kctx_worker_fn_t worker_fn; /* worker function */
2308 void *worker_private;/* worker parameter */
2309 int attach_user; /* attach kthread to user process */
2310 };
2311 /* kthread configuration */
2312 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2313 void *opaque);
2314 int nm_os_kctx_worker_start(struct nm_kctx *);
2315 void nm_os_kctx_worker_stop(struct nm_kctx *);
2316 void nm_os_kctx_destroy(struct nm_kctx *);
2317 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2318 u_int nm_os_ncpus(void);
2319
2320 int netmap_sync_kloop(struct netmap_priv_d *priv,
2321 struct nmreq_header *hdr);
2322 int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2323
2324 #ifdef WITH_PTNETMAP
2325 /* ptnetmap guest routines */
2326
2327 /*
2328 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2329 */
2330 struct ptnetmap_memdev;
2331 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2332 uint64_t *);
2333 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2334 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2335
2336 /*
2337 * netmap adapter for guest ptnetmap ports
2338 */
2339 struct netmap_pt_guest_adapter {
2340 /* The netmap adapter to be used by netmap applications.
2341 * This field must be the first, to allow upcast. */
2342 struct netmap_hw_adapter hwup;
2343
2344 /* The netmap adapter to be used by the driver. */
2345 struct netmap_hw_adapter dr;
2346
2347 /* Reference counter to track users of backend netmap port: the
2348 * network stack and netmap clients.
2349 * Used to decide when we need (de)allocate krings/rings and
2350 * start (stop) ptnetmap kthreads. */
2351 int backend_users;
2352
2353 };
2354
2355 int netmap_pt_guest_attach(struct netmap_adapter *na,
2356 unsigned int nifp_offset,
2357 unsigned int memid);
2358 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2359 struct nm_csb_ktoa *ktoa,
2360 struct netmap_kring *kring, int flags);
2361 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2362 struct nm_csb_ktoa *ktoa,
2363 struct netmap_kring *kring, int flags);
2364 int ptnet_nm_krings_create(struct netmap_adapter *na);
2365 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2366 void ptnet_nm_dtor(struct netmap_adapter *na);
2367
2368 /* Helper function wrapping nm_sync_kloop_appl_read(). */
2369 static inline void
2370 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2371 {
2372 struct netmap_ring *ring = kring->ring;
2373
2374 /* Update hwcur and hwtail as known by the host. */
2375 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2376
2377 /* nm_sync_finalize */
2378 ring->tail = kring->rtail = kring->nr_hwtail;
2379 }
2380 #endif /* WITH_PTNETMAP */
2381
2382 #ifdef __FreeBSD__
2383 /*
2384 * FreeBSD mbuf allocator/deallocator in emulation mode:
2385 *
2386 * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2387 * by the driver. We also attach a customly-provided external storage,
2388 * which in this case is a netmap buffer. When calling m_extadd(), however
2389 * we pass a NULL address, since the real address (and length) will be
2390 * filled in by nm_os_generic_xmit_frame() right before calling
2391 * if_transmit().
2392 *
2393 * The dtor function does nothing, however we need it since mb_free_ext()
2394 * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2395 */
2396
2397 static void void_mbuf_dtor(struct mbuf *m) { }
2398
2399 #define SET_MBUF_DESTRUCTOR(m, fn) do { \
2400 (m)->m_ext.ext_free = (fn != NULL) ? \
2401 (void *)fn : (void *)void_mbuf_dtor; \
2402 } while (0)
2403
2404 static inline struct mbuf *
2405 nm_os_get_mbuf(struct ifnet *ifp, int len)
2406 {
2407 struct mbuf *m;
2408
2409 (void)ifp;
2410 (void)len;
2411
2412 m = m_gethdr(M_NOWAIT, MT_DATA);
2413 if (m == NULL) {
2414 return m;
2415 }
2416
2417 m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
2418 NULL, NULL, 0, EXT_NET_DRV);
2419
2420 return m;
2421 }
2422
2423 #endif /* __FreeBSD__ */
2424
2425 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t);
2426
2427 int netmap_init_bridges(void);
2428 void netmap_uninit_bridges(void);
2429
2430 /* Functions to read and write CSB fields from the kernel. */
2431 #if defined (linux)
2432 #define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2433 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2434 #else /* ! linux */
2435 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
2436 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
2437 #endif /* ! linux */
2438
2439 /* some macros that may not be defined */
2440 #ifndef ETH_HLEN
2441 #define ETH_HLEN 6
2442 #endif
2443 #ifndef ETH_FCS_LEN
2444 #define ETH_FCS_LEN 4
2445 #endif
2446 #ifndef VLAN_HLEN
2447 #define VLAN_HLEN 4
2448 #endif
2449
2450 #endif /* _NET_NETMAP_KERN_H_ */
Cache object: d8e8f6a228186fd8a4324cd9683359f1
|