The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netmap/netmap_mem2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (C) 2012-2014 Matteo Landi
    5  * Copyright (C) 2012-2016 Luigi Rizzo
    6  * Copyright (C) 2012-2016 Giuseppe Lettieri
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  *   1. Redistributions of source code must retain the above copyright
   13  *      notice, this list of conditions and the following disclaimer.
   14  *   2. Redistributions in binary form must reproduce the above copyright
   15  *      notice, this list of conditions and the following disclaimer in the
   16  *      documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #ifdef linux
   32 #include "bsd_glue.h"
   33 #endif /* linux */
   34 
   35 #ifdef __APPLE__
   36 #include "osx_glue.h"
   37 #endif /* __APPLE__ */
   38 
   39 #ifdef __FreeBSD__
   40 #include <sys/cdefs.h> /* prerequisite */
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include <sys/types.h>
   44 #include <sys/malloc.h>
   45 #include <sys/kernel.h>         /* MALLOC_DEFINE */
   46 #include <sys/proc.h>
   47 #include <vm/vm.h>      /* vtophys */
   48 #include <vm/pmap.h>    /* vtophys */
   49 #include <sys/socket.h> /* sockaddrs */
   50 #include <sys/selinfo.h>
   51 #include <sys/sysctl.h>
   52 #include <net/if.h>
   53 #include <net/if_var.h>
   54 #include <net/vnet.h>
   55 #include <machine/bus.h>        /* bus_dmamap_* */
   56 
   57 /* M_NETMAP only used in here */
   58 MALLOC_DECLARE(M_NETMAP);
   59 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
   60 
   61 #endif /* __FreeBSD__ */
   62 
   63 #ifdef _WIN32
   64 #include <win_glue.h>
   65 #endif
   66 
   67 #include <net/netmap.h>
   68 #include <dev/netmap/netmap_kern.h>
   69 #include <net/netmap_virt.h>
   70 #include "netmap_mem2.h"
   71 
   72 #ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
   73 #define NETMAP_BUF_MAX_NUM  8*4096      /* if too big takes too much time to allocate */
   74 #else
   75 #define NETMAP_BUF_MAX_NUM 20*4096*2    /* large machine */
   76 #endif
   77 
   78 #define NETMAP_POOL_MAX_NAMSZ   32
   79 
   80 
   81 enum {
   82         NETMAP_IF_POOL   = 0,
   83         NETMAP_RING_POOL,
   84         NETMAP_BUF_POOL,
   85         NETMAP_POOLS_NR
   86 };
   87 
   88 
   89 struct netmap_obj_params {
   90         u_int size;
   91         u_int num;
   92 
   93         u_int last_size;
   94         u_int last_num;
   95 };
   96 
   97 struct netmap_obj_pool {
   98         char name[NETMAP_POOL_MAX_NAMSZ];       /* name of the allocator */
   99 
  100         /* ---------------------------------------------------*/
  101         /* these are only meaningful if the pool is finalized */
  102         /* (see 'finalized' field in netmap_mem_d)            */
  103         size_t memtotal;        /* actual total memory space */
  104 
  105         struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
  106         uint32_t *bitmap;       /* one bit per buffer, 1 means free */
  107         uint32_t *invalid_bitmap;/* one bit per buffer, 1 means invalid */
  108         uint32_t bitmap_slots;  /* number of uint32 entries in bitmap */
  109 
  110         u_int objtotal;         /* actual total number of objects. */
  111         u_int numclusters;      /* actual number of clusters */
  112         u_int objfree;          /* number of free objects. */
  113 
  114         int     alloc_done;     /* we have allocated the memory */
  115         /* ---------------------------------------------------*/
  116 
  117         /* limits */
  118         u_int objminsize;       /* minimum object size */
  119         u_int objmaxsize;       /* maximum object size */
  120         u_int nummin;           /* minimum number of objects */
  121         u_int nummax;           /* maximum number of objects */
  122 
  123         /* these are changed only by config */
  124         u_int _objtotal;        /* total number of objects */
  125         u_int _objsize;         /* object size */
  126         u_int _clustsize;       /* cluster size */
  127         u_int _clustentries;    /* objects per cluster */
  128         u_int _numclusters;     /* number of clusters */
  129 
  130         /* requested values */
  131         u_int r_objtotal;
  132         u_int r_objsize;
  133 };
  134 
  135 #define NMA_LOCK_T              NM_MTX_T
  136 #define NMA_LOCK_INIT(n)        NM_MTX_INIT((n)->nm_mtx)
  137 #define NMA_LOCK_DESTROY(n)     NM_MTX_DESTROY((n)->nm_mtx)
  138 #define NMA_LOCK(n)             NM_MTX_LOCK((n)->nm_mtx)
  139 #define NMA_SPINLOCK(n)         NM_MTX_SPINLOCK((n)->nm_mtx)
  140 #define NMA_UNLOCK(n)           NM_MTX_UNLOCK((n)->nm_mtx)
  141 
  142 struct netmap_mem_ops {
  143         int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
  144         int  (*nmd_get_info)(struct netmap_mem_d *, uint64_t *size,
  145                         u_int *memflags, uint16_t *id);
  146 
  147         vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
  148         int (*nmd_config)(struct netmap_mem_d *);
  149         int (*nmd_finalize)(struct netmap_mem_d *, struct netmap_adapter *);
  150         void (*nmd_deref)(struct netmap_mem_d *, struct netmap_adapter *);
  151         ssize_t  (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
  152         void (*nmd_delete)(struct netmap_mem_d *);
  153 
  154         struct netmap_if * (*nmd_if_new)(struct netmap_mem_d *,
  155                         struct netmap_adapter *, struct netmap_priv_d *);
  156         void (*nmd_if_delete)(struct netmap_mem_d *,
  157                         struct netmap_adapter *, struct netmap_if *);
  158         int  (*nmd_rings_create)(struct netmap_mem_d *,
  159                         struct netmap_adapter *);
  160         void (*nmd_rings_delete)(struct netmap_mem_d *,
  161                         struct netmap_adapter *);
  162 };
  163 
  164 struct netmap_mem_d {
  165         NMA_LOCK_T nm_mtx;  /* protect the allocator */
  166         size_t nm_totalsize; /* shorthand */
  167 
  168         u_int flags;
  169 #define NETMAP_MEM_FINALIZED    0x1     /* preallocation done */
  170 #define NETMAP_MEM_HIDDEN       0x8     /* being prepared */
  171 #define NETMAP_MEM_NOMAP        0x10    /* do not map/unmap pdevs */
  172         int lasterr;            /* last error for curr config */
  173         int active;             /* active users */
  174         int refcount;
  175         /* the three allocators */
  176         struct netmap_obj_pool pools[NETMAP_POOLS_NR];
  177 
  178         nm_memid_t nm_id;       /* allocator identifier */
  179         int nm_grp;     /* iommu group id */
  180 
  181         /* list of all existing allocators, sorted by nm_id */
  182         struct netmap_mem_d *prev, *next;
  183 
  184         struct netmap_mem_ops *ops;
  185 
  186         struct netmap_obj_params params[NETMAP_POOLS_NR];
  187 
  188 #define NM_MEM_NAMESZ   16
  189         char name[NM_MEM_NAMESZ];
  190 };
  191 
  192 int
  193 netmap_mem_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
  194 {
  195         int rv;
  196 
  197         NMA_LOCK(nmd);
  198         rv = nmd->ops->nmd_get_lut(nmd, lut);
  199         NMA_UNLOCK(nmd);
  200 
  201         return rv;
  202 }
  203 
  204 int
  205 netmap_mem_get_info(struct netmap_mem_d *nmd, uint64_t *size,
  206                 u_int *memflags, nm_memid_t *memid)
  207 {
  208         int rv;
  209 
  210         NMA_LOCK(nmd);
  211         rv = nmd->ops->nmd_get_info(nmd, size, memflags, memid);
  212         NMA_UNLOCK(nmd);
  213 
  214         return rv;
  215 }
  216 
  217 vm_paddr_t
  218 netmap_mem_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
  219 {
  220         vm_paddr_t pa;
  221 
  222 #if defined(__FreeBSD__)
  223         /* This function is called by netmap_dev_pager_fault(), which holds a
  224          * non-sleepable lock since FreeBSD 12. Since we cannot sleep, we
  225          * spin on the trylock. */
  226         NMA_SPINLOCK(nmd);
  227 #else
  228         NMA_LOCK(nmd);
  229 #endif
  230         pa = nmd->ops->nmd_ofstophys(nmd, off);
  231         NMA_UNLOCK(nmd);
  232 
  233         return pa;
  234 }
  235 
  236 static int
  237 netmap_mem_config(struct netmap_mem_d *nmd)
  238 {
  239         if (nmd->active) {
  240                 /* already in use. Not fatal, but we
  241                  * cannot change the configuration
  242                  */
  243                 return 0;
  244         }
  245 
  246         return nmd->ops->nmd_config(nmd);
  247 }
  248 
  249 ssize_t
  250 netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *off)
  251 {
  252         ssize_t rv;
  253 
  254         NMA_LOCK(nmd);
  255         rv = nmd->ops->nmd_if_offset(nmd, off);
  256         NMA_UNLOCK(nmd);
  257 
  258         return rv;
  259 }
  260 
  261 static void
  262 netmap_mem_delete(struct netmap_mem_d *nmd)
  263 {
  264         nmd->ops->nmd_delete(nmd);
  265 }
  266 
  267 struct netmap_if *
  268 netmap_mem_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
  269 {
  270         struct netmap_if *nifp;
  271         struct netmap_mem_d *nmd = na->nm_mem;
  272 
  273         NMA_LOCK(nmd);
  274         nifp = nmd->ops->nmd_if_new(nmd, na, priv);
  275         NMA_UNLOCK(nmd);
  276 
  277         return nifp;
  278 }
  279 
  280 void
  281 netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nif)
  282 {
  283         struct netmap_mem_d *nmd = na->nm_mem;
  284 
  285         NMA_LOCK(nmd);
  286         nmd->ops->nmd_if_delete(nmd, na, nif);
  287         NMA_UNLOCK(nmd);
  288 }
  289 
  290 int
  291 netmap_mem_rings_create(struct netmap_adapter *na)
  292 {
  293         int rv;
  294         struct netmap_mem_d *nmd = na->nm_mem;
  295 
  296         NMA_LOCK(nmd);
  297         rv = nmd->ops->nmd_rings_create(nmd, na);
  298         NMA_UNLOCK(nmd);
  299 
  300         return rv;
  301 }
  302 
  303 void
  304 netmap_mem_rings_delete(struct netmap_adapter *na)
  305 {
  306         struct netmap_mem_d *nmd = na->nm_mem;
  307 
  308         NMA_LOCK(nmd);
  309         nmd->ops->nmd_rings_delete(nmd, na);
  310         NMA_UNLOCK(nmd);
  311 }
  312 
  313 static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
  314 static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
  315 static int nm_mem_check_group(struct netmap_mem_d *, bus_dma_tag_t);
  316 static void nm_mem_release_id(struct netmap_mem_d *);
  317 
  318 nm_memid_t
  319 netmap_mem_get_id(struct netmap_mem_d *nmd)
  320 {
  321         return nmd->nm_id;
  322 }
  323 
  324 #ifdef NM_DEBUG_MEM_PUTGET
  325 #define NM_DBG_REFC(nmd, func, line)    \
  326         nm_prinf("%s:%d mem[%d:%d] -> %d", func, line, (nmd)->nm_id, (nmd)->nm_grp, (nmd)->refcount);
  327 #else
  328 #define NM_DBG_REFC(nmd, func, line)
  329 #endif
  330 
  331 /* circular list of all existing allocators */
  332 static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
  333 static NM_MTX_T nm_mem_list_lock;
  334 
  335 struct netmap_mem_d *
  336 __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
  337 {
  338         NM_MTX_LOCK(nm_mem_list_lock);
  339         nmd->refcount++;
  340         NM_DBG_REFC(nmd, func, line);
  341         NM_MTX_UNLOCK(nm_mem_list_lock);
  342         return nmd;
  343 }
  344 
  345 void
  346 __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
  347 {
  348         int last;
  349         NM_MTX_LOCK(nm_mem_list_lock);
  350         last = (--nmd->refcount == 0);
  351         if (last)
  352                 nm_mem_release_id(nmd);
  353         NM_DBG_REFC(nmd, func, line);
  354         NM_MTX_UNLOCK(nm_mem_list_lock);
  355         if (last)
  356                 netmap_mem_delete(nmd);
  357 }
  358 
  359 int
  360 netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
  361 {
  362         int lasterr = 0;
  363         if (nm_mem_check_group(nmd, na->pdev) < 0) {
  364                 return ENOMEM;
  365         }
  366 
  367         NMA_LOCK(nmd);
  368 
  369         if (netmap_mem_config(nmd))
  370                 goto out;
  371 
  372         nmd->active++;
  373 
  374         nmd->lasterr = nmd->ops->nmd_finalize(nmd, na);
  375 
  376         if (!nmd->lasterr && !(nmd->flags & NETMAP_MEM_NOMAP)) {
  377                 nmd->lasterr = netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
  378         }
  379 
  380 out:
  381         lasterr = nmd->lasterr;
  382         NMA_UNLOCK(nmd);
  383 
  384         if (lasterr)
  385                 netmap_mem_deref(nmd, na);
  386 
  387         return lasterr;
  388 }
  389 
  390 static int
  391 nm_isset(uint32_t *bitmap, u_int i)
  392 {
  393         return bitmap[ (i>>5) ] & ( 1U << (i & 31U) );
  394 }
  395 
  396 
  397 static int
  398 netmap_init_obj_allocator_bitmap(struct netmap_obj_pool *p)
  399 {
  400         u_int n, j;
  401 
  402         if (p->bitmap == NULL) {
  403                 /* Allocate the bitmap */
  404                 n = (p->objtotal + 31) / 32;
  405                 p->bitmap = nm_os_malloc(sizeof(p->bitmap[0]) * n);
  406                 if (p->bitmap == NULL) {
  407                         nm_prerr("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
  408                             p->name);
  409                         return ENOMEM;
  410                 }
  411                 p->bitmap_slots = n;
  412         } else {
  413                 memset(p->bitmap, 0, p->bitmap_slots * sizeof(p->bitmap[0]));
  414         }
  415 
  416         p->objfree = 0;
  417         /*
  418          * Set all the bits in the bitmap that have
  419          * corresponding buffers to 1 to indicate they are
  420          * free.
  421          */
  422         for (j = 0; j < p->objtotal; j++) {
  423                 if (p->invalid_bitmap && nm_isset(p->invalid_bitmap, j)) {
  424                         if (netmap_debug & NM_DEBUG_MEM)
  425                                 nm_prinf("skipping %s %d", p->name, j);
  426                         continue;
  427                 }
  428                 p->bitmap[ (j>>5) ] |=  ( 1U << (j & 31U) );
  429                 p->objfree++;
  430         }
  431 
  432         if (netmap_verbose)
  433                 nm_prinf("%s free %u", p->name, p->objfree);
  434         if (p->objfree == 0) {
  435                 if (netmap_verbose)
  436                         nm_prerr("%s: no objects available", p->name);
  437                 return ENOMEM;
  438         }
  439 
  440         return 0;
  441 }
  442 
  443 static int
  444 netmap_mem_init_bitmaps(struct netmap_mem_d *nmd)
  445 {
  446         int i, error = 0;
  447 
  448         for (i = 0; i < NETMAP_POOLS_NR; i++) {
  449                 struct netmap_obj_pool *p = &nmd->pools[i];
  450 
  451                 error = netmap_init_obj_allocator_bitmap(p);
  452                 if (error)
  453                         return error;
  454         }
  455 
  456         /*
  457          * buffers 0 and 1 are reserved
  458          */
  459         if (nmd->pools[NETMAP_BUF_POOL].objfree < 2) {
  460                 nm_prerr("%s: not enough buffers", nmd->pools[NETMAP_BUF_POOL].name);
  461                 return ENOMEM;
  462         }
  463 
  464         nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
  465         if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
  466                 /* XXX This check is a workaround that prevents a
  467                  * NULL pointer crash which currently happens only
  468                  * with ptnetmap guests.
  469                  * Removed shared-info --> is the bug still there? */
  470                 nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3U;
  471         }
  472         return 0;
  473 }
  474 
  475 int
  476 netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
  477 {
  478         int last_user = 0;
  479         NMA_LOCK(nmd);
  480         if (na->active_fds <= 0 && !(nmd->flags & NETMAP_MEM_NOMAP))
  481                 netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
  482         if (nmd->active == 1) {
  483                 last_user = 1;
  484                 /*
  485                  * Reset the allocator when it falls out of use so that any
  486                  * pool resources leaked by unclean application exits are
  487                  * reclaimed.
  488                  */
  489                 netmap_mem_init_bitmaps(nmd);
  490         }
  491         nmd->ops->nmd_deref(nmd, na);
  492 
  493         nmd->active--;
  494         if (last_user) {
  495                 nmd->lasterr = 0;
  496         }
  497 
  498         NMA_UNLOCK(nmd);
  499         return last_user;
  500 }
  501 
  502 
  503 /* accessor functions */
  504 static int
  505 netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
  506 {
  507         lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
  508 #ifdef __FreeBSD__
  509         lut->plut = lut->lut;
  510 #endif
  511         lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
  512         lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
  513 
  514         return 0;
  515 }
  516 
  517 static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
  518         [NETMAP_IF_POOL] = {
  519                 .size = 1024,
  520                 .num  = 2,
  521         },
  522         [NETMAP_RING_POOL] = {
  523                 .size = 5*PAGE_SIZE,
  524                 .num  = 4,
  525         },
  526         [NETMAP_BUF_POOL] = {
  527                 .size = 2048,
  528                 .num  = 4098,
  529         },
  530 };
  531 
  532 
  533 /*
  534  * nm_mem is the memory allocator used for all physical interfaces
  535  * running in netmap mode.
  536  * Virtual (VALE) ports will have each its own allocator.
  537  */
  538 extern struct netmap_mem_ops netmap_mem_global_ops; /* forward */
  539 struct netmap_mem_d nm_mem = {  /* Our memory allocator. */
  540         .pools = {
  541                 [NETMAP_IF_POOL] = {
  542                         .name   = "netmap_if",
  543                         .objminsize = sizeof(struct netmap_if),
  544                         .objmaxsize = 4096,
  545                         .nummin     = 10,       /* don't be stingy */
  546                         .nummax     = 10000,    /* XXX very large */
  547                 },
  548                 [NETMAP_RING_POOL] = {
  549                         .name   = "netmap_ring",
  550                         .objminsize = sizeof(struct netmap_ring),
  551                         .objmaxsize = 32*PAGE_SIZE,
  552                         .nummin     = 2,
  553                         .nummax     = 1024,
  554                 },
  555                 [NETMAP_BUF_POOL] = {
  556                         .name   = "netmap_buf",
  557                         .objminsize = 64,
  558                         .objmaxsize = 65536,
  559                         .nummin     = 4,
  560                         .nummax     = 1000000, /* one million! */
  561                 },
  562         },
  563 
  564         .params = {
  565                 [NETMAP_IF_POOL] = {
  566                         .size = 1024,
  567                         .num  = 100,
  568                 },
  569                 [NETMAP_RING_POOL] = {
  570                         .size = 9*PAGE_SIZE,
  571                         .num  = 200,
  572                 },
  573                 [NETMAP_BUF_POOL] = {
  574                         .size = 2048,
  575                         .num  = NETMAP_BUF_MAX_NUM,
  576                 },
  577         },
  578 
  579         .nm_id = 1,
  580         .nm_grp = -1,
  581 
  582         .prev = &nm_mem,
  583         .next = &nm_mem,
  584 
  585         .ops = &netmap_mem_global_ops,
  586 
  587         .name = "1"
  588 };
  589 
  590 static struct netmap_mem_d nm_mem_blueprint;
  591 
  592 /* blueprint for the private memory allocators */
  593 /* XXX clang is not happy about using name as a print format */
  594 static const struct netmap_mem_d nm_blueprint = {
  595         .pools = {
  596                 [NETMAP_IF_POOL] = {
  597                         .name   = "%s_if",
  598                         .objminsize = sizeof(struct netmap_if),
  599                         .objmaxsize = 4096,
  600                         .nummin     = 1,
  601                         .nummax     = 100,
  602                 },
  603                 [NETMAP_RING_POOL] = {
  604                         .name   = "%s_ring",
  605                         .objminsize = sizeof(struct netmap_ring),
  606                         .objmaxsize = 32*PAGE_SIZE,
  607                         .nummin     = 2,
  608                         .nummax     = 1024,
  609                 },
  610                 [NETMAP_BUF_POOL] = {
  611                         .name   = "%s_buf",
  612                         .objminsize = 64,
  613                         .objmaxsize = 65536,
  614                         .nummin     = 4,
  615                         .nummax     = 1000000, /* one million! */
  616                 },
  617         },
  618 
  619         .nm_grp = -1,
  620 
  621         .flags = NETMAP_MEM_PRIVATE,
  622 
  623         .ops = &netmap_mem_global_ops,
  624 };
  625 
  626 /* memory allocator related sysctls */
  627 
  628 #define STRINGIFY(x) #x
  629 
  630 
  631 #define DECLARE_SYSCTLS(id, name) \
  632         SYSBEGIN(mem2_ ## name); \
  633         SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
  634             CTLFLAG_RW, &nm_mem.params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
  635         SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
  636             CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
  637         SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
  638             CTLFLAG_RW, &nm_mem.params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
  639         SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
  640             CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
  641         SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
  642             CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
  643             "Default size of private netmap " STRINGIFY(name) "s"); \
  644         SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
  645             CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
  646             "Default number of private netmap " STRINGIFY(name) "s");   \
  647         SYSEND
  648 
  649 SYSCTL_DECL(_dev_netmap);
  650 DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
  651 DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
  652 DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
  653 
  654 /* call with nm_mem_list_lock held */
  655 static int
  656 nm_mem_assign_id_locked(struct netmap_mem_d *nmd, int grp_id)
  657 {
  658         nm_memid_t id;
  659         struct netmap_mem_d *scan = netmap_last_mem_d;
  660         int error = ENOMEM;
  661 
  662         do {
  663                 /* we rely on unsigned wrap around */
  664                 id = scan->nm_id + 1;
  665                 if (id == 0) /* reserve 0 as error value */
  666                         id = 1;
  667                 scan = scan->next;
  668                 if (id != scan->nm_id) {
  669                         nmd->nm_id = id;
  670                         nmd->nm_grp = grp_id;
  671                         nmd->prev = scan->prev;
  672                         nmd->next = scan;
  673                         scan->prev->next = nmd;
  674                         scan->prev = nmd;
  675                         netmap_last_mem_d = nmd;
  676                         nmd->refcount = 1;
  677                         NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
  678                         error = 0;
  679                         break;
  680                 }
  681         } while (scan != netmap_last_mem_d);
  682 
  683         return error;
  684 }
  685 
  686 /* call with nm_mem_list_lock *not* held */
  687 static int
  688 nm_mem_assign_id(struct netmap_mem_d *nmd, int grp_id)
  689 {
  690         int ret;
  691 
  692         NM_MTX_LOCK(nm_mem_list_lock);
  693         ret = nm_mem_assign_id_locked(nmd, grp_id);
  694         NM_MTX_UNLOCK(nm_mem_list_lock);
  695 
  696         return ret;
  697 }
  698 
  699 /* call with nm_mem_list_lock held */
  700 static void
  701 nm_mem_release_id(struct netmap_mem_d *nmd)
  702 {
  703         nmd->prev->next = nmd->next;
  704         nmd->next->prev = nmd->prev;
  705 
  706         if (netmap_last_mem_d == nmd)
  707                 netmap_last_mem_d = nmd->prev;
  708 
  709         nmd->prev = nmd->next = NULL;
  710 }
  711 
  712 struct netmap_mem_d *
  713 netmap_mem_find(nm_memid_t id)
  714 {
  715         struct netmap_mem_d *nmd;
  716 
  717         NM_MTX_LOCK(nm_mem_list_lock);
  718         nmd = netmap_last_mem_d;
  719         do {
  720                 if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) {
  721                         nmd->refcount++;
  722                         NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
  723                         NM_MTX_UNLOCK(nm_mem_list_lock);
  724                         return nmd;
  725                 }
  726                 nmd = nmd->next;
  727         } while (nmd != netmap_last_mem_d);
  728         NM_MTX_UNLOCK(nm_mem_list_lock);
  729         return NULL;
  730 }
  731 
  732 static int
  733 nm_mem_check_group(struct netmap_mem_d *nmd, bus_dma_tag_t dev)
  734 {
  735         int err = 0, id;
  736 
  737         /* Skip not hw adapters.
  738          * Vale port can use particular allocator through vale-ctl -m option
  739          */
  740         if (!dev)
  741                 return 0;
  742         id = nm_iommu_group_id(dev);
  743         if (netmap_debug & NM_DEBUG_MEM)
  744                 nm_prinf("iommu_group %d", id);
  745 
  746         NMA_LOCK(nmd);
  747 
  748         if (nmd->nm_grp != id) {
  749                 if (netmap_verbose)
  750                         nm_prerr("iommu group mismatch: %d vs %d",
  751                                         nmd->nm_grp, id);
  752                 nmd->lasterr = err = ENOMEM;
  753         }
  754 
  755         NMA_UNLOCK(nmd);
  756         return err;
  757 }
  758 
  759 static struct lut_entry *
  760 nm_alloc_lut(u_int nobj)
  761 {
  762         size_t n = sizeof(struct lut_entry) * nobj;
  763         struct lut_entry *lut;
  764 #ifdef linux
  765         lut = vmalloc(n);
  766 #else
  767         lut = nm_os_malloc(n);
  768 #endif
  769         return lut;
  770 }
  771 
  772 static void
  773 nm_free_lut(struct lut_entry *lut, u_int objtotal)
  774 {
  775         bzero(lut, sizeof(struct lut_entry) * objtotal);
  776 #ifdef linux
  777         vfree(lut);
  778 #else
  779         nm_os_free(lut);
  780 #endif
  781 }
  782 
  783 #if defined(linux) || defined(_WIN32)
  784 static struct plut_entry *
  785 nm_alloc_plut(u_int nobj)
  786 {
  787         size_t n = sizeof(struct plut_entry) * nobj;
  788         struct plut_entry *lut;
  789         lut = vmalloc(n);
  790         return lut;
  791 }
  792 
  793 static void
  794 nm_free_plut(struct plut_entry * lut)
  795 {
  796         vfree(lut);
  797 }
  798 #endif /* linux or _WIN32 */
  799 
  800 
  801 /*
  802  * First, find the allocator that contains the requested offset,
  803  * then locate the cluster through a lookup table.
  804  */
  805 static vm_paddr_t
  806 netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
  807 {
  808         int i;
  809         vm_ooffset_t o = offset;
  810         vm_paddr_t pa;
  811         struct netmap_obj_pool *p;
  812 
  813         p = nmd->pools;
  814 
  815         for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
  816                 if (offset >= p[i].memtotal)
  817                         continue;
  818                 // now lookup the cluster's address
  819 #ifndef _WIN32
  820                 pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
  821                         offset % p[i]._objsize;
  822 #else
  823                 pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
  824                 pa.QuadPart += offset % p[i]._objsize;
  825 #endif
  826                 return pa;
  827         }
  828         /* this is only in case of errors */
  829         nm_prerr("invalid ofs 0x%x out of 0x%zx 0x%zx 0x%zx", (u_int)o,
  830                 p[NETMAP_IF_POOL].memtotal,
  831                 p[NETMAP_IF_POOL].memtotal
  832                         + p[NETMAP_RING_POOL].memtotal,
  833                 p[NETMAP_IF_POOL].memtotal
  834                         + p[NETMAP_RING_POOL].memtotal
  835                         + p[NETMAP_BUF_POOL].memtotal);
  836 #ifndef _WIN32
  837         return 0; /* bad address */
  838 #else
  839         vm_paddr_t res;
  840         res.QuadPart = 0;
  841         return res;
  842 #endif
  843 }
  844 
  845 #ifdef _WIN32
  846 
  847 /*
  848  * win32_build_virtual_memory_for_userspace
  849  *
  850  * This function get all the object making part of the pools and maps
  851  * a contiguous virtual memory space for the userspace
  852  * It works this way
  853  * 1 - allocate a Memory Descriptor List wide as the sum
  854  *              of the memory needed for the pools
  855  * 2 - cycle all the objects in every pool and for every object do
  856  *
  857  *              2a - cycle all the objects in every pool, get the list
  858  *                              of the physical address descriptors
  859  *              2b - calculate the offset in the array of pages descriptor in the
  860  *                              main MDL
  861  *              2c - copy the descriptors of the object in the main MDL
  862  *
  863  * 3 - return the resulting MDL that needs to be mapped in userland
  864  *
  865  * In this way we will have an MDL that describes all the memory for the
  866  * objects in a single object
  867 */
  868 
  869 PMDL
  870 win32_build_user_vm_map(struct netmap_mem_d* nmd)
  871 {
  872         u_int memflags, ofs = 0;
  873         PMDL mainMdl, tempMdl;
  874         uint64_t memsize;
  875         int i, j;
  876 
  877         if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
  878                 nm_prerr("memory not finalised yet");
  879                 return NULL;
  880         }
  881 
  882         mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
  883         if (mainMdl == NULL) {
  884                 nm_prerr("failed to allocate mdl");
  885                 return NULL;
  886         }
  887 
  888         NMA_LOCK(nmd);
  889         for (i = 0; i < NETMAP_POOLS_NR; i++) {
  890                 struct netmap_obj_pool *p = &nmd->pools[i];
  891                 int clsz = p->_clustsize;
  892                 int clobjs = p->_clustentries; /* objects per cluster */
  893                 int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
  894                 PPFN_NUMBER pSrc, pDst;
  895 
  896                 /* each pool has a different cluster size so we need to reallocate */
  897                 tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
  898                 if (tempMdl == NULL) {
  899                         NMA_UNLOCK(nmd);
  900                         nm_prerr("fail to allocate tempMdl");
  901                         IoFreeMdl(mainMdl);
  902                         return NULL;
  903                 }
  904                 pSrc = MmGetMdlPfnArray(tempMdl);
  905                 /* create one entry per cluster, the lut[] has one entry per object */
  906                 for (j = 0; j < p->numclusters; j++, ofs += clsz) {
  907                         pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
  908                         MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
  909                         MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
  910                         RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
  911                         mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
  912                 }
  913                 IoFreeMdl(tempMdl);
  914         }
  915         NMA_UNLOCK(nmd);
  916         return mainMdl;
  917 }
  918 
  919 #endif /* _WIN32 */
  920 
  921 /*
  922  * helper function for OS-specific mmap routines (currently only windows).
  923  * Given an nmd and a pool index, returns the cluster size and number of clusters.
  924  * Returns 0 if memory is finalised and the pool is valid, otherwise 1.
  925  * It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
  926  */
  927 
  928 int
  929 netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
  930 {
  931         if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
  932                 return 1; /* invalid arguments */
  933         // NMA_LOCK_ASSERT(nmd);
  934         if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
  935                 *clustsize = *numclusters = 0;
  936                 return 1; /* not ready yet */
  937         }
  938         *clustsize = nmd->pools[pool]._clustsize;
  939         *numclusters = nmd->pools[pool].numclusters;
  940         return 0; /* success */
  941 }
  942 
  943 static int
  944 netmap_mem2_get_info(struct netmap_mem_d* nmd, uint64_t* size,
  945                         u_int *memflags, nm_memid_t *id)
  946 {
  947         int error = 0;
  948         error = netmap_mem_config(nmd);
  949         if (error)
  950                 goto out;
  951         if (size) {
  952                 if (nmd->flags & NETMAP_MEM_FINALIZED) {
  953                         *size = nmd->nm_totalsize;
  954                 } else {
  955                         int i;
  956                         *size = 0;
  957                         for (i = 0; i < NETMAP_POOLS_NR; i++) {
  958                                 struct netmap_obj_pool *p = nmd->pools + i;
  959                                 *size += ((size_t)p->_numclusters * (size_t)p->_clustsize);
  960                         }
  961                 }
  962         }
  963         if (memflags)
  964                 *memflags = nmd->flags;
  965         if (id)
  966                 *id = nmd->nm_id;
  967 out:
  968         return error;
  969 }
  970 
  971 /*
  972  * we store objects by kernel address, need to find the offset
  973  * within the pool to export the value to userspace.
  974  * Algorithm: scan until we find the cluster, then add the
  975  * actual offset in the cluster
  976  */
  977 static ssize_t
  978 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
  979 {
  980         int i, k = p->_clustentries, n = p->objtotal;
  981         ssize_t ofs = 0;
  982 
  983         for (i = 0; i < n; i += k, ofs += p->_clustsize) {
  984                 const char *base = p->lut[i].vaddr;
  985                 ssize_t relofs = (const char *) vaddr - base;
  986 
  987                 if (relofs < 0 || relofs >= p->_clustsize)
  988                         continue;
  989 
  990                 ofs = ofs + relofs;
  991                 nm_prdis("%s: return offset %d (cluster %d) for pointer %p",
  992                     p->name, ofs, i, vaddr);
  993                 return ofs;
  994         }
  995         nm_prerr("address %p is not contained inside any cluster (%s)",
  996             vaddr, p->name);
  997         return 0; /* An error occurred */
  998 }
  999 
 1000 /* Helper functions which convert virtual addresses to offsets */
 1001 #define netmap_if_offset(n, v)                                  \
 1002         netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
 1003 
 1004 #define netmap_ring_offset(n, v)                                \
 1005     ((n)->pools[NETMAP_IF_POOL].memtotal +                      \
 1006         netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
 1007 
 1008 static ssize_t
 1009 netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
 1010 {
 1011         return netmap_if_offset(nmd, addr);
 1012 }
 1013 
 1014 /*
 1015  * report the index, and use start position as a hint,
 1016  * otherwise buffer allocation becomes terribly expensive.
 1017  */
 1018 static void *
 1019 netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
 1020 {
 1021         uint32_t i = 0;                 /* index in the bitmap */
 1022         uint32_t mask, j = 0;           /* slot counter */
 1023         void *vaddr = NULL;
 1024 
 1025         if (len > p->_objsize) {
 1026                 nm_prerr("%s request size %d too large", p->name, len);
 1027                 return NULL;
 1028         }
 1029 
 1030         if (p->objfree == 0) {
 1031                 nm_prerr("no more %s objects", p->name);
 1032                 return NULL;
 1033         }
 1034         if (start)
 1035                 i = *start;
 1036 
 1037         /* termination is guaranteed by p->free, but better check bounds on i */
 1038         while (vaddr == NULL && i < p->bitmap_slots)  {
 1039                 uint32_t cur = p->bitmap[i];
 1040                 if (cur == 0) { /* bitmask is fully used */
 1041                         i++;
 1042                         continue;
 1043                 }
 1044                 /* locate a slot */
 1045                 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
 1046                         ;
 1047 
 1048                 p->bitmap[i] &= ~mask; /* mark object as in use */
 1049                 p->objfree--;
 1050 
 1051                 vaddr = p->lut[i * 32 + j].vaddr;
 1052                 if (index)
 1053                         *index = i * 32 + j;
 1054         }
 1055         nm_prdis("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
 1056 
 1057         if (start)
 1058                 *start = i;
 1059         return vaddr;
 1060 }
 1061 
 1062 
 1063 /*
 1064  * free by index, not by address.
 1065  * XXX should we also cleanup the content ?
 1066  */
 1067 static int
 1068 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
 1069 {
 1070         uint32_t *ptr, mask;
 1071 
 1072         if (j >= p->objtotal) {
 1073                 nm_prerr("invalid index %u, max %u", j, p->objtotal);
 1074                 return 1;
 1075         }
 1076         ptr = &p->bitmap[j / 32];
 1077         mask = (1 << (j % 32));
 1078         if (*ptr & mask) {
 1079                 nm_prerr("ouch, double free on buffer %d", j);
 1080                 return 1;
 1081         } else {
 1082                 *ptr |= mask;
 1083                 p->objfree++;
 1084                 return 0;
 1085         }
 1086 }
 1087 
 1088 /*
 1089  * free by address. This is slow but is only used for a few
 1090  * objects (rings, nifp)
 1091  */
 1092 static void
 1093 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
 1094 {
 1095         u_int i, j, n = p->numclusters;
 1096 
 1097         for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
 1098                 void *base = p->lut[i * p->_clustentries].vaddr;
 1099                 ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
 1100 
 1101                 /* Given address, is out of the scope of the current cluster.*/
 1102                 if (base == NULL || vaddr < base || relofs >= p->_clustsize)
 1103                         continue;
 1104 
 1105                 j = j + relofs / p->_objsize;
 1106                 /* KASSERT(j != 0, ("Cannot free object 0")); */
 1107                 netmap_obj_free(p, j);
 1108                 return;
 1109         }
 1110         nm_prerr("address %p is not contained inside any cluster (%s)",
 1111             vaddr, p->name);
 1112 }
 1113 
 1114 unsigned
 1115 netmap_mem_bufsize(struct netmap_mem_d *nmd)
 1116 {
 1117         return nmd->pools[NETMAP_BUF_POOL]._objsize;
 1118 }
 1119 
 1120 #define netmap_if_malloc(n, len)        netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
 1121 #define netmap_if_free(n, v)            netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
 1122 #define netmap_ring_malloc(n, len)      netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
 1123 #define netmap_ring_free(n, v)          netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
 1124 #define netmap_buf_malloc(n, _pos, _index)                      \
 1125         netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
 1126 
 1127 
 1128 #if 0 /* currently unused */
 1129 /* Return the index associated to the given packet buffer */
 1130 #define netmap_buf_index(n, v)                                          \
 1131     (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
 1132 #endif
 1133 
 1134 /*
 1135  * allocate extra buffers in a linked list.
 1136  * returns the actual number.
 1137  */
 1138 uint32_t
 1139 netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
 1140 {
 1141         struct netmap_mem_d *nmd = na->nm_mem;
 1142         uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
 1143 
 1144         NMA_LOCK(nmd);
 1145 
 1146         *head = 0;      /* default, 'null' index ie empty list */
 1147         for (i = 0 ; i < n; i++) {
 1148                 uint32_t cur = *head;   /* save current head */
 1149                 uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
 1150                 if (p == NULL) {
 1151                         nm_prerr("no more buffers after %d of %d", i, n);
 1152                         *head = cur; /* restore */
 1153                         break;
 1154                 }
 1155                 nm_prdis(5, "allocate buffer %d -> %d", *head, cur);
 1156                 *p = cur; /* link to previous head */
 1157         }
 1158 
 1159         NMA_UNLOCK(nmd);
 1160 
 1161         return i;
 1162 }
 1163 
 1164 static void
 1165 netmap_extra_free(struct netmap_adapter *na, uint32_t head)
 1166 {
 1167         struct lut_entry *lut = na->na_lut.lut;
 1168         struct netmap_mem_d *nmd = na->nm_mem;
 1169         struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
 1170         uint32_t i, cur, *buf;
 1171 
 1172         nm_prdis("freeing the extra list");
 1173         for (i = 0; head >=2 && head < p->objtotal; i++) {
 1174                 cur = head;
 1175                 buf = lut[head].vaddr;
 1176                 head = *buf;
 1177                 *buf = 0;
 1178                 if (netmap_obj_free(p, cur))
 1179                         break;
 1180         }
 1181         if (head != 0)
 1182                 nm_prerr("breaking with head %d", head);
 1183         if (netmap_debug & NM_DEBUG_MEM)
 1184                 nm_prinf("freed %d buffers", i);
 1185 }
 1186 
 1187 
 1188 /* Return nonzero on error */
 1189 static int
 1190 netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
 1191 {
 1192         struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
 1193         u_int i = 0;    /* slot counter */
 1194         uint32_t pos = 0;       /* slot in p->bitmap */
 1195         uint32_t index = 0;     /* buffer index */
 1196 
 1197         for (i = 0; i < n; i++) {
 1198                 void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
 1199                 if (vaddr == NULL) {
 1200                         nm_prerr("no more buffers after %d of %d", i, n);
 1201                         goto cleanup;
 1202                 }
 1203                 slot[i].buf_idx = index;
 1204                 slot[i].len = p->_objsize;
 1205                 slot[i].flags = 0;
 1206                 slot[i].ptr = 0;
 1207         }
 1208 
 1209         nm_prdis("%s: allocated %d buffers, %d available, first at %d", p->name, n, p->objfree, pos);
 1210         return (0);
 1211 
 1212 cleanup:
 1213         while (i > 0) {
 1214                 i--;
 1215                 netmap_obj_free(p, slot[i].buf_idx);
 1216         }
 1217         bzero(slot, n * sizeof(slot[0]));
 1218         return (ENOMEM);
 1219 }
 1220 
 1221 static void
 1222 netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
 1223 {
 1224         struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
 1225         u_int i;
 1226 
 1227         for (i = 0; i < n; i++) {
 1228                 slot[i].buf_idx = index;
 1229                 slot[i].len = p->_objsize;
 1230                 slot[i].flags = 0;
 1231         }
 1232 }
 1233 
 1234 
 1235 static void
 1236 netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
 1237 {
 1238         struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
 1239 
 1240         if (i < 2 || i >= p->objtotal) {
 1241                 nm_prerr("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
 1242                 return;
 1243         }
 1244         netmap_obj_free(p, i);
 1245 }
 1246 
 1247 
 1248 static void
 1249 netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
 1250 {
 1251         u_int i;
 1252 
 1253         for (i = 0; i < n; i++) {
 1254                 if (slot[i].buf_idx > 1)
 1255                         netmap_free_buf(nmd, slot[i].buf_idx);
 1256         }
 1257         nm_prdis("%s: released some buffers, available: %u",
 1258                         p->name, p->objfree);
 1259 }
 1260 
 1261 static void
 1262 netmap_reset_obj_allocator(struct netmap_obj_pool *p)
 1263 {
 1264 
 1265         if (p == NULL)
 1266                 return;
 1267         if (p->bitmap)
 1268                 nm_os_free(p->bitmap);
 1269         p->bitmap = NULL;
 1270         if (p->invalid_bitmap)
 1271                 nm_os_free(p->invalid_bitmap);
 1272         p->invalid_bitmap = NULL;
 1273         if (!p->alloc_done) {
 1274                 /* allocation was done by somebody else.
 1275                  * Let them clean up after themselves.
 1276                  */
 1277                 return;
 1278         }
 1279         if (p->lut) {
 1280                 u_int i;
 1281 
 1282                 /*
 1283                  * Free each cluster allocated in
 1284                  * netmap_finalize_obj_allocator().  The cluster start
 1285                  * addresses are stored at multiples of p->_clusterentries
 1286                  * in the lut.
 1287                  */
 1288                 for (i = 0; i < p->objtotal; i += p->_clustentries) {
 1289                         contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
 1290                 }
 1291                 nm_free_lut(p->lut, p->objtotal);
 1292         }
 1293         p->lut = NULL;
 1294         p->objtotal = 0;
 1295         p->memtotal = 0;
 1296         p->numclusters = 0;
 1297         p->objfree = 0;
 1298         p->alloc_done = 0;
 1299 }
 1300 
 1301 /*
 1302  * Free all resources related to an allocator.
 1303  */
 1304 static void
 1305 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
 1306 {
 1307         if (p == NULL)
 1308                 return;
 1309         netmap_reset_obj_allocator(p);
 1310 }
 1311 
 1312 /*
 1313  * We receive a request for objtotal objects, of size objsize each.
 1314  * Internally we may round up both numbers, as we allocate objects
 1315  * in small clusters multiple of the page size.
 1316  * We need to keep track of objtotal and clustentries,
 1317  * as they are needed when freeing memory.
 1318  *
 1319  * XXX note -- userspace needs the buffers to be contiguous,
 1320  *      so we cannot afford gaps at the end of a cluster.
 1321  */
 1322 
 1323 
 1324 /* call with NMA_LOCK held */
 1325 static int
 1326 netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
 1327 {
 1328         int i;
 1329         u_int clustsize;        /* the cluster size, multiple of page size */
 1330         u_int clustentries;     /* how many objects per entry */
 1331 
 1332         /* we store the current request, so we can
 1333          * detect configuration changes later */
 1334         p->r_objtotal = objtotal;
 1335         p->r_objsize = objsize;
 1336 
 1337 #define MAX_CLUSTSIZE   (1<<22)         // 4 MB
 1338 #define LINE_ROUND      NM_BUF_ALIGN    // 64
 1339         if (objsize >= MAX_CLUSTSIZE) {
 1340                 /* we could do it but there is no point */
 1341                 nm_prerr("unsupported allocation for %d bytes", objsize);
 1342                 return EINVAL;
 1343         }
 1344         /* make sure objsize is a multiple of LINE_ROUND */
 1345         i = (objsize & (LINE_ROUND - 1));
 1346         if (i) {
 1347                 nm_prinf("aligning object by %d bytes", LINE_ROUND - i);
 1348                 objsize += LINE_ROUND - i;
 1349         }
 1350         if (objsize < p->objminsize || objsize > p->objmaxsize) {
 1351                 nm_prerr("requested objsize %d out of range [%d, %d]",
 1352                         objsize, p->objminsize, p->objmaxsize);
 1353                 return EINVAL;
 1354         }
 1355         if (objtotal < p->nummin || objtotal > p->nummax) {
 1356                 nm_prerr("requested objtotal %d out of range [%d, %d]",
 1357                         objtotal, p->nummin, p->nummax);
 1358                 return EINVAL;
 1359         }
 1360         /*
 1361          * Compute number of objects using a brute-force approach:
 1362          * given a max cluster size,
 1363          * we try to fill it with objects keeping track of the
 1364          * wasted space to the next page boundary.
 1365          */
 1366         for (clustentries = 0, i = 1;; i++) {
 1367                 u_int delta, used = i * objsize;
 1368                 if (used > MAX_CLUSTSIZE)
 1369                         break;
 1370                 delta = used % PAGE_SIZE;
 1371                 if (delta == 0) { // exact solution
 1372                         clustentries = i;
 1373                         break;
 1374                 }
 1375         }
 1376         /* exact solution not found */
 1377         if (clustentries == 0) {
 1378                 nm_prerr("unsupported allocation for %d bytes", objsize);
 1379                 return EINVAL;
 1380         }
 1381         /* compute clustsize */
 1382         clustsize = clustentries * objsize;
 1383         if (netmap_debug & NM_DEBUG_MEM)
 1384                 nm_prinf("objsize %d clustsize %d objects %d",
 1385                         objsize, clustsize, clustentries);
 1386 
 1387         /*
 1388          * The number of clusters is n = ceil(objtotal/clustentries)
 1389          * objtotal' = n * clustentries
 1390          */
 1391         p->_clustentries = clustentries;
 1392         p->_clustsize = clustsize;
 1393         p->_numclusters = (objtotal + clustentries - 1) / clustentries;
 1394 
 1395         /* actual values (may be larger than requested) */
 1396         p->_objsize = objsize;
 1397         p->_objtotal = p->_numclusters * clustentries;
 1398 
 1399         return 0;
 1400 }
 1401 
 1402 /* call with NMA_LOCK held */
 1403 static int
 1404 netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
 1405 {
 1406         int i; /* must be signed */
 1407         size_t n;
 1408 
 1409         if (p->lut) {
 1410                 /* if the lut is already there we assume that also all the
 1411                  * clusters have already been allocated, possibly by somebody
 1412                  * else (e.g., extmem). In the latter case, the alloc_done flag
 1413                  * will remain at zero, so that we will not attempt to
 1414                  * deallocate the clusters by ourselves in
 1415                  * netmap_reset_obj_allocator.
 1416                  */
 1417                 return 0;
 1418         }
 1419 
 1420         /* optimistically assume we have enough memory */
 1421         p->numclusters = p->_numclusters;
 1422         p->objtotal = p->_objtotal;
 1423         p->alloc_done = 1;
 1424 
 1425         p->lut = nm_alloc_lut(p->objtotal);
 1426         if (p->lut == NULL) {
 1427                 nm_prerr("Unable to create lookup table for '%s'", p->name);
 1428                 goto clean;
 1429         }
 1430 
 1431         /*
 1432          * Allocate clusters, init pointers
 1433          */
 1434 
 1435         n = p->_clustsize;
 1436         for (i = 0; i < (int)p->objtotal;) {
 1437                 int lim = i + p->_clustentries;
 1438                 char *clust;
 1439 
 1440                 /*
 1441                  * XXX Note, we only need contigmalloc() for buffers attached
 1442                  * to native interfaces. In all other cases (nifp, netmap rings
 1443                  * and even buffers for VALE ports or emulated interfaces) we
 1444                  * can live with standard malloc, because the hardware will not
 1445                  * access the pages directly.
 1446                  */
 1447                 clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
 1448                     (size_t)0, -1UL, PAGE_SIZE, 0);
 1449                 if (clust == NULL) {
 1450                         /*
 1451                          * If we get here, there is a severe memory shortage,
 1452                          * so halve the allocated memory to reclaim some.
 1453                          */
 1454                         nm_prerr("Unable to create cluster at %d for '%s' allocator",
 1455                             i, p->name);
 1456                         if (i < 2) /* nothing to halve */
 1457                                 goto out;
 1458                         lim = i / 2;
 1459                         for (i--; i >= lim; i--) {
 1460                                 if (i % p->_clustentries == 0 && p->lut[i].vaddr)
 1461                                         contigfree(p->lut[i].vaddr,
 1462                                                 n, M_NETMAP);
 1463                                 p->lut[i].vaddr = NULL;
 1464                         }
 1465                 out:
 1466                         p->objtotal = i;
 1467                         /* we may have stopped in the middle of a cluster */
 1468                         p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
 1469                         break;
 1470                 }
 1471                 /*
 1472                  * Set lut state for all buffers in the current cluster.
 1473                  *
 1474                  * [i, lim) is the set of buffer indexes that cover the
 1475                  * current cluster.
 1476                  *
 1477                  * 'clust' is really the address of the current buffer in
 1478                  * the current cluster as we index through it with a stride
 1479                  * of p->_objsize.
 1480                  */
 1481                 for (; i < lim; i++, clust += p->_objsize) {
 1482                         p->lut[i].vaddr = clust;
 1483 #if !defined(linux) && !defined(_WIN32)
 1484                         p->lut[i].paddr = vtophys(clust);
 1485 #endif
 1486                 }
 1487         }
 1488         p->memtotal = (size_t)p->numclusters * (size_t)p->_clustsize;
 1489         if (netmap_verbose)
 1490                 nm_prinf("Pre-allocated %d clusters (%d/%zuKB) for '%s'",
 1491                     p->numclusters, p->_clustsize >> 10,
 1492                     p->memtotal >> 10, p->name);
 1493 
 1494         return 0;
 1495 
 1496 clean:
 1497         netmap_reset_obj_allocator(p);
 1498         return ENOMEM;
 1499 }
 1500 
 1501 /* call with lock held */
 1502 static int
 1503 netmap_mem_params_changed(struct netmap_obj_params* p)
 1504 {
 1505         int i, rv = 0;
 1506 
 1507         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1508                 if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) {
 1509                         p[i].last_size = p[i].size;
 1510                         p[i].last_num = p[i].num;
 1511                         rv = 1;
 1512                 }
 1513         }
 1514         return rv;
 1515 }
 1516 
 1517 static void
 1518 netmap_mem_reset_all(struct netmap_mem_d *nmd)
 1519 {
 1520         int i;
 1521 
 1522         if (netmap_debug & NM_DEBUG_MEM)
 1523                 nm_prinf("resetting %p", nmd);
 1524         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1525                 netmap_reset_obj_allocator(&nmd->pools[i]);
 1526         }
 1527         nmd->flags  &= ~NETMAP_MEM_FINALIZED;
 1528 }
 1529 
 1530 static int
 1531 netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
 1532 {
 1533         int i, lim = p->objtotal;
 1534         struct netmap_lut *lut;
 1535         if (na == NULL || na->pdev == NULL)
 1536                 return 0;
 1537 
 1538         lut = &na->na_lut;
 1539 
 1540 
 1541 
 1542 #if defined(__FreeBSD__)
 1543         /* On FreeBSD mapping and unmapping is performed by the txsync
 1544          * and rxsync routine, packet by packet. */
 1545         (void)i;
 1546         (void)lim;
 1547         (void)lut;
 1548 #elif defined(_WIN32)
 1549         (void)i;
 1550         (void)lim;
 1551         (void)lut;
 1552         nm_prerr("unsupported on Windows");
 1553 #else /* linux */
 1554         nm_prdis("unmapping and freeing plut for %s", na->name);
 1555         if (lut->plut == NULL || na->pdev == NULL)
 1556                 return 0;
 1557         for (i = 0; i < lim; i += p->_clustentries) {
 1558                 if (lut->plut[i].paddr)
 1559                         netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, p->_clustsize);
 1560         }
 1561         nm_free_plut(lut->plut);
 1562         lut->plut = NULL;
 1563 #endif /* linux */
 1564 
 1565         return 0;
 1566 }
 1567 
 1568 static int
 1569 netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
 1570 {
 1571         int error = 0;
 1572         int i, lim = p->objtotal;
 1573         struct netmap_lut *lut = &na->na_lut;
 1574 
 1575         if (na->pdev == NULL)
 1576                 return 0;
 1577 
 1578 #if defined(__FreeBSD__)
 1579         /* On FreeBSD mapping and unmapping is performed by the txsync
 1580          * and rxsync routine, packet by packet. */
 1581         (void)i;
 1582         (void)lim;
 1583         (void)lut;
 1584 #elif defined(_WIN32)
 1585         (void)i;
 1586         (void)lim;
 1587         (void)lut;
 1588         nm_prerr("unsupported on Windows");
 1589 #else /* linux */
 1590 
 1591         if (lut->plut != NULL) {
 1592                 nm_prdis("plut already allocated for %s", na->name);
 1593                 return 0;
 1594         }
 1595 
 1596         nm_prdis("allocating physical lut for %s", na->name);
 1597         lut->plut = nm_alloc_plut(lim);
 1598         if (lut->plut == NULL) {
 1599                 nm_prerr("Failed to allocate physical lut for %s", na->name);
 1600                 return ENOMEM;
 1601         }
 1602 
 1603         for (i = 0; i < lim; i += p->_clustentries) {
 1604                 lut->plut[i].paddr = 0;
 1605         }
 1606 
 1607         for (i = 0; i < lim; i += p->_clustentries) {
 1608                 int j;
 1609 
 1610                 if (p->lut[i].vaddr == NULL)
 1611                         continue;
 1612 
 1613                 error = netmap_load_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr,
 1614                                 p->lut[i].vaddr, p->_clustsize);
 1615                 if (error) {
 1616                         nm_prerr("Failed to map cluster #%d from the %s pool", i, p->name);
 1617                         break;
 1618                 }
 1619 
 1620                 for (j = 1; j < p->_clustentries; j++) {
 1621                         lut->plut[i + j].paddr = lut->plut[i + j - 1].paddr + p->_objsize;
 1622                 }
 1623         }
 1624 
 1625         if (error)
 1626                 netmap_mem_unmap(p, na);
 1627 
 1628 #endif /* linux */
 1629 
 1630         return error;
 1631 }
 1632 
 1633 static int
 1634 netmap_mem_finalize_all(struct netmap_mem_d *nmd)
 1635 {
 1636         int i;
 1637         if (nmd->flags & NETMAP_MEM_FINALIZED)
 1638                 return 0;
 1639         nmd->lasterr = 0;
 1640         nmd->nm_totalsize = 0;
 1641         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1642                 nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
 1643                 if (nmd->lasterr)
 1644                         goto error;
 1645                 nmd->nm_totalsize += nmd->pools[i].memtotal;
 1646         }
 1647         nmd->nm_totalsize = (nmd->nm_totalsize + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
 1648         nmd->lasterr = netmap_mem_init_bitmaps(nmd);
 1649         if (nmd->lasterr)
 1650                 goto error;
 1651 
 1652         nmd->flags |= NETMAP_MEM_FINALIZED;
 1653 
 1654         if (netmap_verbose)
 1655                 nm_prinf("interfaces %zd KB, rings %zd KB, buffers %zd MB",
 1656                     nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
 1657                     nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
 1658                     nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
 1659 
 1660         if (netmap_verbose)
 1661                 nm_prinf("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
 1662 
 1663 
 1664         return 0;
 1665 error:
 1666         netmap_mem_reset_all(nmd);
 1667         return nmd->lasterr;
 1668 }
 1669 
 1670 /*
 1671  * allocator for private memory
 1672  */
 1673 static void *
 1674 _netmap_mem_private_new(size_t size, struct netmap_obj_params *p, int grp_id,
 1675                 struct netmap_mem_ops *ops, uint64_t memtotal, int *perr)
 1676 {
 1677         struct netmap_mem_d *d = NULL;
 1678         int i, err = 0;
 1679         int checksz = 0;
 1680 
 1681         /* if memtotal is !=0 we check that the request fits the available
 1682          * memory. Moreover, any surprlus memory is assigned to buffers.
 1683          */
 1684         checksz = (memtotal > 0);
 1685 
 1686         d = nm_os_malloc(size);
 1687         if (d == NULL) {
 1688                 err = ENOMEM;
 1689                 goto error;
 1690         }
 1691 
 1692         *d = nm_blueprint;
 1693         d->ops = ops;
 1694 
 1695         err = nm_mem_assign_id(d, grp_id);
 1696         if (err)
 1697                 goto error_free;
 1698         snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id);
 1699 
 1700         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1701                 snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
 1702                                 nm_blueprint.pools[i].name,
 1703                                 d->name);
 1704                 if (checksz) {
 1705                         uint64_t poolsz = (uint64_t)p[i].num * p[i].size;
 1706                         if (memtotal < poolsz) {
 1707                                 nm_prerr("%s: request too large", d->pools[i].name);
 1708                                 err = ENOMEM;
 1709                                 goto error_rel_id;
 1710                         }
 1711                         memtotal -= poolsz;
 1712                 }
 1713                 d->params[i].num = p[i].num;
 1714                 d->params[i].size = p[i].size;
 1715         }
 1716         if (checksz && memtotal > 0) {
 1717                 uint64_t sz = d->params[NETMAP_BUF_POOL].size;
 1718                 uint64_t n = (memtotal + sz - 1) / sz;
 1719 
 1720                 if (n) {
 1721                         if (netmap_verbose) {
 1722                                 nm_prinf("%s: adding %llu more buffers",
 1723                                     d->pools[NETMAP_BUF_POOL].name,
 1724                                     (unsigned long long)n);
 1725                         }
 1726                         d->params[NETMAP_BUF_POOL].num += n;
 1727                 }
 1728         }
 1729 
 1730         NMA_LOCK_INIT(d);
 1731 
 1732         err = netmap_mem_config(d);
 1733         if (err)
 1734                 goto error_destroy_lock;
 1735 
 1736         d->flags &= ~NETMAP_MEM_FINALIZED;
 1737 
 1738         return d;
 1739 
 1740 error_destroy_lock:
 1741         NMA_LOCK_DESTROY(d);
 1742 error_rel_id:
 1743         nm_mem_release_id(d);
 1744 error_free:
 1745         nm_os_free(d);
 1746 error:
 1747         if (perr)
 1748                 *perr = err;
 1749         return NULL;
 1750 }
 1751 
 1752 struct netmap_mem_d *
 1753 netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd,
 1754                 u_int extra_bufs, u_int npipes, int *perr)
 1755 {
 1756         struct netmap_mem_d *d = NULL;
 1757         struct netmap_obj_params p[NETMAP_POOLS_NR];
 1758         int i;
 1759         u_int v, maxd;
 1760         /* account for the fake host rings */
 1761         txr++;
 1762         rxr++;
 1763 
 1764         /* copy the min values */
 1765         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1766                 p[i] = netmap_min_priv_params[i];
 1767         }
 1768 
 1769         /* possibly increase them to fit user request */
 1770         v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
 1771         if (p[NETMAP_IF_POOL].size < v)
 1772                 p[NETMAP_IF_POOL].size = v;
 1773         v = 2 + 4 * npipes;
 1774         if (p[NETMAP_IF_POOL].num < v)
 1775                 p[NETMAP_IF_POOL].num = v;
 1776         maxd = (txd > rxd) ? txd : rxd;
 1777         v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
 1778         if (p[NETMAP_RING_POOL].size < v)
 1779                 p[NETMAP_RING_POOL].size = v;
 1780         /* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
 1781          * and two rx rings (again, 1 normal and 1 fake host)
 1782          */
 1783         v = txr + rxr + 8 * npipes;
 1784         if (p[NETMAP_RING_POOL].num < v)
 1785                 p[NETMAP_RING_POOL].num = v;
 1786         /* for each pipe we only need the buffers for the 4 "real" rings.
 1787          * On the other end, the pipe ring dimension may be different from
 1788          * the parent port ring dimension. As a compromise, we allocate twice the
 1789          * space actually needed if the pipe rings were the same size as the parent rings
 1790          */
 1791         v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
 1792                 /* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
 1793         if (p[NETMAP_BUF_POOL].num < v)
 1794                 p[NETMAP_BUF_POOL].num = v;
 1795 
 1796         if (netmap_verbose)
 1797                 nm_prinf("req if %d*%d ring %d*%d buf %d*%d",
 1798                         p[NETMAP_IF_POOL].num,
 1799                         p[NETMAP_IF_POOL].size,
 1800                         p[NETMAP_RING_POOL].num,
 1801                         p[NETMAP_RING_POOL].size,
 1802                         p[NETMAP_BUF_POOL].num,
 1803                         p[NETMAP_BUF_POOL].size);
 1804 
 1805         d = _netmap_mem_private_new(sizeof(*d), p, -1, &netmap_mem_global_ops, 0, perr);
 1806 
 1807         return d;
 1808 }
 1809 
 1810 /* Reference iommu allocator - find existing or create new,
 1811  * for not hw addapeters fallback to global allocator.
 1812  */
 1813 struct netmap_mem_d *
 1814 netmap_mem_get_iommu(struct netmap_adapter *na)
 1815 {
 1816         int i, err, grp_id;
 1817         struct netmap_mem_d *nmd;
 1818 
 1819         if (na == NULL || na->pdev == NULL)
 1820                 return netmap_mem_get(&nm_mem);
 1821 
 1822         grp_id = nm_iommu_group_id(na->pdev);
 1823 
 1824         NM_MTX_LOCK(nm_mem_list_lock);
 1825         nmd = netmap_last_mem_d;
 1826         do {
 1827                 if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_grp == grp_id) {
 1828                         nmd->refcount++;
 1829                         NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
 1830                         NM_MTX_UNLOCK(nm_mem_list_lock);
 1831                         return nmd;
 1832                 }
 1833                 nmd = nmd->next;
 1834         } while (nmd != netmap_last_mem_d);
 1835 
 1836         nmd = nm_os_malloc(sizeof(*nmd));
 1837         if (nmd == NULL)
 1838                 goto error;
 1839 
 1840         *nmd = nm_mem_blueprint;
 1841 
 1842         err = nm_mem_assign_id_locked(nmd, grp_id);
 1843         if (err)
 1844                 goto error_free;
 1845 
 1846         snprintf(nmd->name, sizeof(nmd->name), "%d", nmd->nm_id);
 1847 
 1848         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1849                 snprintf(nmd->pools[i].name, NETMAP_POOL_MAX_NAMSZ, "%s-%s",
 1850                         nm_mem_blueprint.pools[i].name, nmd->name);
 1851         }
 1852 
 1853         NMA_LOCK_INIT(nmd);
 1854 
 1855         NM_MTX_UNLOCK(nm_mem_list_lock);
 1856         return nmd;
 1857 
 1858 error_free:
 1859         nm_os_free(nmd);
 1860 error:
 1861         NM_MTX_UNLOCK(nm_mem_list_lock);
 1862         return NULL;
 1863 }
 1864 
 1865 /* call with lock held */
 1866 static int
 1867 netmap_mem2_config(struct netmap_mem_d *nmd)
 1868 {
 1869         int i;
 1870 
 1871         if (!netmap_mem_params_changed(nmd->params))
 1872                 goto out;
 1873 
 1874         nm_prdis("reconfiguring");
 1875 
 1876         if (nmd->flags & NETMAP_MEM_FINALIZED) {
 1877                 /* reset previous allocation */
 1878                 for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1879                         netmap_reset_obj_allocator(&nmd->pools[i]);
 1880                 }
 1881                 nmd->flags &= ~NETMAP_MEM_FINALIZED;
 1882         }
 1883 
 1884         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1885                 nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
 1886                                 nmd->params[i].num, nmd->params[i].size);
 1887                 if (nmd->lasterr)
 1888                         goto out;
 1889         }
 1890 
 1891 out:
 1892 
 1893         return nmd->lasterr;
 1894 }
 1895 
 1896 static int
 1897 netmap_mem2_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
 1898 {
 1899         if (nmd->flags & NETMAP_MEM_FINALIZED)
 1900                 goto out;
 1901 
 1902         if (netmap_mem_finalize_all(nmd))
 1903                 goto out;
 1904 
 1905         nmd->lasterr = 0;
 1906 
 1907 out:
 1908         return nmd->lasterr;
 1909 }
 1910 
 1911 static void
 1912 netmap_mem2_delete(struct netmap_mem_d *nmd)
 1913 {
 1914         int i;
 1915 
 1916         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 1917             netmap_destroy_obj_allocator(&nmd->pools[i]);
 1918         }
 1919 
 1920         NMA_LOCK_DESTROY(nmd);
 1921         if (nmd != &nm_mem)
 1922                 nm_os_free(nmd);
 1923 }
 1924 
 1925 #ifdef WITH_EXTMEM
 1926 /* doubly linekd list of all existing external allocators */
 1927 static struct netmap_mem_ext *netmap_mem_ext_list = NULL;
 1928 NM_MTX_T nm_mem_ext_list_lock;
 1929 #endif /* WITH_EXTMEM */
 1930 
 1931 int
 1932 netmap_mem_init(void)
 1933 {
 1934         nm_mem_blueprint = nm_mem;
 1935         NM_MTX_INIT(nm_mem_list_lock);
 1936         NMA_LOCK_INIT(&nm_mem);
 1937         netmap_mem_get(&nm_mem);
 1938 #ifdef WITH_EXTMEM
 1939         NM_MTX_INIT(nm_mem_ext_list_lock);
 1940 #endif /* WITH_EXTMEM */
 1941         return (0);
 1942 }
 1943 
 1944 void
 1945 netmap_mem_fini(void)
 1946 {
 1947         netmap_mem_put(&nm_mem);
 1948 }
 1949 
 1950 static int
 1951 netmap_mem_ring_needed(struct netmap_kring *kring)
 1952 {
 1953         return kring->ring == NULL &&
 1954                 (kring->users > 0 ||
 1955                  (kring->nr_kflags & NKR_NEEDRING));
 1956 }
 1957 
 1958 static int
 1959 netmap_mem_ring_todelete(struct netmap_kring *kring)
 1960 {
 1961         return kring->ring != NULL &&
 1962                 kring->users == 0 &&
 1963                 !(kring->nr_kflags & NKR_NEEDRING);
 1964 }
 1965 
 1966 
 1967 /* call with NMA_LOCK held *
 1968  *
 1969  * Allocate netmap rings and buffers for this card
 1970  * The rings are contiguous, but have variable size.
 1971  * The kring array must follow the layout described
 1972  * in netmap_krings_create().
 1973  */
 1974 static int
 1975 netmap_mem2_rings_create(struct netmap_mem_d *nmd, struct netmap_adapter *na)
 1976 {
 1977         enum txrx t;
 1978 
 1979         for_rx_tx(t) {
 1980                 u_int i;
 1981 
 1982                 for (i = 0; i < netmap_all_rings(na, t); i++) {
 1983                         struct netmap_kring *kring = NMR(na, t)[i];
 1984                         struct netmap_ring *ring = kring->ring;
 1985                         u_int len, ndesc;
 1986 
 1987                         if (!netmap_mem_ring_needed(kring)) {
 1988                                 /* unneeded, or already created by somebody else */
 1989                                 if (netmap_debug & NM_DEBUG_MEM)
 1990                                         nm_prinf("NOT creating ring %s (ring %p, users %d neekring %d)",
 1991                                                 kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
 1992                                 continue;
 1993                         }
 1994                         if (netmap_debug & NM_DEBUG_MEM)
 1995                                 nm_prinf("creating %s", kring->name);
 1996                         ndesc = kring->nkr_num_slots;
 1997                         len = sizeof(struct netmap_ring) +
 1998                                   ndesc * sizeof(struct netmap_slot);
 1999                         ring = netmap_ring_malloc(nmd, len);
 2000                         if (ring == NULL) {
 2001                                 nm_prerr("Cannot allocate %s_ring", nm_txrx2str(t));
 2002                                 goto cleanup;
 2003                         }
 2004                         nm_prdis("txring at %p", ring);
 2005                         kring->ring = ring;
 2006                         *(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
 2007                         *(int64_t *)(uintptr_t)&ring->buf_ofs =
 2008                             (nmd->pools[NETMAP_IF_POOL].memtotal +
 2009                                 nmd->pools[NETMAP_RING_POOL].memtotal) -
 2010                                 netmap_ring_offset(nmd, ring);
 2011 
 2012                         /* copy values from kring */
 2013                         ring->head = kring->rhead;
 2014                         ring->cur = kring->rcur;
 2015                         ring->tail = kring->rtail;
 2016                         *(uint32_t *)(uintptr_t)&ring->nr_buf_size =
 2017                                 netmap_mem_bufsize(nmd);
 2018                         nm_prdis("%s h %d c %d t %d", kring->name,
 2019                                 ring->head, ring->cur, ring->tail);
 2020                         nm_prdis("initializing slots for %s_ring", nm_txrx2str(t));
 2021                         if (!(kring->nr_kflags & NKR_FAKERING)) {
 2022                                 /* this is a real ring */
 2023                                 if (netmap_debug & NM_DEBUG_MEM)
 2024                                         nm_prinf("allocating buffers for %s", kring->name);
 2025                                 if (netmap_new_bufs(nmd, ring->slot, ndesc)) {
 2026                                         nm_prerr("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
 2027                                         goto cleanup;
 2028                                 }
 2029                         } else {
 2030                                 /* this is a fake ring, set all indices to 0 */
 2031                                 if (netmap_debug & NM_DEBUG_MEM)
 2032                                         nm_prinf("NOT allocating buffers for %s", kring->name);
 2033                                 netmap_mem_set_ring(nmd, ring->slot, ndesc, 0);
 2034                         }
 2035                         /* ring info */
 2036                         *(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
 2037                         *(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
 2038                 }
 2039         }
 2040 
 2041         return 0;
 2042 
 2043 cleanup:
 2044         /* we cannot actually cleanup here, since we don't own kring->users
 2045          * and kring->nr_klags & NKR_NEEDRING. The caller must decrement
 2046          * the first or zero-out the second, then call netmap_free_rings()
 2047          * to do the cleanup
 2048          */
 2049 
 2050         return ENOMEM;
 2051 }
 2052 
 2053 static void
 2054 netmap_mem2_rings_delete(struct netmap_mem_d *nmd, struct netmap_adapter *na)
 2055 {
 2056         enum txrx t;
 2057 
 2058         for_rx_tx(t) {
 2059                 u_int i;
 2060                 for (i = 0; i < netmap_all_rings(na, t); i++) {
 2061                         struct netmap_kring *kring = NMR(na, t)[i];
 2062                         struct netmap_ring *ring = kring->ring;
 2063 
 2064                         if (!netmap_mem_ring_todelete(kring)) {
 2065                                 if (netmap_debug & NM_DEBUG_MEM)
 2066                                         nm_prinf("NOT deleting ring %s (ring %p, users %d neekring %d)",
 2067                                                 kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
 2068                                 continue;
 2069                         }
 2070                         if (netmap_debug & NM_DEBUG_MEM)
 2071                                 nm_prinf("deleting ring %s", kring->name);
 2072                         if (!(kring->nr_kflags & NKR_FAKERING)) {
 2073                                 nm_prdis("freeing bufs for %s", kring->name);
 2074                                 netmap_free_bufs(nmd, ring->slot, kring->nkr_num_slots);
 2075                         } else {
 2076                                 nm_prdis("NOT freeing bufs for %s", kring->name);
 2077                         }
 2078                         netmap_ring_free(nmd, ring);
 2079                         kring->ring = NULL;
 2080                 }
 2081         }
 2082 }
 2083 
 2084 /* call with NMA_LOCK held */
 2085 /*
 2086  * Allocate the per-fd structure netmap_if.
 2087  *
 2088  * We assume that the configuration stored in na
 2089  * (number of tx/rx rings and descs) does not change while
 2090  * the interface is in netmap mode.
 2091  */
 2092 static struct netmap_if *
 2093 netmap_mem2_if_new(struct netmap_mem_d *nmd,
 2094                 struct netmap_adapter *na, struct netmap_priv_d *priv)
 2095 {
 2096         struct netmap_if *nifp;
 2097         ssize_t base; /* handy for relative offsets between rings and nifp */
 2098         u_int i, len, n[NR_TXRX], ntot;
 2099         enum txrx t;
 2100 
 2101         ntot = 0;
 2102         for_rx_tx(t) {
 2103                 /* account for the (eventually fake) host rings */
 2104                 n[t] = netmap_all_rings(na, t);
 2105                 ntot += n[t];
 2106         }
 2107         /*
 2108          * the descriptor is followed inline by an array of offsets
 2109          * to the tx and rx rings in the shared memory region.
 2110          */
 2111 
 2112         len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
 2113         nifp = netmap_if_malloc(nmd, len);
 2114         if (nifp == NULL) {
 2115                 return NULL;
 2116         }
 2117 
 2118         /* initialize base fields -- override const */
 2119         *(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
 2120         *(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
 2121         *(u_int *)(uintptr_t)&nifp->ni_host_tx_rings =
 2122                 (na->num_host_tx_rings ? na->num_host_tx_rings : 1);
 2123         *(u_int *)(uintptr_t)&nifp->ni_host_rx_rings =
 2124                 (na->num_host_rx_rings ? na->num_host_rx_rings : 1);
 2125         strlcpy(nifp->ni_name, na->name, sizeof(nifp->ni_name));
 2126 
 2127         /*
 2128          * fill the slots for the rx and tx rings. They contain the offset
 2129          * between the ring and nifp, so the information is usable in
 2130          * userspace to reach the ring from the nifp.
 2131          */
 2132         base = netmap_if_offset(nmd, nifp);
 2133         for (i = 0; i < n[NR_TX]; i++) {
 2134                 /* XXX instead of ofs == 0 maybe use the offset of an error
 2135                  * ring, like we do for buffers? */
 2136                 ssize_t ofs = 0;
 2137 
 2138                 if (na->tx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_TX]
 2139                                 && i < priv->np_qlast[NR_TX]) {
 2140                         ofs = netmap_ring_offset(nmd,
 2141                                                  na->tx_rings[i]->ring) - base;
 2142                 }
 2143                 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs;
 2144         }
 2145         for (i = 0; i < n[NR_RX]; i++) {
 2146                 /* XXX instead of ofs == 0 maybe use the offset of an error
 2147                  * ring, like we do for buffers? */
 2148                 ssize_t ofs = 0;
 2149 
 2150                 if (na->rx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_RX]
 2151                                 && i < priv->np_qlast[NR_RX]) {
 2152                         ofs = netmap_ring_offset(nmd,
 2153                                                  na->rx_rings[i]->ring) - base;
 2154                 }
 2155                 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs;
 2156         }
 2157 
 2158         return (nifp);
 2159 }
 2160 
 2161 static void
 2162 netmap_mem2_if_delete(struct netmap_mem_d *nmd,
 2163                 struct netmap_adapter *na, struct netmap_if *nifp)
 2164 {
 2165         if (nifp == NULL)
 2166                 /* nothing to do */
 2167                 return;
 2168         if (nifp->ni_bufs_head)
 2169                 netmap_extra_free(na, nifp->ni_bufs_head);
 2170         netmap_if_free(nmd, nifp);
 2171 }
 2172 
 2173 static void
 2174 netmap_mem2_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
 2175 {
 2176 
 2177         if (netmap_debug & NM_DEBUG_MEM)
 2178                 nm_prinf("active = %d", nmd->active);
 2179 
 2180 }
 2181 
 2182 struct netmap_mem_ops netmap_mem_global_ops = {
 2183         .nmd_get_lut = netmap_mem2_get_lut,
 2184         .nmd_get_info = netmap_mem2_get_info,
 2185         .nmd_ofstophys = netmap_mem2_ofstophys,
 2186         .nmd_config = netmap_mem2_config,
 2187         .nmd_finalize = netmap_mem2_finalize,
 2188         .nmd_deref = netmap_mem2_deref,
 2189         .nmd_delete = netmap_mem2_delete,
 2190         .nmd_if_offset = netmap_mem2_if_offset,
 2191         .nmd_if_new = netmap_mem2_if_new,
 2192         .nmd_if_delete = netmap_mem2_if_delete,
 2193         .nmd_rings_create = netmap_mem2_rings_create,
 2194         .nmd_rings_delete = netmap_mem2_rings_delete
 2195 };
 2196 
 2197 int
 2198 netmap_mem_pools_info_get(struct nmreq_pools_info *req,
 2199                                 struct netmap_mem_d *nmd)
 2200 {
 2201         int ret;
 2202 
 2203         ret = netmap_mem_get_info(nmd, &req->nr_memsize, NULL,
 2204                                         &req->nr_mem_id);
 2205         if (ret) {
 2206                 return ret;
 2207         }
 2208 
 2209         NMA_LOCK(nmd);
 2210         req->nr_if_pool_offset = 0;
 2211         req->nr_if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal;
 2212         req->nr_if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize;
 2213 
 2214         req->nr_ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal;
 2215         req->nr_ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal;
 2216         req->nr_ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize;
 2217 
 2218         req->nr_buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal +
 2219                              nmd->pools[NETMAP_RING_POOL].memtotal;
 2220         req->nr_buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
 2221         req->nr_buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
 2222         NMA_UNLOCK(nmd);
 2223 
 2224         return 0;
 2225 }
 2226 
 2227 #ifdef WITH_EXTMEM
 2228 struct netmap_mem_ext {
 2229         struct netmap_mem_d up;
 2230 
 2231         struct nm_os_extmem *os;
 2232         struct netmap_mem_ext *next, *prev;
 2233 };
 2234 
 2235 /* call with nm_mem_list_lock held */
 2236 static void
 2237 netmap_mem_ext_register(struct netmap_mem_ext *e)
 2238 {
 2239         NM_MTX_LOCK(nm_mem_ext_list_lock);
 2240         if (netmap_mem_ext_list)
 2241                 netmap_mem_ext_list->prev = e;
 2242         e->next = netmap_mem_ext_list;
 2243         netmap_mem_ext_list = e;
 2244         e->prev = NULL;
 2245         NM_MTX_UNLOCK(nm_mem_ext_list_lock);
 2246 }
 2247 
 2248 /* call with nm_mem_list_lock held */
 2249 static void
 2250 netmap_mem_ext_unregister(struct netmap_mem_ext *e)
 2251 {
 2252         if (e->prev)
 2253                 e->prev->next = e->next;
 2254         else
 2255                 netmap_mem_ext_list = e->next;
 2256         if (e->next)
 2257                 e->next->prev = e->prev;
 2258         e->prev = e->next = NULL;
 2259 }
 2260 
 2261 static struct netmap_mem_ext *
 2262 netmap_mem_ext_search(struct nm_os_extmem *os)
 2263 {
 2264         struct netmap_mem_ext *e;
 2265 
 2266         NM_MTX_LOCK(nm_mem_ext_list_lock);
 2267         for (e = netmap_mem_ext_list; e; e = e->next) {
 2268                 if (nm_os_extmem_isequal(e->os, os)) {
 2269                         netmap_mem_get(&e->up);
 2270                         break;
 2271                 }
 2272         }
 2273         NM_MTX_UNLOCK(nm_mem_ext_list_lock);
 2274         return e;
 2275 }
 2276 
 2277 
 2278 static void
 2279 netmap_mem_ext_delete(struct netmap_mem_d *d)
 2280 {
 2281         int i;
 2282         struct netmap_mem_ext *e =
 2283                 (struct netmap_mem_ext *)d;
 2284 
 2285         netmap_mem_ext_unregister(e);
 2286 
 2287         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 2288                 struct netmap_obj_pool *p = &d->pools[i];
 2289 
 2290                 if (p->lut) {
 2291                         nm_free_lut(p->lut, p->objtotal);
 2292                         p->lut = NULL;
 2293                 }
 2294         }
 2295         if (e->os)
 2296                 nm_os_extmem_delete(e->os);
 2297         netmap_mem2_delete(d);
 2298 }
 2299 
 2300 static int
 2301 netmap_mem_ext_config(struct netmap_mem_d *nmd)
 2302 {
 2303         return 0;
 2304 }
 2305 
 2306 struct netmap_mem_ops netmap_mem_ext_ops = {
 2307         .nmd_get_lut = netmap_mem2_get_lut,
 2308         .nmd_get_info = netmap_mem2_get_info,
 2309         .nmd_ofstophys = netmap_mem2_ofstophys,
 2310         .nmd_config = netmap_mem_ext_config,
 2311         .nmd_finalize = netmap_mem2_finalize,
 2312         .nmd_deref = netmap_mem2_deref,
 2313         .nmd_delete = netmap_mem_ext_delete,
 2314         .nmd_if_offset = netmap_mem2_if_offset,
 2315         .nmd_if_new = netmap_mem2_if_new,
 2316         .nmd_if_delete = netmap_mem2_if_delete,
 2317         .nmd_rings_create = netmap_mem2_rings_create,
 2318         .nmd_rings_delete = netmap_mem2_rings_delete
 2319 };
 2320 
 2321 struct netmap_mem_d *
 2322 netmap_mem_ext_create(uint64_t usrptr, struct nmreq_pools_info *pi, int *perror)
 2323 {
 2324         int error = 0;
 2325         int i, j;
 2326         struct netmap_mem_ext *nme;
 2327         char *clust;
 2328         size_t off;
 2329         struct nm_os_extmem *os = NULL;
 2330         int nr_pages;
 2331 
 2332         // XXX sanity checks
 2333         if (pi->nr_if_pool_objtotal == 0)
 2334                 pi->nr_if_pool_objtotal = netmap_min_priv_params[NETMAP_IF_POOL].num;
 2335         if (pi->nr_if_pool_objsize == 0)
 2336                 pi->nr_if_pool_objsize = netmap_min_priv_params[NETMAP_IF_POOL].size;
 2337         if (pi->nr_ring_pool_objtotal == 0)
 2338                 pi->nr_ring_pool_objtotal = netmap_min_priv_params[NETMAP_RING_POOL].num;
 2339         if (pi->nr_ring_pool_objsize == 0)
 2340                 pi->nr_ring_pool_objsize = netmap_min_priv_params[NETMAP_RING_POOL].size;
 2341         if (pi->nr_buf_pool_objtotal == 0)
 2342                 pi->nr_buf_pool_objtotal = netmap_min_priv_params[NETMAP_BUF_POOL].num;
 2343         if (pi->nr_buf_pool_objsize == 0)
 2344                 pi->nr_buf_pool_objsize = netmap_min_priv_params[NETMAP_BUF_POOL].size;
 2345         if (netmap_verbose & NM_DEBUG_MEM)
 2346                 nm_prinf("if %d %d ring %d %d buf %d %d",
 2347                         pi->nr_if_pool_objtotal, pi->nr_if_pool_objsize,
 2348                         pi->nr_ring_pool_objtotal, pi->nr_ring_pool_objsize,
 2349                         pi->nr_buf_pool_objtotal, pi->nr_buf_pool_objsize);
 2350 
 2351         os = nm_os_extmem_create(usrptr, pi, &error);
 2352         if (os == NULL) {
 2353                 nm_prerr("os extmem creation failed");
 2354                 goto out;
 2355         }
 2356 
 2357         nme = netmap_mem_ext_search(os);
 2358         if (nme) {
 2359                 nm_os_extmem_delete(os);
 2360                 return &nme->up;
 2361         }
 2362         if (netmap_verbose & NM_DEBUG_MEM)
 2363                 nm_prinf("not found, creating new");
 2364 
 2365         nme = _netmap_mem_private_new(sizeof(*nme),
 2366 
 2367                         (struct netmap_obj_params[]){
 2368                                 { pi->nr_if_pool_objsize, pi->nr_if_pool_objtotal },
 2369                                 { pi->nr_ring_pool_objsize, pi->nr_ring_pool_objtotal },
 2370                                 { pi->nr_buf_pool_objsize, pi->nr_buf_pool_objtotal }},
 2371                         -1,
 2372                         &netmap_mem_ext_ops,
 2373                         pi->nr_memsize,
 2374                         &error);
 2375         if (nme == NULL)
 2376                 goto out_unmap;
 2377 
 2378         nr_pages = nm_os_extmem_nr_pages(os);
 2379 
 2380         /* from now on pages will be released by nme destructor;
 2381          * we let res = 0 to prevent release in out_unmap below
 2382          */
 2383         nme->os = os;
 2384         os = NULL; /* pass ownership */
 2385 
 2386         clust = nm_os_extmem_nextpage(nme->os);
 2387         off = 0;
 2388         for (i = 0; i < NETMAP_POOLS_NR; i++) {
 2389                 struct netmap_obj_pool *p = &nme->up.pools[i];
 2390                 struct netmap_obj_params *o = &nme->up.params[i];
 2391 
 2392                 p->_objsize = o->size;
 2393                 p->_clustsize = o->size;
 2394                 p->_clustentries = 1;
 2395 
 2396                 p->lut = nm_alloc_lut(o->num);
 2397                 if (p->lut == NULL) {
 2398                         error = ENOMEM;
 2399                         goto out_delete;
 2400                 }
 2401 
 2402                 p->bitmap_slots = (o->num + sizeof(uint32_t) - 1) / sizeof(uint32_t);
 2403                 p->invalid_bitmap = nm_os_malloc(sizeof(uint32_t) * p->bitmap_slots);
 2404                 if (p->invalid_bitmap == NULL) {
 2405                         error = ENOMEM;
 2406                         goto out_delete;
 2407                 }
 2408 
 2409                 if (nr_pages == 0) {
 2410                         p->objtotal = 0;
 2411                         p->memtotal = 0;
 2412                         p->objfree = 0;
 2413                         continue;
 2414                 }
 2415 
 2416                 for (j = 0; j < o->num && nr_pages > 0; j++) {
 2417                         size_t noff;
 2418 
 2419                         p->lut[j].vaddr = clust + off;
 2420 #if !defined(linux) && !defined(_WIN32)
 2421                         p->lut[j].paddr = vtophys(p->lut[j].vaddr);
 2422 #endif
 2423                         nm_prdis("%s %d at %p", p->name, j, p->lut[j].vaddr);
 2424                         noff = off + p->_objsize;
 2425                         if (noff < PAGE_SIZE) {
 2426                                 off = noff;
 2427                                 continue;
 2428                         }
 2429                         nm_prdis("too big, recomputing offset...");
 2430                         while (noff >= PAGE_SIZE) {
 2431                                 char *old_clust = clust;
 2432                                 noff -= PAGE_SIZE;
 2433                                 clust = nm_os_extmem_nextpage(nme->os);
 2434                                 nr_pages--;
 2435                                 nm_prdis("noff %zu page %p nr_pages %d", noff,
 2436                                                 page_to_virt(*pages), nr_pages);
 2437                                 if (noff > 0 && !nm_isset(p->invalid_bitmap, j) &&
 2438                                         (nr_pages == 0 ||
 2439                                          old_clust + PAGE_SIZE != clust))
 2440                                 {
 2441                                         /* out of space or non contiguous,
 2442                                          * drop this object
 2443                                          * */
 2444                                         p->invalid_bitmap[ (j>>5) ] |= 1U << (j & 31U);
 2445                                         nm_prdis("non contiguous at off %zu, drop", noff);
 2446                                 }
 2447                                 if (nr_pages == 0)
 2448                                         break;
 2449                         }
 2450                         off = noff;
 2451                 }
 2452                 p->objtotal = j;
 2453                 p->numclusters = p->objtotal;
 2454                 p->memtotal = j * (size_t)p->_objsize;
 2455                 nm_prdis("%d memtotal %zu", j, p->memtotal);
 2456         }
 2457 
 2458         netmap_mem_ext_register(nme);
 2459 
 2460         return &nme->up;
 2461 
 2462 out_delete:
 2463         netmap_mem_put(&nme->up);
 2464 out_unmap:
 2465         if (os)
 2466                 nm_os_extmem_delete(os);
 2467 out:
 2468         if (perror)
 2469                 *perror = error;
 2470         return NULL;
 2471 
 2472 }
 2473 #endif /* WITH_EXTMEM */
 2474 
 2475 
 2476 #ifdef WITH_PTNETMAP
 2477 struct mem_pt_if {
 2478         struct mem_pt_if *next;
 2479         struct ifnet *ifp;
 2480         unsigned int nifp_offset;
 2481 };
 2482 
 2483 /* Netmap allocator for ptnetmap guests. */
 2484 struct netmap_mem_ptg {
 2485         struct netmap_mem_d up;
 2486 
 2487         vm_paddr_t nm_paddr;            /* physical address in the guest */
 2488         void *nm_addr;                  /* virtual address in the guest */
 2489         struct netmap_lut buf_lut;      /* lookup table for BUF pool in the guest */
 2490         nm_memid_t host_mem_id;         /* allocator identifier in the host */
 2491         struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */
 2492         struct mem_pt_if *pt_ifs;       /* list of interfaces in passthrough */
 2493 };
 2494 
 2495 /* Link a passthrough interface to a passthrough netmap allocator. */
 2496 static int
 2497 netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, struct ifnet *ifp,
 2498                             unsigned int nifp_offset)
 2499 {
 2500         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2501         struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif));
 2502 
 2503         if (!ptif) {
 2504                 return ENOMEM;
 2505         }
 2506 
 2507         NMA_LOCK(nmd);
 2508 
 2509         ptif->ifp = ifp;
 2510         ptif->nifp_offset = nifp_offset;
 2511 
 2512         if (ptnmd->pt_ifs) {
 2513                 ptif->next = ptnmd->pt_ifs;
 2514         }
 2515         ptnmd->pt_ifs = ptif;
 2516 
 2517         NMA_UNLOCK(nmd);
 2518 
 2519         nm_prinf("ifp=%s,nifp_offset=%u",
 2520                 ptif->ifp->if_xname, ptif->nifp_offset);
 2521 
 2522         return 0;
 2523 }
 2524 
 2525 /* Called with NMA_LOCK(nmd) held. */
 2526 static struct mem_pt_if *
 2527 netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, struct ifnet *ifp)
 2528 {
 2529         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2530         struct mem_pt_if *curr;
 2531 
 2532         for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
 2533                 if (curr->ifp == ifp) {
 2534                         return curr;
 2535                 }
 2536         }
 2537 
 2538         return NULL;
 2539 }
 2540 
 2541 /* Unlink a passthrough interface from a passthrough netmap allocator. */
 2542 int
 2543 netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, struct ifnet *ifp)
 2544 {
 2545         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2546         struct mem_pt_if *prev = NULL;
 2547         struct mem_pt_if *curr;
 2548         int ret = -1;
 2549 
 2550         NMA_LOCK(nmd);
 2551 
 2552         for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
 2553                 if (curr->ifp == ifp) {
 2554                         if (prev) {
 2555                                 prev->next = curr->next;
 2556                         } else {
 2557                                 ptnmd->pt_ifs = curr->next;
 2558                         }
 2559                         nm_prinf("removed (ifp=%s,nifp_offset=%u)",
 2560                           curr->ifp->if_xname, curr->nifp_offset);
 2561                         nm_os_free(curr);
 2562                         ret = 0;
 2563                         break;
 2564                 }
 2565                 prev = curr;
 2566         }
 2567 
 2568         NMA_UNLOCK(nmd);
 2569 
 2570         return ret;
 2571 }
 2572 
 2573 static int
 2574 netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
 2575 {
 2576         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2577 
 2578         if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
 2579                 return EINVAL;
 2580         }
 2581 
 2582         *lut = ptnmd->buf_lut;
 2583         return 0;
 2584 }
 2585 
 2586 static int
 2587 netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, uint64_t *size,
 2588                              u_int *memflags, uint16_t *id)
 2589 {
 2590         int error = 0;
 2591 
 2592         error = nmd->ops->nmd_config(nmd);
 2593         if (error)
 2594                 goto out;
 2595 
 2596         if (size)
 2597                 *size = nmd->nm_totalsize;
 2598         if (memflags)
 2599                 *memflags = nmd->flags;
 2600         if (id)
 2601                 *id = nmd->nm_id;
 2602 
 2603 out:
 2604 
 2605         return error;
 2606 }
 2607 
 2608 static vm_paddr_t
 2609 netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
 2610 {
 2611         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2612         vm_paddr_t paddr;
 2613         /* if the offset is valid, just return csb->base_addr + off */
 2614         paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
 2615         nm_prdis("off %lx padr %lx", off, (unsigned long)paddr);
 2616         return paddr;
 2617 }
 2618 
 2619 static int
 2620 netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
 2621 {
 2622         /* nothing to do, we are configured on creation
 2623          * and configuration never changes thereafter
 2624          */
 2625         return 0;
 2626 }
 2627 
 2628 static int
 2629 netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
 2630 {
 2631         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2632         uint64_t mem_size;
 2633         uint32_t bufsize;
 2634         uint32_t nbuffers;
 2635         uint32_t poolofs;
 2636         vm_paddr_t paddr;
 2637         char *vaddr;
 2638         int i;
 2639         int error = 0;
 2640 
 2641         if (nmd->flags & NETMAP_MEM_FINALIZED)
 2642                 goto out;
 2643 
 2644         if (ptnmd->ptn_dev == NULL) {
 2645                 nm_prerr("ptnetmap memdev not attached");
 2646                 error = ENOMEM;
 2647                 goto out;
 2648         }
 2649         /* Map memory through ptnetmap-memdev BAR. */
 2650         error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
 2651                                       &ptnmd->nm_addr, &mem_size);
 2652         if (error)
 2653                 goto out;
 2654 
 2655         /* Initialize the lut using the information contained in the
 2656          * ptnetmap memory device. */
 2657         bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
 2658                                          PTNET_MDEV_IO_BUF_POOL_OBJSZ);
 2659         nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
 2660                                          PTNET_MDEV_IO_BUF_POOL_OBJNUM);
 2661 
 2662         /* allocate the lut */
 2663         if (ptnmd->buf_lut.lut == NULL) {
 2664                 nm_prinf("allocating lut");
 2665                 ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
 2666                 if (ptnmd->buf_lut.lut == NULL) {
 2667                         nm_prerr("lut allocation failed");
 2668                         return ENOMEM;
 2669                 }
 2670         }
 2671 
 2672         /* we have physically contiguous memory mapped through PCI BAR */
 2673         poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
 2674                                          PTNET_MDEV_IO_BUF_POOL_OFS);
 2675         vaddr = (char *)(ptnmd->nm_addr) + poolofs;
 2676         paddr = ptnmd->nm_paddr + poolofs;
 2677 
 2678         for (i = 0; i < nbuffers; i++) {
 2679                 ptnmd->buf_lut.lut[i].vaddr = vaddr;
 2680                 vaddr += bufsize;
 2681                 paddr += bufsize;
 2682         }
 2683 
 2684         ptnmd->buf_lut.objtotal = nbuffers;
 2685         ptnmd->buf_lut.objsize = bufsize;
 2686         nmd->nm_totalsize = mem_size;
 2687 
 2688         /* Initialize these fields as are needed by
 2689          * netmap_mem_bufsize().
 2690          * XXX please improve this, why do we need this
 2691          * replication? maybe we nmd->pools[] should no be
 2692          * there for the guest allocator? */
 2693         nmd->pools[NETMAP_BUF_POOL]._objsize = bufsize;
 2694         nmd->pools[NETMAP_BUF_POOL]._objtotal = nbuffers;
 2695 
 2696         nmd->flags |= NETMAP_MEM_FINALIZED;
 2697 out:
 2698         return error;
 2699 }
 2700 
 2701 static void
 2702 netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
 2703 {
 2704         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2705 
 2706         if (nmd->active == 1 &&
 2707                 (nmd->flags & NETMAP_MEM_FINALIZED)) {
 2708             nmd->flags  &= ~NETMAP_MEM_FINALIZED;
 2709             /* unmap ptnetmap-memdev memory */
 2710             if (ptnmd->ptn_dev) {
 2711                 nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
 2712             }
 2713             ptnmd->nm_addr = NULL;
 2714             ptnmd->nm_paddr = 0;
 2715         }
 2716 }
 2717 
 2718 static ssize_t
 2719 netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
 2720 {
 2721         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2722 
 2723         return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
 2724 }
 2725 
 2726 static void
 2727 netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
 2728 {
 2729         if (nmd == NULL)
 2730                 return;
 2731         if (netmap_verbose)
 2732                 nm_prinf("deleting %p", nmd);
 2733         if (nmd->active > 0)
 2734                 nm_prerr("bug: deleting mem allocator with active=%d!", nmd->active);
 2735         if (netmap_verbose)
 2736                 nm_prinf("done deleting %p", nmd);
 2737         NMA_LOCK_DESTROY(nmd);
 2738         nm_os_free(nmd);
 2739 }
 2740 
 2741 static struct netmap_if *
 2742 netmap_mem_pt_guest_if_new(struct netmap_mem_d *nmd,
 2743                 struct netmap_adapter *na, struct netmap_priv_d *priv)
 2744 {
 2745         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2746         struct mem_pt_if *ptif;
 2747         struct netmap_if *nifp = NULL;
 2748 
 2749         ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
 2750         if (ptif == NULL) {
 2751                 nm_prerr("interface %s is not in passthrough", na->name);
 2752                 goto out;
 2753         }
 2754 
 2755         nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
 2756                                     ptif->nifp_offset);
 2757 out:
 2758         return nifp;
 2759 }
 2760 
 2761 static void
 2762 netmap_mem_pt_guest_if_delete(struct netmap_mem_d * nmd,
 2763                 struct netmap_adapter *na, struct netmap_if *nifp)
 2764 {
 2765         struct mem_pt_if *ptif;
 2766 
 2767         ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
 2768         if (ptif == NULL) {
 2769                 nm_prerr("interface %s is not in passthrough", na->name);
 2770         }
 2771 }
 2772 
 2773 static int
 2774 netmap_mem_pt_guest_rings_create(struct netmap_mem_d *nmd,
 2775                 struct netmap_adapter *na)
 2776 {
 2777         struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
 2778         struct mem_pt_if *ptif;
 2779         struct netmap_if *nifp;
 2780         int i, error = -1;
 2781 
 2782         ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
 2783         if (ptif == NULL) {
 2784                 nm_prerr("interface %s is not in passthrough", na->name);
 2785                 goto out;
 2786         }
 2787 
 2788 
 2789         /* point each kring to the corresponding backend ring */
 2790         nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
 2791         for (i = 0; i < netmap_all_rings(na, NR_TX); i++) {
 2792                 struct netmap_kring *kring = na->tx_rings[i];
 2793                 if (kring->ring)
 2794                         continue;
 2795                 kring->ring = (struct netmap_ring *)
 2796                         ((char *)nifp + nifp->ring_ofs[i]);
 2797         }
 2798         for (i = 0; i < netmap_all_rings(na, NR_RX); i++) {
 2799                 struct netmap_kring *kring = na->rx_rings[i];
 2800                 if (kring->ring)
 2801                         continue;
 2802                 kring->ring = (struct netmap_ring *)
 2803                         ((char *)nifp +
 2804                          nifp->ring_ofs[netmap_all_rings(na, NR_TX) + i]);
 2805         }
 2806 
 2807         error = 0;
 2808 out:
 2809         return error;
 2810 }
 2811 
 2812 static void
 2813 netmap_mem_pt_guest_rings_delete(struct netmap_mem_d *nmd, struct netmap_adapter *na)
 2814 {
 2815 #if 0
 2816         enum txrx t;
 2817 
 2818         for_rx_tx(t) {
 2819                 u_int i;
 2820                 for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
 2821                         struct netmap_kring *kring = &NMR(na, t)[i];
 2822 
 2823                         kring->ring = NULL;
 2824                 }
 2825         }
 2826 #endif
 2827         (void)nmd;
 2828         (void)na;
 2829 }
 2830 
 2831 static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
 2832         .nmd_get_lut = netmap_mem_pt_guest_get_lut,
 2833         .nmd_get_info = netmap_mem_pt_guest_get_info,
 2834         .nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
 2835         .nmd_config = netmap_mem_pt_guest_config,
 2836         .nmd_finalize = netmap_mem_pt_guest_finalize,
 2837         .nmd_deref = netmap_mem_pt_guest_deref,
 2838         .nmd_if_offset = netmap_mem_pt_guest_if_offset,
 2839         .nmd_delete = netmap_mem_pt_guest_delete,
 2840         .nmd_if_new = netmap_mem_pt_guest_if_new,
 2841         .nmd_if_delete = netmap_mem_pt_guest_if_delete,
 2842         .nmd_rings_create = netmap_mem_pt_guest_rings_create,
 2843         .nmd_rings_delete = netmap_mem_pt_guest_rings_delete
 2844 };
 2845 
 2846 /* Called with nm_mem_list_lock held. */
 2847 static struct netmap_mem_d *
 2848 netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)
 2849 {
 2850         struct netmap_mem_d *mem = NULL;
 2851         struct netmap_mem_d *scan = netmap_last_mem_d;
 2852 
 2853         do {
 2854                 /* find ptnetmap allocator through host ID */
 2855                 if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
 2856                         ((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) {
 2857                         mem = scan;
 2858                         mem->refcount++;
 2859                         NM_DBG_REFC(mem, __FUNCTION__, __LINE__);
 2860                         break;
 2861                 }
 2862                 scan = scan->next;
 2863         } while (scan != netmap_last_mem_d);
 2864 
 2865         return mem;
 2866 }
 2867 
 2868 /* Called with nm_mem_list_lock held. */
 2869 static struct netmap_mem_d *
 2870 netmap_mem_pt_guest_create(nm_memid_t mem_id)
 2871 {
 2872         struct netmap_mem_ptg *ptnmd;
 2873         int err = 0;
 2874 
 2875         ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg));
 2876         if (ptnmd == NULL) {
 2877                 err = ENOMEM;
 2878                 goto error;
 2879         }
 2880 
 2881         ptnmd->up.ops = &netmap_mem_pt_guest_ops;
 2882         ptnmd->host_mem_id = mem_id;
 2883         ptnmd->pt_ifs = NULL;
 2884 
 2885         /* Assign new id in the guest (We have the lock) */
 2886         err = nm_mem_assign_id_locked(&ptnmd->up, -1);
 2887         if (err)
 2888                 goto error;
 2889 
 2890         ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
 2891         ptnmd->up.flags |= NETMAP_MEM_IO;
 2892 
 2893         NMA_LOCK_INIT(&ptnmd->up);
 2894 
 2895         snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id);
 2896 
 2897 
 2898         return &ptnmd->up;
 2899 error:
 2900         netmap_mem_pt_guest_delete(&ptnmd->up);
 2901         return NULL;
 2902 }
 2903 
 2904 /*
 2905  * find host id in guest allocators and create guest allocator
 2906  * if it is not there
 2907  */
 2908 static struct netmap_mem_d *
 2909 netmap_mem_pt_guest_get(nm_memid_t mem_id)
 2910 {
 2911         struct netmap_mem_d *nmd;
 2912 
 2913         NM_MTX_LOCK(nm_mem_list_lock);
 2914         nmd = netmap_mem_pt_guest_find_memid(mem_id);
 2915         if (nmd == NULL) {
 2916                 nmd = netmap_mem_pt_guest_create(mem_id);
 2917         }
 2918         NM_MTX_UNLOCK(nm_mem_list_lock);
 2919 
 2920         return nmd;
 2921 }
 2922 
 2923 /*
 2924  * The guest allocator can be created by ptnetmap_memdev (during the device
 2925  * attach) or by ptnetmap device (ptnet), during the netmap_attach.
 2926  *
 2927  * The order is not important (we have different order in LINUX and FreeBSD).
 2928  * The first one, creates the device, and the second one simply attaches it.
 2929  */
 2930 
 2931 /* Called when ptnetmap_memdev is attaching, to attach a new allocator in
 2932  * the guest */
 2933 struct netmap_mem_d *
 2934 netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id)
 2935 {
 2936         struct netmap_mem_d *nmd;
 2937         struct netmap_mem_ptg *ptnmd;
 2938 
 2939         nmd = netmap_mem_pt_guest_get(mem_id);
 2940 
 2941         /* assign this device to the guest allocator */
 2942         if (nmd) {
 2943                 ptnmd = (struct netmap_mem_ptg *)nmd;
 2944                 ptnmd->ptn_dev = ptn_dev;
 2945         }
 2946 
 2947         return nmd;
 2948 }
 2949 
 2950 /* Called when ptnet device is attaching */
 2951 struct netmap_mem_d *
 2952 netmap_mem_pt_guest_new(struct ifnet *ifp,
 2953                         unsigned int nifp_offset,
 2954                         unsigned int memid)
 2955 {
 2956         struct netmap_mem_d *nmd;
 2957 
 2958         if (ifp == NULL) {
 2959                 return NULL;
 2960         }
 2961 
 2962         nmd = netmap_mem_pt_guest_get((nm_memid_t)memid);
 2963 
 2964         if (nmd) {
 2965                 netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset);
 2966         }
 2967 
 2968         return nmd;
 2969 }
 2970 
 2971 #endif /* WITH_PTNETMAP */

Cache object: 690c266e8e8960dfed4be8b2489693c7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.