The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netmap/netmap_mem2.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (C) 2012-2014 Matteo Landi
    5  * Copyright (C) 2012-2016 Luigi Rizzo
    6  * Copyright (C) 2012-2016 Giuseppe Lettieri
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  *   1. Redistributions of source code must retain the above copyright
   13  *      notice, this list of conditions and the following disclaimer.
   14  *   2. Redistributions in binary form must reproduce the above copyright
   15  *      notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 /*
   32  * $FreeBSD$
   33  *
   34  * (New) memory allocator for netmap
   35  */
   36 
   37 /*
   38  * This allocator creates three memory pools:
   39  *      nm_if_pool      for the struct netmap_if
   40  *      nm_ring_pool    for the struct netmap_ring
   41  *      nm_buf_pool     for the packet buffers.
   42  *
   43  * that contain netmap objects. Each pool is made of a number of clusters,
   44  * multiple of a page size, each containing an integer number of objects.
   45  * The clusters are contiguous in user space but not in the kernel.
   46  * Only nm_buf_pool needs to be dma-able,
   47  * but for convenience use the same type of allocator for all.
   48  *
   49  * Once mapped, the three pools are exported to userspace
   50  * as a contiguous block, starting from nm_if_pool. Each
   51  * cluster (and pool) is an integral number of pages.
   52  *   [ . . . ][ . . . . . .][ . . . . . . . . . .]
   53  *    nm_if     nm_ring            nm_buf
   54  *
   55  * The userspace areas contain offsets of the objects in userspace.
   56  * When (at init time) we write these offsets, we find out the index
   57  * of the object, and from there locate the offset from the beginning
   58  * of the region.
   59  *
   60  * The individual allocators manage a pool of memory for objects of
   61  * the same size.
   62  * The pool is split into smaller clusters, whose size is a
   63  * multiple of the page size. The cluster size is chosen
   64  * to minimize the waste for a given max cluster size
   65  * (we do it by brute force, as we have relatively few objects
   66  * per cluster).
   67  *
   68  * Objects are aligned to the cache line (64 bytes) rounding up object
   69  * sizes when needed. A bitmap contains the state of each object.
   70  * Allocation scans the bitmap; this is done only on attach, so we are not
   71  * too worried about performance
   72  *
   73  * For each allocator we can define (through sysctl) the size and
   74  * number of each object. Memory is allocated at the first use of a
   75  * netmap file descriptor, and can be freed when all such descriptors
   76  * have been released (including unmapping the memory).
   77  * If memory is scarce, the system tries to get as much as possible
   78  * and the sysctl values reflect the actual allocation.
   79  * Together with desired values, the sysctl export also absolute
   80  * min and maximum values that cannot be overridden.
   81  *
   82  * struct netmap_if:
   83  *      variable size, max 16 bytes per ring pair plus some fixed amount.
   84  *      1024 bytes should be large enough in practice.
   85  *
   86  *      In the worst case we have one netmap_if per ring in the system.
   87  *
   88  * struct netmap_ring
   89  *      variable size, 8 byte per slot plus some fixed amount.
   90  *      Rings can be large (e.g. 4k slots, or >32Kbytes).
   91  *      We default to 36 KB (9 pages), and a few hundred rings.
   92  *
   93  * struct netmap_buffer
   94  *      The more the better, both because fast interfaces tend to have
   95  *      many slots, and because we may want to use buffers to store
   96  *      packets in userspace avoiding copies.
   97  *      Must contain a full frame (eg 1518, or more for vlans, jumbo
   98  *      frames etc.) plus be nicely aligned, plus some NICs restrict
   99  *      the size to multiple of 1K or so. Default to 2K
  100  */
  101 #ifndef _NET_NETMAP_MEM2_H_
  102 #define _NET_NETMAP_MEM2_H_
  103 
  104 
  105 
  106 /* We implement two kinds of netmap_mem_d structures:
  107  *
  108  * - global: used by hardware NICS;
  109  *
  110  * - private: used by VALE ports.
  111  *
  112  * In both cases, the netmap_mem_d structure has the same lifetime as the
  113  * netmap_adapter of the corresponding NIC or port. It is the responsibility of
  114  * the client code to delete the private allocator when the associated
  115  * netmap_adapter is freed (this is implemented by the NAF_MEM_OWNER flag in
  116  * netmap.c).  The 'refcount' field counts the number of active users of the
  117  * structure. The global allocator uses this information to prevent/allow
  118  * reconfiguration. The private allocators release all their memory when there
  119  * are no active users.  By 'active user' we mean an existing netmap_priv
  120  * structure holding a reference to the allocator.
  121  */
  122 
  123 extern struct netmap_mem_d nm_mem;
  124 typedef uint16_t nm_memid_t;
  125 
  126 int        netmap_mem_get_lut(struct netmap_mem_d *, struct netmap_lut *);
  127 nm_memid_t netmap_mem_get_id(struct netmap_mem_d *);
  128 vm_paddr_t netmap_mem_ofstophys(struct netmap_mem_d *, vm_ooffset_t);
  129 #ifdef _WIN32
  130 PMDL win32_build_user_vm_map(struct netmap_mem_d* nmd);
  131 #endif
  132 int        netmap_mem_finalize(struct netmap_mem_d *, struct netmap_adapter *);
  133 int        netmap_mem_init(void);
  134 void       netmap_mem_fini(void);
  135 struct netmap_if * netmap_mem_if_new(struct netmap_adapter *, struct netmap_priv_d *);
  136 void       netmap_mem_if_delete(struct netmap_adapter *, struct netmap_if *);
  137 int        netmap_mem_rings_create(struct netmap_adapter *);
  138 void       netmap_mem_rings_delete(struct netmap_adapter *);
  139 int        netmap_mem_deref(struct netmap_mem_d *, struct netmap_adapter *);
  140 int        netmap_mem2_get_pool_info(struct netmap_mem_d *, u_int, u_int *, u_int *);
  141 int        netmap_mem_get_info(struct netmap_mem_d *, uint64_t *size,
  142                                 u_int *memflags, nm_memid_t *id);
  143 ssize_t    netmap_mem_if_offset(struct netmap_mem_d *, const void *vaddr);
  144 struct netmap_mem_d* netmap_mem_private_new( u_int txr, u_int txd, u_int rxr, u_int rxd,
  145                 u_int extra_bufs, u_int npipes, int* error);
  146 
  147 #define netmap_mem_get(d) __netmap_mem_get(d, __FUNCTION__, __LINE__)
  148 #define netmap_mem_put(d) __netmap_mem_put(d, __FUNCTION__, __LINE__)
  149 struct netmap_mem_d* __netmap_mem_get(struct netmap_mem_d *, const char *, int);
  150 struct netmap_mem_d* netmap_mem_get_iommu(struct netmap_adapter *);
  151 void __netmap_mem_put(struct netmap_mem_d *, const char *, int);
  152 struct netmap_mem_d* netmap_mem_find(nm_memid_t);
  153 unsigned netmap_mem_bufsize(struct netmap_mem_d *nmd);
  154 
  155 #ifdef WITH_EXTMEM
  156 struct netmap_mem_d* netmap_mem_ext_create(uint64_t, struct nmreq_pools_info *, int *);
  157 #else /* !WITH_EXTMEM */
  158 #define netmap_mem_ext_create(nmr, _perr) \
  159         ({ int *perr = _perr; if (perr) *(perr) = EOPNOTSUPP; NULL; })
  160 #endif /* WITH_EXTMEM */
  161 
  162 #ifdef WITH_PTNETMAP
  163 struct netmap_mem_d* netmap_mem_pt_guest_new(struct ifnet *,
  164                                              unsigned int nifp_offset,
  165                                              unsigned int memid);
  166 struct ptnetmap_memdev;
  167 struct netmap_mem_d* netmap_mem_pt_guest_attach(struct ptnetmap_memdev *, uint16_t);
  168 int netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *, struct ifnet *);
  169 #endif /* WITH_PTNETMAP */
  170 
  171 int netmap_mem_pools_info_get(struct nmreq_pools_info *,
  172                                 struct netmap_mem_d *);
  173 
  174 #define NETMAP_MEM_PRIVATE      0x2     /* allocator uses private address space */
  175 #define NETMAP_MEM_IO           0x4     /* the underlying memory is mmapped I/O */
  176 
  177 uint32_t netmap_extra_alloc(struct netmap_adapter *, uint32_t *, uint32_t n);
  178 
  179 #ifdef WITH_EXTMEM
  180 #include <net/netmap_virt.h>
  181 struct nm_os_extmem; /* opaque */
  182 struct nm_os_extmem *nm_os_extmem_create(unsigned long, struct nmreq_pools_info *, int *perror);
  183 char *nm_os_extmem_nextpage(struct nm_os_extmem *);
  184 int nm_os_extmem_nr_pages(struct nm_os_extmem *);
  185 int nm_os_extmem_isequal(struct nm_os_extmem *, struct nm_os_extmem *);
  186 void nm_os_extmem_delete(struct nm_os_extmem *);
  187 #endif /* WITH_EXTMEM */
  188 
  189 #endif

Cache object: 42b656e1fb98b438208d5bb0818c27ef


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.