1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2012-2016 Intel Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33 #include "opt_nvme.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/ioccom.h>
41 #include <sys/proc.h>
42 #include <sys/smp.h>
43 #include <sys/uio.h>
44 #include <sys/sbuf.h>
45 #include <sys/endian.h>
46 #include <machine/stdarg.h>
47 #include <vm/vm.h>
48
49 #include "nvme_private.h"
50
51 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */
52
53 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
54 struct nvme_async_event_request *aer);
55
56 static void
57 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
58 {
59 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
60 }
61
62 static void
63 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
64 {
65 struct sbuf sb;
66 va_list ap;
67 int error;
68
69 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
70 return;
71 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
72 va_start(ap, msg);
73 sbuf_vprintf(&sb, msg, ap);
74 va_end(ap);
75 error = sbuf_finish(&sb);
76 if (error == 0)
77 printf("%s\n", sbuf_data(&sb));
78
79 sbuf_clear(&sb);
80 sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
81 va_start(ap, msg);
82 sbuf_vprintf(&sb, msg, ap);
83 va_end(ap);
84 sbuf_printf(&sb, "\"");
85 error = sbuf_finish(&sb);
86 if (error == 0)
87 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
88 sbuf_delete(&sb);
89 }
90
91 static int
92 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
93 {
94 struct nvme_qpair *qpair;
95 uint32_t num_entries;
96 int error;
97
98 qpair = &ctrlr->adminq;
99 qpair->id = 0;
100 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
101 qpair->domain = ctrlr->domain;
102
103 num_entries = NVME_ADMIN_ENTRIES;
104 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
105 /*
106 * If admin_entries was overridden to an invalid value, revert it
107 * back to our default value.
108 */
109 if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
110 num_entries > NVME_MAX_ADMIN_ENTRIES) {
111 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
112 "specified\n", num_entries);
113 num_entries = NVME_ADMIN_ENTRIES;
114 }
115
116 /*
117 * The admin queue's max xfer size is treated differently than the
118 * max I/O xfer size. 16KB is sufficient here - maybe even less?
119 */
120 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
121 ctrlr);
122 return (error);
123 }
124
125 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus)
126
127 static int
128 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
129 {
130 struct nvme_qpair *qpair;
131 uint32_t cap_lo;
132 uint16_t mqes;
133 int c, error, i, n;
134 int num_entries, num_trackers, max_entries;
135
136 /*
137 * NVMe spec sets a hard limit of 64K max entries, but devices may
138 * specify a smaller limit, so we need to check the MQES field in the
139 * capabilities register. We have to cap the number of entries to the
140 * current stride allows for in BAR 0/1, otherwise the remainder entries
141 * are inaccessible. MQES should reflect this, and this is just a
142 * fail-safe.
143 */
144 max_entries =
145 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
146 (1 << (ctrlr->dstrd + 1));
147 num_entries = NVME_IO_ENTRIES;
148 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
149 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
150 mqes = NVME_CAP_LO_MQES(cap_lo);
151 num_entries = min(num_entries, mqes + 1);
152 num_entries = min(num_entries, max_entries);
153
154 num_trackers = NVME_IO_TRACKERS;
155 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
156
157 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
158 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
159 /*
160 * No need to have more trackers than entries in the submit queue. Note
161 * also that for a queue size of N, we can only have (N-1) commands
162 * outstanding, hence the "-1" here.
163 */
164 num_trackers = min(num_trackers, (num_entries-1));
165
166 /*
167 * Our best estimate for the maximum number of I/Os that we should
168 * normally have in flight at one time. This should be viewed as a hint,
169 * not a hard limit and will need to be revisited when the upper layers
170 * of the storage system grows multi-queue support.
171 */
172 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
173
174 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
175 M_NVME, M_ZERO | M_WAITOK);
176
177 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
178 qpair = &ctrlr->ioq[i];
179
180 /*
181 * Admin queue has ID=0. IO queues start at ID=1 -
182 * hence the 'i+1' here.
183 */
184 qpair->id = i + 1;
185 if (ctrlr->num_io_queues > 1) {
186 /* Find number of CPUs served by this queue. */
187 for (n = 1; QP(ctrlr, c + n) == i; n++)
188 ;
189 /* Shuffle multiple NVMe devices between CPUs. */
190 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
191 qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
192 } else {
193 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
194 qpair->domain = ctrlr->domain;
195 }
196
197 /*
198 * For I/O queues, use the controller-wide max_xfer_size
199 * calculated in nvme_attach().
200 */
201 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
202 ctrlr);
203 if (error)
204 return (error);
205
206 /*
207 * Do not bother binding interrupts if we only have one I/O
208 * interrupt thread for this controller.
209 */
210 if (ctrlr->num_io_queues > 1)
211 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
212 }
213
214 return (0);
215 }
216
217 static void
218 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
219 {
220 int i;
221
222 ctrlr->is_failed = true;
223 nvme_admin_qpair_disable(&ctrlr->adminq);
224 nvme_qpair_fail(&ctrlr->adminq);
225 if (ctrlr->ioq != NULL) {
226 for (i = 0; i < ctrlr->num_io_queues; i++) {
227 nvme_io_qpair_disable(&ctrlr->ioq[i]);
228 nvme_qpair_fail(&ctrlr->ioq[i]);
229 }
230 }
231 nvme_notify_fail_consumers(ctrlr);
232 }
233
234 void
235 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
236 struct nvme_request *req)
237 {
238
239 mtx_lock(&ctrlr->lock);
240 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
241 mtx_unlock(&ctrlr->lock);
242 if (!ctrlr->is_dying)
243 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
244 }
245
246 static void
247 nvme_ctrlr_fail_req_task(void *arg, int pending)
248 {
249 struct nvme_controller *ctrlr = arg;
250 struct nvme_request *req;
251
252 mtx_lock(&ctrlr->lock);
253 while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
254 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
255 mtx_unlock(&ctrlr->lock);
256 nvme_qpair_manual_complete_request(req->qpair, req,
257 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
258 mtx_lock(&ctrlr->lock);
259 }
260 mtx_unlock(&ctrlr->lock);
261 }
262
263 /*
264 * Wait for RDY to change.
265 *
266 * Starts sleeping for 1us and geometrically increases it the longer we wait,
267 * capped at 1ms.
268 */
269 static int
270 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
271 {
272 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
273 sbintime_t delta_t = SBT_1US;
274 uint32_t csts;
275
276 while (1) {
277 csts = nvme_mmio_read_4(ctrlr, csts);
278 if (csts == NVME_GONE) /* Hot unplug. */
279 return (ENXIO);
280 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
281 == desired_val)
282 break;
283 if (timeout - ticks < 0) {
284 nvme_printf(ctrlr, "controller ready did not become %d "
285 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
286 return (ENXIO);
287 }
288
289 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
290 delta_t = min(SBT_1MS, delta_t * 3 / 2);
291 }
292
293 return (0);
294 }
295
296 static int
297 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
298 {
299 uint32_t cc;
300 uint32_t csts;
301 uint8_t en, rdy;
302 int err;
303
304 cc = nvme_mmio_read_4(ctrlr, cc);
305 csts = nvme_mmio_read_4(ctrlr, csts);
306
307 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
308 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
309
310 /*
311 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
312 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
313 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
314 * isn't the desired value. Short circuit if we're already disabled.
315 */
316 if (en == 0) {
317 /* Wait for RDY == 0 or timeout & fail */
318 if (rdy == 0)
319 return (0);
320 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
321 }
322 if (rdy == 0) {
323 /* EN == 1, wait for RDY == 1 or timeout & fail */
324 err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
325 if (err != 0)
326 return (err);
327 }
328
329 cc &= ~NVME_CC_REG_EN_MASK;
330 nvme_mmio_write_4(ctrlr, cc, cc);
331
332 /*
333 * A few drives have firmware bugs that freeze the drive if we access
334 * the mmio too soon after we disable.
335 */
336 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
337 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
338 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
339 }
340
341 static int
342 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
343 {
344 uint32_t cc;
345 uint32_t csts;
346 uint32_t aqa;
347 uint32_t qsize;
348 uint8_t en, rdy;
349 int err;
350
351 cc = nvme_mmio_read_4(ctrlr, cc);
352 csts = nvme_mmio_read_4(ctrlr, csts);
353
354 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
355 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
356
357 /*
358 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
359 */
360 if (en == 1) {
361 if (rdy == 1)
362 return (0);
363 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
364 }
365
366 /* EN == 0 already wait for RDY == 0 or timeout & fail */
367 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
368 if (err != 0)
369 return (err);
370
371 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
372 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
373
374 /* acqs and asqs are 0-based. */
375 qsize = ctrlr->adminq.num_entries - 1;
376
377 aqa = 0;
378 aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
379 aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
380 nvme_mmio_write_4(ctrlr, aqa, aqa);
381
382 /* Initialization values for CC */
383 cc = 0;
384 cc |= 1 << NVME_CC_REG_EN_SHIFT;
385 cc |= 0 << NVME_CC_REG_CSS_SHIFT;
386 cc |= 0 << NVME_CC_REG_AMS_SHIFT;
387 cc |= 0 << NVME_CC_REG_SHN_SHIFT;
388 cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
389 cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
390
391 /*
392 * Use the Memory Page Size selected during device initialization. Note
393 * that value stored in mps is suitable to use here without adjusting by
394 * NVME_MPS_SHIFT.
395 */
396 cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT;
397
398 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
399 nvme_mmio_write_4(ctrlr, cc, cc);
400
401 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
402 }
403
404 static void
405 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
406 {
407 int i;
408
409 nvme_admin_qpair_disable(&ctrlr->adminq);
410 /*
411 * I/O queues are not allocated before the initial HW
412 * reset, so do not try to disable them. Use is_initialized
413 * to determine if this is the initial HW reset.
414 */
415 if (ctrlr->is_initialized) {
416 for (i = 0; i < ctrlr->num_io_queues; i++)
417 nvme_io_qpair_disable(&ctrlr->ioq[i]);
418 }
419 }
420
421 static int
422 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
423 {
424 int err;
425
426 TSENTER();
427
428 nvme_ctrlr_disable_qpairs(ctrlr);
429
430 err = nvme_ctrlr_disable(ctrlr);
431 if (err != 0)
432 return err;
433
434 err = nvme_ctrlr_enable(ctrlr);
435 TSEXIT();
436 return (err);
437 }
438
439 void
440 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
441 {
442 int cmpset;
443
444 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
445
446 if (cmpset == 0 || ctrlr->is_failed)
447 /*
448 * Controller is already resetting or has failed. Return
449 * immediately since there is no need to kick off another
450 * reset in these cases.
451 */
452 return;
453
454 if (!ctrlr->is_dying)
455 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
456 }
457
458 static int
459 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
460 {
461 struct nvme_completion_poll_status status;
462
463 status.done = 0;
464 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
465 nvme_completion_poll_cb, &status);
466 nvme_completion_poll(&status);
467 if (nvme_completion_is_error(&status.cpl)) {
468 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
469 return (ENXIO);
470 }
471
472 /* Convert data to host endian */
473 nvme_controller_data_swapbytes(&ctrlr->cdata);
474
475 /*
476 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
477 * controller supports.
478 */
479 if (ctrlr->cdata.mdts > 0)
480 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
481 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
482 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
483
484 return (0);
485 }
486
487 static int
488 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
489 {
490 struct nvme_completion_poll_status status;
491 int cq_allocated, sq_allocated;
492
493 status.done = 0;
494 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
495 nvme_completion_poll_cb, &status);
496 nvme_completion_poll(&status);
497 if (nvme_completion_is_error(&status.cpl)) {
498 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
499 return (ENXIO);
500 }
501
502 /*
503 * Data in cdw0 is 0-based.
504 * Lower 16-bits indicate number of submission queues allocated.
505 * Upper 16-bits indicate number of completion queues allocated.
506 */
507 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
508 cq_allocated = (status.cpl.cdw0 >> 16) + 1;
509
510 /*
511 * Controller may allocate more queues than we requested,
512 * so use the minimum of the number requested and what was
513 * actually allocated.
514 */
515 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
516 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
517 if (ctrlr->num_io_queues > vm_ndomains)
518 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
519
520 return (0);
521 }
522
523 static int
524 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
525 {
526 struct nvme_completion_poll_status status;
527 struct nvme_qpair *qpair;
528 int i;
529
530 for (i = 0; i < ctrlr->num_io_queues; i++) {
531 qpair = &ctrlr->ioq[i];
532
533 status.done = 0;
534 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
535 nvme_completion_poll_cb, &status);
536 nvme_completion_poll(&status);
537 if (nvme_completion_is_error(&status.cpl)) {
538 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
539 return (ENXIO);
540 }
541
542 status.done = 0;
543 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
544 nvme_completion_poll_cb, &status);
545 nvme_completion_poll(&status);
546 if (nvme_completion_is_error(&status.cpl)) {
547 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
548 return (ENXIO);
549 }
550 }
551
552 return (0);
553 }
554
555 static int
556 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
557 {
558 struct nvme_completion_poll_status status;
559 struct nvme_qpair *qpair;
560
561 for (int i = 0; i < ctrlr->num_io_queues; i++) {
562 qpair = &ctrlr->ioq[i];
563
564 status.done = 0;
565 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
566 nvme_completion_poll_cb, &status);
567 nvme_completion_poll(&status);
568 if (nvme_completion_is_error(&status.cpl)) {
569 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
570 return (ENXIO);
571 }
572
573 status.done = 0;
574 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
575 nvme_completion_poll_cb, &status);
576 nvme_completion_poll(&status);
577 if (nvme_completion_is_error(&status.cpl)) {
578 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
579 return (ENXIO);
580 }
581 }
582
583 return (0);
584 }
585
586 static int
587 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
588 {
589 struct nvme_namespace *ns;
590 uint32_t i;
591
592 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
593 ns = &ctrlr->ns[i];
594 nvme_ns_construct(ns, i+1, ctrlr);
595 }
596
597 return (0);
598 }
599
600 static bool
601 is_log_page_id_valid(uint8_t page_id)
602 {
603
604 switch (page_id) {
605 case NVME_LOG_ERROR:
606 case NVME_LOG_HEALTH_INFORMATION:
607 case NVME_LOG_FIRMWARE_SLOT:
608 case NVME_LOG_CHANGED_NAMESPACE:
609 case NVME_LOG_COMMAND_EFFECT:
610 case NVME_LOG_RES_NOTIFICATION:
611 case NVME_LOG_SANITIZE_STATUS:
612 return (true);
613 }
614
615 return (false);
616 }
617
618 static uint32_t
619 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
620 {
621 uint32_t log_page_size;
622
623 switch (page_id) {
624 case NVME_LOG_ERROR:
625 log_page_size = min(
626 sizeof(struct nvme_error_information_entry) *
627 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
628 break;
629 case NVME_LOG_HEALTH_INFORMATION:
630 log_page_size = sizeof(struct nvme_health_information_page);
631 break;
632 case NVME_LOG_FIRMWARE_SLOT:
633 log_page_size = sizeof(struct nvme_firmware_page);
634 break;
635 case NVME_LOG_CHANGED_NAMESPACE:
636 log_page_size = sizeof(struct nvme_ns_list);
637 break;
638 case NVME_LOG_COMMAND_EFFECT:
639 log_page_size = sizeof(struct nvme_command_effects_page);
640 break;
641 case NVME_LOG_RES_NOTIFICATION:
642 log_page_size = sizeof(struct nvme_res_notification_page);
643 break;
644 case NVME_LOG_SANITIZE_STATUS:
645 log_page_size = sizeof(struct nvme_sanitize_status_page);
646 break;
647 default:
648 log_page_size = 0;
649 break;
650 }
651
652 return (log_page_size);
653 }
654
655 static void
656 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
657 uint8_t state)
658 {
659
660 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
661 nvme_ctrlr_devctl_log(ctrlr, "critical",
662 "available spare space below threshold");
663
664 if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
665 nvme_ctrlr_devctl_log(ctrlr, "critical",
666 "temperature above threshold");
667
668 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
669 nvme_ctrlr_devctl_log(ctrlr, "critical",
670 "device reliability degraded");
671
672 if (state & NVME_CRIT_WARN_ST_READ_ONLY)
673 nvme_ctrlr_devctl_log(ctrlr, "critical",
674 "media placed in read only mode");
675
676 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
677 nvme_ctrlr_devctl_log(ctrlr, "critical",
678 "volatile memory backup device failed");
679
680 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
681 nvme_ctrlr_devctl_log(ctrlr, "critical",
682 "unknown critical warning(s): state = 0x%02x", state);
683 }
684
685 static void
686 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
687 {
688 struct nvme_async_event_request *aer = arg;
689 struct nvme_health_information_page *health_info;
690 struct nvme_ns_list *nsl;
691 struct nvme_error_information_entry *err;
692 int i;
693
694 /*
695 * If the log page fetch for some reason completed with an error,
696 * don't pass log page data to the consumers. In practice, this case
697 * should never happen.
698 */
699 if (nvme_completion_is_error(cpl))
700 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
701 aer->log_page_id, NULL, 0);
702 else {
703 /* Convert data to host endian */
704 switch (aer->log_page_id) {
705 case NVME_LOG_ERROR:
706 err = (struct nvme_error_information_entry *)aer->log_page_buffer;
707 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
708 nvme_error_information_entry_swapbytes(err++);
709 break;
710 case NVME_LOG_HEALTH_INFORMATION:
711 nvme_health_information_page_swapbytes(
712 (struct nvme_health_information_page *)aer->log_page_buffer);
713 break;
714 case NVME_LOG_FIRMWARE_SLOT:
715 nvme_firmware_page_swapbytes(
716 (struct nvme_firmware_page *)aer->log_page_buffer);
717 break;
718 case NVME_LOG_CHANGED_NAMESPACE:
719 nvme_ns_list_swapbytes(
720 (struct nvme_ns_list *)aer->log_page_buffer);
721 break;
722 case NVME_LOG_COMMAND_EFFECT:
723 nvme_command_effects_page_swapbytes(
724 (struct nvme_command_effects_page *)aer->log_page_buffer);
725 break;
726 case NVME_LOG_RES_NOTIFICATION:
727 nvme_res_notification_page_swapbytes(
728 (struct nvme_res_notification_page *)aer->log_page_buffer);
729 break;
730 case NVME_LOG_SANITIZE_STATUS:
731 nvme_sanitize_status_page_swapbytes(
732 (struct nvme_sanitize_status_page *)aer->log_page_buffer);
733 break;
734 case INTEL_LOG_TEMP_STATS:
735 intel_log_temp_stats_swapbytes(
736 (struct intel_log_temp_stats *)aer->log_page_buffer);
737 break;
738 default:
739 break;
740 }
741
742 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
743 health_info = (struct nvme_health_information_page *)
744 aer->log_page_buffer;
745 nvme_ctrlr_log_critical_warnings(aer->ctrlr,
746 health_info->critical_warning);
747 /*
748 * Critical warnings reported through the
749 * SMART/health log page are persistent, so
750 * clear the associated bits in the async event
751 * config so that we do not receive repeated
752 * notifications for the same event.
753 */
754 aer->ctrlr->async_event_config &=
755 ~health_info->critical_warning;
756 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
757 aer->ctrlr->async_event_config, NULL, NULL);
758 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
759 !nvme_use_nvd) {
760 nsl = (struct nvme_ns_list *)aer->log_page_buffer;
761 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
762 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
763 break;
764 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
765 }
766 }
767
768 /*
769 * Pass the cpl data from the original async event completion,
770 * not the log page fetch.
771 */
772 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
773 aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
774 }
775
776 /*
777 * Repost another asynchronous event request to replace the one
778 * that just completed.
779 */
780 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
781 }
782
783 static void
784 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
785 {
786 struct nvme_async_event_request *aer = arg;
787
788 if (nvme_completion_is_error(cpl)) {
789 /*
790 * Do not retry failed async event requests. This avoids
791 * infinite loops where a new async event request is submitted
792 * to replace the one just failed, only to fail again and
793 * perpetuate the loop.
794 */
795 return;
796 }
797
798 /* Associated log page is in bits 23:16 of completion entry dw0. */
799 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
800
801 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
802 " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
803 aer->log_page_id);
804
805 if (is_log_page_id_valid(aer->log_page_id)) {
806 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
807 aer->log_page_id);
808 memcpy(&aer->cpl, cpl, sizeof(*cpl));
809 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
810 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
811 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
812 aer);
813 /* Wait to notify consumers until after log page is fetched. */
814 } else {
815 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
816 NULL, 0);
817
818 /*
819 * Repost another asynchronous event request to replace the one
820 * that just completed.
821 */
822 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
823 }
824 }
825
826 static void
827 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
828 struct nvme_async_event_request *aer)
829 {
830 struct nvme_request *req;
831
832 aer->ctrlr = ctrlr;
833 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
834 aer->req = req;
835
836 /*
837 * Disable timeout here, since asynchronous event requests should by
838 * nature never be timed out.
839 */
840 req->timeout = false;
841 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
842 nvme_ctrlr_submit_admin_request(ctrlr, req);
843 }
844
845 static void
846 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
847 {
848 struct nvme_completion_poll_status status;
849 struct nvme_async_event_request *aer;
850 uint32_t i;
851
852 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
853 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
854 NVME_CRIT_WARN_ST_READ_ONLY |
855 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
856 if (ctrlr->cdata.ver >= NVME_REV(1, 2))
857 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
858 NVME_ASYNC_EVENT_FW_ACTIVATE;
859
860 status.done = 0;
861 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
862 0, NULL, 0, nvme_completion_poll_cb, &status);
863 nvme_completion_poll(&status);
864 if (nvme_completion_is_error(&status.cpl) ||
865 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
866 (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
867 nvme_printf(ctrlr, "temperature threshold not supported\n");
868 } else
869 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
870
871 nvme_ctrlr_cmd_set_async_event_config(ctrlr,
872 ctrlr->async_event_config, NULL, NULL);
873
874 /* aerl is a zero-based value, so we need to add 1 here. */
875 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
876
877 for (i = 0; i < ctrlr->num_aers; i++) {
878 aer = &ctrlr->aer[i];
879 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
880 }
881 }
882
883 static void
884 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
885 {
886
887 ctrlr->int_coal_time = 0;
888 TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
889 &ctrlr->int_coal_time);
890
891 ctrlr->int_coal_threshold = 0;
892 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
893 &ctrlr->int_coal_threshold);
894
895 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
896 ctrlr->int_coal_threshold, NULL, NULL);
897 }
898
899 static void
900 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
901 {
902 struct nvme_hmb_chunk *hmbc;
903 int i;
904
905 if (ctrlr->hmb_desc_paddr) {
906 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
907 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
908 ctrlr->hmb_desc_map);
909 ctrlr->hmb_desc_paddr = 0;
910 }
911 if (ctrlr->hmb_desc_tag) {
912 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
913 ctrlr->hmb_desc_tag = NULL;
914 }
915 for (i = 0; i < ctrlr->hmb_nchunks; i++) {
916 hmbc = &ctrlr->hmb_chunks[i];
917 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
918 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
919 hmbc->hmbc_map);
920 }
921 ctrlr->hmb_nchunks = 0;
922 if (ctrlr->hmb_tag) {
923 bus_dma_tag_destroy(ctrlr->hmb_tag);
924 ctrlr->hmb_tag = NULL;
925 }
926 if (ctrlr->hmb_chunks) {
927 free(ctrlr->hmb_chunks, M_NVME);
928 ctrlr->hmb_chunks = NULL;
929 }
930 }
931
932 static void
933 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
934 {
935 struct nvme_hmb_chunk *hmbc;
936 size_t pref, min, minc, size;
937 int err, i;
938 uint64_t max;
939
940 /* Limit HMB to 5% of RAM size per device by default. */
941 max = (uint64_t)physmem * PAGE_SIZE / 20;
942 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
943
944 /*
945 * Units of Host Memory Buffer in the Identify info are always in terms
946 * of 4k units.
947 */
948 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
949 if (max == 0 || max < min)
950 return;
951 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
952 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
953 if (min > 0 && ctrlr->cdata.hmmaxd > 0)
954 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
955 ctrlr->hmb_chunk = pref;
956
957 again:
958 /*
959 * However, the chunk sizes, number of chunks, and alignment of chunks
960 * are all based on the current MPS (ctrlr->page_size).
961 */
962 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
963 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
964 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
965 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
966 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
967 ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
968 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
969 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
970 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
971 if (err != 0) {
972 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
973 nvme_ctrlr_hmb_free(ctrlr);
974 return;
975 }
976
977 for (i = 0; i < ctrlr->hmb_nchunks; i++) {
978 hmbc = &ctrlr->hmb_chunks[i];
979 if (bus_dmamem_alloc(ctrlr->hmb_tag,
980 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
981 &hmbc->hmbc_map)) {
982 nvme_printf(ctrlr, "failed to alloc HMB\n");
983 break;
984 }
985 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
986 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
987 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
988 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
989 hmbc->hmbc_map);
990 nvme_printf(ctrlr, "failed to load HMB\n");
991 break;
992 }
993 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
994 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
995 }
996
997 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
998 ctrlr->hmb_chunk / 2 >= minc) {
999 ctrlr->hmb_nchunks = i;
1000 nvme_ctrlr_hmb_free(ctrlr);
1001 ctrlr->hmb_chunk /= 2;
1002 goto again;
1003 }
1004 ctrlr->hmb_nchunks = i;
1005 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1006 nvme_ctrlr_hmb_free(ctrlr);
1007 return;
1008 }
1009
1010 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1011 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1012 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1013 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1014 if (err != 0) {
1015 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1016 nvme_ctrlr_hmb_free(ctrlr);
1017 return;
1018 }
1019 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1020 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1021 &ctrlr->hmb_desc_map)) {
1022 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1023 nvme_ctrlr_hmb_free(ctrlr);
1024 return;
1025 }
1026 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1027 ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1028 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1029 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1030 ctrlr->hmb_desc_map);
1031 nvme_printf(ctrlr, "failed to load HMB desc\n");
1032 nvme_ctrlr_hmb_free(ctrlr);
1033 return;
1034 }
1035
1036 for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1037 ctrlr->hmb_desc_vaddr[i].addr =
1038 htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1039 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1040 }
1041 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1042 BUS_DMASYNC_PREWRITE);
1043
1044 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1045 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1046 / 1024 / 1024);
1047 }
1048
1049 static void
1050 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1051 {
1052 struct nvme_completion_poll_status status;
1053 uint32_t cdw11;
1054
1055 cdw11 = 0;
1056 if (enable)
1057 cdw11 |= 1;
1058 if (memret)
1059 cdw11 |= 2;
1060 status.done = 0;
1061 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1062 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1063 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1064 ctrlr->hmb_nchunks, NULL, 0,
1065 nvme_completion_poll_cb, &status);
1066 nvme_completion_poll(&status);
1067 if (nvme_completion_is_error(&status.cpl))
1068 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1069 }
1070
1071 static void
1072 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1073 {
1074 struct nvme_controller *ctrlr = ctrlr_arg;
1075 uint32_t old_num_io_queues;
1076 int i;
1077
1078 TSENTER();
1079
1080 /*
1081 * Only reset adminq here when we are restarting the
1082 * controller after a reset. During initialization,
1083 * we have already submitted admin commands to get
1084 * the number of I/O queues supported, so cannot reset
1085 * the adminq again here.
1086 */
1087 if (resetting) {
1088 nvme_qpair_reset(&ctrlr->adminq);
1089 nvme_admin_qpair_enable(&ctrlr->adminq);
1090 }
1091
1092 if (ctrlr->ioq != NULL) {
1093 for (i = 0; i < ctrlr->num_io_queues; i++)
1094 nvme_qpair_reset(&ctrlr->ioq[i]);
1095 }
1096
1097 /*
1098 * If it was a reset on initialization command timeout, just
1099 * return here, letting initialization code fail gracefully.
1100 */
1101 if (resetting && !ctrlr->is_initialized)
1102 return;
1103
1104 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1105 nvme_ctrlr_fail(ctrlr);
1106 return;
1107 }
1108
1109 /*
1110 * The number of qpairs are determined during controller initialization,
1111 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1112 * HW limit. We call SET_FEATURES again here so that it gets called
1113 * after any reset for controllers that depend on the driver to
1114 * explicit specify how many queues it will use. This value should
1115 * never change between resets, so panic if somehow that does happen.
1116 */
1117 if (resetting) {
1118 old_num_io_queues = ctrlr->num_io_queues;
1119 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1120 nvme_ctrlr_fail(ctrlr);
1121 return;
1122 }
1123
1124 if (old_num_io_queues != ctrlr->num_io_queues) {
1125 panic("num_io_queues changed from %u to %u",
1126 old_num_io_queues, ctrlr->num_io_queues);
1127 }
1128 }
1129
1130 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1131 nvme_ctrlr_hmb_alloc(ctrlr);
1132 if (ctrlr->hmb_nchunks > 0)
1133 nvme_ctrlr_hmb_enable(ctrlr, true, false);
1134 } else if (ctrlr->hmb_nchunks > 0)
1135 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1136
1137 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1138 nvme_ctrlr_fail(ctrlr);
1139 return;
1140 }
1141
1142 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1143 nvme_ctrlr_fail(ctrlr);
1144 return;
1145 }
1146
1147 nvme_ctrlr_configure_aer(ctrlr);
1148 nvme_ctrlr_configure_int_coalescing(ctrlr);
1149
1150 for (i = 0; i < ctrlr->num_io_queues; i++)
1151 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1152 TSEXIT();
1153 }
1154
1155 void
1156 nvme_ctrlr_start_config_hook(void *arg)
1157 {
1158 struct nvme_controller *ctrlr = arg;
1159
1160 TSENTER();
1161
1162 if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1163 fail:
1164 nvme_ctrlr_fail(ctrlr);
1165 config_intrhook_disestablish(&ctrlr->config_hook);
1166 return;
1167 }
1168
1169 #ifdef NVME_2X_RESET
1170 /*
1171 * Reset controller twice to ensure we do a transition from cc.en==1 to
1172 * cc.en==0. This is because we don't really know what status the
1173 * controller was left in when boot handed off to OS. Linux doesn't do
1174 * this, however, and when the controller is in state cc.en == 0, no
1175 * I/O can happen.
1176 */
1177 if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1178 goto fail;
1179 #endif
1180
1181 nvme_qpair_reset(&ctrlr->adminq);
1182 nvme_admin_qpair_enable(&ctrlr->adminq);
1183
1184 if (nvme_ctrlr_identify(ctrlr) == 0 &&
1185 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1186 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1187 nvme_ctrlr_start(ctrlr, false);
1188 else
1189 goto fail;
1190
1191 nvme_sysctl_initialize_ctrlr(ctrlr);
1192 config_intrhook_disestablish(&ctrlr->config_hook);
1193
1194 ctrlr->is_initialized = 1;
1195 nvme_notify_new_controller(ctrlr);
1196 TSEXIT();
1197 }
1198
1199 static void
1200 nvme_ctrlr_reset_task(void *arg, int pending)
1201 {
1202 struct nvme_controller *ctrlr = arg;
1203 int status;
1204
1205 nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1206 status = nvme_ctrlr_hw_reset(ctrlr);
1207 /*
1208 * Use pause instead of DELAY, so that we yield to any nvme interrupt
1209 * handlers on this CPU that were blocked on a qpair lock. We want
1210 * all nvme interrupts completed before proceeding with restarting the
1211 * controller.
1212 *
1213 * XXX - any way to guarantee the interrupt handlers have quiesced?
1214 */
1215 pause("nvmereset", hz / 10);
1216 if (status == 0)
1217 nvme_ctrlr_start(ctrlr, true);
1218 else
1219 nvme_ctrlr_fail(ctrlr);
1220
1221 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1222 }
1223
1224 /*
1225 * Poll all the queues enabled on the device for completion.
1226 */
1227 void
1228 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1229 {
1230 int i;
1231
1232 nvme_qpair_process_completions(&ctrlr->adminq);
1233
1234 for (i = 0; i < ctrlr->num_io_queues; i++)
1235 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1236 nvme_qpair_process_completions(&ctrlr->ioq[i]);
1237 }
1238
1239 /*
1240 * Poll the single-vector interrupt case: num_io_queues will be 1 and
1241 * there's only a single vector. While we're polling, we mask further
1242 * interrupts in the controller.
1243 */
1244 void
1245 nvme_ctrlr_shared_handler(void *arg)
1246 {
1247 struct nvme_controller *ctrlr = arg;
1248
1249 nvme_mmio_write_4(ctrlr, intms, 1);
1250 nvme_ctrlr_poll(ctrlr);
1251 nvme_mmio_write_4(ctrlr, intmc, 1);
1252 }
1253
1254 static void
1255 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1256 {
1257 struct nvme_pt_command *pt = arg;
1258 struct mtx *mtx = pt->driver_lock;
1259 uint16_t status;
1260
1261 bzero(&pt->cpl, sizeof(pt->cpl));
1262 pt->cpl.cdw0 = cpl->cdw0;
1263
1264 status = cpl->status;
1265 status &= ~NVME_STATUS_P_MASK;
1266 pt->cpl.status = status;
1267
1268 mtx_lock(mtx);
1269 pt->driver_lock = NULL;
1270 wakeup(pt);
1271 mtx_unlock(mtx);
1272 }
1273
1274 int
1275 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1276 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1277 int is_admin_cmd)
1278 {
1279 struct nvme_request *req;
1280 struct mtx *mtx;
1281 struct buf *buf = NULL;
1282 int ret = 0;
1283
1284 if (pt->len > 0) {
1285 if (pt->len > ctrlr->max_xfer_size) {
1286 nvme_printf(ctrlr, "pt->len (%d) "
1287 "exceeds max_xfer_size (%d)\n", pt->len,
1288 ctrlr->max_xfer_size);
1289 return EIO;
1290 }
1291 if (is_user_buffer) {
1292 /*
1293 * Ensure the user buffer is wired for the duration of
1294 * this pass-through command.
1295 */
1296 PHOLD(curproc);
1297 buf = uma_zalloc(pbuf_zone, M_WAITOK);
1298 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1299 if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1300 ret = EFAULT;
1301 goto err;
1302 }
1303 req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
1304 nvme_pt_done, pt);
1305 } else
1306 req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1307 nvme_pt_done, pt);
1308 } else
1309 req = nvme_allocate_request_null(nvme_pt_done, pt);
1310
1311 /* Assume user space already converted to little-endian */
1312 req->cmd.opc = pt->cmd.opc;
1313 req->cmd.fuse = pt->cmd.fuse;
1314 req->cmd.rsvd2 = pt->cmd.rsvd2;
1315 req->cmd.rsvd3 = pt->cmd.rsvd3;
1316 req->cmd.cdw10 = pt->cmd.cdw10;
1317 req->cmd.cdw11 = pt->cmd.cdw11;
1318 req->cmd.cdw12 = pt->cmd.cdw12;
1319 req->cmd.cdw13 = pt->cmd.cdw13;
1320 req->cmd.cdw14 = pt->cmd.cdw14;
1321 req->cmd.cdw15 = pt->cmd.cdw15;
1322
1323 req->cmd.nsid = htole32(nsid);
1324
1325 mtx = mtx_pool_find(mtxpool_sleep, pt);
1326 pt->driver_lock = mtx;
1327
1328 if (is_admin_cmd)
1329 nvme_ctrlr_submit_admin_request(ctrlr, req);
1330 else
1331 nvme_ctrlr_submit_io_request(ctrlr, req);
1332
1333 mtx_lock(mtx);
1334 while (pt->driver_lock != NULL)
1335 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1336 mtx_unlock(mtx);
1337
1338 err:
1339 if (buf != NULL) {
1340 uma_zfree(pbuf_zone, buf);
1341 PRELE(curproc);
1342 }
1343
1344 return (ret);
1345 }
1346
1347 static int
1348 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1349 struct thread *td)
1350 {
1351 struct nvme_controller *ctrlr;
1352 struct nvme_pt_command *pt;
1353
1354 ctrlr = cdev->si_drv1;
1355
1356 switch (cmd) {
1357 case NVME_RESET_CONTROLLER:
1358 nvme_ctrlr_reset(ctrlr);
1359 break;
1360 case NVME_PASSTHROUGH_CMD:
1361 pt = (struct nvme_pt_command *)arg;
1362 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1363 1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1364 case NVME_GET_NSID:
1365 {
1366 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1367 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1368 sizeof(gnsid->cdev));
1369 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1370 gnsid->nsid = 0;
1371 break;
1372 }
1373 case NVME_GET_MAX_XFER_SIZE:
1374 *(uint64_t *)arg = ctrlr->max_xfer_size;
1375 break;
1376 default:
1377 return (ENOTTY);
1378 }
1379
1380 return (0);
1381 }
1382
1383 static struct cdevsw nvme_ctrlr_cdevsw = {
1384 .d_version = D_VERSION,
1385 .d_flags = 0,
1386 .d_ioctl = nvme_ctrlr_ioctl
1387 };
1388
1389 int
1390 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1391 {
1392 struct make_dev_args md_args;
1393 uint32_t cap_lo;
1394 uint32_t cap_hi;
1395 uint32_t to, vs, pmrcap;
1396 int status, timeout_period;
1397
1398 ctrlr->dev = dev;
1399
1400 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1401 if (bus_get_domain(dev, &ctrlr->domain) != 0)
1402 ctrlr->domain = 0;
1403
1404 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1405 if (bootverbose) {
1406 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1407 cap_lo, NVME_CAP_LO_MQES(cap_lo),
1408 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1409 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1410 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1411 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1412 NVME_CAP_LO_TO(cap_lo));
1413 }
1414 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1415 if (bootverbose) {
1416 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1417 "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1418 NVME_CAP_HI_DSTRD(cap_hi),
1419 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1420 NVME_CAP_HI_CSS(cap_hi),
1421 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1422 NVME_CAP_HI_MPSMIN(cap_hi),
1423 NVME_CAP_HI_MPSMAX(cap_hi),
1424 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1425 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1426 }
1427 if (bootverbose) {
1428 vs = nvme_mmio_read_4(ctrlr, vs);
1429 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1430 NVME_MAJOR(vs), NVME_MINOR(vs));
1431 }
1432 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1433 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1434 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1435 "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1436 NVME_PMRCAP_BIR(pmrcap),
1437 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1438 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1439 NVME_PMRCAP_PMRTU(pmrcap),
1440 NVME_PMRCAP_PMRWBM(pmrcap),
1441 NVME_PMRCAP_PMRTO(pmrcap),
1442 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1443 }
1444
1445 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1446
1447 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1448 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1449
1450 /* Get ready timeout value from controller, in units of 500ms. */
1451 to = NVME_CAP_LO_TO(cap_lo) + 1;
1452 ctrlr->ready_timeout_in_ms = to * 500;
1453
1454 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1455 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1456 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1457 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1458 ctrlr->timeout_period = timeout_period;
1459
1460 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1461 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1462
1463 ctrlr->enable_aborts = 0;
1464 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1465
1466 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1467 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1468 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1469 return (ENXIO);
1470
1471 /*
1472 * Create 2 threads for the taskqueue. The reset thread will block when
1473 * it detects that the controller has failed until all I/O has been
1474 * failed up the stack. The fail_req task needs to be able to run in
1475 * this case to finish the request failure for some cases.
1476 *
1477 * We could partially solve this race by draining the failed requeust
1478 * queue before proceding to free the sim, though nothing would stop
1479 * new I/O from coming in after we do that drain, but before we reach
1480 * cam_sim_free, so this big hammer is used instead.
1481 */
1482 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1483 taskqueue_thread_enqueue, &ctrlr->taskqueue);
1484 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1485
1486 ctrlr->is_resetting = 0;
1487 ctrlr->is_initialized = 0;
1488 ctrlr->notification_sent = 0;
1489 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1490 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1491 STAILQ_INIT(&ctrlr->fail_req);
1492 ctrlr->is_failed = false;
1493
1494 make_dev_args_init(&md_args);
1495 md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1496 md_args.mda_uid = UID_ROOT;
1497 md_args.mda_gid = GID_WHEEL;
1498 md_args.mda_mode = 0600;
1499 md_args.mda_unit = device_get_unit(dev);
1500 md_args.mda_si_drv1 = (void *)ctrlr;
1501 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1502 device_get_unit(dev));
1503 if (status != 0)
1504 return (ENXIO);
1505
1506 return (0);
1507 }
1508
1509 void
1510 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1511 {
1512 int gone, i;
1513
1514 ctrlr->is_dying = true;
1515
1516 if (ctrlr->resource == NULL)
1517 goto nores;
1518 if (!mtx_initialized(&ctrlr->adminq.lock))
1519 goto noadminq;
1520
1521 /*
1522 * Check whether it is a hot unplug or a clean driver detach.
1523 * If device is not there any more, skip any shutdown commands.
1524 */
1525 gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1526 if (gone)
1527 nvme_ctrlr_fail(ctrlr);
1528 else
1529 nvme_notify_fail_consumers(ctrlr);
1530
1531 for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1532 nvme_ns_destruct(&ctrlr->ns[i]);
1533
1534 if (ctrlr->cdev)
1535 destroy_dev(ctrlr->cdev);
1536
1537 if (ctrlr->is_initialized) {
1538 if (!gone) {
1539 if (ctrlr->hmb_nchunks > 0)
1540 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1541 nvme_ctrlr_delete_qpairs(ctrlr);
1542 }
1543 nvme_ctrlr_hmb_free(ctrlr);
1544 }
1545 if (ctrlr->ioq != NULL) {
1546 for (i = 0; i < ctrlr->num_io_queues; i++)
1547 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1548 free(ctrlr->ioq, M_NVME);
1549 }
1550 nvme_admin_qpair_destroy(&ctrlr->adminq);
1551
1552 /*
1553 * Notify the controller of a shutdown, even though this is due to
1554 * a driver unload, not a system shutdown (this path is not invoked
1555 * during shutdown). This ensures the controller receives a
1556 * shutdown notification in case the system is shutdown before
1557 * reloading the driver.
1558 */
1559 if (!gone)
1560 nvme_ctrlr_shutdown(ctrlr);
1561
1562 if (!gone)
1563 nvme_ctrlr_disable(ctrlr);
1564
1565 noadminq:
1566 if (ctrlr->taskqueue)
1567 taskqueue_free(ctrlr->taskqueue);
1568
1569 if (ctrlr->tag)
1570 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1571
1572 if (ctrlr->res)
1573 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1574 rman_get_rid(ctrlr->res), ctrlr->res);
1575
1576 if (ctrlr->bar4_resource != NULL) {
1577 bus_release_resource(dev, SYS_RES_MEMORY,
1578 ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1579 }
1580
1581 bus_release_resource(dev, SYS_RES_MEMORY,
1582 ctrlr->resource_id, ctrlr->resource);
1583
1584 nores:
1585 mtx_destroy(&ctrlr->lock);
1586 }
1587
1588 void
1589 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1590 {
1591 uint32_t cc;
1592 uint32_t csts;
1593 int timeout;
1594
1595 cc = nvme_mmio_read_4(ctrlr, cc);
1596 cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1597 cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1598 nvme_mmio_write_4(ctrlr, cc, cc);
1599
1600 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1601 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1602 while (1) {
1603 csts = nvme_mmio_read_4(ctrlr, csts);
1604 if (csts == NVME_GONE) /* Hot unplug. */
1605 break;
1606 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1607 break;
1608 if (timeout - ticks < 0) {
1609 nvme_printf(ctrlr, "shutdown timeout\n");
1610 break;
1611 }
1612 pause("nvmeshut", 1);
1613 }
1614 }
1615
1616 void
1617 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1618 struct nvme_request *req)
1619 {
1620
1621 nvme_qpair_submit_request(&ctrlr->adminq, req);
1622 }
1623
1624 void
1625 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1626 struct nvme_request *req)
1627 {
1628 struct nvme_qpair *qpair;
1629
1630 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1631 nvme_qpair_submit_request(qpair, req);
1632 }
1633
1634 device_t
1635 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1636 {
1637
1638 return (ctrlr->dev);
1639 }
1640
1641 const struct nvme_controller_data *
1642 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1643 {
1644
1645 return (&ctrlr->cdata);
1646 }
1647
1648 int
1649 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1650 {
1651 int to = hz;
1652
1653 /*
1654 * Can't touch failed controllers, so it's already suspended.
1655 */
1656 if (ctrlr->is_failed)
1657 return (0);
1658
1659 /*
1660 * We don't want the reset taskqueue running, since it does similar
1661 * things, so prevent it from running after we start. Wait for any reset
1662 * that may have been started to complete. The reset process we follow
1663 * will ensure that any new I/O will queue and be given to the hardware
1664 * after we resume (though there should be none).
1665 */
1666 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1667 pause("nvmesusp", 1);
1668 if (to <= 0) {
1669 nvme_printf(ctrlr,
1670 "Competing reset task didn't finish. Try again later.\n");
1671 return (EWOULDBLOCK);
1672 }
1673
1674 if (ctrlr->hmb_nchunks > 0)
1675 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1676
1677 /*
1678 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1679 * delete the hardware I/O queues, and then shutdown. This properly
1680 * flushes any metadata the drive may have stored so it can survive
1681 * having its power removed and prevents the unsafe shutdown count from
1682 * incriminating. Once we delete the qpairs, we have to disable them
1683 * before shutting down.
1684 */
1685 nvme_ctrlr_delete_qpairs(ctrlr);
1686 nvme_ctrlr_disable_qpairs(ctrlr);
1687 nvme_ctrlr_shutdown(ctrlr);
1688
1689 return (0);
1690 }
1691
1692 int
1693 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1694 {
1695
1696 /*
1697 * Can't touch failed controllers, so nothing to do to resume.
1698 */
1699 if (ctrlr->is_failed)
1700 return (0);
1701
1702 if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1703 goto fail;
1704 #ifdef NVME_2X_RESET
1705 /*
1706 * Prior to FreeBSD 13.1, FreeBSD's nvme driver reset the hardware twice
1707 * to get it into a known good state. However, the hardware's state is
1708 * good and we don't need to do this for proper functioning.
1709 */
1710 if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1711 goto fail;
1712 #endif
1713
1714 /*
1715 * Now that we've reset the hardware, we can restart the controller. Any
1716 * I/O that was pending is requeued. Any admin commands are aborted with
1717 * an error. Once we've restarted, take the controller out of reset.
1718 */
1719 nvme_ctrlr_start(ctrlr, true);
1720 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1721
1722 return (0);
1723 fail:
1724 /*
1725 * Since we can't bring the controller out of reset, announce and fail
1726 * the controller. However, we have to return success for the resume
1727 * itself, due to questionable APIs.
1728 */
1729 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1730 nvme_ctrlr_fail(ctrlr);
1731 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1732 return (0);
1733 }
Cache object: 17ed00d52774eb0b7c5f4070e6fdd6ab
|