The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/nvme/nvme_ctrlr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 2012-2013 Intel Corporation
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/9.2/sys/dev/nvme/nvme_ctrlr.c 253627 2013-07-24 22:42:00Z jimharris $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/buf.h>
   33 #include <sys/bus.h>
   34 #include <sys/conf.h>
   35 #include <sys/ioccom.h>
   36 #include <sys/proc.h>
   37 #include <sys/smp.h>
   38 #include <sys/uio.h>
   39 
   40 #include <dev/pci/pcireg.h>
   41 #include <dev/pci/pcivar.h>
   42 
   43 #include "nvme_private.h"
   44 
   45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
   46                                                 struct nvme_async_event_request *aer);
   47 
   48 static int
   49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
   50 {
   51 
   52         /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
   53         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
   54                 ctrlr->resource_id = PCIR_BAR(2);
   55         else
   56                 ctrlr->resource_id = PCIR_BAR(0);
   57 
   58         ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
   59             &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
   60 
   61         if(ctrlr->resource == NULL) {
   62                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
   63                 return (ENOMEM);
   64         }
   65 
   66         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
   67         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
   68         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
   69 
   70         /*
   71          * The NVMe spec allows for the MSI-X table to be placed behind
   72          *  BAR 4/5, separate from the control/doorbell registers.  Always
   73          *  try to map this bar, because it must be mapped prior to calling
   74          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
   75          *  bus_alloc_resource() will just return NULL which is OK.
   76          */
   77         ctrlr->bar4_resource_id = PCIR_BAR(4);
   78         ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
   79             &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
   80 
   81         return (0);
   82 }
   83 
   84 #ifdef CHATHAM2
   85 static int
   86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
   87 {
   88 
   89         ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
   90         ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
   91             SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
   92             RF_ACTIVE);
   93 
   94         if(ctrlr->chatham_resource == NULL) {
   95                 nvme_printf(ctrlr, "unable to alloc pci resource\n");
   96                 return (ENOMEM);
   97         }
   98 
   99         ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
  100         ctrlr->chatham_bus_handle =
  101             rman_get_bushandle(ctrlr->chatham_resource);
  102 
  103         return (0);
  104 }
  105 
  106 static void
  107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
  108 {
  109         uint64_t reg1, reg2, reg3;
  110         uint64_t temp1, temp2;
  111         uint32_t temp3;
  112         uint32_t use_flash_timings = 0;
  113 
  114         DELAY(10000);
  115 
  116         temp3 = chatham_read_4(ctrlr, 0x8080);
  117 
  118         device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
  119 
  120         ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
  121         ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
  122 
  123         device_printf(ctrlr->dev, "Chatham size: %jd\n",
  124             (intmax_t)ctrlr->chatham_size);
  125 
  126         reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
  127 
  128         TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
  129         if (use_flash_timings) {
  130                 device_printf(ctrlr->dev, "Chatham: using flash timings\n");
  131                 temp1 = 0x00001b58000007d0LL;
  132                 temp2 = 0x000000cb00000131LL;
  133         } else {
  134                 device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
  135                 temp1 = temp2 = 0x0LL;
  136         }
  137 
  138         chatham_write_8(ctrlr, 0x8000, reg1);
  139         chatham_write_8(ctrlr, 0x8008, reg2);
  140         chatham_write_8(ctrlr, 0x8010, reg3);
  141 
  142         chatham_write_8(ctrlr, 0x8020, temp1);
  143         temp3 = chatham_read_4(ctrlr, 0x8020);
  144 
  145         chatham_write_8(ctrlr, 0x8028, temp2);
  146         temp3 = chatham_read_4(ctrlr, 0x8028);
  147 
  148         chatham_write_8(ctrlr, 0x8030, temp1);
  149         chatham_write_8(ctrlr, 0x8038, temp2);
  150         chatham_write_8(ctrlr, 0x8040, temp1);
  151         chatham_write_8(ctrlr, 0x8048, temp2);
  152         chatham_write_8(ctrlr, 0x8050, temp1);
  153         chatham_write_8(ctrlr, 0x8058, temp2);
  154 
  155         DELAY(10000);
  156 }
  157 
  158 static void
  159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
  160 {
  161         struct nvme_controller_data *cdata;
  162 
  163         cdata = &ctrlr->cdata;
  164 
  165         cdata->vid = 0x8086;
  166         cdata->ssvid = 0x2011;
  167 
  168         /*
  169          * Chatham2 puts garbage data in these fields when we
  170          *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
  171          *  the fields before calling bcopy().
  172          */
  173         memset(cdata->sn, 0, sizeof(cdata->sn));
  174         memcpy(cdata->sn, "2012", strlen("2012"));
  175         memset(cdata->mn, 0, sizeof(cdata->mn));
  176         memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
  177         memset(cdata->fr, 0, sizeof(cdata->fr));
  178         memcpy(cdata->fr, "", strlen(""));
  179         cdata->rab = 8;
  180         cdata->aerl = 3;
  181         cdata->lpa.ns_smart = 1;
  182         cdata->sqes.min = 6;
  183         cdata->sqes.max = 6;
  184         cdata->sqes.min = 4;
  185         cdata->sqes.max = 4;
  186         cdata->nn = 1;
  187 
  188         /* Chatham2 doesn't support DSM command */
  189         cdata->oncs.dsm = 0;
  190 
  191         cdata->vwc.present = 1;
  192 }
  193 #endif /* CHATHAM2 */
  194 
  195 static void
  196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
  197 {
  198         struct nvme_qpair       *qpair;
  199         uint32_t                num_entries;
  200 
  201         qpair = &ctrlr->adminq;
  202 
  203         num_entries = NVME_ADMIN_ENTRIES;
  204         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
  205         /*
  206          * If admin_entries was overridden to an invalid value, revert it
  207          *  back to our default value.
  208          */
  209         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
  210             num_entries > NVME_MAX_ADMIN_ENTRIES) {
  211                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
  212                     "specified\n", num_entries);
  213                 num_entries = NVME_ADMIN_ENTRIES;
  214         }
  215 
  216         /*
  217          * The admin queue's max xfer size is treated differently than the
  218          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
  219          */
  220         nvme_qpair_construct(qpair, 
  221                              0, /* qpair ID */
  222                              0, /* vector */
  223                              num_entries,
  224                              NVME_ADMIN_TRACKERS,
  225                              ctrlr);
  226 }
  227 
  228 static int
  229 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
  230 {
  231         struct nvme_qpair       *qpair;
  232         union cap_lo_register   cap_lo;
  233         int                     i, num_entries, num_trackers;
  234 
  235         num_entries = NVME_IO_ENTRIES;
  236         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
  237 
  238         /*
  239          * NVMe spec sets a hard limit of 64K max entries, but
  240          *  devices may specify a smaller limit, so we need to check
  241          *  the MQES field in the capabilities register.
  242          */
  243         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
  244         num_entries = min(num_entries, cap_lo.bits.mqes+1);
  245 
  246         num_trackers = NVME_IO_TRACKERS;
  247         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
  248 
  249         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
  250         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
  251         /*
  252          * No need to have more trackers than entries in the submit queue.
  253          *  Note also that for a queue size of N, we can only have (N-1)
  254          *  commands outstanding, hence the "-1" here.
  255          */
  256         num_trackers = min(num_trackers, (num_entries-1));
  257 
  258         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
  259             M_NVME, M_ZERO | M_WAITOK);
  260 
  261         for (i = 0; i < ctrlr->num_io_queues; i++) {
  262                 qpair = &ctrlr->ioq[i];
  263 
  264                 /*
  265                  * Admin queue has ID=0. IO queues start at ID=1 -
  266                  *  hence the 'i+1' here.
  267                  *
  268                  * For I/O queues, use the controller-wide max_xfer_size
  269                  *  calculated in nvme_attach().
  270                  */
  271                 nvme_qpair_construct(qpair,
  272                                      i+1, /* qpair ID */
  273                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
  274                                      num_entries,
  275                                      num_trackers,
  276                                      ctrlr);
  277 
  278                 if (ctrlr->per_cpu_io_queues)
  279                         bus_bind_intr(ctrlr->dev, qpair->res, i);
  280         }
  281 
  282         return (0);
  283 }
  284 
  285 static void
  286 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
  287 {
  288         int i;
  289 
  290         ctrlr->is_failed = TRUE;
  291         nvme_qpair_fail(&ctrlr->adminq);
  292         for (i = 0; i < ctrlr->num_io_queues; i++)
  293                 nvme_qpair_fail(&ctrlr->ioq[i]);
  294         nvme_notify_fail_consumers(ctrlr);
  295 }
  296 
  297 void
  298 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
  299     struct nvme_request *req)
  300 {
  301 
  302         mtx_lock(&ctrlr->lock);
  303         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
  304         mtx_unlock(&ctrlr->lock);
  305         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
  306 }
  307 
  308 static void
  309 nvme_ctrlr_fail_req_task(void *arg, int pending)
  310 {
  311         struct nvme_controller  *ctrlr = arg;
  312         struct nvme_request     *req;
  313 
  314         mtx_lock(&ctrlr->lock);
  315         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
  316                 req = STAILQ_FIRST(&ctrlr->fail_req);
  317                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
  318                 nvme_qpair_manual_complete_request(req->qpair, req,
  319                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
  320         }
  321         mtx_unlock(&ctrlr->lock);
  322 }
  323 
  324 static int
  325 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
  326 {
  327         int ms_waited;
  328         union cc_register cc;
  329         union csts_register csts;
  330 
  331         cc.raw = nvme_mmio_read_4(ctrlr, cc);
  332         csts.raw = nvme_mmio_read_4(ctrlr, csts);
  333 
  334         if (!cc.bits.en) {
  335                 nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
  336                 return (ENXIO);
  337         }
  338 
  339         ms_waited = 0;
  340 
  341         while (!csts.bits.rdy) {
  342                 DELAY(1000);
  343                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
  344                         nvme_printf(ctrlr, "controller did not become ready "
  345                             "within %d ms\n", ctrlr->ready_timeout_in_ms);
  346                         return (ENXIO);
  347                 }
  348                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
  349         }
  350 
  351         return (0);
  352 }
  353 
  354 static void
  355 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
  356 {
  357         union cc_register cc;
  358         union csts_register csts;
  359 
  360         cc.raw = nvme_mmio_read_4(ctrlr, cc);
  361         csts.raw = nvme_mmio_read_4(ctrlr, csts);
  362 
  363         if (cc.bits.en == 1 && csts.bits.rdy == 0)
  364                 nvme_ctrlr_wait_for_ready(ctrlr);
  365 
  366         cc.bits.en = 0;
  367         nvme_mmio_write_4(ctrlr, cc, cc.raw);
  368         DELAY(5000);
  369 }
  370 
  371 static int
  372 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
  373 {
  374         union cc_register       cc;
  375         union csts_register     csts;
  376         union aqa_register      aqa;
  377 
  378         cc.raw = nvme_mmio_read_4(ctrlr, cc);
  379         csts.raw = nvme_mmio_read_4(ctrlr, csts);
  380 
  381         if (cc.bits.en == 1) {
  382                 if (csts.bits.rdy == 1)
  383                         return (0);
  384                 else
  385                         return (nvme_ctrlr_wait_for_ready(ctrlr));
  386         }
  387 
  388         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
  389         DELAY(5000);
  390         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
  391         DELAY(5000);
  392 
  393         aqa.raw = 0;
  394         /* acqs and asqs are 0-based. */
  395         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
  396         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
  397         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
  398         DELAY(5000);
  399 
  400         cc.bits.en = 1;
  401         cc.bits.css = 0;
  402         cc.bits.ams = 0;
  403         cc.bits.shn = 0;
  404         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
  405         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
  406 
  407         /* This evaluates to 0, which is according to spec. */
  408         cc.bits.mps = (PAGE_SIZE >> 13);
  409 
  410         nvme_mmio_write_4(ctrlr, cc, cc.raw);
  411         DELAY(5000);
  412 
  413         return (nvme_ctrlr_wait_for_ready(ctrlr));
  414 }
  415 
  416 int
  417 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
  418 {
  419         int i;
  420 
  421         nvme_admin_qpair_disable(&ctrlr->adminq);
  422         for (i = 0; i < ctrlr->num_io_queues; i++)
  423                 nvme_io_qpair_disable(&ctrlr->ioq[i]);
  424 
  425         DELAY(100*1000);
  426 
  427         nvme_ctrlr_disable(ctrlr);
  428         return (nvme_ctrlr_enable(ctrlr));
  429 }
  430 
  431 void
  432 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
  433 {
  434         int cmpset;
  435 
  436         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
  437 
  438         if (cmpset == 0 || ctrlr->is_failed)
  439                 /*
  440                  * Controller is already resetting or has failed.  Return
  441                  *  immediately since there is no need to kick off another
  442                  *  reset in these cases.
  443                  */
  444                 return;
  445 
  446         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
  447 }
  448 
  449 static int
  450 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
  451 {
  452         struct nvme_completion_poll_status      status;
  453 
  454         status.done = FALSE;
  455         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
  456             nvme_completion_poll_cb, &status);
  457         while (status.done == FALSE)
  458                 pause("nvme", 1);
  459         if (nvme_completion_is_error(&status.cpl)) {
  460                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
  461                 return (ENXIO);
  462         }
  463 
  464 #ifdef CHATHAM2
  465         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
  466                 nvme_chatham_populate_cdata(ctrlr);
  467 #endif
  468 
  469         /*
  470          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
  471          *  controller supports.
  472          */
  473         if (ctrlr->cdata.mdts > 0)
  474                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
  475                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
  476 
  477         return (0);
  478 }
  479 
  480 static int
  481 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
  482 {
  483         struct nvme_completion_poll_status      status;
  484         int                                     cq_allocated, i, sq_allocated;
  485 
  486         status.done = FALSE;
  487         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
  488             nvme_completion_poll_cb, &status);
  489         while (status.done == FALSE)
  490                 pause("nvme", 1);
  491         if (nvme_completion_is_error(&status.cpl)) {
  492                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
  493                 return (ENXIO);
  494         }
  495 
  496         /*
  497          * Data in cdw0 is 0-based.
  498          * Lower 16-bits indicate number of submission queues allocated.
  499          * Upper 16-bits indicate number of completion queues allocated.
  500          */
  501         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
  502         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
  503 
  504         /*
  505          * Check that the controller was able to allocate the number of
  506          *  queues we requested.  If not, revert to one IO queue pair.
  507          */
  508         if (sq_allocated < ctrlr->num_io_queues ||
  509             cq_allocated < ctrlr->num_io_queues) {
  510 
  511                 /*
  512                  * Destroy extra IO queue pairs that were created at
  513                  *  controller construction time but are no longer
  514                  *  needed.  This will only happen when a controller
  515                  *  supports fewer queues than MSI-X vectors.  This
  516                  *  is not the normal case, but does occur with the
  517                  *  Chatham prototype board.
  518                  */
  519                 for (i = 1; i < ctrlr->num_io_queues; i++)
  520                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
  521 
  522                 ctrlr->num_io_queues = 1;
  523                 ctrlr->per_cpu_io_queues = 0;
  524         }
  525 
  526         return (0);
  527 }
  528 
  529 static int
  530 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
  531 {
  532         struct nvme_completion_poll_status      status;
  533         struct nvme_qpair                       *qpair;
  534         int                                     i;
  535 
  536         for (i = 0; i < ctrlr->num_io_queues; i++) {
  537                 qpair = &ctrlr->ioq[i];
  538 
  539                 status.done = FALSE;
  540                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
  541                     nvme_completion_poll_cb, &status);
  542                 while (status.done == FALSE)
  543                         pause("nvme", 1);
  544                 if (nvme_completion_is_error(&status.cpl)) {
  545                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
  546                         return (ENXIO);
  547                 }
  548 
  549                 status.done = FALSE;
  550                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
  551                     nvme_completion_poll_cb, &status);
  552                 while (status.done == FALSE)
  553                         pause("nvme", 1);
  554                 if (nvme_completion_is_error(&status.cpl)) {
  555                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
  556                         return (ENXIO);
  557                 }
  558         }
  559 
  560         return (0);
  561 }
  562 
  563 static int
  564 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
  565 {
  566         struct nvme_namespace   *ns;
  567         int                     i, status;
  568 
  569         for (i = 0; i < ctrlr->cdata.nn; i++) {
  570                 ns = &ctrlr->ns[i];
  571                 status = nvme_ns_construct(ns, i+1, ctrlr);
  572                 if (status != 0)
  573                         return (status);
  574         }
  575 
  576         return (0);
  577 }
  578 
  579 static boolean_t
  580 is_log_page_id_valid(uint8_t page_id)
  581 {
  582 
  583         switch (page_id) {
  584         case NVME_LOG_ERROR:
  585         case NVME_LOG_HEALTH_INFORMATION:
  586         case NVME_LOG_FIRMWARE_SLOT:
  587                 return (TRUE);
  588         }
  589 
  590         return (FALSE);
  591 }
  592 
  593 static uint32_t
  594 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
  595 {
  596         uint32_t        log_page_size;
  597 
  598         switch (page_id) {
  599         case NVME_LOG_ERROR:
  600                 log_page_size = min(
  601                     sizeof(struct nvme_error_information_entry) *
  602                     ctrlr->cdata.elpe,
  603                     NVME_MAX_AER_LOG_SIZE);
  604                 break;
  605         case NVME_LOG_HEALTH_INFORMATION:
  606                 log_page_size = sizeof(struct nvme_health_information_page);
  607                 break;
  608         case NVME_LOG_FIRMWARE_SLOT:
  609                 log_page_size = sizeof(struct nvme_firmware_page);
  610                 break;
  611         default:
  612                 log_page_size = 0;
  613                 break;
  614         }
  615 
  616         return (log_page_size);
  617 }
  618 
  619 static void
  620 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
  621 {
  622         struct nvme_async_event_request *aer = arg;
  623 
  624         /*
  625          * If the log page fetch for some reason completed with an error,
  626          *  don't pass log page data to the consumers.  In practice, this case
  627          *  should never happen.
  628          */
  629         if (nvme_completion_is_error(cpl))
  630                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
  631                     aer->log_page_id, NULL, 0);
  632         else
  633                 /*
  634                  * Pass the cpl data from the original async event completion,
  635                  *  not the log page fetch.
  636                  */
  637                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
  638                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
  639 
  640         /*
  641          * Repost another asynchronous event request to replace the one
  642          *  that just completed.
  643          */
  644         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
  645 }
  646 
  647 static void
  648 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
  649 {
  650         struct nvme_async_event_request *aer = arg;
  651 
  652         if (nvme_completion_is_error(cpl)) {
  653                 /*
  654                  *  Do not retry failed async event requests.  This avoids
  655                  *  infinite loops where a new async event request is submitted
  656                  *  to replace the one just failed, only to fail again and
  657                  *  perpetuate the loop.
  658                  */
  659                 return;
  660         }
  661 
  662         /* Associated log page is in bits 23:16 of completion entry dw0. */
  663         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
  664 
  665         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
  666             aer->log_page_id);
  667 
  668         if (is_log_page_id_valid(aer->log_page_id)) {
  669                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
  670                     aer->log_page_id);
  671                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
  672                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
  673                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
  674                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
  675                     aer);
  676                 /* Wait to notify consumers until after log page is fetched. */
  677         } else {
  678                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
  679                     NULL, 0);
  680 
  681                 /*
  682                  * Repost another asynchronous event request to replace the one
  683                  *  that just completed.
  684                  */
  685                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
  686         }
  687 }
  688 
  689 static void
  690 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
  691     struct nvme_async_event_request *aer)
  692 {
  693         struct nvme_request *req;
  694 
  695         aer->ctrlr = ctrlr;
  696         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
  697         aer->req = req;
  698 
  699         /*
  700          * Disable timeout here, since asynchronous event requests should by
  701          *  nature never be timed out.
  702          */
  703         req->timeout = FALSE;
  704         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
  705         nvme_ctrlr_submit_admin_request(ctrlr, req);
  706 }
  707 
  708 static void
  709 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
  710 {
  711         union nvme_critical_warning_state       state;
  712         struct nvme_async_event_request         *aer;
  713         uint32_t                                i;
  714 
  715         state.raw = 0xFF;
  716         state.bits.reserved = 0;
  717         nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
  718 
  719         /* aerl is a zero-based value, so we need to add 1 here. */
  720         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
  721 
  722         /* Chatham doesn't support AERs. */
  723         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
  724                 ctrlr->num_aers = 0;
  725 
  726         for (i = 0; i < ctrlr->num_aers; i++) {
  727                 aer = &ctrlr->aer[i];
  728                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
  729         }
  730 }
  731 
  732 static void
  733 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
  734 {
  735 
  736         ctrlr->int_coal_time = 0;
  737         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
  738             &ctrlr->int_coal_time);
  739 
  740         ctrlr->int_coal_threshold = 0;
  741         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
  742             &ctrlr->int_coal_threshold);
  743 
  744         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
  745             ctrlr->int_coal_threshold, NULL, NULL);
  746 }
  747 
  748 static void
  749 nvme_ctrlr_start(void *ctrlr_arg)
  750 {
  751         struct nvme_controller *ctrlr = ctrlr_arg;
  752         int i;
  753 
  754         nvme_qpair_reset(&ctrlr->adminq);
  755         for (i = 0; i < ctrlr->num_io_queues; i++)
  756                 nvme_qpair_reset(&ctrlr->ioq[i]);
  757 
  758         nvme_admin_qpair_enable(&ctrlr->adminq);
  759 
  760         if (nvme_ctrlr_identify(ctrlr) != 0) {
  761                 nvme_ctrlr_fail(ctrlr);
  762                 return;
  763         }
  764 
  765         if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
  766                 nvme_ctrlr_fail(ctrlr);
  767                 return;
  768         }
  769 
  770         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
  771                 nvme_ctrlr_fail(ctrlr);
  772                 return;
  773         }
  774 
  775         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
  776                 nvme_ctrlr_fail(ctrlr);
  777                 return;
  778         }
  779 
  780         nvme_ctrlr_configure_aer(ctrlr);
  781         nvme_ctrlr_configure_int_coalescing(ctrlr);
  782 
  783         for (i = 0; i < ctrlr->num_io_queues; i++)
  784                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
  785 
  786         /*
  787          * Clear software progress marker to 0, to indicate to pre-boot
  788          *  software that OS driver load was successful.
  789          *
  790          * Chatham does not support this feature.
  791          */
  792         if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID)
  793                 nvme_ctrlr_cmd_set_feature(ctrlr,
  794                     NVME_FEAT_SOFTWARE_PROGRESS_MARKER, 0, NULL, 0, NULL, NULL);
  795 }
  796 
  797 void
  798 nvme_ctrlr_start_config_hook(void *arg)
  799 {
  800         struct nvme_controller *ctrlr = arg;
  801 
  802         nvme_ctrlr_start(ctrlr);
  803         config_intrhook_disestablish(&ctrlr->config_hook);
  804 }
  805 
  806 static void
  807 nvme_ctrlr_reset_task(void *arg, int pending)
  808 {
  809         struct nvme_controller  *ctrlr = arg;
  810         int                     status;
  811 
  812         nvme_printf(ctrlr, "resetting controller\n");
  813         status = nvme_ctrlr_hw_reset(ctrlr);
  814         /*
  815          * Use pause instead of DELAY, so that we yield to any nvme interrupt
  816          *  handlers on this CPU that were blocked on a qpair lock. We want
  817          *  all nvme interrupts completed before proceeding with restarting the
  818          *  controller.
  819          *
  820          * XXX - any way to guarantee the interrupt handlers have quiesced?
  821          */
  822         pause("nvmereset", hz / 10);
  823         if (status == 0)
  824                 nvme_ctrlr_start(ctrlr);
  825         else
  826                 nvme_ctrlr_fail(ctrlr);
  827 
  828         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
  829 }
  830 
  831 static void
  832 nvme_ctrlr_intx_handler(void *arg)
  833 {
  834         struct nvme_controller *ctrlr = arg;
  835 
  836         nvme_mmio_write_4(ctrlr, intms, 1);
  837 
  838         nvme_qpair_process_completions(&ctrlr->adminq);
  839 
  840         if (ctrlr->ioq[0].cpl)
  841                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
  842 
  843         nvme_mmio_write_4(ctrlr, intmc, 1);
  844 }
  845 
  846 static int
  847 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
  848 {
  849 
  850         ctrlr->num_io_queues = 1;
  851         ctrlr->per_cpu_io_queues = 0;
  852         ctrlr->rid = 0;
  853         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
  854             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
  855 
  856         if (ctrlr->res == NULL) {
  857                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
  858                 return (ENOMEM);
  859         }
  860 
  861         bus_setup_intr(ctrlr->dev, ctrlr->res,
  862             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
  863             ctrlr, &ctrlr->tag);
  864 
  865         if (ctrlr->tag == NULL) {
  866                 nvme_printf(ctrlr, "unable to setup intx handler\n");
  867                 return (ENOMEM);
  868         }
  869 
  870         return (0);
  871 }
  872 
  873 static void
  874 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
  875 {
  876         struct nvme_pt_command *pt = arg;
  877 
  878         bzero(&pt->cpl, sizeof(pt->cpl));
  879         pt->cpl.cdw0 = cpl->cdw0;
  880         pt->cpl.status = cpl->status;
  881         pt->cpl.status.p = 0;
  882 
  883         mtx_lock(pt->driver_lock);
  884         wakeup(pt);
  885         mtx_unlock(pt->driver_lock);
  886 }
  887 
  888 int
  889 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
  890     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
  891     int is_admin_cmd)
  892 {
  893         struct nvme_request     *req;
  894         struct mtx              *mtx;
  895         struct buf              *buf = NULL;
  896         int                     ret = 0;
  897 
  898         if (pt->len > 0) {
  899                 if (pt->len > ctrlr->max_xfer_size) {
  900                         nvme_printf(ctrlr, "pt->len (%d) "
  901                             "exceeds max_xfer_size (%d)\n", pt->len,
  902                             ctrlr->max_xfer_size);
  903                         return EIO;
  904                 }
  905                 if (is_user_buffer) {
  906                         /*
  907                          * Ensure the user buffer is wired for the duration of
  908                          *  this passthrough command.
  909                          */
  910                         PHOLD(curproc);
  911                         buf = getpbuf(NULL);
  912                         buf->b_saveaddr = buf->b_data;
  913                         buf->b_data = pt->buf;
  914                         buf->b_bufsize = pt->len;
  915                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
  916 #ifdef NVME_UNMAPPED_BIO_SUPPORT
  917                         if (vmapbuf(buf, 1) < 0) {
  918 #else
  919                         if (vmapbuf(buf) < 0) {
  920 #endif
  921                                 ret = EFAULT;
  922                                 goto err;
  923                         }
  924                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
  925                             nvme_pt_done, pt);
  926                 } else
  927                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
  928                             nvme_pt_done, pt);
  929         } else
  930                 req = nvme_allocate_request_null(nvme_pt_done, pt);
  931 
  932         req->cmd.opc    = pt->cmd.opc;
  933         req->cmd.cdw10  = pt->cmd.cdw10;
  934         req->cmd.cdw11  = pt->cmd.cdw11;
  935         req->cmd.cdw12  = pt->cmd.cdw12;
  936         req->cmd.cdw13  = pt->cmd.cdw13;
  937         req->cmd.cdw14  = pt->cmd.cdw14;
  938         req->cmd.cdw15  = pt->cmd.cdw15;
  939 
  940         req->cmd.nsid = nsid;
  941 
  942         if (is_admin_cmd)
  943                 mtx = &ctrlr->lock;
  944         else
  945                 mtx = &ctrlr->ns[nsid-1].lock;
  946 
  947         mtx_lock(mtx);
  948         pt->driver_lock = mtx;
  949 
  950         if (is_admin_cmd)
  951                 nvme_ctrlr_submit_admin_request(ctrlr, req);
  952         else
  953                 nvme_ctrlr_submit_io_request(ctrlr, req);
  954 
  955         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
  956         mtx_unlock(mtx);
  957 
  958         pt->driver_lock = NULL;
  959 
  960 err:
  961         if (buf != NULL) {
  962                 relpbuf(buf, NULL);
  963                 PRELE(curproc);
  964         }
  965 
  966         return (ret);
  967 }
  968 
  969 static int
  970 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
  971     struct thread *td)
  972 {
  973         struct nvme_controller                  *ctrlr;
  974         struct nvme_pt_command                  *pt;
  975 
  976         ctrlr = cdev->si_drv1;
  977 
  978         switch (cmd) {
  979         case NVME_RESET_CONTROLLER:
  980                 nvme_ctrlr_reset(ctrlr);
  981                 break;
  982         case NVME_PASSTHROUGH_CMD:
  983                 pt = (struct nvme_pt_command *)arg;
  984                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
  985                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
  986         default:
  987                 return (ENOTTY);
  988         }
  989 
  990         return (0);
  991 }
  992 
  993 static struct cdevsw nvme_ctrlr_cdevsw = {
  994         .d_version =    D_VERSION,
  995         .d_flags =      0,
  996         .d_ioctl =      nvme_ctrlr_ioctl
  997 };
  998 
  999 int
 1000 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
 1001 {
 1002         union cap_lo_register   cap_lo;
 1003         union cap_hi_register   cap_hi;
 1004         int                     num_vectors, per_cpu_io_queues, status = 0;
 1005         int                     timeout_period;
 1006 
 1007         ctrlr->dev = dev;
 1008 
 1009         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
 1010 
 1011         status = nvme_ctrlr_allocate_bar(ctrlr);
 1012 
 1013         if (status != 0)
 1014                 return (status);
 1015 
 1016 #ifdef CHATHAM2
 1017         if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
 1018                 status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
 1019                 if (status != 0)
 1020                         return (status);
 1021                 nvme_ctrlr_setup_chatham(ctrlr);
 1022         }
 1023 #endif
 1024 
 1025         /*
 1026          * Software emulators may set the doorbell stride to something
 1027          *  other than zero, but this driver is not set up to handle that.
 1028          */
 1029         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
 1030         if (cap_hi.bits.dstrd != 0)
 1031                 return (ENXIO);
 1032 
 1033         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
 1034 
 1035         /* Get ready timeout value from controller, in units of 500ms. */
 1036         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
 1037         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
 1038 
 1039         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
 1040         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
 1041         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
 1042         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
 1043         ctrlr->timeout_period = timeout_period;
 1044 
 1045         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
 1046         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
 1047 
 1048         per_cpu_io_queues = 1;
 1049         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
 1050         ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
 1051 
 1052         if (ctrlr->per_cpu_io_queues)
 1053                 ctrlr->num_io_queues = mp_ncpus;
 1054         else
 1055                 ctrlr->num_io_queues = 1;
 1056 
 1057         ctrlr->force_intx = 0;
 1058         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
 1059 
 1060         ctrlr->enable_aborts = 0;
 1061         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
 1062 
 1063         ctrlr->msix_enabled = 1;
 1064 
 1065         if (ctrlr->force_intx) {
 1066                 ctrlr->msix_enabled = 0;
 1067                 goto intx;
 1068         }
 1069 
 1070         /* One vector per IO queue, plus one vector for admin queue. */
 1071         num_vectors = ctrlr->num_io_queues + 1;
 1072 
 1073         if (pci_msix_count(dev) < num_vectors) {
 1074                 ctrlr->msix_enabled = 0;
 1075                 goto intx;
 1076         }
 1077 
 1078         if (pci_alloc_msix(dev, &num_vectors) != 0)
 1079                 ctrlr->msix_enabled = 0;
 1080 
 1081 intx:
 1082 
 1083         if (!ctrlr->msix_enabled)
 1084                 nvme_ctrlr_configure_intx(ctrlr);
 1085 
 1086         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
 1087         nvme_ctrlr_construct_admin_qpair(ctrlr);
 1088         status = nvme_ctrlr_construct_io_qpairs(ctrlr);
 1089 
 1090         if (status != 0)
 1091                 return (status);
 1092 
 1093         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
 1094             "nvme%d", device_get_unit(dev));
 1095 
 1096         if (ctrlr->cdev == NULL)
 1097                 return (ENXIO);
 1098 
 1099         ctrlr->cdev->si_drv1 = (void *)ctrlr;
 1100 
 1101         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
 1102             taskqueue_thread_enqueue, &ctrlr->taskqueue);
 1103         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
 1104 
 1105         ctrlr->is_resetting = 0;
 1106         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
 1107 
 1108         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
 1109         STAILQ_INIT(&ctrlr->fail_req);
 1110         ctrlr->is_failed = FALSE;
 1111 
 1112         return (0);
 1113 }
 1114 
 1115 void
 1116 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
 1117 {
 1118         int                             i;
 1119 
 1120         nvme_ctrlr_disable(ctrlr);
 1121         taskqueue_free(ctrlr->taskqueue);
 1122 
 1123         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
 1124                 nvme_ns_destruct(&ctrlr->ns[i]);
 1125 
 1126         if (ctrlr->cdev)
 1127                 destroy_dev(ctrlr->cdev);
 1128 
 1129         for (i = 0; i < ctrlr->num_io_queues; i++) {
 1130                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
 1131         }
 1132 
 1133         free(ctrlr->ioq, M_NVME);
 1134 
 1135         nvme_admin_qpair_destroy(&ctrlr->adminq);
 1136 
 1137         if (ctrlr->resource != NULL) {
 1138                 bus_release_resource(dev, SYS_RES_MEMORY,
 1139                     ctrlr->resource_id, ctrlr->resource);
 1140         }
 1141 
 1142         if (ctrlr->bar4_resource != NULL) {
 1143                 bus_release_resource(dev, SYS_RES_MEMORY,
 1144                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
 1145         }
 1146 
 1147 #ifdef CHATHAM2
 1148         if (ctrlr->chatham_resource != NULL) {
 1149                 bus_release_resource(dev, SYS_RES_MEMORY,
 1150                     ctrlr->chatham_resource_id, ctrlr->chatham_resource);
 1151         }
 1152 #endif
 1153 
 1154         if (ctrlr->tag)
 1155                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
 1156 
 1157         if (ctrlr->res)
 1158                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
 1159                     rman_get_rid(ctrlr->res), ctrlr->res);
 1160 
 1161         if (ctrlr->msix_enabled)
 1162                 pci_release_msi(dev);
 1163 }
 1164 
 1165 void
 1166 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
 1167     struct nvme_request *req)
 1168 {
 1169 
 1170         nvme_qpair_submit_request(&ctrlr->adminq, req);
 1171 }
 1172 
 1173 void
 1174 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
 1175     struct nvme_request *req)
 1176 {
 1177         struct nvme_qpair       *qpair;
 1178 
 1179         if (ctrlr->per_cpu_io_queues)
 1180                 qpair = &ctrlr->ioq[curcpu];
 1181         else
 1182                 qpair = &ctrlr->ioq[0];
 1183 
 1184         nvme_qpair_submit_request(qpair, req);
 1185 }
 1186 
 1187 device_t
 1188 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
 1189 {
 1190 
 1191         return (ctrlr->dev);
 1192 }
 1193 
 1194 const struct nvme_controller_data *
 1195 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
 1196 {
 1197 
 1198         return (&ctrlr->cdata);
 1199 }

Cache object: c81048a38b2586244f128a48e96437db


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.