FreeBSD/Linux Kernel Cross Reference
sys/dev/nvme/nvme_ns.c
1 /*-
2 * Copyright (C) 2012-2013 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <sys/disk.h>
35 #include <sys/fcntl.h>
36 #include <sys/ioccom.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/systm.h>
41
42 #include <dev/pci/pcivar.h>
43
44 #include <geom/geom.h>
45
46 #include "nvme_private.h"
47
48 static void nvme_bio_child_inbed(struct bio *parent, int bio_error);
49 static void nvme_bio_child_done(void *arg,
50 const struct nvme_completion *cpl);
51 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size,
52 uint32_t alignment);
53 static void nvme_free_child_bios(int num_bios,
54 struct bio **child_bios);
55 static struct bio ** nvme_allocate_child_bios(int num_bios);
56 static struct bio ** nvme_construct_child_bios(struct bio *bp,
57 uint32_t alignment,
58 int *num_bios);
59 static int nvme_ns_split_bio(struct nvme_namespace *ns,
60 struct bio *bp,
61 uint32_t alignment);
62
63 static int
64 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
65 struct thread *td)
66 {
67 struct nvme_namespace *ns;
68 struct nvme_controller *ctrlr;
69 struct nvme_pt_command *pt;
70
71 ns = cdev->si_drv1;
72 ctrlr = ns->ctrlr;
73
74 switch (cmd) {
75 case NVME_IO_TEST:
76 case NVME_BIO_TEST:
77 nvme_ns_test(ns, cmd, arg);
78 break;
79 case NVME_PASSTHROUGH_CMD:
80 pt = (struct nvme_pt_command *)arg;
81 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id,
82 1 /* is_user_buffer */, 0 /* is_admin_cmd */));
83 case NVME_GET_NSID:
84 {
85 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
86 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
87 sizeof(gnsid->cdev));
88 gnsid->nsid = ns->id;
89 break;
90 }
91 case DIOCGMEDIASIZE:
92 *(off_t *)arg = (off_t)nvme_ns_get_size(ns);
93 break;
94 case DIOCGSECTORSIZE:
95 *(u_int *)arg = nvme_ns_get_sector_size(ns);
96 break;
97 default:
98 return (ENOTTY);
99 }
100
101 return (0);
102 }
103
104 static int
105 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused,
106 struct thread *td)
107 {
108 int error = 0;
109
110 if (flags & FWRITE)
111 error = securelevel_gt(td->td_ucred, 0);
112
113 return (error);
114 }
115
116 static int
117 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused,
118 struct thread *td)
119 {
120
121 return (0);
122 }
123
124 static void
125 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl)
126 {
127 struct bio *bp = arg;
128
129 /*
130 * TODO: add more extensive translation of NVMe status codes
131 * to different bio error codes (i.e. EIO, EINVAL, etc.)
132 */
133 if (nvme_completion_is_error(cpl)) {
134 bp->bio_error = EIO;
135 bp->bio_flags |= BIO_ERROR;
136 bp->bio_resid = bp->bio_bcount;
137 } else
138 bp->bio_resid = 0;
139
140 biodone(bp);
141 }
142
143 static void
144 nvme_ns_strategy(struct bio *bp)
145 {
146 struct nvme_namespace *ns;
147 int err;
148
149 ns = bp->bio_dev->si_drv1;
150 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done);
151
152 if (err) {
153 bp->bio_error = err;
154 bp->bio_flags |= BIO_ERROR;
155 bp->bio_resid = bp->bio_bcount;
156 biodone(bp);
157 }
158
159 }
160
161 static struct cdevsw nvme_ns_cdevsw = {
162 .d_version = D_VERSION,
163 .d_flags = D_DISK,
164 .d_read = physread,
165 .d_write = physwrite,
166 .d_open = nvme_ns_open,
167 .d_close = nvme_ns_close,
168 .d_strategy = nvme_ns_strategy,
169 .d_ioctl = nvme_ns_ioctl
170 };
171
172 uint32_t
173 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns)
174 {
175 return ns->ctrlr->max_xfer_size;
176 }
177
178 uint32_t
179 nvme_ns_get_sector_size(struct nvme_namespace *ns)
180 {
181 return (1 << ns->data.lbaf[ns->data.flbas.format].lbads);
182 }
183
184 uint64_t
185 nvme_ns_get_num_sectors(struct nvme_namespace *ns)
186 {
187 return (ns->data.nsze);
188 }
189
190 uint64_t
191 nvme_ns_get_size(struct nvme_namespace *ns)
192 {
193 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns));
194 }
195
196 uint32_t
197 nvme_ns_get_flags(struct nvme_namespace *ns)
198 {
199 return (ns->flags);
200 }
201
202 const char *
203 nvme_ns_get_serial_number(struct nvme_namespace *ns)
204 {
205 return ((const char *)ns->ctrlr->cdata.sn);
206 }
207
208 const char *
209 nvme_ns_get_model_number(struct nvme_namespace *ns)
210 {
211 return ((const char *)ns->ctrlr->cdata.mn);
212 }
213
214 const struct nvme_namespace_data *
215 nvme_ns_get_data(struct nvme_namespace *ns)
216 {
217
218 return (&ns->data);
219 }
220
221 uint32_t
222 nvme_ns_get_stripesize(struct nvme_namespace *ns)
223 {
224
225 return (ns->stripesize);
226 }
227
228 static void
229 nvme_ns_bio_done(void *arg, const struct nvme_completion *status)
230 {
231 struct bio *bp = arg;
232 nvme_cb_fn_t bp_cb_fn;
233
234 bp_cb_fn = bp->bio_driver1;
235
236 if (bp->bio_driver2)
237 free(bp->bio_driver2, M_NVME);
238
239 if (nvme_completion_is_error(status)) {
240 bp->bio_flags |= BIO_ERROR;
241 if (bp->bio_error == 0)
242 bp->bio_error = EIO;
243 }
244
245 if ((bp->bio_flags & BIO_ERROR) == 0)
246 bp->bio_resid = 0;
247 else
248 bp->bio_resid = bp->bio_bcount;
249
250 bp_cb_fn(bp, status);
251 }
252
253 static void
254 nvme_bio_child_inbed(struct bio *parent, int bio_error)
255 {
256 struct nvme_completion parent_cpl;
257 int children, inbed;
258
259 if (bio_error != 0) {
260 parent->bio_flags |= BIO_ERROR;
261 parent->bio_error = bio_error;
262 }
263
264 /*
265 * atomic_fetchadd will return value before adding 1, so we still
266 * must add 1 to get the updated inbed number. Save bio_children
267 * before incrementing to guard against race conditions when
268 * two children bios complete on different queues.
269 */
270 children = atomic_load_acq_int(&parent->bio_children);
271 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1;
272 if (inbed == children) {
273 bzero(&parent_cpl, sizeof(parent_cpl));
274 if (parent->bio_flags & BIO_ERROR)
275 parent_cpl.status.sc = NVME_SC_DATA_TRANSFER_ERROR;
276 nvme_ns_bio_done(parent, &parent_cpl);
277 }
278 }
279
280 static void
281 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl)
282 {
283 struct bio *child = arg;
284 struct bio *parent;
285 int bio_error;
286
287 parent = child->bio_parent;
288 g_destroy_bio(child);
289 bio_error = nvme_completion_is_error(cpl) ? EIO : 0;
290 nvme_bio_child_inbed(parent, bio_error);
291 }
292
293 static uint32_t
294 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align)
295 {
296 uint32_t num_segs, offset, remainder;
297
298 if (align == 0)
299 return (1);
300
301 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n"));
302
303 num_segs = size / align;
304 remainder = size & (align - 1);
305 offset = addr & (align - 1);
306 if (remainder > 0 || offset > 0)
307 num_segs += 1 + (remainder + offset - 1) / align;
308 return (num_segs);
309 }
310
311 static void
312 nvme_free_child_bios(int num_bios, struct bio **child_bios)
313 {
314 int i;
315
316 for (i = 0; i < num_bios; i++) {
317 if (child_bios[i] != NULL)
318 g_destroy_bio(child_bios[i]);
319 }
320
321 free(child_bios, M_NVME);
322 }
323
324 static struct bio **
325 nvme_allocate_child_bios(int num_bios)
326 {
327 struct bio **child_bios;
328 int err = 0, i;
329
330 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT);
331 if (child_bios == NULL)
332 return (NULL);
333
334 for (i = 0; i < num_bios; i++) {
335 child_bios[i] = g_new_bio();
336 if (child_bios[i] == NULL)
337 err = ENOMEM;
338 }
339
340 if (err == ENOMEM) {
341 nvme_free_child_bios(num_bios, child_bios);
342 return (NULL);
343 }
344
345 return (child_bios);
346 }
347
348 static struct bio **
349 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios)
350 {
351 struct bio **child_bios;
352 struct bio *child;
353 uint64_t cur_offset;
354 caddr_t data;
355 uint32_t rem_bcount;
356 int i;
357 struct vm_page **ma;
358 uint32_t ma_offset;
359
360 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount,
361 alignment);
362 child_bios = nvme_allocate_child_bios(*num_bios);
363 if (child_bios == NULL)
364 return (NULL);
365
366 bp->bio_children = *num_bios;
367 bp->bio_inbed = 0;
368 cur_offset = bp->bio_offset;
369 rem_bcount = bp->bio_bcount;
370 data = bp->bio_data;
371 ma_offset = bp->bio_ma_offset;
372 ma = bp->bio_ma;
373
374 for (i = 0; i < *num_bios; i++) {
375 child = child_bios[i];
376 child->bio_parent = bp;
377 child->bio_cmd = bp->bio_cmd;
378 child->bio_offset = cur_offset;
379 child->bio_bcount = min(rem_bcount,
380 alignment - (cur_offset & (alignment - 1)));
381 child->bio_flags = bp->bio_flags;
382 if (bp->bio_flags & BIO_UNMAPPED) {
383 child->bio_ma_offset = ma_offset;
384 child->bio_ma = ma;
385 child->bio_ma_n =
386 nvme_get_num_segments(child->bio_ma_offset,
387 child->bio_bcount, PAGE_SIZE);
388 ma_offset = (ma_offset + child->bio_bcount) &
389 PAGE_MASK;
390 ma += child->bio_ma_n;
391 if (ma_offset != 0)
392 ma -= 1;
393 } else {
394 child->bio_data = data;
395 data += child->bio_bcount;
396 }
397 cur_offset += child->bio_bcount;
398 rem_bcount -= child->bio_bcount;
399 }
400
401 return (child_bios);
402 }
403
404 static int
405 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp,
406 uint32_t alignment)
407 {
408 struct bio *child;
409 struct bio **child_bios;
410 int err, i, num_bios;
411
412 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios);
413 if (child_bios == NULL)
414 return (ENOMEM);
415
416 for (i = 0; i < num_bios; i++) {
417 child = child_bios[i];
418 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done);
419 if (err != 0) {
420 nvme_bio_child_inbed(bp, err);
421 g_destroy_bio(child);
422 }
423 }
424
425 free(child_bios, M_NVME);
426 return (0);
427 }
428
429 int
430 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp,
431 nvme_cb_fn_t cb_fn)
432 {
433 struct nvme_dsm_range *dsm_range;
434 uint32_t num_bios;
435 int err;
436
437 bp->bio_driver1 = cb_fn;
438
439 if (ns->stripesize > 0 &&
440 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) {
441 num_bios = nvme_get_num_segments(bp->bio_offset,
442 bp->bio_bcount, ns->stripesize);
443 if (num_bios > 1)
444 return (nvme_ns_split_bio(ns, bp, ns->stripesize));
445 }
446
447 switch (bp->bio_cmd) {
448 case BIO_READ:
449 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp);
450 break;
451 case BIO_WRITE:
452 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp);
453 break;
454 case BIO_FLUSH:
455 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp);
456 break;
457 case BIO_DELETE:
458 dsm_range =
459 malloc(sizeof(struct nvme_dsm_range), M_NVME,
460 M_ZERO | M_WAITOK);
461 dsm_range->length =
462 bp->bio_bcount/nvme_ns_get_sector_size(ns);
463 dsm_range->starting_lba =
464 bp->bio_offset/nvme_ns_get_sector_size(ns);
465 bp->bio_driver2 = dsm_range;
466 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1,
467 nvme_ns_bio_done, bp);
468 if (err != 0)
469 free(dsm_range, M_NVME);
470 break;
471 default:
472 err = EIO;
473 break;
474 }
475
476 return (err);
477 }
478
479 int
480 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg,
481 int flag, struct thread *td)
482 {
483 return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td));
484 }
485
486 int
487 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id,
488 struct nvme_controller *ctrlr)
489 {
490 struct make_dev_args md_args;
491 struct nvme_completion_poll_status status;
492 int res;
493 int unit;
494
495 ns->ctrlr = ctrlr;
496 ns->id = id;
497 ns->stripesize = 0;
498
499 /*
500 * Older Intel devices advertise in vendor specific space an alignment
501 * that improves performance. If present use for the stripe size. NVMe
502 * 1.3 standardized this as NOIOB, and newer Intel drives use that.
503 */
504 switch (pci_get_devid(ctrlr->dev)) {
505 case 0x09538086: /* Intel DC PC3500 */
506 case 0x0a538086: /* Intel DC PC3520 */
507 case 0x0a548086: /* Intel DC PC4500 */
508 case 0x0a558086: /* Dell Intel P4600 */
509 if (ctrlr->cdata.vs[3] != 0)
510 ns->stripesize =
511 (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size;
512 break;
513 default:
514 break;
515 }
516
517 /*
518 * Namespaces are reconstructed after a controller reset, so check
519 * to make sure we only call mtx_init once on each mtx.
520 *
521 * TODO: Move this somewhere where it gets called at controller
522 * construction time, which is not invoked as part of each
523 * controller reset.
524 */
525 if (!mtx_initialized(&ns->lock))
526 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF);
527
528 status.done = 0;
529 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data,
530 nvme_completion_poll_cb, &status);
531 while (!atomic_load_acq_int(&status.done))
532 pause("nvme", 1);
533 if (nvme_completion_is_error(&status.cpl)) {
534 nvme_printf(ctrlr, "nvme_identify_namespace failed\n");
535 return (ENXIO);
536 }
537
538 /*
539 * If the size of is zero, chances are this isn't a valid
540 * namespace (eg one that's not been configured yet). The
541 * standard says the entire id will be zeros, so this is a
542 * cheap way to test for that.
543 */
544 if (ns->data.nsze == 0)
545 return (ENXIO);
546
547 /*
548 * Note: format is a 0-based value, so > is appropriate here,
549 * not >=.
550 */
551 if (ns->data.flbas.format > ns->data.nlbaf) {
552 printf("lba format %d exceeds number supported (%d)\n",
553 ns->data.flbas.format, ns->data.nlbaf+1);
554 return (ENXIO);
555 }
556
557 if (ctrlr->cdata.oncs.dsm)
558 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED;
559
560 if (ctrlr->cdata.vwc.present)
561 ns->flags |= NVME_NS_FLUSH_SUPPORTED;
562
563 /*
564 * cdev may have already been created, if we are reconstructing the
565 * namespace after a controller-level reset.
566 */
567 if (ns->cdev != NULL)
568 return (0);
569
570 /*
571 * Namespace IDs start at 1, so we need to subtract 1 to create a
572 * correct unit number.
573 */
574 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1;
575
576 make_dev_args_init(&md_args);
577 md_args.mda_devsw = &nvme_ns_cdevsw;
578 md_args.mda_unit = unit;
579 md_args.mda_mode = 0600;
580 md_args.mda_si_drv1 = ns;
581 res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d",
582 device_get_unit(ctrlr->dev), ns->id);
583 if (res != 0)
584 return (ENXIO);
585
586 ns->cdev->si_flags |= SI_UNMAPPED;
587
588 return (0);
589 }
590
591 void nvme_ns_destruct(struct nvme_namespace *ns)
592 {
593
594 if (ns->cdev != NULL)
595 destroy_dev(ns->cdev);
596 }
Cache object: d6ee9c2aee4d768147479a33b77f31d5
|