The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/nvme/nvme_qpair.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (C) 2012-2014 Intel Corporation
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/conf.h>
   35 #include <sys/domainset.h>
   36 #include <sys/proc.h>
   37 
   38 #include <dev/pci/pcivar.h>
   39 
   40 #include "nvme_private.h"
   41 
   42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
   43 #define DO_NOT_RETRY    1
   44 
   45 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
   46                                            struct nvme_request *req);
   47 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
   48 
   49 struct nvme_opcode_string {
   50         uint16_t        opc;
   51         const char *    str;
   52 };
   53 
   54 static struct nvme_opcode_string admin_opcode[] = {
   55         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
   56         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
   57         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
   58         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
   59         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
   60         { NVME_OPC_IDENTIFY, "IDENTIFY" },
   61         { NVME_OPC_ABORT, "ABORT" },
   62         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
   63         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
   64         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
   65         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
   66         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
   67         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
   68         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
   69         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
   70         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
   71         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
   72         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
   73         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
   74         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
   75         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
   76         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
   77         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
   78         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
   79         { NVME_OPC_SANITIZE, "SANITIZE" },
   80         { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
   81         { 0xFFFF, "ADMIN COMMAND" }
   82 };
   83 
   84 static struct nvme_opcode_string io_opcode[] = {
   85         { NVME_OPC_FLUSH, "FLUSH" },
   86         { NVME_OPC_WRITE, "WRITE" },
   87         { NVME_OPC_READ, "READ" },
   88         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
   89         { NVME_OPC_COMPARE, "COMPARE" },
   90         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
   91         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
   92         { NVME_OPC_VERIFY, "VERIFY" },
   93         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
   94         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
   95         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
   96         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
   97         { 0xFFFF, "IO COMMAND" }
   98 };
   99 
  100 static const char *
  101 get_admin_opcode_string(uint16_t opc)
  102 {
  103         struct nvme_opcode_string *entry;
  104 
  105         entry = admin_opcode;
  106 
  107         while (entry->opc != 0xFFFF) {
  108                 if (entry->opc == opc)
  109                         return (entry->str);
  110                 entry++;
  111         }
  112         return (entry->str);
  113 }
  114 
  115 static const char *
  116 get_io_opcode_string(uint16_t opc)
  117 {
  118         struct nvme_opcode_string *entry;
  119 
  120         entry = io_opcode;
  121 
  122         while (entry->opc != 0xFFFF) {
  123                 if (entry->opc == opc)
  124                         return (entry->str);
  125                 entry++;
  126         }
  127         return (entry->str);
  128 }
  129 
  130 static void
  131 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
  132     struct nvme_command *cmd)
  133 {
  134 
  135         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
  136             "cdw10:%08x cdw11:%08x\n",
  137             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
  138             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
  139 }
  140 
  141 static void
  142 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
  143     struct nvme_command *cmd)
  144 {
  145 
  146         switch (cmd->opc) {
  147         case NVME_OPC_WRITE:
  148         case NVME_OPC_READ:
  149         case NVME_OPC_WRITE_UNCORRECTABLE:
  150         case NVME_OPC_COMPARE:
  151         case NVME_OPC_WRITE_ZEROES:
  152         case NVME_OPC_VERIFY:
  153                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
  154                     "lba:%llu len:%d\n",
  155                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
  156                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
  157                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
  158                 break;
  159         case NVME_OPC_FLUSH:
  160         case NVME_OPC_DATASET_MANAGEMENT:
  161         case NVME_OPC_RESERVATION_REGISTER:
  162         case NVME_OPC_RESERVATION_REPORT:
  163         case NVME_OPC_RESERVATION_ACQUIRE:
  164         case NVME_OPC_RESERVATION_RELEASE:
  165                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
  166                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
  167                 break;
  168         default:
  169                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
  170                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
  171                     cmd->cid, le32toh(cmd->nsid));
  172                 break;
  173         }
  174 }
  175 
  176 static void
  177 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
  178 {
  179         if (qpair->id == 0)
  180                 nvme_admin_qpair_print_command(qpair, cmd);
  181         else
  182                 nvme_io_qpair_print_command(qpair, cmd);
  183         if (nvme_verbose_cmd_dump) {
  184                 nvme_printf(qpair->ctrlr,
  185                     "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
  186                     cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
  187                     (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
  188                 nvme_printf(qpair->ctrlr,
  189                     "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
  190                     cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
  191                     cmd->cdw15);
  192         }
  193 }
  194 
  195 struct nvme_status_string {
  196         uint16_t        sc;
  197         const char *    str;
  198 };
  199 
  200 static struct nvme_status_string generic_status[] = {
  201         { NVME_SC_SUCCESS, "SUCCESS" },
  202         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
  203         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
  204         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
  205         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
  206         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
  207         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
  208         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
  209         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
  210         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
  211         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
  212         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
  213         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
  214         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
  215         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
  216         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
  217         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
  218         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
  219         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
  220         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
  221         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
  222         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
  223         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
  224         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
  225         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
  226         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
  227         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
  228         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
  229         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
  230         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
  231         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
  232         { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
  233         { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
  234         { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
  235 
  236         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
  237         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
  238         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
  239         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
  240         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
  241         { 0xFFFF, "GENERIC" }
  242 };
  243 
  244 static struct nvme_status_string command_specific_status[] = {
  245         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
  246         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
  247         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
  248         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
  249         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
  250         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
  251         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
  252         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
  253         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
  254         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
  255         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
  256         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
  257         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
  258         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
  259         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
  260         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
  261         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
  262         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
  263         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
  264         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
  265         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
  266         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
  267         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
  268         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
  269         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
  270         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
  271         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
  272         { NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
  273         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
  274         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
  275         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
  276         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
  277         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
  278         { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
  279         { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
  280         { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
  281 
  282         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
  283         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
  284         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
  285         { 0xFFFF, "COMMAND SPECIFIC" }
  286 };
  287 
  288 static struct nvme_status_string media_error_status[] = {
  289         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
  290         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
  291         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
  292         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
  293         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
  294         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
  295         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
  296         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
  297         { 0xFFFF, "MEDIA ERROR" }
  298 };
  299 
  300 static struct nvme_status_string path_related_status[] = {
  301         { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
  302         { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
  303         { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
  304         { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
  305         { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
  306         { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
  307         { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
  308         { 0xFFFF, "PATH RELATED" },
  309 };
  310 
  311 static const char *
  312 get_status_string(uint16_t sct, uint16_t sc)
  313 {
  314         struct nvme_status_string *entry;
  315 
  316         switch (sct) {
  317         case NVME_SCT_GENERIC:
  318                 entry = generic_status;
  319                 break;
  320         case NVME_SCT_COMMAND_SPECIFIC:
  321                 entry = command_specific_status;
  322                 break;
  323         case NVME_SCT_MEDIA_ERROR:
  324                 entry = media_error_status;
  325                 break;
  326         case NVME_SCT_PATH_RELATED:
  327                 entry = path_related_status;
  328                 break;
  329         case NVME_SCT_VENDOR_SPECIFIC:
  330                 return ("VENDOR SPECIFIC");
  331         default:
  332                 return ("RESERVED");
  333         }
  334 
  335         while (entry->sc != 0xFFFF) {
  336                 if (entry->sc == sc)
  337                         return (entry->str);
  338                 entry++;
  339         }
  340         return (entry->str);
  341 }
  342 
  343 static void
  344 nvme_qpair_print_completion(struct nvme_qpair *qpair,
  345     struct nvme_completion *cpl)
  346 {
  347         uint8_t sct, sc, crd, m, dnr;
  348 
  349         sct = NVME_STATUS_GET_SCT(cpl->status);
  350         sc = NVME_STATUS_GET_SC(cpl->status);
  351         crd = NVME_STATUS_GET_CRD(cpl->status);
  352         m = NVME_STATUS_GET_M(cpl->status);
  353         dnr = NVME_STATUS_GET_DNR(cpl->status);
  354 
  355         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) crd:%x m:%x dnr:%x "
  356             "sqid:%d cid:%d cdw0:%x\n",
  357             get_status_string(sct, sc), sct, sc, crd, m, dnr,
  358             cpl->sqid, cpl->cid, cpl->cdw0);
  359 }
  360 
  361 static bool
  362 nvme_completion_is_retry(const struct nvme_completion *cpl)
  363 {
  364         uint8_t sct, sc, dnr;
  365 
  366         sct = NVME_STATUS_GET_SCT(cpl->status);
  367         sc = NVME_STATUS_GET_SC(cpl->status);
  368         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
  369 
  370         /*
  371          * TODO: spec is not clear how commands that are aborted due
  372          *  to TLER will be marked.  So for now, it seems
  373          *  NAMESPACE_NOT_READY is the only case where we should
  374          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
  375          *  set the DNR bit correctly since the driver controls that.
  376          */
  377         switch (sct) {
  378         case NVME_SCT_GENERIC:
  379                 switch (sc) {
  380                 case NVME_SC_ABORTED_BY_REQUEST:
  381                 case NVME_SC_NAMESPACE_NOT_READY:
  382                         if (dnr)
  383                                 return (0);
  384                         else
  385                                 return (1);
  386                 case NVME_SC_INVALID_OPCODE:
  387                 case NVME_SC_INVALID_FIELD:
  388                 case NVME_SC_COMMAND_ID_CONFLICT:
  389                 case NVME_SC_DATA_TRANSFER_ERROR:
  390                 case NVME_SC_ABORTED_POWER_LOSS:
  391                 case NVME_SC_INTERNAL_DEVICE_ERROR:
  392                 case NVME_SC_ABORTED_SQ_DELETION:
  393                 case NVME_SC_ABORTED_FAILED_FUSED:
  394                 case NVME_SC_ABORTED_MISSING_FUSED:
  395                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
  396                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
  397                 case NVME_SC_LBA_OUT_OF_RANGE:
  398                 case NVME_SC_CAPACITY_EXCEEDED:
  399                 default:
  400                         return (0);
  401                 }
  402         case NVME_SCT_COMMAND_SPECIFIC:
  403         case NVME_SCT_MEDIA_ERROR:
  404                 return (0);
  405         case NVME_SCT_PATH_RELATED:
  406                 switch (sc) {
  407                 case NVME_SC_INTERNAL_PATH_ERROR:
  408                         if (dnr)
  409                                 return (0);
  410                         else
  411                                 return (1);
  412                 default:
  413                         return (0);
  414                 }
  415         case NVME_SCT_VENDOR_SPECIFIC:
  416         default:
  417                 return (0);
  418         }
  419 }
  420 
  421 static void
  422 nvme_qpair_complete_tracker(struct nvme_tracker *tr,
  423     struct nvme_completion *cpl, error_print_t print_on_error)
  424 {
  425         struct nvme_qpair * qpair = tr->qpair;
  426         struct nvme_request     *req;
  427         bool                    retry, error, retriable;
  428 
  429         req = tr->req;
  430         error = nvme_completion_is_error(cpl);
  431         retriable = nvme_completion_is_retry(cpl);
  432         retry = error && retriable && req->retries < nvme_retry_count;
  433         if (retry)
  434                 qpair->num_retries++;
  435         if (error && req->retries >= nvme_retry_count && retriable)
  436                 qpair->num_failures++;
  437 
  438         if (error && (print_on_error == ERROR_PRINT_ALL ||
  439                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
  440                 nvme_qpair_print_command(qpair, &req->cmd);
  441                 nvme_qpair_print_completion(qpair, cpl);
  442         }
  443 
  444         qpair->act_tr[cpl->cid] = NULL;
  445 
  446         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
  447 
  448         if (!retry) {
  449                 if (req->type != NVME_REQUEST_NULL) {
  450                         bus_dmamap_sync(qpair->dma_tag_payload,
  451                             tr->payload_dma_map,
  452                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  453                 }
  454                 if (req->cb_fn)
  455                         req->cb_fn(req->cb_arg, cpl);
  456         }
  457 
  458         mtx_lock(&qpair->lock);
  459 
  460         if (retry) {
  461                 req->retries++;
  462                 nvme_qpair_submit_tracker(qpair, tr);
  463         } else {
  464                 if (req->type != NVME_REQUEST_NULL) {
  465                         bus_dmamap_unload(qpair->dma_tag_payload,
  466                             tr->payload_dma_map);
  467                 }
  468 
  469                 nvme_free_request(req);
  470                 tr->req = NULL;
  471 
  472                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
  473                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
  474 
  475                 /*
  476                  * If the controller is in the middle of resetting, don't
  477                  *  try to submit queued requests here - let the reset logic
  478                  *  handle that instead.
  479                  */
  480                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
  481                     !qpair->ctrlr->is_resetting) {
  482                         req = STAILQ_FIRST(&qpair->queued_req);
  483                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
  484                         _nvme_qpair_submit_request(qpair, req);
  485                 }
  486         }
  487 
  488         mtx_unlock(&qpair->lock);
  489 }
  490 
  491 static void
  492 nvme_qpair_manual_complete_tracker(
  493     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
  494     error_print_t print_on_error)
  495 {
  496         struct nvme_completion  cpl;
  497 
  498         memset(&cpl, 0, sizeof(cpl));
  499 
  500         struct nvme_qpair * qpair = tr->qpair;
  501 
  502         cpl.sqid = qpair->id;
  503         cpl.cid = tr->cid;
  504         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
  505         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
  506         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
  507         nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
  508 }
  509 
  510 void
  511 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
  512     struct nvme_request *req, uint32_t sct, uint32_t sc)
  513 {
  514         struct nvme_completion  cpl;
  515         bool                    error;
  516 
  517         memset(&cpl, 0, sizeof(cpl));
  518         cpl.sqid = qpair->id;
  519         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
  520         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
  521 
  522         error = nvme_completion_is_error(&cpl);
  523 
  524         if (error) {
  525                 nvme_qpair_print_command(qpair, &req->cmd);
  526                 nvme_qpair_print_completion(qpair, &cpl);
  527         }
  528 
  529         if (req->cb_fn)
  530                 req->cb_fn(req->cb_arg, &cpl);
  531 
  532         nvme_free_request(req);
  533 }
  534 
  535 bool
  536 nvme_qpair_process_completions(struct nvme_qpair *qpair)
  537 {
  538         struct nvme_tracker     *tr;
  539         struct nvme_completion  cpl;
  540         int done = 0;
  541         bool in_panic = dumping || SCHEDULER_STOPPED();
  542 
  543         /*
  544          * qpair is not enabled, likely because a controller reset is in
  545          * progress.  Ignore the interrupt - any I/O that was associated with
  546          * this interrupt will get retried when the reset is complete. Any
  547          * pending completions for when we're in startup will be completed
  548          * as soon as initialization is complete and we start sending commands
  549          * to the device.
  550          */
  551         if (qpair->recovery_state != RECOVERY_NONE) {
  552                 qpair->num_ignored++;
  553                 return (false);
  554         }
  555 
  556         /*
  557          * Sanity check initialization. After we reset the hardware, the phase
  558          * is defined to be 1. So if we get here with zero prior calls and the
  559          * phase is 0, it means that we've lost a race between the
  560          * initialization and the ISR running. With the phase wrong, we'll
  561          * process a bunch of completions that aren't really completions leading
  562          * to a KASSERT below.
  563          */
  564         KASSERT(!(qpair->num_intr_handler_calls == 0 && qpair->phase == 0),
  565             ("%s: Phase wrong for first interrupt call.",
  566                 device_get_nameunit(qpair->ctrlr->dev)));
  567 
  568         qpair->num_intr_handler_calls++;
  569 
  570         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
  571             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  572         /*
  573          * A panic can stop the CPU this routine is running on at any point.  If
  574          * we're called during a panic, complete the sq_head wrap protocol for
  575          * the case where we are interrupted just after the increment at 1
  576          * below, but before we can reset cq_head to zero at 2. Also cope with
  577          * the case where we do the zero at 2, but may or may not have done the
  578          * phase adjustment at step 3. The panic machinery flushes all pending
  579          * memory writes, so we can make these strong ordering assumptions
  580          * that would otherwise be unwise if we were racing in real time.
  581          */
  582         if (__predict_false(in_panic)) {
  583                 if (qpair->cq_head == qpair->num_entries) {
  584                         /*
  585                          * Here we know that we need to zero cq_head and then negate
  586                          * the phase, which hasn't been assigned if cq_head isn't
  587                          * zero due to the atomic_store_rel.
  588                          */
  589                         qpair->cq_head = 0;
  590                         qpair->phase = !qpair->phase;
  591                 } else if (qpair->cq_head == 0) {
  592                         /*
  593                          * In this case, we know that the assignment at 2
  594                          * happened below, but we don't know if it 3 happened or
  595                          * not. To do this, we look at the last completion
  596                          * entry and set the phase to the opposite phase
  597                          * that it has. This gets us back in sync
  598                          */
  599                         cpl = qpair->cpl[qpair->num_entries - 1];
  600                         nvme_completion_swapbytes(&cpl);
  601                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
  602                 }
  603         }
  604 
  605         while (1) {
  606                 uint16_t status;
  607 
  608                 /*
  609                  * We need to do this dance to avoid a race between the host and
  610                  * the device where the device overtakes the host while the host
  611                  * is reading this record, leaving the status field 'new' and
  612                  * the sqhd and cid fields potentially stale. If the phase
  613                  * doesn't match, that means status hasn't yet been updated and
  614                  * we'll get any pending changes next time. It also means that
  615                  * the phase must be the same the second time. We have to sync
  616                  * before reading to ensure any bouncing completes.
  617                  */
  618                 status = le16toh(qpair->cpl[qpair->cq_head].status);
  619                 if (NVME_STATUS_GET_P(status) != qpair->phase)
  620                         break;
  621 
  622                 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
  623                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  624                 cpl = qpair->cpl[qpair->cq_head];
  625                 nvme_completion_swapbytes(&cpl);
  626 
  627                 KASSERT(
  628                     NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status),
  629                     ("Phase unexpectedly inconsistent"));
  630 
  631                 if (cpl.cid < qpair->num_trackers)
  632                         tr = qpair->act_tr[cpl.cid];
  633                 else
  634                         tr = NULL;
  635 
  636                 done++;
  637                 if (tr != NULL) {
  638                         nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
  639                         qpair->sq_head = cpl.sqhd;
  640                 } else if (!in_panic) {
  641                         /*
  642                          * A missing tracker is normally an error.  However, a
  643                          * panic can stop the CPU this routine is running on
  644                          * after completing an I/O but before updating
  645                          * qpair->cq_head at 1 below.  Later, we re-enter this
  646                          * routine to poll I/O associated with the kernel
  647                          * dump. We find that the tr has been set to null before
  648                          * calling the completion routine.  If it hasn't
  649                          * completed (or it triggers a panic), then '1' below
  650                          * won't have updated cq_head. Rather than panic again,
  651                          * ignore this condition because it's not unexpected.
  652                          */
  653                         nvme_printf(qpair->ctrlr,
  654                             "cpl (cid = %u) does not map to outstanding cmd\n",
  655                                 cpl.cid);
  656                         /* nvme_dump_completion expects device endianess */
  657                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
  658                         KASSERT(0, ("received completion for unknown cmd"));
  659                 }
  660 
  661                 /*
  662                  * There's a number of races with the following (see above) when
  663                  * the system panics. We compensate for each one of them by
  664                  * using the atomic store to force strong ordering (at least when
  665                  * viewed in the aftermath of a panic).
  666                  */
  667                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
  668                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
  669                         qpair->phase = !qpair->phase;                   /* 3 */
  670                 }
  671         }
  672 
  673         if (done != 0) {
  674                 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
  675                     qpair->cq_hdbl_off, qpair->cq_head);
  676         }
  677 
  678         return (done != 0);
  679 }
  680 
  681 static void
  682 nvme_qpair_msi_handler(void *arg)
  683 {
  684         struct nvme_qpair *qpair = arg;
  685 
  686         nvme_qpair_process_completions(qpair);
  687 }
  688 
  689 int
  690 nvme_qpair_construct(struct nvme_qpair *qpair,
  691     uint32_t num_entries, uint32_t num_trackers,
  692     struct nvme_controller *ctrlr)
  693 {
  694         struct nvme_tracker     *tr;
  695         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
  696         uint64_t                queuemem_phys, prpmem_phys, list_phys;
  697         uint8_t                 *queuemem, *prpmem, *prp_list;
  698         int                     i, err;
  699 
  700         qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0;
  701         qpair->num_entries = num_entries;
  702         qpair->num_trackers = num_trackers;
  703         qpair->ctrlr = ctrlr;
  704 
  705         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
  706 
  707         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
  708         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
  709             4, ctrlr->page_size, BUS_SPACE_MAXADDR,
  710             BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
  711             howmany(ctrlr->max_xfer_size, ctrlr->page_size) + 1,
  712             ctrlr->page_size, 0,
  713             NULL, NULL, &qpair->dma_tag_payload);
  714         if (err != 0) {
  715                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
  716                 goto out;
  717         }
  718 
  719         /*
  720          * Each component must be page aligned, and individual PRP lists
  721          * cannot cross a page boundary.
  722          */
  723         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
  724         cmdsz = roundup2(cmdsz, ctrlr->page_size);
  725         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
  726         cplsz = roundup2(cplsz, ctrlr->page_size);
  727         /*
  728          * For commands requiring more than 2 PRP entries, one PRP will be
  729          * embedded in the command (prp1), and the rest of the PRP entries
  730          * will be in a list pointed to by the command (prp2).
  731          */
  732         prpsz = sizeof(uint64_t) *
  733             howmany(ctrlr->max_xfer_size, ctrlr->page_size);
  734         prpmemsz = qpair->num_trackers * prpsz;
  735         allocsz = cmdsz + cplsz + prpmemsz;
  736 
  737         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
  738             ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
  739             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
  740         if (err != 0) {
  741                 nvme_printf(ctrlr, "tag create failed %d\n", err);
  742                 goto out;
  743         }
  744         bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
  745 
  746         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
  747              BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
  748                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
  749                 goto out;
  750         }
  751 
  752         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
  753             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
  754                 nvme_printf(ctrlr, "failed to load qpair memory\n");
  755                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
  756                     qpair->queuemem_map);
  757                 goto out;
  758         }
  759 
  760         qpair->num_cmds = 0;
  761         qpair->num_intr_handler_calls = 0;
  762         qpair->num_retries = 0;
  763         qpair->num_failures = 0;
  764         qpair->num_ignored = 0;
  765         qpair->cmd = (struct nvme_command *)queuemem;
  766         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
  767         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
  768         qpair->cmd_bus_addr = queuemem_phys;
  769         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
  770         prpmem_phys = queuemem_phys + cmdsz + cplsz;
  771 
  772         callout_init(&qpair->timer, 1);
  773         qpair->timer_armed = false;
  774         qpair->recovery_state = RECOVERY_WAITING;
  775 
  776         /*
  777          * Calcuate the stride of the doorbell register. Many emulators set this
  778          * value to correspond to a cache line. However, some hardware has set
  779          * it to various small values.
  780          */
  781         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
  782             (qpair->id << (ctrlr->dstrd + 1));
  783         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
  784             (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
  785 
  786         TAILQ_INIT(&qpair->free_tr);
  787         TAILQ_INIT(&qpair->outstanding_tr);
  788         STAILQ_INIT(&qpair->queued_req);
  789 
  790         list_phys = prpmem_phys;
  791         prp_list = prpmem;
  792         for (i = 0; i < qpair->num_trackers; i++) {
  793                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
  794                         qpair->num_trackers = i;
  795                         break;
  796                 }
  797 
  798                 /*
  799                  * Make sure that the PRP list for this tracker doesn't
  800                  * overflow to another nvme page.
  801                  */
  802                 if (trunc_page(list_phys) !=
  803                     trunc_page(list_phys + prpsz - 1)) {
  804                         list_phys = roundup2(list_phys, ctrlr->page_size);
  805                         prp_list =
  806                             (uint8_t *)roundup2((uintptr_t)prp_list, ctrlr->page_size);
  807                 }
  808 
  809                 tr = malloc_domainset(sizeof(*tr), M_NVME,
  810                     DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
  811                 bus_dmamap_create(qpair->dma_tag_payload, 0,
  812                     &tr->payload_dma_map);
  813                 tr->cid = i;
  814                 tr->qpair = qpair;
  815                 tr->prp = (uint64_t *)prp_list;
  816                 tr->prp_bus_addr = list_phys;
  817                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
  818                 list_phys += prpsz;
  819                 prp_list += prpsz;
  820         }
  821 
  822         if (qpair->num_trackers == 0) {
  823                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
  824                 goto out;
  825         }
  826 
  827         qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
  828             qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
  829             M_ZERO | M_WAITOK);
  830 
  831         if (ctrlr->msi_count > 1) {
  832                 /*
  833                  * MSI-X vector resource IDs start at 1, so we add one to
  834                  *  the queue's vector to get the corresponding rid to use.
  835                  */
  836                 qpair->rid = qpair->vector + 1;
  837 
  838                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
  839                     &qpair->rid, RF_ACTIVE);
  840                 if (qpair->res == NULL) {
  841                         nvme_printf(ctrlr, "unable to allocate MSI\n");
  842                         goto out;
  843                 }
  844                 if (bus_setup_intr(ctrlr->dev, qpair->res,
  845                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
  846                     nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) {
  847                         nvme_printf(ctrlr, "unable to setup MSI\n");
  848                         goto out;
  849                 }
  850                 if (qpair->id == 0) {
  851                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
  852                             "admin");
  853                 } else {
  854                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
  855                             "io%d", qpair->id - 1);
  856                 }
  857         }
  858 
  859         return (0);
  860 
  861 out:
  862         nvme_qpair_destroy(qpair);
  863         return (ENOMEM);
  864 }
  865 
  866 static void
  867 nvme_qpair_destroy(struct nvme_qpair *qpair)
  868 {
  869         struct nvme_tracker     *tr;
  870 
  871         callout_drain(&qpair->timer);
  872 
  873         if (qpair->tag) {
  874                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
  875                 qpair->tag = NULL;
  876         }
  877 
  878         if (qpair->act_tr) {
  879                 free(qpair->act_tr, M_NVME);
  880                 qpair->act_tr = NULL;
  881         }
  882 
  883         while (!TAILQ_EMPTY(&qpair->free_tr)) {
  884                 tr = TAILQ_FIRST(&qpair->free_tr);
  885                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
  886                 bus_dmamap_destroy(qpair->dma_tag_payload,
  887                     tr->payload_dma_map);
  888                 free(tr, M_NVME);
  889         }
  890 
  891         if (qpair->cmd != NULL) {
  892                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
  893                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
  894                     qpair->queuemem_map);
  895                 qpair->cmd = NULL;
  896         }
  897 
  898         if (qpair->dma_tag) {
  899                 bus_dma_tag_destroy(qpair->dma_tag);
  900                 qpair->dma_tag = NULL;
  901         }
  902 
  903         if (qpair->dma_tag_payload) {
  904                 bus_dma_tag_destroy(qpair->dma_tag_payload);
  905                 qpair->dma_tag_payload = NULL;
  906         }
  907 
  908         if (mtx_initialized(&qpair->lock))
  909                 mtx_destroy(&qpair->lock);
  910 
  911         if (qpair->res) {
  912                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
  913                     rman_get_rid(qpair->res), qpair->res);
  914                 qpair->res = NULL;
  915         }
  916 }
  917 
  918 static void
  919 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
  920 {
  921         struct nvme_tracker     *tr;
  922 
  923         tr = TAILQ_FIRST(&qpair->outstanding_tr);
  924         while (tr != NULL) {
  925                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
  926                         nvme_qpair_manual_complete_tracker(tr,
  927                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
  928                             ERROR_PRINT_NONE);
  929                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
  930                 } else {
  931                         tr = TAILQ_NEXT(tr, tailq);
  932                 }
  933         }
  934 }
  935 
  936 void
  937 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
  938 {
  939 
  940         nvme_admin_qpair_abort_aers(qpair);
  941         nvme_qpair_destroy(qpair);
  942 }
  943 
  944 void
  945 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
  946 {
  947 
  948         nvme_qpair_destroy(qpair);
  949 }
  950 
  951 static void
  952 nvme_qpair_timeout(void *arg)
  953 {
  954         struct nvme_qpair       *qpair = arg;
  955         struct nvme_controller  *ctrlr = qpair->ctrlr;
  956         struct nvme_tracker     *tr;
  957         sbintime_t              now;
  958         bool                    idle;
  959         uint32_t                csts;
  960         uint8_t                 cfs;
  961 
  962         mtx_lock(&qpair->lock);
  963         idle = TAILQ_EMPTY(&qpair->outstanding_tr);
  964 again:
  965         switch (qpair->recovery_state) {
  966         case RECOVERY_NONE:
  967                 if (idle)
  968                         break;
  969                 now = getsbinuptime();
  970                 idle = true;
  971                 TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) {
  972                         if (tr->deadline == SBT_MAX)
  973                                 continue;
  974                         idle = false;
  975                         if (now > tr->deadline) {
  976                                 /*
  977                                  * We're now passed our earliest deadline. We
  978                                  * need to do expensive things to cope, but next
  979                                  * time. Flag that and close the door to any
  980                                  * further processing.
  981                                  */
  982                                 qpair->recovery_state = RECOVERY_START;
  983                                 nvme_printf(ctrlr, "RECOVERY_START %jd vs %jd\n",
  984                                     (uintmax_t)now, (uintmax_t)tr->deadline);
  985                                 break;
  986                         }
  987                 }
  988                 break;
  989         case RECOVERY_START:
  990                 /*
  991                  * Read csts to get value of cfs - controller fatal status.
  992                  * If no fatal status, try to call the completion routine, and
  993                  * if completes transactions, report a missed interrupt and
  994                  * return (this may need to be rate limited). Otherwise, if
  995                  * aborts are enabled and the controller is not reporting
  996                  * fatal status, abort the command. Otherwise, just reset the
  997                  * controller and hope for the best.
  998                  */
  999                 csts = nvme_mmio_read_4(ctrlr, csts);
 1000                 cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
 1001                 if (cfs) {
 1002                         nvme_printf(ctrlr, "Controller in fatal status, resetting\n");
 1003                         qpair->recovery_state = RECOVERY_RESET;
 1004                         goto again;
 1005                 }
 1006                 mtx_unlock(&qpair->lock);
 1007                 if (nvme_qpair_process_completions(qpair)) {
 1008                         nvme_printf(ctrlr, "Completions present in output without an interrupt\n");
 1009                         qpair->recovery_state = RECOVERY_NONE;
 1010                 } else {
 1011                         nvme_printf(ctrlr, "timeout with nothing complete, resetting\n");
 1012                         qpair->recovery_state = RECOVERY_RESET;
 1013                         mtx_lock(&qpair->lock);
 1014                         goto again;
 1015                 }
 1016                 mtx_lock(&qpair->lock);
 1017                 break;
 1018         case RECOVERY_RESET:
 1019                 /*
 1020                  * If we get here due to a possible surprise hot-unplug event,
 1021                  * then we let nvme_ctrlr_reset confirm and fail the
 1022                  * controller.
 1023                  */
 1024                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
 1025                     (csts == 0xffffffff) ? " and possible hot unplug" :
 1026                     (cfs ? " and fatal error status" : ""));
 1027                 nvme_printf(ctrlr, "RECOVERY_WAITING\n");
 1028                 qpair->recovery_state = RECOVERY_WAITING;
 1029                 nvme_ctrlr_reset(ctrlr);
 1030                 break;
 1031         case RECOVERY_WAITING:
 1032                 nvme_printf(ctrlr, "waiting\n");
 1033                 break;
 1034         }
 1035 
 1036         /*
 1037          * Rearm the timeout.
 1038          */
 1039         if (!idle) {
 1040                 callout_schedule_sbt(&qpair->timer, SBT_1S / 2, SBT_1S / 2, 0);
 1041         } else {
 1042                 qpair->timer_armed = false;
 1043         }
 1044         mtx_unlock(&qpair->lock);
 1045 }
 1046 
 1047 /*
 1048  * Submit the tracker to the hardware. Must already be in the
 1049  * outstanding queue when called.
 1050  */
 1051 void
 1052 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
 1053 {
 1054         struct nvme_request     *req;
 1055         struct nvme_controller  *ctrlr;
 1056         int timeout;
 1057 
 1058         mtx_assert(&qpair->lock, MA_OWNED);
 1059 
 1060         req = tr->req;
 1061         req->cmd.cid = tr->cid;
 1062         qpair->act_tr[tr->cid] = tr;
 1063         ctrlr = qpair->ctrlr;
 1064 
 1065         if (req->timeout) {
 1066                 if (req->cb_fn == nvme_completion_poll_cb)
 1067                         timeout = 1;
 1068                 else
 1069                         timeout = ctrlr->timeout_period;
 1070                 tr->deadline = getsbinuptime() + timeout * SBT_1S;
 1071                 if (!qpair->timer_armed) {
 1072                         qpair->timer_armed = true;
 1073                         callout_reset_sbt_on(&qpair->timer, SBT_1S / 2, SBT_1S / 2,
 1074                             nvme_qpair_timeout, qpair, qpair->cpu, 0);
 1075                 }
 1076         } else
 1077                 tr->deadline = SBT_MAX;
 1078 
 1079         /* Copy the command from the tracker to the submission queue. */
 1080         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
 1081 
 1082         if (++qpair->sq_tail == qpair->num_entries)
 1083                 qpair->sq_tail = 0;
 1084 
 1085         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
 1086             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1087         bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
 1088             qpair->sq_tdbl_off, qpair->sq_tail);
 1089         qpair->num_cmds++;
 1090 }
 1091 
 1092 static void
 1093 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
 1094 {
 1095         struct nvme_tracker     *tr = arg;
 1096         uint32_t                cur_nseg;
 1097 
 1098         /*
 1099          * If the mapping operation failed, return immediately.  The caller
 1100          *  is responsible for detecting the error status and failing the
 1101          *  tracker manually.
 1102          */
 1103         if (error != 0) {
 1104                 nvme_printf(tr->qpair->ctrlr,
 1105                     "nvme_payload_map err %d\n", error);
 1106                 return;
 1107         }
 1108 
 1109         /*
 1110          * Note that we specified ctrlr->page_size for alignment and max
 1111          * segment size when creating the bus dma tags.  So here we can safely
 1112          * just transfer each segment to its associated PRP entry.
 1113          */
 1114         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
 1115 
 1116         if (nseg == 2) {
 1117                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
 1118         } else if (nseg > 2) {
 1119                 cur_nseg = 1;
 1120                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
 1121                 while (cur_nseg < nseg) {
 1122                         tr->prp[cur_nseg-1] =
 1123                             htole64((uint64_t)seg[cur_nseg].ds_addr);
 1124                         cur_nseg++;
 1125                 }
 1126         } else {
 1127                 /*
 1128                  * prp2 should not be used by the controller
 1129                  *  since there is only one segment, but set
 1130                  *  to 0 just to be safe.
 1131                  */
 1132                 tr->req->cmd.prp2 = 0;
 1133         }
 1134 
 1135         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
 1136             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1137         nvme_qpair_submit_tracker(tr->qpair, tr);
 1138 }
 1139 
 1140 static void
 1141 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
 1142 {
 1143         struct nvme_tracker     *tr;
 1144         int                     err = 0;
 1145 
 1146         mtx_assert(&qpair->lock, MA_OWNED);
 1147 
 1148         tr = TAILQ_FIRST(&qpair->free_tr);
 1149         req->qpair = qpair;
 1150 
 1151         if (tr == NULL || qpair->recovery_state != RECOVERY_NONE) {
 1152                 /*
 1153                  * No tracker is available, or the qpair is disabled due to
 1154                  *  an in-progress controller-level reset or controller
 1155                  *  failure.
 1156                  */
 1157 
 1158                 if (qpair->ctrlr->is_failed) {
 1159                         /*
 1160                          * The controller has failed, so fail the request.
 1161                          */
 1162                         nvme_qpair_manual_complete_request(qpair, req,
 1163                             NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
 1164                 } else {
 1165                         /*
 1166                          * Put the request on the qpair's request queue to be
 1167                          *  processed when a tracker frees up via a command
 1168                          *  completion or when the controller reset is
 1169                          *  completed.
 1170                          */
 1171                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
 1172                 }
 1173                 return;
 1174         }
 1175 
 1176         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
 1177         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
 1178         tr->deadline = SBT_MAX;
 1179         tr->req = req;
 1180 
 1181         switch (req->type) {
 1182         case NVME_REQUEST_VADDR:
 1183                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
 1184                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
 1185                     req->payload_size, qpair->ctrlr->max_xfer_size));
 1186                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
 1187                     tr->payload_dma_map, req->u.payload, req->payload_size,
 1188                     nvme_payload_map, tr, 0);
 1189                 if (err != 0)
 1190                         nvme_printf(qpair->ctrlr,
 1191                             "bus_dmamap_load returned 0x%x!\n", err);
 1192                 break;
 1193         case NVME_REQUEST_NULL:
 1194                 nvme_qpair_submit_tracker(tr->qpair, tr);
 1195                 break;
 1196         case NVME_REQUEST_BIO:
 1197                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
 1198                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
 1199                     (intmax_t)req->u.bio->bio_bcount,
 1200                     qpair->ctrlr->max_xfer_size));
 1201                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
 1202                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
 1203                 if (err != 0)
 1204                         nvme_printf(qpair->ctrlr,
 1205                             "bus_dmamap_load_bio returned 0x%x!\n", err);
 1206                 break;
 1207         case NVME_REQUEST_CCB:
 1208                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
 1209                     tr->payload_dma_map, req->u.payload,
 1210                     nvme_payload_map, tr, 0);
 1211                 if (err != 0)
 1212                         nvme_printf(qpair->ctrlr,
 1213                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
 1214                 break;
 1215         default:
 1216                 panic("unknown nvme request type 0x%x\n", req->type);
 1217                 break;
 1218         }
 1219 
 1220         if (err != 0) {
 1221                 /*
 1222                  * The dmamap operation failed, so we manually fail the
 1223                  *  tracker here with DATA_TRANSFER_ERROR status.
 1224                  *
 1225                  * nvme_qpair_manual_complete_tracker must not be called
 1226                  *  with the qpair lock held.
 1227                  */
 1228                 mtx_unlock(&qpair->lock);
 1229                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
 1230                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
 1231                 mtx_lock(&qpair->lock);
 1232         }
 1233 }
 1234 
 1235 void
 1236 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
 1237 {
 1238 
 1239         mtx_lock(&qpair->lock);
 1240         _nvme_qpair_submit_request(qpair, req);
 1241         mtx_unlock(&qpair->lock);
 1242 }
 1243 
 1244 static void
 1245 nvme_qpair_enable(struct nvme_qpair *qpair)
 1246 {
 1247         mtx_assert(&qpair->lock, MA_OWNED);
 1248 
 1249         qpair->recovery_state = RECOVERY_NONE;
 1250 }
 1251 
 1252 void
 1253 nvme_qpair_reset(struct nvme_qpair *qpair)
 1254 {
 1255 
 1256         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
 1257 
 1258         /*
 1259          * First time through the completion queue, HW will set phase
 1260          *  bit on completions to 1.  So set this to 1 here, indicating
 1261          *  we're looking for a 1 to know which entries have completed.
 1262          *  we'll toggle the bit each time when the completion queue
 1263          *  rolls over.
 1264          */
 1265         qpair->phase = 1;
 1266 
 1267         memset(qpair->cmd, 0,
 1268             qpair->num_entries * sizeof(struct nvme_command));
 1269         memset(qpair->cpl, 0,
 1270             qpair->num_entries * sizeof(struct nvme_completion));
 1271 }
 1272 
 1273 void
 1274 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
 1275 {
 1276         struct nvme_tracker             *tr;
 1277         struct nvme_tracker             *tr_temp;
 1278 
 1279         /*
 1280          * Manually abort each outstanding admin command.  Do not retry
 1281          *  admin commands found here, since they will be left over from
 1282          *  a controller reset and its likely the context in which the
 1283          *  command was issued no longer applies.
 1284          */
 1285         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
 1286                 nvme_printf(qpair->ctrlr,
 1287                     "aborting outstanding admin command\n");
 1288                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
 1289                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
 1290         }
 1291 
 1292         mtx_lock(&qpair->lock);
 1293         nvme_qpair_enable(qpair);
 1294         mtx_unlock(&qpair->lock);
 1295 }
 1296 
 1297 void
 1298 nvme_io_qpair_enable(struct nvme_qpair *qpair)
 1299 {
 1300         STAILQ_HEAD(, nvme_request)     temp;
 1301         struct nvme_tracker             *tr;
 1302         struct nvme_tracker             *tr_temp;
 1303         struct nvme_request             *req;
 1304 
 1305         /*
 1306          * Manually abort each outstanding I/O.  This normally results in a
 1307          *  retry, unless the retry count on the associated request has
 1308          *  reached its limit.
 1309          */
 1310         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
 1311                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
 1312                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
 1313                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
 1314         }
 1315 
 1316         mtx_lock(&qpair->lock);
 1317 
 1318         nvme_qpair_enable(qpair);
 1319 
 1320         STAILQ_INIT(&temp);
 1321         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
 1322 
 1323         while (!STAILQ_EMPTY(&temp)) {
 1324                 req = STAILQ_FIRST(&temp);
 1325                 STAILQ_REMOVE_HEAD(&temp, stailq);
 1326                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
 1327                 nvme_qpair_print_command(qpair, &req->cmd);
 1328                 _nvme_qpair_submit_request(qpair, req);
 1329         }
 1330 
 1331         mtx_unlock(&qpair->lock);
 1332 }
 1333 
 1334 static void
 1335 nvme_qpair_disable(struct nvme_qpair *qpair)
 1336 {
 1337         struct nvme_tracker     *tr, *tr_temp;
 1338 
 1339         mtx_lock(&qpair->lock);
 1340         qpair->recovery_state = RECOVERY_WAITING;
 1341         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
 1342                 tr->deadline = SBT_MAX;
 1343         }
 1344         mtx_unlock(&qpair->lock);
 1345 }
 1346 
 1347 void
 1348 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
 1349 {
 1350 
 1351         nvme_qpair_disable(qpair);
 1352         nvme_admin_qpair_abort_aers(qpair);
 1353 }
 1354 
 1355 void
 1356 nvme_io_qpair_disable(struct nvme_qpair *qpair)
 1357 {
 1358 
 1359         nvme_qpair_disable(qpair);
 1360 }
 1361 
 1362 void
 1363 nvme_qpair_fail(struct nvme_qpair *qpair)
 1364 {
 1365         struct nvme_tracker             *tr;
 1366         struct nvme_request             *req;
 1367 
 1368         if (!mtx_initialized(&qpair->lock))
 1369                 return;
 1370 
 1371         mtx_lock(&qpair->lock);
 1372 
 1373         while (!STAILQ_EMPTY(&qpair->queued_req)) {
 1374                 req = STAILQ_FIRST(&qpair->queued_req);
 1375                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
 1376                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
 1377                 mtx_unlock(&qpair->lock);
 1378                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
 1379                     NVME_SC_ABORTED_BY_REQUEST);
 1380                 mtx_lock(&qpair->lock);
 1381         }
 1382 
 1383         /* Manually abort each outstanding I/O. */
 1384         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
 1385                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
 1386                 /*
 1387                  * Do not remove the tracker.  The abort_tracker path will
 1388                  *  do that for us.
 1389                  */
 1390                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
 1391                 mtx_unlock(&qpair->lock);
 1392                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
 1393                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
 1394                 mtx_lock(&qpair->lock);
 1395         }
 1396 
 1397         mtx_unlock(&qpair->lock);
 1398 }

Cache object: f0d4aa49dabe2656afbef81a3bb18d8c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.