The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/nvme/nvme_qpair.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (C) 2012-2014 Intel Corporation
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/conf.h>
   35 #include <sys/domainset.h>
   36 #include <sys/proc.h>
   37 
   38 #include <dev/pci/pcivar.h>
   39 
   40 #include "nvme_private.h"
   41 
   42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
   43 #define DO_NOT_RETRY    1
   44 
   45 static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
   46                                            struct nvme_request *req);
   47 static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
   48 
   49 struct nvme_opcode_string {
   50         uint16_t        opc;
   51         const char *    str;
   52 };
   53 
   54 static struct nvme_opcode_string admin_opcode[] = {
   55         { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
   56         { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
   57         { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
   58         { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
   59         { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
   60         { NVME_OPC_IDENTIFY, "IDENTIFY" },
   61         { NVME_OPC_ABORT, "ABORT" },
   62         { NVME_OPC_SET_FEATURES, "SET FEATURES" },
   63         { NVME_OPC_GET_FEATURES, "GET FEATURES" },
   64         { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
   65         { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
   66         { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
   67         { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
   68         { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
   69         { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
   70         { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
   71         { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
   72         { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
   73         { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
   74         { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
   75         { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
   76         { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
   77         { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
   78         { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
   79         { NVME_OPC_SANITIZE, "SANITIZE" },
   80         { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
   81         { 0xFFFF, "ADMIN COMMAND" }
   82 };
   83 
   84 static struct nvme_opcode_string io_opcode[] = {
   85         { NVME_OPC_FLUSH, "FLUSH" },
   86         { NVME_OPC_WRITE, "WRITE" },
   87         { NVME_OPC_READ, "READ" },
   88         { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
   89         { NVME_OPC_COMPARE, "COMPARE" },
   90         { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
   91         { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
   92         { NVME_OPC_VERIFY, "VERIFY" },
   93         { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
   94         { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
   95         { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
   96         { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
   97         { 0xFFFF, "IO COMMAND" }
   98 };
   99 
  100 static const char *
  101 get_admin_opcode_string(uint16_t opc)
  102 {
  103         struct nvme_opcode_string *entry;
  104 
  105         entry = admin_opcode;
  106 
  107         while (entry->opc != 0xFFFF) {
  108                 if (entry->opc == opc)
  109                         return (entry->str);
  110                 entry++;
  111         }
  112         return (entry->str);
  113 }
  114 
  115 static const char *
  116 get_io_opcode_string(uint16_t opc)
  117 {
  118         struct nvme_opcode_string *entry;
  119 
  120         entry = io_opcode;
  121 
  122         while (entry->opc != 0xFFFF) {
  123                 if (entry->opc == opc)
  124                         return (entry->str);
  125                 entry++;
  126         }
  127         return (entry->str);
  128 }
  129 
  130 static void
  131 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
  132     struct nvme_command *cmd)
  133 {
  134 
  135         nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
  136             "cdw10:%08x cdw11:%08x\n",
  137             get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
  138             le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
  139 }
  140 
  141 static void
  142 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
  143     struct nvme_command *cmd)
  144 {
  145 
  146         switch (cmd->opc) {
  147         case NVME_OPC_WRITE:
  148         case NVME_OPC_READ:
  149         case NVME_OPC_WRITE_UNCORRECTABLE:
  150         case NVME_OPC_COMPARE:
  151         case NVME_OPC_WRITE_ZEROES:
  152         case NVME_OPC_VERIFY:
  153                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
  154                     "lba:%llu len:%d\n",
  155                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
  156                     ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
  157                     (le32toh(cmd->cdw12) & 0xFFFF) + 1);
  158                 break;
  159         case NVME_OPC_FLUSH:
  160         case NVME_OPC_DATASET_MANAGEMENT:
  161         case NVME_OPC_RESERVATION_REGISTER:
  162         case NVME_OPC_RESERVATION_REPORT:
  163         case NVME_OPC_RESERVATION_ACQUIRE:
  164         case NVME_OPC_RESERVATION_RELEASE:
  165                 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
  166                     get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
  167                 break;
  168         default:
  169                 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
  170                     get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
  171                     cmd->cid, le32toh(cmd->nsid));
  172                 break;
  173         }
  174 }
  175 
  176 static void
  177 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
  178 {
  179         if (qpair->id == 0)
  180                 nvme_admin_qpair_print_command(qpair, cmd);
  181         else
  182                 nvme_io_qpair_print_command(qpair, cmd);
  183         if (nvme_verbose_cmd_dump) {
  184                 nvme_printf(qpair->ctrlr,
  185                     "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
  186                     cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
  187                     (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
  188                 nvme_printf(qpair->ctrlr,
  189                     "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
  190                     cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
  191                     cmd->cdw15);
  192         }
  193 }
  194 
  195 struct nvme_status_string {
  196         uint16_t        sc;
  197         const char *    str;
  198 };
  199 
  200 static struct nvme_status_string generic_status[] = {
  201         { NVME_SC_SUCCESS, "SUCCESS" },
  202         { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
  203         { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
  204         { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
  205         { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
  206         { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
  207         { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
  208         { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
  209         { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
  210         { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
  211         { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
  212         { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
  213         { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
  214         { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
  215         { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
  216         { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
  217         { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
  218         { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
  219         { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
  220         { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
  221         { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
  222         { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
  223         { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
  224         { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
  225         { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
  226         { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
  227         { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
  228         { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
  229         { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
  230         { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
  231         { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
  232         { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
  233         { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
  234         { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
  235 
  236         { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
  237         { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
  238         { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
  239         { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
  240         { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
  241         { 0xFFFF, "GENERIC" }
  242 };
  243 
  244 static struct nvme_status_string command_specific_status[] = {
  245         { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
  246         { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
  247         { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
  248         { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
  249         { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
  250         { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
  251         { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
  252         { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
  253         { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
  254         { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
  255         { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
  256         { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
  257         { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
  258         { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
  259         { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
  260         { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
  261         { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
  262         { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
  263         { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
  264         { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
  265         { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
  266         { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
  267         { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
  268         { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
  269         { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
  270         { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
  271         { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
  272         { NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
  273         { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
  274         { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
  275         { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
  276         { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
  277         { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
  278         { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
  279         { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
  280         { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
  281 
  282         { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
  283         { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
  284         { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
  285         { 0xFFFF, "COMMAND SPECIFIC" }
  286 };
  287 
  288 static struct nvme_status_string media_error_status[] = {
  289         { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
  290         { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
  291         { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
  292         { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
  293         { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
  294         { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
  295         { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
  296         { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
  297         { 0xFFFF, "MEDIA ERROR" }
  298 };
  299 
  300 static struct nvme_status_string path_related_status[] = {
  301         { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
  302         { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
  303         { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
  304         { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
  305         { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
  306         { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
  307         { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
  308         { 0xFFFF, "PATH RELATED" },
  309 };
  310 
  311 static const char *
  312 get_status_string(uint16_t sct, uint16_t sc)
  313 {
  314         struct nvme_status_string *entry;
  315 
  316         switch (sct) {
  317         case NVME_SCT_GENERIC:
  318                 entry = generic_status;
  319                 break;
  320         case NVME_SCT_COMMAND_SPECIFIC:
  321                 entry = command_specific_status;
  322                 break;
  323         case NVME_SCT_MEDIA_ERROR:
  324                 entry = media_error_status;
  325                 break;
  326         case NVME_SCT_PATH_RELATED:
  327                 entry = path_related_status;
  328                 break;
  329         case NVME_SCT_VENDOR_SPECIFIC:
  330                 return ("VENDOR SPECIFIC");
  331         default:
  332                 return ("RESERVED");
  333         }
  334 
  335         while (entry->sc != 0xFFFF) {
  336                 if (entry->sc == sc)
  337                         return (entry->str);
  338                 entry++;
  339         }
  340         return (entry->str);
  341 }
  342 
  343 static void
  344 nvme_qpair_print_completion(struct nvme_qpair *qpair,
  345     struct nvme_completion *cpl)
  346 {
  347         uint16_t sct, sc;
  348 
  349         sct = NVME_STATUS_GET_SCT(cpl->status);
  350         sc = NVME_STATUS_GET_SC(cpl->status);
  351 
  352         nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
  353             get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
  354             cpl->cdw0);
  355 }
  356 
  357 static bool
  358 nvme_completion_is_retry(const struct nvme_completion *cpl)
  359 {
  360         uint8_t sct, sc, dnr;
  361 
  362         sct = NVME_STATUS_GET_SCT(cpl->status);
  363         sc = NVME_STATUS_GET_SC(cpl->status);
  364         dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
  365 
  366         /*
  367          * TODO: spec is not clear how commands that are aborted due
  368          *  to TLER will be marked.  So for now, it seems
  369          *  NAMESPACE_NOT_READY is the only case where we should
  370          *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
  371          *  set the DNR bit correctly since the driver controls that.
  372          */
  373         switch (sct) {
  374         case NVME_SCT_GENERIC:
  375                 switch (sc) {
  376                 case NVME_SC_ABORTED_BY_REQUEST:
  377                 case NVME_SC_NAMESPACE_NOT_READY:
  378                         if (dnr)
  379                                 return (0);
  380                         else
  381                                 return (1);
  382                 case NVME_SC_INVALID_OPCODE:
  383                 case NVME_SC_INVALID_FIELD:
  384                 case NVME_SC_COMMAND_ID_CONFLICT:
  385                 case NVME_SC_DATA_TRANSFER_ERROR:
  386                 case NVME_SC_ABORTED_POWER_LOSS:
  387                 case NVME_SC_INTERNAL_DEVICE_ERROR:
  388                 case NVME_SC_ABORTED_SQ_DELETION:
  389                 case NVME_SC_ABORTED_FAILED_FUSED:
  390                 case NVME_SC_ABORTED_MISSING_FUSED:
  391                 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
  392                 case NVME_SC_COMMAND_SEQUENCE_ERROR:
  393                 case NVME_SC_LBA_OUT_OF_RANGE:
  394                 case NVME_SC_CAPACITY_EXCEEDED:
  395                 default:
  396                         return (0);
  397                 }
  398         case NVME_SCT_COMMAND_SPECIFIC:
  399         case NVME_SCT_MEDIA_ERROR:
  400                 return (0);
  401         case NVME_SCT_PATH_RELATED:
  402                 switch (sc) {
  403                 case NVME_SC_INTERNAL_PATH_ERROR:
  404                         if (dnr)
  405                                 return (0);
  406                         else
  407                                 return (1);
  408                 default:
  409                         return (0);
  410                 }
  411         case NVME_SCT_VENDOR_SPECIFIC:
  412         default:
  413                 return (0);
  414         }
  415 }
  416 
  417 static void
  418 nvme_qpair_complete_tracker(struct nvme_tracker *tr,
  419     struct nvme_completion *cpl, error_print_t print_on_error)
  420 {
  421         struct nvme_qpair * qpair = tr->qpair;
  422         struct nvme_request     *req;
  423         bool                    retry, error, retriable;
  424 
  425         req = tr->req;
  426         error = nvme_completion_is_error(cpl);
  427         retriable = nvme_completion_is_retry(cpl);
  428         retry = error && retriable && req->retries < nvme_retry_count;
  429         if (retry)
  430                 qpair->num_retries++;
  431         if (error && req->retries >= nvme_retry_count && retriable)
  432                 qpair->num_failures++;
  433 
  434         if (error && (print_on_error == ERROR_PRINT_ALL ||
  435                 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
  436                 nvme_qpair_print_command(qpair, &req->cmd);
  437                 nvme_qpair_print_completion(qpair, cpl);
  438         }
  439 
  440         qpair->act_tr[cpl->cid] = NULL;
  441 
  442         KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
  443 
  444         if (!retry) {
  445                 if (req->type != NVME_REQUEST_NULL) {
  446                         bus_dmamap_sync(qpair->dma_tag_payload,
  447                             tr->payload_dma_map,
  448                             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  449                 }
  450                 if (req->cb_fn)
  451                         req->cb_fn(req->cb_arg, cpl);
  452         }
  453 
  454         mtx_lock(&qpair->lock);
  455         callout_stop(&tr->timer);
  456 
  457         if (retry) {
  458                 req->retries++;
  459                 nvme_qpair_submit_tracker(qpair, tr);
  460         } else {
  461                 if (req->type != NVME_REQUEST_NULL) {
  462                         bus_dmamap_unload(qpair->dma_tag_payload,
  463                             tr->payload_dma_map);
  464                 }
  465 
  466                 nvme_free_request(req);
  467                 tr->req = NULL;
  468 
  469                 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
  470                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
  471 
  472                 /*
  473                  * If the controller is in the middle of resetting, don't
  474                  *  try to submit queued requests here - let the reset logic
  475                  *  handle that instead.
  476                  */
  477                 if (!STAILQ_EMPTY(&qpair->queued_req) &&
  478                     !qpair->ctrlr->is_resetting) {
  479                         req = STAILQ_FIRST(&qpair->queued_req);
  480                         STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
  481                         _nvme_qpair_submit_request(qpair, req);
  482                 }
  483         }
  484 
  485         mtx_unlock(&qpair->lock);
  486 }
  487 
  488 static void
  489 nvme_qpair_manual_complete_tracker(
  490     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
  491     error_print_t print_on_error)
  492 {
  493         struct nvme_completion  cpl;
  494 
  495         memset(&cpl, 0, sizeof(cpl));
  496 
  497         struct nvme_qpair * qpair = tr->qpair;
  498 
  499         cpl.sqid = qpair->id;
  500         cpl.cid = tr->cid;
  501         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
  502         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
  503         cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
  504         nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
  505 }
  506 
  507 void
  508 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
  509     struct nvme_request *req, uint32_t sct, uint32_t sc)
  510 {
  511         struct nvme_completion  cpl;
  512         bool                    error;
  513 
  514         memset(&cpl, 0, sizeof(cpl));
  515         cpl.sqid = qpair->id;
  516         cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
  517         cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
  518 
  519         error = nvme_completion_is_error(&cpl);
  520 
  521         if (error) {
  522                 nvme_qpair_print_command(qpair, &req->cmd);
  523                 nvme_qpair_print_completion(qpair, &cpl);
  524         }
  525 
  526         if (req->cb_fn)
  527                 req->cb_fn(req->cb_arg, &cpl);
  528 
  529         nvme_free_request(req);
  530 }
  531 
  532 bool
  533 nvme_qpair_process_completions(struct nvme_qpair *qpair)
  534 {
  535         struct nvme_tracker     *tr;
  536         struct nvme_completion  cpl;
  537         int done = 0;
  538         bool in_panic = dumping || SCHEDULER_STOPPED();
  539 
  540         qpair->num_intr_handler_calls++;
  541 
  542         /*
  543          * qpair is not enabled, likely because a controller reset is is in
  544          * progress.  Ignore the interrupt - any I/O that was associated with
  545          * this interrupt will get retried when the reset is complete.
  546          */
  547         if (!qpair->is_enabled)
  548                 return (false);
  549 
  550         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
  551             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  552         /*
  553          * A panic can stop the CPU this routine is running on at any point.  If
  554          * we're called during a panic, complete the sq_head wrap protocol for
  555          * the case where we are interrupted just after the increment at 1
  556          * below, but before we can reset cq_head to zero at 2. Also cope with
  557          * the case where we do the zero at 2, but may or may not have done the
  558          * phase adjustment at step 3. The panic machinery flushes all pending
  559          * memory writes, so we can make these strong ordering assumptions
  560          * that would otherwise be unwise if we were racing in real time.
  561          */
  562         if (__predict_false(in_panic)) {
  563                 if (qpair->cq_head == qpair->num_entries) {
  564                         /*
  565                          * Here we know that we need to zero cq_head and then negate
  566                          * the phase, which hasn't been assigned if cq_head isn't
  567                          * zero due to the atomic_store_rel.
  568                          */
  569                         qpair->cq_head = 0;
  570                         qpair->phase = !qpair->phase;
  571                 } else if (qpair->cq_head == 0) {
  572                         /*
  573                          * In this case, we know that the assignment at 2
  574                          * happened below, but we don't know if it 3 happened or
  575                          * not. To do this, we look at the last completion
  576                          * entry and set the phase to the opposite phase
  577                          * that it has. This gets us back in sync
  578                          */
  579                         cpl = qpair->cpl[qpair->num_entries - 1];
  580                         nvme_completion_swapbytes(&cpl);
  581                         qpair->phase = !NVME_STATUS_GET_P(cpl.status);
  582                 }
  583         }
  584 
  585         while (1) {
  586                 uint16_t status;
  587 
  588                 /*
  589                  * We need to do this dance to avoid a race between the host and
  590                  * the device where the device overtakes the host while the host
  591                  * is reading this record, leaving the status field 'new' and
  592                  * the sqhd and cid fields potentially stale. If the phase
  593                  * doesn't match, that means status hasn't yet been updated and
  594                  * we'll get any pending changes next time. It also means that
  595                  * the phase must be the same the second time. We have to sync
  596                  * before reading to ensure any bouncing completes.
  597                  */
  598                 status = le16toh(qpair->cpl[qpair->cq_head].status);
  599                 if (NVME_STATUS_GET_P(status) != qpair->phase)
  600                         break;
  601 
  602                 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
  603                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  604                 cpl = qpair->cpl[qpair->cq_head];
  605                 nvme_completion_swapbytes(&cpl);
  606 
  607                 KASSERT(
  608                     NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status),
  609                     ("Phase unexpectedly inconsistent"));
  610 
  611                 tr = qpair->act_tr[cpl.cid];
  612 
  613                 if (tr != NULL) {
  614                         nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
  615                         qpair->sq_head = cpl.sqhd;
  616                         done++;
  617                 } else if (!in_panic) {
  618                         /*
  619                          * A missing tracker is normally an error.  However, a
  620                          * panic can stop the CPU this routine is running on
  621                          * after completing an I/O but before updating
  622                          * qpair->cq_head at 1 below.  Later, we re-enter this
  623                          * routine to poll I/O associated with the kernel
  624                          * dump. We find that the tr has been set to null before
  625                          * calling the completion routine.  If it hasn't
  626                          * completed (or it triggers a panic), then '1' below
  627                          * won't have updated cq_head. Rather than panic again,
  628                          * ignore this condition because it's not unexpected.
  629                          */
  630                         nvme_printf(qpair->ctrlr,
  631                             "cpl does not map to outstanding cmd\n");
  632                         /* nvme_dump_completion expects device endianess */
  633                         nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
  634                         KASSERT(0, ("received completion for unknown cmd"));
  635                 }
  636 
  637                 /*
  638                  * There's a number of races with the following (see above) when
  639                  * the system panics. We compensate for each one of them by
  640                  * using the atomic store to force strong ordering (at least when
  641                  * viewed in the aftermath of a panic).
  642                  */
  643                 if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
  644                         atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
  645                         qpair->phase = !qpair->phase;                   /* 3 */
  646                 }
  647 
  648                 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
  649                     qpair->cq_hdbl_off, qpair->cq_head);
  650         }
  651         return (done != 0);
  652 }
  653 
  654 static void
  655 nvme_qpair_msi_handler(void *arg)
  656 {
  657         struct nvme_qpair *qpair = arg;
  658 
  659         nvme_qpair_process_completions(qpair);
  660 }
  661 
  662 int
  663 nvme_qpair_construct(struct nvme_qpair *qpair,
  664     uint32_t num_entries, uint32_t num_trackers,
  665     struct nvme_controller *ctrlr)
  666 {
  667         struct nvme_tracker     *tr;
  668         size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
  669         uint64_t                queuemem_phys, prpmem_phys, list_phys;
  670         uint8_t                 *queuemem, *prpmem, *prp_list;
  671         int                     i, err;
  672 
  673         qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0;
  674         qpair->num_entries = num_entries;
  675         qpair->num_trackers = num_trackers;
  676         qpair->ctrlr = ctrlr;
  677 
  678         mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
  679 
  680         /* Note: NVMe PRP format is restricted to 4-byte alignment. */
  681         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
  682             4, PAGE_SIZE, BUS_SPACE_MAXADDR,
  683             BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
  684             btoc(ctrlr->max_xfer_size) + 1, PAGE_SIZE, 0,
  685             NULL, NULL, &qpair->dma_tag_payload);
  686         if (err != 0) {
  687                 nvme_printf(ctrlr, "payload tag create failed %d\n", err);
  688                 goto out;
  689         }
  690 
  691         /*
  692          * Each component must be page aligned, and individual PRP lists
  693          * cannot cross a page boundary.
  694          */
  695         cmdsz = qpair->num_entries * sizeof(struct nvme_command);
  696         cmdsz = roundup2(cmdsz, PAGE_SIZE);
  697         cplsz = qpair->num_entries * sizeof(struct nvme_completion);
  698         cplsz = roundup2(cplsz, PAGE_SIZE);
  699         /*
  700          * For commands requiring more than 2 PRP entries, one PRP will be
  701          * embedded in the command (prp1), and the rest of the PRP entries
  702          * will be in a list pointed to by the command (prp2).
  703          */
  704         prpsz = sizeof(uint64_t) * btoc(ctrlr->max_xfer_size);
  705         prpmemsz = qpair->num_trackers * prpsz;
  706         allocsz = cmdsz + cplsz + prpmemsz;
  707 
  708         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
  709             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
  710             allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
  711         if (err != 0) {
  712                 nvme_printf(ctrlr, "tag create failed %d\n", err);
  713                 goto out;
  714         }
  715         bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
  716 
  717         if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
  718              BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
  719                 nvme_printf(ctrlr, "failed to alloc qpair memory\n");
  720                 goto out;
  721         }
  722 
  723         if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
  724             queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
  725                 nvme_printf(ctrlr, "failed to load qpair memory\n");
  726                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
  727                     qpair->queuemem_map);
  728                 goto out;
  729         }
  730 
  731         qpair->num_cmds = 0;
  732         qpair->num_intr_handler_calls = 0;
  733         qpair->num_retries = 0;
  734         qpair->num_failures = 0;
  735         qpair->cmd = (struct nvme_command *)queuemem;
  736         qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
  737         prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
  738         qpair->cmd_bus_addr = queuemem_phys;
  739         qpair->cpl_bus_addr = queuemem_phys + cmdsz;
  740         prpmem_phys = queuemem_phys + cmdsz + cplsz;
  741 
  742         /*
  743          * Calcuate the stride of the doorbell register. Many emulators set this
  744          * value to correspond to a cache line. However, some hardware has set
  745          * it to various small values.
  746          */
  747         qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
  748             (qpair->id << (ctrlr->dstrd + 1));
  749         qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
  750             (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
  751 
  752         TAILQ_INIT(&qpair->free_tr);
  753         TAILQ_INIT(&qpair->outstanding_tr);
  754         STAILQ_INIT(&qpair->queued_req);
  755 
  756         list_phys = prpmem_phys;
  757         prp_list = prpmem;
  758         for (i = 0; i < qpair->num_trackers; i++) {
  759                 if (list_phys + prpsz > prpmem_phys + prpmemsz) {
  760                         qpair->num_trackers = i;
  761                         break;
  762                 }
  763 
  764                 /*
  765                  * Make sure that the PRP list for this tracker doesn't
  766                  * overflow to another page.
  767                  */
  768                 if (trunc_page(list_phys) !=
  769                     trunc_page(list_phys + prpsz - 1)) {
  770                         list_phys = roundup2(list_phys, PAGE_SIZE);
  771                         prp_list =
  772                             (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
  773                 }
  774 
  775                 tr = malloc_domainset(sizeof(*tr), M_NVME,
  776                     DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
  777                 bus_dmamap_create(qpair->dma_tag_payload, 0,
  778                     &tr->payload_dma_map);
  779                 callout_init(&tr->timer, 1);
  780                 tr->cid = i;
  781                 tr->qpair = qpair;
  782                 tr->prp = (uint64_t *)prp_list;
  783                 tr->prp_bus_addr = list_phys;
  784                 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
  785                 list_phys += prpsz;
  786                 prp_list += prpsz;
  787         }
  788 
  789         if (qpair->num_trackers == 0) {
  790                 nvme_printf(ctrlr, "failed to allocate enough trackers\n");
  791                 goto out;
  792         }
  793 
  794         qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
  795             qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
  796             M_ZERO | M_WAITOK);
  797 
  798         if (ctrlr->msi_count > 1) {
  799                 /*
  800                  * MSI-X vector resource IDs start at 1, so we add one to
  801                  *  the queue's vector to get the corresponding rid to use.
  802                  */
  803                 qpair->rid = qpair->vector + 1;
  804 
  805                 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
  806                     &qpair->rid, RF_ACTIVE);
  807                 if (qpair->res == NULL) {
  808                         nvme_printf(ctrlr, "unable to allocate MSI\n");
  809                         goto out;
  810                 }
  811                 if (bus_setup_intr(ctrlr->dev, qpair->res,
  812                     INTR_TYPE_MISC | INTR_MPSAFE, NULL,
  813                     nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) {
  814                         nvme_printf(ctrlr, "unable to setup MSI\n");
  815                         goto out;
  816                 }
  817                 if (qpair->id == 0) {
  818                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
  819                             "admin");
  820                 } else {
  821                         bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
  822                             "io%d", qpair->id - 1);
  823                 }
  824         }
  825 
  826         return (0);
  827 
  828 out:
  829         nvme_qpair_destroy(qpair);
  830         return (ENOMEM);
  831 }
  832 
  833 static void
  834 nvme_qpair_destroy(struct nvme_qpair *qpair)
  835 {
  836         struct nvme_tracker     *tr;
  837 
  838         if (qpair->tag) {
  839                 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
  840                 qpair->tag = NULL;
  841         }
  842 
  843         if (qpair->act_tr) {
  844                 free(qpair->act_tr, M_NVME);
  845                 qpair->act_tr = NULL;
  846         }
  847 
  848         while (!TAILQ_EMPTY(&qpair->free_tr)) {
  849                 tr = TAILQ_FIRST(&qpair->free_tr);
  850                 TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
  851                 bus_dmamap_destroy(qpair->dma_tag_payload,
  852                     tr->payload_dma_map);
  853                 free(tr, M_NVME);
  854         }
  855 
  856         if (qpair->cmd != NULL) {
  857                 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
  858                 bus_dmamem_free(qpair->dma_tag, qpair->cmd,
  859                     qpair->queuemem_map);
  860                 qpair->cmd = NULL;
  861         }
  862 
  863         if (qpair->dma_tag) {
  864                 bus_dma_tag_destroy(qpair->dma_tag);
  865                 qpair->dma_tag = NULL;
  866         }
  867 
  868         if (qpair->dma_tag_payload) {
  869                 bus_dma_tag_destroy(qpair->dma_tag_payload);
  870                 qpair->dma_tag_payload = NULL;
  871         }
  872 
  873         if (mtx_initialized(&qpair->lock))
  874                 mtx_destroy(&qpair->lock);
  875 
  876         if (qpair->res) {
  877                 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
  878                     rman_get_rid(qpair->res), qpair->res);
  879                 qpair->res = NULL;
  880         }
  881 }
  882 
  883 static void
  884 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
  885 {
  886         struct nvme_tracker     *tr;
  887 
  888         tr = TAILQ_FIRST(&qpair->outstanding_tr);
  889         while (tr != NULL) {
  890                 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
  891                         nvme_qpair_manual_complete_tracker(tr,
  892                             NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
  893                             ERROR_PRINT_NONE);
  894                         tr = TAILQ_FIRST(&qpair->outstanding_tr);
  895                 } else {
  896                         tr = TAILQ_NEXT(tr, tailq);
  897                 }
  898         }
  899 }
  900 
  901 void
  902 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
  903 {
  904 
  905         nvme_admin_qpair_abort_aers(qpair);
  906         nvme_qpair_destroy(qpair);
  907 }
  908 
  909 void
  910 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
  911 {
  912 
  913         nvme_qpair_destroy(qpair);
  914 }
  915 
  916 static void
  917 nvme_abort_complete(void *arg, const struct nvme_completion *status)
  918 {
  919         struct nvme_tracker     *tr = arg;
  920 
  921         /*
  922          * If cdw0 == 1, the controller was not able to abort the command
  923          *  we requested.  We still need to check the active tracker array,
  924          *  to cover race where I/O timed out at same time controller was
  925          *  completing the I/O.
  926          */
  927         if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
  928                 /*
  929                  * An I/O has timed out, and the controller was unable to
  930                  *  abort it for some reason.  Construct a fake completion
  931                  *  status, and then complete the I/O's tracker manually.
  932                  */
  933                 nvme_printf(tr->qpair->ctrlr,
  934                     "abort command failed, aborting command manually\n");
  935                 nvme_qpair_manual_complete_tracker(tr,
  936                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
  937         }
  938 }
  939 
  940 static void
  941 nvme_timeout(void *arg)
  942 {
  943         struct nvme_tracker     *tr = arg;
  944         struct nvme_qpair       *qpair = tr->qpair;
  945         struct nvme_controller  *ctrlr = qpair->ctrlr;
  946         uint32_t                csts;
  947         uint8_t                 cfs;
  948 
  949         /*
  950          * Read csts to get value of cfs - controller fatal status.
  951          * If no fatal status, try to call the completion routine, and
  952          * if completes transactions, report a missed interrupt and
  953          * return (this may need to be rate limited). Otherwise, if
  954          * aborts are enabled and the controller is not reporting
  955          * fatal status, abort the command. Otherwise, just reset the
  956          * controller and hope for the best.
  957          */
  958         csts = nvme_mmio_read_4(ctrlr, csts);
  959         cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
  960         if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
  961                 nvme_printf(ctrlr, "Missing interrupt\n");
  962                 return;
  963         }
  964         if (ctrlr->enable_aborts && cfs == 0) {
  965                 nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
  966                 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
  967                     nvme_abort_complete, tr);
  968         } else {
  969                 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
  970                     (csts == NVME_GONE) ? " and possible hot unplug" :
  971                     (cfs ? " and fatal error status" : ""));
  972                 nvme_ctrlr_reset(ctrlr);
  973         }
  974 }
  975 
  976 void
  977 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
  978 {
  979         struct nvme_request     *req;
  980         struct nvme_controller  *ctrlr;
  981         int timeout;
  982 
  983         mtx_assert(&qpair->lock, MA_OWNED);
  984 
  985         req = tr->req;
  986         req->cmd.cid = tr->cid;
  987         qpair->act_tr[tr->cid] = tr;
  988         ctrlr = qpair->ctrlr;
  989 
  990         if (req->timeout) {
  991                 if (req->cb_fn == nvme_completion_poll_cb)
  992                         timeout = hz;
  993                 else
  994                         timeout = ctrlr->timeout_period * hz;
  995                 callout_reset_on(&tr->timer, timeout, nvme_timeout, tr,
  996                     qpair->cpu);
  997         }
  998 
  999         /* Copy the command from the tracker to the submission queue. */
 1000         memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
 1001 
 1002         if (++qpair->sq_tail == qpair->num_entries)
 1003                 qpair->sq_tail = 0;
 1004 
 1005         bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
 1006             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1007         bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
 1008             qpair->sq_tdbl_off, qpair->sq_tail);
 1009         qpair->num_cmds++;
 1010 }
 1011 
 1012 static void
 1013 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
 1014 {
 1015         struct nvme_tracker     *tr = arg;
 1016         uint32_t                cur_nseg;
 1017 
 1018         /*
 1019          * If the mapping operation failed, return immediately.  The caller
 1020          *  is responsible for detecting the error status and failing the
 1021          *  tracker manually.
 1022          */
 1023         if (error != 0) {
 1024                 nvme_printf(tr->qpair->ctrlr,
 1025                     "nvme_payload_map err %d\n", error);
 1026                 return;
 1027         }
 1028 
 1029         /*
 1030          * Note that we specified PAGE_SIZE for alignment and max
 1031          *  segment size when creating the bus dma tags.  So here
 1032          *  we can safely just transfer each segment to its
 1033          *  associated PRP entry.
 1034          */
 1035         tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
 1036 
 1037         if (nseg == 2) {
 1038                 tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
 1039         } else if (nseg > 2) {
 1040                 cur_nseg = 1;
 1041                 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
 1042                 while (cur_nseg < nseg) {
 1043                         tr->prp[cur_nseg-1] =
 1044                             htole64((uint64_t)seg[cur_nseg].ds_addr);
 1045                         cur_nseg++;
 1046                 }
 1047         } else {
 1048                 /*
 1049                  * prp2 should not be used by the controller
 1050                  *  since there is only one segment, but set
 1051                  *  to 0 just to be safe.
 1052                  */
 1053                 tr->req->cmd.prp2 = 0;
 1054         }
 1055 
 1056         bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
 1057             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1058         nvme_qpair_submit_tracker(tr->qpair, tr);
 1059 }
 1060 
 1061 static void
 1062 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
 1063 {
 1064         struct nvme_tracker     *tr;
 1065         int                     err = 0;
 1066 
 1067         mtx_assert(&qpair->lock, MA_OWNED);
 1068 
 1069         tr = TAILQ_FIRST(&qpair->free_tr);
 1070         req->qpair = qpair;
 1071 
 1072         if (tr == NULL || !qpair->is_enabled) {
 1073                 /*
 1074                  * No tracker is available, or the qpair is disabled due to
 1075                  *  an in-progress controller-level reset or controller
 1076                  *  failure.
 1077                  */
 1078 
 1079                 if (qpair->ctrlr->is_failed) {
 1080                         /*
 1081                          * The controller has failed.  Post the request to a
 1082                          *  task where it will be aborted, so that we do not
 1083                          *  invoke the request's callback in the context
 1084                          *  of the submission.
 1085                          */
 1086                         nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
 1087                 } else {
 1088                         /*
 1089                          * Put the request on the qpair's request queue to be
 1090                          *  processed when a tracker frees up via a command
 1091                          *  completion or when the controller reset is
 1092                          *  completed.
 1093                          */
 1094                         STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
 1095                 }
 1096                 return;
 1097         }
 1098 
 1099         TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
 1100         TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
 1101         tr->req = req;
 1102 
 1103         switch (req->type) {
 1104         case NVME_REQUEST_VADDR:
 1105                 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
 1106                     ("payload_size (%d) exceeds max_xfer_size (%d)\n",
 1107                     req->payload_size, qpair->ctrlr->max_xfer_size));
 1108                 err = bus_dmamap_load(tr->qpair->dma_tag_payload,
 1109                     tr->payload_dma_map, req->u.payload, req->payload_size,
 1110                     nvme_payload_map, tr, 0);
 1111                 if (err != 0)
 1112                         nvme_printf(qpair->ctrlr,
 1113                             "bus_dmamap_load returned 0x%x!\n", err);
 1114                 break;
 1115         case NVME_REQUEST_NULL:
 1116                 nvme_qpair_submit_tracker(tr->qpair, tr);
 1117                 break;
 1118         case NVME_REQUEST_BIO:
 1119                 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
 1120                     ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
 1121                     (intmax_t)req->u.bio->bio_bcount,
 1122                     qpair->ctrlr->max_xfer_size));
 1123                 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
 1124                     tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
 1125                 if (err != 0)
 1126                         nvme_printf(qpair->ctrlr,
 1127                             "bus_dmamap_load_bio returned 0x%x!\n", err);
 1128                 break;
 1129         case NVME_REQUEST_CCB:
 1130                 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
 1131                     tr->payload_dma_map, req->u.payload,
 1132                     nvme_payload_map, tr, 0);
 1133                 if (err != 0)
 1134                         nvme_printf(qpair->ctrlr,
 1135                             "bus_dmamap_load_ccb returned 0x%x!\n", err);
 1136                 break;
 1137         default:
 1138                 panic("unknown nvme request type 0x%x\n", req->type);
 1139                 break;
 1140         }
 1141 
 1142         if (err != 0) {
 1143                 /*
 1144                  * The dmamap operation failed, so we manually fail the
 1145                  *  tracker here with DATA_TRANSFER_ERROR status.
 1146                  *
 1147                  * nvme_qpair_manual_complete_tracker must not be called
 1148                  *  with the qpair lock held.
 1149                  */
 1150                 mtx_unlock(&qpair->lock);
 1151                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
 1152                     NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
 1153                 mtx_lock(&qpair->lock);
 1154         }
 1155 }
 1156 
 1157 void
 1158 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
 1159 {
 1160 
 1161         mtx_lock(&qpair->lock);
 1162         _nvme_qpair_submit_request(qpair, req);
 1163         mtx_unlock(&qpair->lock);
 1164 }
 1165 
 1166 static void
 1167 nvme_qpair_enable(struct nvme_qpair *qpair)
 1168 {
 1169 
 1170         qpair->is_enabled = true;
 1171 }
 1172 
 1173 void
 1174 nvme_qpair_reset(struct nvme_qpair *qpair)
 1175 {
 1176 
 1177         qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
 1178 
 1179         /*
 1180          * First time through the completion queue, HW will set phase
 1181          *  bit on completions to 1.  So set this to 1 here, indicating
 1182          *  we're looking for a 1 to know which entries have completed.
 1183          *  we'll toggle the bit each time when the completion queue
 1184          *  rolls over.
 1185          */
 1186         qpair->phase = 1;
 1187 
 1188         memset(qpair->cmd, 0,
 1189             qpair->num_entries * sizeof(struct nvme_command));
 1190         memset(qpair->cpl, 0,
 1191             qpair->num_entries * sizeof(struct nvme_completion));
 1192 }
 1193 
 1194 void
 1195 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
 1196 {
 1197         struct nvme_tracker             *tr;
 1198         struct nvme_tracker             *tr_temp;
 1199 
 1200         /*
 1201          * Manually abort each outstanding admin command.  Do not retry
 1202          *  admin commands found here, since they will be left over from
 1203          *  a controller reset and its likely the context in which the
 1204          *  command was issued no longer applies.
 1205          */
 1206         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
 1207                 nvme_printf(qpair->ctrlr,
 1208                     "aborting outstanding admin command\n");
 1209                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
 1210                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
 1211         }
 1212 
 1213         nvme_qpair_enable(qpair);
 1214 }
 1215 
 1216 void
 1217 nvme_io_qpair_enable(struct nvme_qpair *qpair)
 1218 {
 1219         STAILQ_HEAD(, nvme_request)     temp;
 1220         struct nvme_tracker             *tr;
 1221         struct nvme_tracker             *tr_temp;
 1222         struct nvme_request             *req;
 1223 
 1224         /*
 1225          * Manually abort each outstanding I/O.  This normally results in a
 1226          *  retry, unless the retry count on the associated request has
 1227          *  reached its limit.
 1228          */
 1229         TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
 1230                 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
 1231                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
 1232                     NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
 1233         }
 1234 
 1235         mtx_lock(&qpair->lock);
 1236 
 1237         nvme_qpair_enable(qpair);
 1238 
 1239         STAILQ_INIT(&temp);
 1240         STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
 1241 
 1242         while (!STAILQ_EMPTY(&temp)) {
 1243                 req = STAILQ_FIRST(&temp);
 1244                 STAILQ_REMOVE_HEAD(&temp, stailq);
 1245                 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
 1246                 nvme_qpair_print_command(qpair, &req->cmd);
 1247                 _nvme_qpair_submit_request(qpair, req);
 1248         }
 1249 
 1250         mtx_unlock(&qpair->lock);
 1251 }
 1252 
 1253 static void
 1254 nvme_qpair_disable(struct nvme_qpair *qpair)
 1255 {
 1256         struct nvme_tracker *tr;
 1257 
 1258         qpair->is_enabled = false;
 1259         mtx_lock(&qpair->lock);
 1260         TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
 1261                 callout_stop(&tr->timer);
 1262         mtx_unlock(&qpair->lock);
 1263 }
 1264 
 1265 void
 1266 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
 1267 {
 1268 
 1269         nvme_qpair_disable(qpair);
 1270         nvme_admin_qpair_abort_aers(qpair);
 1271 }
 1272 
 1273 void
 1274 nvme_io_qpair_disable(struct nvme_qpair *qpair)
 1275 {
 1276 
 1277         nvme_qpair_disable(qpair);
 1278 }
 1279 
 1280 void
 1281 nvme_qpair_fail(struct nvme_qpair *qpair)
 1282 {
 1283         struct nvme_tracker             *tr;
 1284         struct nvme_request             *req;
 1285 
 1286         if (!mtx_initialized(&qpair->lock))
 1287                 return;
 1288 
 1289         mtx_lock(&qpair->lock);
 1290 
 1291         while (!STAILQ_EMPTY(&qpair->queued_req)) {
 1292                 req = STAILQ_FIRST(&qpair->queued_req);
 1293                 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
 1294                 nvme_printf(qpair->ctrlr, "failing queued i/o\n");
 1295                 mtx_unlock(&qpair->lock);
 1296                 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
 1297                     NVME_SC_ABORTED_BY_REQUEST);
 1298                 mtx_lock(&qpair->lock);
 1299         }
 1300 
 1301         /* Manually abort each outstanding I/O. */
 1302         while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
 1303                 tr = TAILQ_FIRST(&qpair->outstanding_tr);
 1304                 /*
 1305                  * Do not remove the tracker.  The abort_tracker path will
 1306                  *  do that for us.
 1307                  */
 1308                 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
 1309                 mtx_unlock(&qpair->lock);
 1310                 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
 1311                     NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
 1312                 mtx_lock(&qpair->lock);
 1313         }
 1314 
 1315         mtx_unlock(&qpair->lock);
 1316 }

Cache object: a87d6c657bea9fe7f50ac09dfa4a64a4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.