1 /*-
2 * Copyright (c) 2017 Broadcom. All rights reserved.
3 * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice,
12 * this list of conditions and the following disclaimer in the documentation
13 * and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * $FreeBSD$
32 */
33
34 /**
35 * @file
36 * OCS Linux SCSI API base driver implementation.
37 */
38
39 /**
40 * @defgroup scsi_api_base SCSI Base Target/Initiator
41 */
42
43 #include "ocs.h"
44 #include "ocs_els.h"
45 #include "ocs_scsi.h"
46 #include "ocs_vpd.h"
47 #include "ocs_utils.h"
48 #include "ocs_device.h"
49
50 #define SCSI_IOFMT "[%04x][i:%0*x t:%0*x h:%04x]"
51 #define SCSI_ITT_SIZE(ocs) ((ocs->ocs_xport == OCS_XPORT_FC) ? 4 : 8)
52
53 #define SCSI_IOFMT_ARGS(io) io->instance_index, SCSI_ITT_SIZE(io->ocs), io->init_task_tag, SCSI_ITT_SIZE(io->ocs), io->tgt_task_tag, io->hw_tag
54
55 #define enable_tsend_auto_resp(ocs) ((ocs->ctrlmask & OCS_CTRLMASK_XPORT_DISABLE_AUTORSP_TSEND) == 0)
56 #define enable_treceive_auto_resp(ocs) ((ocs->ctrlmask & OCS_CTRLMASK_XPORT_DISABLE_AUTORSP_TRECEIVE) == 0)
57
58 #define scsi_io_printf(io, fmt, ...) ocs_log_info(io->ocs, "[%s]" SCSI_IOFMT fmt, \
59 io->node->display_name, SCSI_IOFMT_ARGS(io), ##__VA_ARGS__)
60
61 #define scsi_io_trace(io, fmt, ...) \
62 do { \
63 if (OCS_LOG_ENABLE_SCSI_TRACE(io->ocs)) \
64 scsi_io_printf(io, fmt, ##__VA_ARGS__); \
65 } while (0)
66
67 #define scsi_log(ocs, fmt, ...) \
68 do { \
69 if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) \
70 ocs_log_info(ocs, fmt, ##__VA_ARGS__); \
71 } while (0)
72
73 static int32_t ocs_target_send_bls_resp(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg);
74 static int32_t ocs_scsi_abort_io_cb(struct ocs_hw_io_s *hio, ocs_remote_node_t *rnode, uint32_t len, int32_t status,
75 uint32_t ext, void *arg);
76
77 static void ocs_scsi_io_free_ovfl(ocs_io_t *io);
78 static uint32_t ocs_scsi_count_sgls(ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count);
79 static int ocs_scsi_dif_guard_is_crc(uint8_t direction, ocs_hw_dif_info_t *dif_info);
80 static ocs_scsi_io_status_e ocs_scsi_dif_check_unknown(ocs_io_t *io, uint32_t length, uint32_t check_length, int is_crc);
81 static uint32_t ocs_scsi_dif_check_guard(ocs_hw_dif_info_t *dif_info, ocs_scsi_vaddr_len_t addrlen[],
82 uint32_t addrlen_count, ocs_dif_t *dif, int is_crc);
83 static uint32_t ocs_scsi_dif_check_app_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint16_t exp_app_tag, ocs_dif_t *dif);
84 static uint32_t ocs_scsi_dif_check_ref_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint32_t exp_ref_tag, ocs_dif_t *dif);
85 static int32_t ocs_scsi_convert_dif_info(ocs_t *ocs, ocs_scsi_dif_info_t *scsi_dif_info,
86 ocs_hw_dif_info_t *hw_dif_info);
87 static int32_t ocs_scsi_io_dispatch_hw_io(ocs_io_t *io, ocs_hw_io_t *hio);
88 static int32_t ocs_scsi_io_dispatch_no_hw_io(ocs_io_t *io);
89 static void _ocs_scsi_io_free(void *arg);
90
91 /**
92 * @ingroup scsi_api_base
93 * @brief Returns a big-endian 32-bit value given a pointer.
94 *
95 * @param p Pointer to the 32-bit big-endian location.
96 *
97 * @return Returns the byte-swapped 32-bit value.
98 */
99
100 static inline uint32_t
101 ocs_fc_getbe32(void *p)
102 {
103 return ocs_be32toh(*((uint32_t*)p));
104 }
105
106 /**
107 * @ingroup scsi_api_base
108 * @brief Enable IO allocation.
109 *
110 * @par Description
111 * The SCSI and Transport IO allocation functions are enabled. If the allocation functions
112 * are not enabled, then calls to ocs_scsi_io_alloc() (and ocs_els_io_alloc() for FC) will
113 * fail.
114 *
115 * @param node Pointer to node object.
116 *
117 * @return None.
118 */
119 void
120 ocs_scsi_io_alloc_enable(ocs_node_t *node)
121 {
122 ocs_assert(node != NULL);
123 ocs_lock(&node->active_ios_lock);
124 node->io_alloc_enabled = TRUE;
125 ocs_unlock(&node->active_ios_lock);
126 }
127
128 /**
129 * @ingroup scsi_api_base
130 * @brief Disable IO allocation
131 *
132 * @par Description
133 * The SCSI and Transport IO allocation functions are disabled. If the allocation functions
134 * are not enabled, then calls to ocs_scsi_io_alloc() (and ocs_els_io_alloc() for FC) will
135 * fail.
136 *
137 * @param node Pointer to node object
138 *
139 * @return None.
140 */
141 void
142 ocs_scsi_io_alloc_disable(ocs_node_t *node)
143 {
144 ocs_assert(node != NULL);
145 ocs_lock(&node->active_ios_lock);
146 node->io_alloc_enabled = FALSE;
147 ocs_unlock(&node->active_ios_lock);
148 }
149
150 /**
151 * @ingroup scsi_api_base
152 * @brief Allocate a SCSI IO context.
153 *
154 * @par Description
155 * A SCSI IO context is allocated and associated with a @c node. This function
156 * is called by an initiator-client when issuing SCSI commands to remote
157 * target devices. On completion, ocs_scsi_io_free() is called.
158 * @n @n
159 * The returned ocs_io_t structure has an element of type ocs_scsi_ini_io_t named
160 * "ini_io" that is declared and used by an initiator-client for private information.
161 *
162 * @param node Pointer to the associated node structure.
163 * @param role Role for IO (originator/responder).
164 *
165 * @return Returns the pointer to the IO context, or NULL.
166 *
167 */
168
169 ocs_io_t *
170 ocs_scsi_io_alloc(ocs_node_t *node, ocs_scsi_io_role_e role)
171 {
172 ocs_t *ocs;
173 ocs_xport_t *xport;
174 ocs_io_t *io;
175
176 ocs_assert(node, NULL);
177 ocs_assert(node->ocs, NULL);
178
179 ocs = node->ocs;
180 ocs_assert(ocs->xport, NULL);
181 xport = ocs->xport;
182
183 ocs_lock(&node->active_ios_lock);
184
185 if (!node->io_alloc_enabled) {
186 ocs_unlock(&node->active_ios_lock);
187 return NULL;
188 }
189
190 io = ocs_io_alloc(ocs);
191 if (io == NULL) {
192 ocs_atomic_add_return(&xport->io_alloc_failed_count, 1);
193 ocs_unlock(&node->active_ios_lock);
194 return NULL;
195 }
196
197 /* initialize refcount */
198 ocs_ref_init(&io->ref, _ocs_scsi_io_free, io);
199
200 if (io->hio != NULL) {
201 ocs_log_err(node->ocs, "assertion failed: io->hio is not NULL\n");
202 ocs_io_free(ocs, io);
203 ocs_unlock(&node->active_ios_lock);
204 return NULL;
205 }
206
207 /* set generic fields */
208 io->ocs = ocs;
209 io->node = node;
210
211 /* set type and name */
212 io->io_type = OCS_IO_TYPE_IO;
213 io->display_name = "scsi_io";
214
215 switch (role) {
216 case OCS_SCSI_IO_ROLE_ORIGINATOR:
217 io->cmd_ini = TRUE;
218 io->cmd_tgt = FALSE;
219 break;
220 case OCS_SCSI_IO_ROLE_RESPONDER:
221 io->cmd_ini = FALSE;
222 io->cmd_tgt = TRUE;
223 break;
224 }
225
226 /* Add to node's active_ios list */
227 ocs_list_add_tail(&node->active_ios, io);
228
229 ocs_unlock(&node->active_ios_lock);
230
231 return io;
232 }
233
234 /**
235 * @ingroup scsi_api_base
236 * @brief Free a SCSI IO context (internal).
237 *
238 * @par Description
239 * The IO context previously allocated using ocs_scsi_io_alloc()
240 * is freed. This is called from within the transport layer,
241 * when the reference count goes to zero.
242 *
243 * @param arg Pointer to the IO context.
244 *
245 * @return None.
246 */
247 static void
248 _ocs_scsi_io_free(void *arg)
249 {
250 ocs_io_t *io = (ocs_io_t *)arg;
251 ocs_t *ocs = io->ocs;
252 ocs_node_t *node = io->node;
253 int send_empty_event;
254
255 ocs_assert(io != NULL);
256
257 scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
258
259 ocs_assert(ocs_io_busy(io));
260
261 ocs_lock(&node->active_ios_lock);
262 ocs_list_remove(&node->active_ios, io);
263 send_empty_event = (!node->io_alloc_enabled) && ocs_list_empty(&node->active_ios);
264 ocs_unlock(&node->active_ios_lock);
265
266 if (send_empty_event) {
267 ocs_node_post_event(node, OCS_EVT_NODE_ACTIVE_IO_LIST_EMPTY, NULL);
268 }
269
270 io->node = NULL;
271 ocs_io_free(ocs, io);
272
273 }
274
275 /**
276 * @ingroup scsi_api_base
277 * @brief Free a SCSI IO context.
278 *
279 * @par Description
280 * The IO context previously allocated using ocs_scsi_io_alloc() is freed.
281 *
282 * @param io Pointer to the IO context.
283 *
284 * @return None.
285 */
286 void
287 ocs_scsi_io_free(ocs_io_t *io)
288 {
289 scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
290 ocs_assert(ocs_ref_read_count(&io->ref) > 0);
291 ocs_ref_put(&io->ref); /* ocs_ref_get(): ocs_scsi_io_alloc() */
292 }
293
294 static int32_t
295 ocs_scsi_send_io(ocs_hw_io_type_e type, ocs_node_t *node, ocs_io_t *io, uint64_t lun,
296 ocs_scsi_tmf_cmd_e tmf, uint8_t *cdb, uint32_t cdb_len,
297 ocs_scsi_dif_info_t *dif_info,
298 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst,
299 ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags);
300
301 /**
302 * @brief Target response completion callback.
303 *
304 * @par Description
305 * Function is called upon the completion of a target IO request.
306 *
307 * @param hio Pointer to the HW IO structure.
308 * @param rnode Remote node associated with the IO that is completing.
309 * @param length Length of the response payload.
310 * @param status Completion status.
311 * @param ext_status Extended completion status.
312 * @param app Application-specific data (generally a pointer to the IO context).
313 *
314 * @return None.
315 */
316
317 static void
318 ocs_target_io_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length,
319 int32_t status, uint32_t ext_status, void *app)
320 {
321 ocs_io_t *io = app;
322 ocs_t *ocs;
323 ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_GOOD;
324 uint16_t additional_length;
325 uint8_t edir;
326 uint8_t tdpv;
327 ocs_hw_dif_info_t *dif_info = &io->hw_dif;
328 int is_crc;
329
330 ocs_assert(io);
331
332 scsi_io_trace(io, "status x%x ext_status x%x\n", status, ext_status);
333
334 ocs = io->ocs;
335 ocs_assert(ocs);
336
337 ocs_scsi_io_free_ovfl(io);
338
339 io->transferred += length;
340
341 /* Call target server completion */
342 if (io->scsi_tgt_cb) {
343 ocs_scsi_io_cb_t cb = io->scsi_tgt_cb;
344 uint32_t flags = 0;
345
346 /* Clear the callback before invoking the callback */
347 io->scsi_tgt_cb = NULL;
348
349 /* if status was good, and auto-good-response was set, then callback
350 * target-server with IO_CMPL_RSP_SENT, otherwise send IO_CMPL
351 */
352 if ((status == 0) && (io->auto_resp))
353 flags |= OCS_SCSI_IO_CMPL_RSP_SENT;
354 else
355 flags |= OCS_SCSI_IO_CMPL;
356
357 switch (status) {
358 case SLI4_FC_WCQE_STATUS_SUCCESS:
359 scsi_status = OCS_SCSI_STATUS_GOOD;
360 break;
361 case SLI4_FC_WCQE_STATUS_DI_ERROR:
362 if (ext_status & SLI4_FC_DI_ERROR_GE) {
363 scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
364 } else if (ext_status & SLI4_FC_DI_ERROR_AE) {
365 scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR;
366 } else if (ext_status & SLI4_FC_DI_ERROR_RE) {
367 scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR;
368 } else {
369 additional_length = ((ext_status >> 16) & 0xFFFF);
370
371 /* Capture the EDIR and TDPV bits as 0 or 1 for easier printing. */
372 edir = !!(ext_status & SLI4_FC_DI_ERROR_EDIR);
373 tdpv = !!(ext_status & SLI4_FC_DI_ERROR_TDPV);
374
375 is_crc = ocs_scsi_dif_guard_is_crc(edir, dif_info);
376
377 if (edir == 0) {
378 /* For reads, we have everything in memory. Start checking from beginning. */
379 scsi_status = ocs_scsi_dif_check_unknown(io, 0, io->wire_len, is_crc);
380 } else {
381 /* For writes, use the additional length to determine where to look for the error.
382 * The additional_length field is set to 0 if it is not supported.
383 * The additional length field is valid if:
384 * . additional_length is not zero
385 * . Total Data Placed is valid
386 * . Error Direction is RX (1)
387 * . Operation is a pass thru (CRC or CKSUM on IN, and CRC or CHKSUM on OUT) (all pass-thru cases except raw)
388 */
389 if ((additional_length != 0) && (tdpv != 0) &&
390 (dif_info->dif == SLI4_DIF_PASS_THROUGH) && (dif_info->dif_oper != OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW) ) {
391 scsi_status = ocs_scsi_dif_check_unknown(io, length, additional_length, is_crc);
392 } else {
393 /* If we can't do additional checking, then fall-back to guard error */
394 scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
395 }
396 }
397 }
398 break;
399 case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
400 switch (ext_status) {
401 case SLI4_FC_LOCAL_REJECT_INVALID_RELOFFSET:
402 case SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED:
403 scsi_status = OCS_SCSI_STATUS_ABORTED;
404 break;
405 case SLI4_FC_LOCAL_REJECT_INVALID_RPI:
406 scsi_status = OCS_SCSI_STATUS_NEXUS_LOST;
407 break;
408 case SLI4_FC_LOCAL_REJECT_NO_XRI:
409 scsi_status = OCS_SCSI_STATUS_NO_IO;
410 break;
411 default:
412 /* TODO: we have seen 0x0d (TX_DMA_FAILED error) */
413 scsi_status = OCS_SCSI_STATUS_ERROR;
414 break;
415 }
416 break;
417
418 case SLI4_FC_WCQE_STATUS_TARGET_WQE_TIMEOUT:
419 /* target IO timed out */
420 scsi_status = OCS_SCSI_STATUS_TIMEDOUT_AND_ABORTED;
421 break;
422
423 case SLI4_FC_WCQE_STATUS_SHUTDOWN:
424 /* Target IO cancelled by HW */
425 scsi_status = OCS_SCSI_STATUS_SHUTDOWN;
426 break;
427
428 default:
429 scsi_status = OCS_SCSI_STATUS_ERROR;
430 break;
431 }
432
433 cb(io, scsi_status, flags, io->scsi_tgt_cb_arg);
434 }
435 ocs_scsi_check_pending(ocs);
436 }
437
438 /**
439 * @brief Determine if an IO is using CRC for DIF guard format.
440 *
441 * @param direction IO direction: 1 for write, 0 for read.
442 * @param dif_info Pointer to HW DIF info data.
443 *
444 * @return Returns TRUE if using CRC, FALSE if not.
445 */
446 static int
447 ocs_scsi_dif_guard_is_crc(uint8_t direction, ocs_hw_dif_info_t *dif_info)
448 {
449 int is_crc;
450
451 if (direction) {
452 /* For writes, check if operation is "OUT_CRC" or not */
453 switch(dif_info->dif_oper) {
454 case OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC:
455 case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC:
456 case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC:
457 is_crc = TRUE;
458 break;
459 default:
460 is_crc = FALSE;
461 break;
462 }
463 } else {
464 /* For reads, check if operation is "IN_CRC" or not */
465 switch(dif_info->dif_oper) {
466 case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF:
467 case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC:
468 case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM:
469 is_crc = TRUE;
470 break;
471 default:
472 is_crc = FALSE;
473 break;
474 }
475 }
476
477 return is_crc;
478 }
479
480 /**
481 * @brief Check a block and DIF data, computing the appropriate SCSI status
482 *
483 * @par Description
484 * This function is used to check blocks and DIF when given an unknown DIF
485 * status using the following logic:
486 *
487 * Given the address of the last good block, and a length of bytes that includes
488 * the block with the DIF error, find the bad block. If a block is found with an
489 * app_tag or ref_tag error, then return the appropriate error. No block is expected
490 * to have a block guard error since hardware "fixes" the crc. So if no block in the
491 * range of blocks has an error, then it is presumed to be a BLOCK GUARD error.
492 *
493 * @param io Pointer to the IO object.
494 * @param length Length of bytes covering the good blocks.
495 * @param check_length Length of bytes that covers the bad block.
496 * @param is_crc True if guard is using CRC format.
497 *
498 * @return Returns SCSI status.
499 */
500
501 static ocs_scsi_io_status_e
502 ocs_scsi_dif_check_unknown(ocs_io_t *io, uint32_t length, uint32_t check_length, int is_crc)
503 {
504 uint32_t i;
505 ocs_t *ocs = io->ocs;
506 ocs_hw_dif_info_t *dif_info = &io->hw_dif;
507 ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
508 uint32_t blocksize; /* data block size */
509 uint64_t first_check_block; /* first block following total data placed */
510 uint64_t last_check_block; /* last block to check */
511 uint32_t check_count; /* count of blocks to check */
512 ocs_scsi_vaddr_len_t addrlen[4]; /* address-length pairs returned from target */
513 int32_t addrlen_count; /* count of address-length pairs */
514 ocs_dif_t *dif; /* pointer to DIF block returned from target */
515 ocs_scsi_dif_info_t scsi_dif_info = io->scsi_dif_info;
516
517 blocksize = ocs_hw_dif_mem_blocksize(&io->hw_dif, TRUE);
518 first_check_block = length / blocksize;
519 last_check_block = ((length + check_length) / blocksize);
520 check_count = last_check_block - first_check_block;
521
522 ocs_log_debug(ocs, "blocksize %d first check_block %" PRId64 " last_check_block %" PRId64 " check_count %d\n",
523 blocksize, first_check_block, last_check_block, check_count);
524
525 for (i = first_check_block; i < last_check_block; i++) {
526 addrlen_count = ocs_scsi_get_block_vaddr(io, (scsi_dif_info.lba + i), addrlen, ARRAY_SIZE(addrlen), (void**) &dif);
527 if (addrlen_count < 0) {
528 ocs_log_test(ocs, "ocs_scsi_get_block_vaddr() failed: %d\n", addrlen_count);
529 scsi_status = OCS_SCSI_STATUS_DIF_UNKNOWN_ERROR;
530 break;
531 }
532
533 if (! ocs_scsi_dif_check_guard(dif_info, addrlen, addrlen_count, dif, is_crc)) {
534 ocs_log_debug(ocs, "block guard check error, lba %" PRId64 "\n", scsi_dif_info.lba + i);
535 scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
536 break;
537 }
538 if (! ocs_scsi_dif_check_app_tag(ocs, dif_info, scsi_dif_info.app_tag, dif)) {
539 ocs_log_debug(ocs, "app tag check error, lba %" PRId64 "\n", scsi_dif_info.lba + i);
540 scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR;
541 break;
542 }
543 if (! ocs_scsi_dif_check_ref_tag(ocs, dif_info, (scsi_dif_info.ref_tag + i), dif)) {
544 ocs_log_debug(ocs, "ref tag check error, lba %" PRId64 "\n", scsi_dif_info.lba + i);
545 scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR;
546 break;
547 }
548 }
549 return scsi_status;
550 }
551
552 /**
553 * @brief Check the block guard of block data
554 *
555 * @par Description
556 * Using the dif_info for the transfer, check the block guard value.
557 *
558 * @param dif_info Pointer to HW DIF info data.
559 * @param addrlen Array of address length pairs.
560 * @param addrlen_count Number of entries in the addrlen[] array.
561 * @param dif Pointer to the DIF data block being checked.
562 * @param is_crc True if guard is using CRC format.
563 *
564 * @return Returns TRUE if block guard check is ok.
565 */
566 static uint32_t
567 ocs_scsi_dif_check_guard(ocs_hw_dif_info_t *dif_info, ocs_scsi_vaddr_len_t addrlen[], uint32_t addrlen_count,
568 ocs_dif_t *dif, int is_crc)
569 {
570 uint16_t crc = dif_info->dif_seed;
571 uint32_t i;
572 uint16_t checksum;
573
574 if ((dif == NULL) || !dif_info->check_guard) {
575 return TRUE;
576 }
577
578 if (is_crc) {
579 for (i = 0; i < addrlen_count; i++) {
580 crc = ocs_scsi_dif_calc_crc(addrlen[i].vaddr, addrlen[i].length, crc);
581 }
582 return (crc == ocs_be16toh(dif->crc));
583 } else {
584 checksum = ocs_scsi_dif_calc_checksum(addrlen, addrlen_count);
585
586 return (checksum == dif->crc);
587 }
588 }
589
590 /**
591 * @brief Check the app tag of dif data
592 *
593 * @par Description
594 * Using the dif_info for the transfer, check the app tag.
595 *
596 * @param ocs Pointer to the ocs structure for logging.
597 * @param dif_info Pointer to HW DIF info data.
598 * @param exp_app_tag The value the app tag is expected to be.
599 * @param dif Pointer to the DIF data block being checked.
600 *
601 * @return Returns TRUE if app tag check is ok.
602 */
603 static uint32_t
604 ocs_scsi_dif_check_app_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint16_t exp_app_tag, ocs_dif_t *dif)
605 {
606 if ((dif == NULL) || !dif_info->check_app_tag) {
607 return TRUE;
608 }
609
610 ocs_log_debug(ocs, "expected app tag 0x%x, actual 0x%x\n",
611 exp_app_tag, ocs_be16toh(dif->app_tag));
612
613 return (exp_app_tag == ocs_be16toh(dif->app_tag));
614 }
615
616 /**
617 * @brief Check the ref tag of dif data
618 *
619 * @par Description
620 * Using the dif_info for the transfer, check the app tag.
621 *
622 * @param ocs Pointer to the ocs structure for logging.
623 * @param dif_info Pointer to HW DIF info data.
624 * @param exp_ref_tag The value the ref tag is expected to be.
625 * @param dif Pointer to the DIF data block being checked.
626 *
627 * @return Returns TRUE if ref tag check is ok.
628 */
629 static uint32_t
630 ocs_scsi_dif_check_ref_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint32_t exp_ref_tag, ocs_dif_t *dif)
631 {
632 if ((dif == NULL) || !dif_info->check_ref_tag) {
633 return TRUE;
634 }
635
636 if (exp_ref_tag != ocs_be32toh(dif->ref_tag)) {
637 ocs_log_debug(ocs, "expected ref tag 0x%x, actual 0x%x\n",
638 exp_ref_tag, ocs_be32toh(dif->ref_tag));
639 return FALSE;
640 } else {
641 return TRUE;
642 }
643 }
644
645 /**
646 * @brief Return count of SGE's required for request
647 *
648 * @par Description
649 * An accurate count of SGEs is computed and returned.
650 *
651 * @param hw_dif Pointer to HW dif information.
652 * @param sgl Pointer to SGL from back end.
653 * @param sgl_count Count of SGEs in SGL.
654 *
655 * @return Count of SGEs.
656 */
657 static uint32_t
658 ocs_scsi_count_sgls(ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count)
659 {
660 uint32_t count = 0;
661 uint32_t i;
662
663 /* Convert DIF Information */
664 if (hw_dif->dif_oper != OCS_HW_DIF_OPER_DISABLED) {
665 /* If we're not DIF separate, then emit a seed SGE */
666 if (!hw_dif->dif_separate) {
667 count++;
668 }
669
670 for (i = 0; i < sgl_count; i++) {
671 /* If DIF is enabled, and DIF is separate, then append a SEED then DIF SGE */
672 if (hw_dif->dif_separate) {
673 count += 2;
674 }
675
676 count++;
677 }
678 } else {
679 count = sgl_count;
680 }
681 return count;
682 }
683
684 static int32_t
685 ocs_scsi_build_sgls(ocs_hw_t *hw, ocs_hw_io_t *hio, ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, ocs_hw_io_type_e type)
686 {
687 int32_t rc;
688 uint32_t i;
689 ocs_t *ocs = hw->os;
690 uint32_t blocksize = 0;
691 uint32_t blockcount;
692
693 ocs_assert(hio, -1);
694
695 /* Initialize HW SGL */
696 rc = ocs_hw_io_init_sges(hw, hio, type);
697 if (rc) {
698 ocs_log_err(ocs, "ocs_hw_io_init_sges failed: %d\n", rc);
699 return -1;
700 }
701
702 /* Convert DIF Information */
703 if (hw_dif->dif_oper != OCS_HW_DIF_OPER_DISABLED) {
704 /* If we're not DIF separate, then emit a seed SGE */
705 if (!hw_dif->dif_separate) {
706 rc = ocs_hw_io_add_seed_sge(hw, hio, hw_dif);
707 if (rc) {
708 return rc;
709 }
710 }
711
712 /* if we are doing DIF separate, then figure out the block size so that we
713 * can update the ref tag in the DIF seed SGE. Also verify that the
714 * the sgl lengths are all multiples of the blocksize
715 */
716 if (hw_dif->dif_separate) {
717 switch(hw_dif->blk_size) {
718 case OCS_HW_DIF_BK_SIZE_512: blocksize = 512; break;
719 case OCS_HW_DIF_BK_SIZE_1024: blocksize = 1024; break;
720 case OCS_HW_DIF_BK_SIZE_2048: blocksize = 2048; break;
721 case OCS_HW_DIF_BK_SIZE_4096: blocksize = 4096; break;
722 case OCS_HW_DIF_BK_SIZE_520: blocksize = 520; break;
723 case OCS_HW_DIF_BK_SIZE_4104: blocksize = 4104; break;
724 default:
725 ocs_log_test(hw->os, "Inavlid hw_dif blocksize %d\n", hw_dif->blk_size);
726 return -1;
727 }
728 for (i = 0; i < sgl_count; i++) {
729 if ((sgl[i].len % blocksize) != 0) {
730 ocs_log_test(hw->os, "sgl[%d] len of %ld is not multiple of blocksize\n",
731 i, sgl[i].len);
732 return -1;
733 }
734 }
735 }
736
737 for (i = 0; i < sgl_count; i++) {
738 ocs_assert(sgl[i].addr, -1);
739 ocs_assert(sgl[i].len, -1);
740
741 /* If DIF is enabled, and DIF is separate, then append a SEED then DIF SGE */
742 if (hw_dif->dif_separate) {
743 rc = ocs_hw_io_add_seed_sge(hw, hio, hw_dif);
744 if (rc) {
745 return rc;
746 }
747 rc = ocs_hw_io_add_dif_sge(hw, hio, sgl[i].dif_addr);
748 if (rc) {
749 return rc;
750 }
751 /* Update the ref_tag for the next DIF seed SGE */
752 blockcount = sgl[i].len / blocksize;
753 if (hw_dif->dif_oper == OCS_HW_DIF_OPER_INSERT) {
754 hw_dif->ref_tag_repl += blockcount;
755 } else {
756 hw_dif->ref_tag_cmp += blockcount;
757 }
758 }
759
760 /* Add data SGE */
761 rc = ocs_hw_io_add_sge(hw, hio, sgl[i].addr, sgl[i].len);
762 if (rc) {
763 ocs_log_err(ocs, "ocs_hw_io_add_sge failed: count=%d rc=%d\n",
764 sgl_count, rc);
765 return rc;
766 }
767 }
768 } else {
769 for (i = 0; i < sgl_count; i++) {
770 ocs_assert(sgl[i].addr, -1);
771 ocs_assert(sgl[i].len, -1);
772
773 /* Add data SGE */
774 rc = ocs_hw_io_add_sge(hw, hio, sgl[i].addr, sgl[i].len);
775 if (rc) {
776 ocs_log_err(ocs, "ocs_hw_io_add_sge failed: count=%d rc=%d\n",
777 sgl_count, rc);
778 return rc;
779 }
780 }
781 }
782 return 0;
783 }
784
785 /**
786 * @ingroup scsi_api_base
787 * @brief Convert SCSI API T10 DIF information into the FC HW format.
788 *
789 * @param ocs Pointer to the ocs structure for logging.
790 * @param scsi_dif_info Pointer to the SCSI API T10 DIF fields.
791 * @param hw_dif_info Pointer to the FC HW API T10 DIF fields.
792 *
793 * @return Returns 0 on success, or a negative error code value on failure.
794 */
795
796 static int32_t
797 ocs_scsi_convert_dif_info(ocs_t *ocs, ocs_scsi_dif_info_t *scsi_dif_info, ocs_hw_dif_info_t *hw_dif_info)
798 {
799 uint32_t dif_seed;
800 ocs_memset(hw_dif_info, 0, sizeof(ocs_hw_dif_info_t));
801
802 if (scsi_dif_info == NULL) {
803 hw_dif_info->dif_oper = OCS_HW_DIF_OPER_DISABLED;
804 hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_NA;
805 return 0;
806 }
807
808 /* Convert the DIF operation */
809 switch(scsi_dif_info->dif_oper) {
810 case OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CRC:
811 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC;
812 hw_dif_info->dif = SLI4_DIF_INSERT;
813 break;
814 case OCS_SCSI_DIF_OPER_IN_CRC_OUT_NODIF:
815 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF;
816 hw_dif_info->dif = SLI4_DIF_STRIP;
817 break;
818 case OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CHKSUM:
819 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM;
820 hw_dif_info->dif = SLI4_DIF_INSERT;
821 break;
822 case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_NODIF:
823 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF;
824 hw_dif_info->dif = SLI4_DIF_STRIP;
825 break;
826 case OCS_SCSI_DIF_OPER_IN_CRC_OUT_CRC:
827 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC;
828 hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
829 break;
830 case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CHKSUM:
831 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM;
832 hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
833 break;
834 case OCS_SCSI_DIF_OPER_IN_CRC_OUT_CHKSUM:
835 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM;
836 hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
837 break;
838 case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CRC:
839 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC;
840 hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
841 break;
842 case OCS_SCSI_DIF_OPER_IN_RAW_OUT_RAW:
843 hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW;
844 hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
845 break;
846 default:
847 ocs_log_test(ocs, "unhandled SCSI DIF operation %d\n",
848 scsi_dif_info->dif_oper);
849 return -1;
850 }
851
852 switch(scsi_dif_info->blk_size) {
853 case OCS_SCSI_DIF_BK_SIZE_512:
854 hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_512;
855 break;
856 case OCS_SCSI_DIF_BK_SIZE_1024:
857 hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_1024;
858 break;
859 case OCS_SCSI_DIF_BK_SIZE_2048:
860 hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_2048;
861 break;
862 case OCS_SCSI_DIF_BK_SIZE_4096:
863 hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_4096;
864 break;
865 case OCS_SCSI_DIF_BK_SIZE_520:
866 hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_520;
867 break;
868 case OCS_SCSI_DIF_BK_SIZE_4104:
869 hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_4104;
870 break;
871 default:
872 ocs_log_test(ocs, "unhandled SCSI DIF block size %d\n",
873 scsi_dif_info->blk_size);
874 return -1;
875 }
876
877 /* If the operation is an INSERT the tags provided are the ones that should be
878 * inserted, otherwise they're the ones to be checked against. */
879 if (hw_dif_info->dif == SLI4_DIF_INSERT ) {
880 hw_dif_info->ref_tag_repl = scsi_dif_info->ref_tag;
881 hw_dif_info->app_tag_repl = scsi_dif_info->app_tag;
882 } else {
883 hw_dif_info->ref_tag_cmp = scsi_dif_info->ref_tag;
884 hw_dif_info->app_tag_cmp = scsi_dif_info->app_tag;
885 }
886
887 hw_dif_info->check_ref_tag = scsi_dif_info->check_ref_tag;
888 hw_dif_info->check_app_tag = scsi_dif_info->check_app_tag;
889 hw_dif_info->check_guard = scsi_dif_info->check_guard;
890 hw_dif_info->auto_incr_ref_tag = 1;
891 hw_dif_info->dif_separate = scsi_dif_info->dif_separate;
892 hw_dif_info->disable_app_ffff = scsi_dif_info->disable_app_ffff;
893 hw_dif_info->disable_app_ref_ffff = scsi_dif_info->disable_app_ref_ffff;
894
895 ocs_hw_get(&ocs->hw, OCS_HW_DIF_SEED, &dif_seed);
896 hw_dif_info->dif_seed = dif_seed;
897
898 return 0;
899 }
900
901 /**
902 * @ingroup scsi_api_base
903 * @brief This function logs the SGLs for an IO.
904 *
905 * @param io Pointer to the IO context.
906 */
907 static void ocs_log_sgl(ocs_io_t *io)
908 {
909 ocs_hw_io_t *hio = io->hio;
910 sli4_sge_t *data = NULL;
911 uint32_t *dword = NULL;
912 uint32_t i;
913 uint32_t n_sge;
914
915 scsi_io_trace(io, "def_sgl at 0x%x 0x%08x\n",
916 ocs_addr32_hi(hio->def_sgl.phys),
917 ocs_addr32_lo(hio->def_sgl.phys));
918 n_sge = (hio->sgl == &hio->def_sgl ? hio->n_sge : hio->def_sgl_count);
919 for (i = 0, data = hio->def_sgl.virt; i < n_sge; i++, data++) {
920 dword = (uint32_t*)data;
921
922 scsi_io_trace(io, "SGL %2d 0x%08x 0x%08x 0x%08x 0x%08x\n",
923 i, dword[0], dword[1], dword[2], dword[3]);
924
925 if (dword[2] & (1U << 31)) {
926 break;
927 }
928 }
929
930 if (hio->ovfl_sgl != NULL &&
931 hio->sgl == hio->ovfl_sgl) {
932 scsi_io_trace(io, "Overflow at 0x%x 0x%08x\n",
933 ocs_addr32_hi(hio->ovfl_sgl->phys),
934 ocs_addr32_lo(hio->ovfl_sgl->phys));
935 for (i = 0, data = hio->ovfl_sgl->virt; i < hio->n_sge; i++, data++) {
936 dword = (uint32_t*)data;
937
938 scsi_io_trace(io, "SGL %2d 0x%08x 0x%08x 0x%08x 0x%08x\n",
939 i, dword[0], dword[1], dword[2], dword[3]);
940 if (dword[2] & (1U << 31)) {
941 break;
942 }
943 }
944 }
945
946 }
947
948 /**
949 * @brief Check pending error asynchronous callback function.
950 *
951 * @par Description
952 * Invoke the HW callback function for a given IO. This function is called
953 * from the NOP mailbox completion context.
954 *
955 * @param hw Pointer to HW object.
956 * @param status Completion status.
957 * @param mqe Mailbox completion queue entry.
958 * @param arg General purpose argument.
959 *
960 * @return Returns 0.
961 */
962 static int32_t
963 ocs_scsi_check_pending_async_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
964 {
965 ocs_io_t *io = arg;
966
967 if (io != NULL) {
968 if (io->hw_cb != NULL) {
969 ocs_hw_done_t cb = io->hw_cb;
970
971 io->hw_cb = NULL;
972 cb(io->hio, NULL, 0, SLI4_FC_WCQE_STATUS_DISPATCH_ERROR, 0, io);
973 }
974 }
975 return 0;
976 }
977
978 /**
979 * @brief Check for pending IOs to dispatch.
980 *
981 * @par Description
982 * If there are IOs on the pending list, and a HW IO is available, then
983 * dispatch the IOs.
984 *
985 * @param ocs Pointer to the OCS structure.
986 *
987 * @return None.
988 */
989
990 void
991 ocs_scsi_check_pending(ocs_t *ocs)
992 {
993 ocs_xport_t *xport = ocs->xport;
994 ocs_io_t *io;
995 ocs_hw_io_t *hio;
996 int32_t status;
997 int count = 0;
998 int dispatch;
999
1000 /* Guard against recursion */
1001 if (ocs_atomic_add_return(&xport->io_pending_recursing, 1)) {
1002 /* This function is already running. Decrement and return. */
1003 ocs_atomic_sub_return(&xport->io_pending_recursing, 1);
1004 return;
1005 }
1006
1007 do {
1008 ocs_lock(&xport->io_pending_lock);
1009 status = 0;
1010 hio = NULL;
1011 io = ocs_list_remove_head(&xport->io_pending_list);
1012 if (io != NULL) {
1013 if (io->io_type == OCS_IO_TYPE_ABORT) {
1014 hio = NULL;
1015 } else {
1016 hio = ocs_hw_io_alloc(&ocs->hw);
1017 if (hio == NULL) {
1018 /*
1019 * No HW IO available.
1020 * Put IO back on the front of pending list
1021 */
1022 ocs_list_add_head(&xport->io_pending_list, io);
1023 io = NULL;
1024 } else {
1025 hio->eq = io->hw_priv;
1026 }
1027 }
1028 }
1029 /* Must drop the lock before dispatching the IO */
1030 ocs_unlock(&xport->io_pending_lock);
1031
1032 if (io != NULL) {
1033 count++;
1034
1035 /*
1036 * We pulled an IO off the pending list,
1037 * and either got an HW IO or don't need one
1038 */
1039 ocs_atomic_sub_return(&xport->io_pending_count, 1);
1040 if (hio == NULL) {
1041 status = ocs_scsi_io_dispatch_no_hw_io(io);
1042 } else {
1043 status = ocs_scsi_io_dispatch_hw_io(io, hio);
1044 }
1045 if (status) {
1046 /*
1047 * Invoke the HW callback, but do so in the separate execution context,
1048 * provided by the NOP mailbox completion processing context by using
1049 * ocs_hw_async_call()
1050 */
1051 if (ocs_hw_async_call(&ocs->hw, ocs_scsi_check_pending_async_cb, io)) {
1052 ocs_log_test(ocs, "call to ocs_hw_async_call() failed\n");
1053 }
1054 }
1055 }
1056 } while (io != NULL);
1057
1058 /*
1059 * If nothing was removed from the list,
1060 * we might be in a case where we need to abort an
1061 * active IO and the abort is on the pending list.
1062 * Look for an abort we can dispatch.
1063 */
1064 if (count == 0 ) {
1065 dispatch = 0;
1066
1067 ocs_lock(&xport->io_pending_lock);
1068 ocs_list_foreach(&xport->io_pending_list, io) {
1069 if (io->io_type == OCS_IO_TYPE_ABORT) {
1070 if (io->io_to_abort->hio != NULL) {
1071 /* This IO has a HW IO, so it is active. Dispatch the abort. */
1072 dispatch = 1;
1073 } else {
1074 /* Leave this abort on the pending list and keep looking */
1075 dispatch = 0;
1076 }
1077 }
1078 if (dispatch) {
1079 ocs_list_remove(&xport->io_pending_list, io);
1080 ocs_atomic_sub_return(&xport->io_pending_count, 1);
1081 break;
1082 }
1083 }
1084 ocs_unlock(&xport->io_pending_lock);
1085
1086 if (dispatch) {
1087 status = ocs_scsi_io_dispatch_no_hw_io(io);
1088 if (status) {
1089 if (ocs_hw_async_call(&ocs->hw, ocs_scsi_check_pending_async_cb, io)) {
1090 ocs_log_test(ocs, "call to ocs_hw_async_call() failed\n");
1091 }
1092 }
1093 }
1094 }
1095
1096 ocs_atomic_sub_return(&xport->io_pending_recursing, 1);
1097 return;
1098 }
1099
1100 /**
1101 * @brief Attempt to dispatch a non-abort IO
1102 *
1103 * @par Description
1104 * An IO is dispatched:
1105 * - if the pending list is not empty, add IO to pending list
1106 * and call a function to process the pending list.
1107 * - if pending list is empty, try to allocate a HW IO. If none
1108 * is available, place this IO at the tail of the pending IO
1109 * list.
1110 * - if HW IO is available, attach this IO to the HW IO and
1111 * submit it.
1112 *
1113 * @param io Pointer to IO structure.
1114 * @param cb Callback function.
1115 *
1116 * @return Returns 0 on success, a negative error code value on failure.
1117 */
1118
1119 int32_t
1120 ocs_scsi_io_dispatch(ocs_io_t *io, void *cb)
1121 {
1122 ocs_hw_io_t *hio;
1123 ocs_t *ocs = io->ocs;
1124 ocs_xport_t *xport = ocs->xport;
1125
1126 ocs_assert(io->cmd_tgt || io->cmd_ini, -1);
1127 ocs_assert((io->io_type != OCS_IO_TYPE_ABORT), -1);
1128 io->hw_cb = cb;
1129
1130 /*
1131 * if this IO already has a HW IO, then this is either not the first phase of
1132 * the IO. Send it to the HW.
1133 */
1134 if (io->hio != NULL) {
1135 return ocs_scsi_io_dispatch_hw_io(io, io->hio);
1136 }
1137
1138 /*
1139 * We don't already have a HW IO associated with the IO. First check
1140 * the pending list. If not empty, add IO to the tail and process the
1141 * pending list.
1142 */
1143 ocs_lock(&xport->io_pending_lock);
1144 if (!ocs_list_empty(&xport->io_pending_list)) {
1145 /*
1146 * If this is a low latency request, the put at the front of the IO pending
1147 * queue, otherwise put it at the end of the queue.
1148 */
1149 if (io->low_latency) {
1150 ocs_list_add_head(&xport->io_pending_list, io);
1151 } else {
1152 ocs_list_add_tail(&xport->io_pending_list, io);
1153 }
1154 ocs_unlock(&xport->io_pending_lock);
1155 ocs_atomic_add_return(&xport->io_pending_count, 1);
1156 ocs_atomic_add_return(&xport->io_total_pending, 1);
1157
1158 /* process pending list */
1159 ocs_scsi_check_pending(ocs);
1160 return 0;
1161 }
1162 ocs_unlock(&xport->io_pending_lock);
1163
1164 /*
1165 * We don't have a HW IO associated with the IO and there's nothing
1166 * on the pending list. Attempt to allocate a HW IO and dispatch it.
1167 */
1168 hio = ocs_hw_io_alloc(&io->ocs->hw);
1169 if (hio == NULL) {
1170 /* Couldn't get a HW IO. Save this IO on the pending list */
1171 ocs_lock(&xport->io_pending_lock);
1172 ocs_list_add_tail(&xport->io_pending_list, io);
1173 ocs_unlock(&xport->io_pending_lock);
1174
1175 ocs_atomic_add_return(&xport->io_total_pending, 1);
1176 ocs_atomic_add_return(&xport->io_pending_count, 1);
1177 return 0;
1178 }
1179
1180 /* We successfully allocated a HW IO; dispatch to HW */
1181 return ocs_scsi_io_dispatch_hw_io(io, hio);
1182 }
1183
1184 /**
1185 * @brief Attempt to dispatch an Abort IO.
1186 *
1187 * @par Description
1188 * An Abort IO is dispatched:
1189 * - if the pending list is not empty, add IO to pending list
1190 * and call a function to process the pending list.
1191 * - if pending list is empty, send abort to the HW.
1192 *
1193 * @param io Pointer to IO structure.
1194 * @param cb Callback function.
1195 *
1196 * @return Returns 0 on success, a negative error code value on failure.
1197 */
1198
1199 int32_t
1200 ocs_scsi_io_dispatch_abort(ocs_io_t *io, void *cb)
1201 {
1202 ocs_t *ocs = io->ocs;
1203 ocs_xport_t *xport = ocs->xport;
1204
1205 ocs_assert((io->io_type == OCS_IO_TYPE_ABORT), -1);
1206 io->hw_cb = cb;
1207
1208 /*
1209 * For aborts, we don't need a HW IO, but we still want to pass through
1210 * the pending list to preserve ordering. Thus, if the pending list is
1211 * not empty, add this abort to the pending list and process the pending list.
1212 */
1213 ocs_lock(&xport->io_pending_lock);
1214 if (!ocs_list_empty(&xport->io_pending_list)) {
1215 ocs_list_add_tail(&xport->io_pending_list, io);
1216 ocs_unlock(&xport->io_pending_lock);
1217 ocs_atomic_add_return(&xport->io_pending_count, 1);
1218 ocs_atomic_add_return(&xport->io_total_pending, 1);
1219
1220 /* process pending list */
1221 ocs_scsi_check_pending(ocs);
1222 return 0;
1223 }
1224 ocs_unlock(&xport->io_pending_lock);
1225
1226 /* nothing on pending list, dispatch abort */
1227 return ocs_scsi_io_dispatch_no_hw_io(io);
1228
1229 }
1230
1231 /**
1232 * @brief Dispatch IO
1233 *
1234 * @par Description
1235 * An IO and its associated HW IO is dispatched to the HW.
1236 *
1237 * @param io Pointer to IO structure.
1238 * @param hio Pointer to HW IO structure from which IO will be
1239 * dispatched.
1240 *
1241 * @return Returns 0 on success, a negative error code value on failure.
1242 */
1243
1244 static int32_t
1245 ocs_scsi_io_dispatch_hw_io(ocs_io_t *io, ocs_hw_io_t *hio)
1246 {
1247 int32_t rc;
1248 ocs_t *ocs = io->ocs;
1249
1250 /* Got a HW IO; update ini/tgt_task_tag with HW IO info and dispatch */
1251 io->hio = hio;
1252 if (io->cmd_tgt) {
1253 io->tgt_task_tag = hio->indicator;
1254 } else if (io->cmd_ini) {
1255 io->init_task_tag = hio->indicator;
1256 }
1257 io->hw_tag = hio->reqtag;
1258
1259 hio->eq = io->hw_priv;
1260
1261 /* Copy WQ steering */
1262 switch(io->wq_steering) {
1263 case OCS_SCSI_WQ_STEERING_CLASS >> OCS_SCSI_WQ_STEERING_SHIFT:
1264 hio->wq_steering = OCS_HW_WQ_STEERING_CLASS;
1265 break;
1266 case OCS_SCSI_WQ_STEERING_REQUEST >> OCS_SCSI_WQ_STEERING_SHIFT:
1267 hio->wq_steering = OCS_HW_WQ_STEERING_REQUEST;
1268 break;
1269 case OCS_SCSI_WQ_STEERING_CPU >> OCS_SCSI_WQ_STEERING_SHIFT:
1270 hio->wq_steering = OCS_HW_WQ_STEERING_CPU;
1271 break;
1272 }
1273
1274 switch (io->io_type) {
1275 case OCS_IO_TYPE_IO: {
1276 uint32_t max_sgl;
1277 uint32_t total_count;
1278 uint32_t host_allocated;
1279
1280 ocs_hw_get(&ocs->hw, OCS_HW_N_SGL, &max_sgl);
1281 ocs_hw_get(&ocs->hw, OCS_HW_SGL_CHAINING_HOST_ALLOCATED, &host_allocated);
1282
1283 /*
1284 * If the requested SGL is larger than the default size, then we can allocate
1285 * an overflow SGL.
1286 */
1287 total_count = ocs_scsi_count_sgls(&io->hw_dif, io->sgl, io->sgl_count);
1288
1289 /*
1290 * Lancer requires us to allocate the chained memory area, but
1291 * Skyhawk must use the SGL list associated with another XRI.
1292 */
1293 if (host_allocated && total_count > max_sgl) {
1294 /* Compute count needed, the number extra plus 1 for the link sge */
1295 uint32_t count = total_count - max_sgl + 1;
1296 rc = ocs_dma_alloc(ocs, &io->ovfl_sgl, count*sizeof(sli4_sge_t), 64);
1297 if (rc) {
1298 ocs_log_err(ocs, "ocs_dma_alloc overflow sgl failed\n");
1299 break;
1300 }
1301 rc = ocs_hw_io_register_sgl(&ocs->hw, io->hio, &io->ovfl_sgl, count);
1302 if (rc) {
1303 ocs_scsi_io_free_ovfl(io);
1304 ocs_log_err(ocs, "ocs_hw_io_register_sgl() failed\n");
1305 break;
1306 }
1307 /* EVT: update chained_io_count */
1308 io->node->chained_io_count++;
1309 }
1310
1311 rc = ocs_scsi_build_sgls(&ocs->hw, io->hio, &io->hw_dif, io->sgl, io->sgl_count, io->hio_type);
1312 if (rc) {
1313 ocs_scsi_io_free_ovfl(io);
1314 break;
1315 }
1316
1317 if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) {
1318 ocs_log_sgl(io);
1319 }
1320
1321 if (io->app_id) {
1322 io->iparam.fcp_tgt.app_id = io->app_id;
1323 }
1324
1325 rc = ocs_hw_io_send(&io->ocs->hw, io->hio_type, io->hio, io->wire_len, &io->iparam, &io->node->rnode,
1326 io->hw_cb, io);
1327 break;
1328 }
1329 case OCS_IO_TYPE_ELS:
1330 case OCS_IO_TYPE_CT: {
1331 rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio,
1332 &io->els_req, io->wire_len,
1333 &io->els_rsp, &io->node->rnode, &io->iparam,
1334 io->hw_cb, io);
1335 break;
1336 }
1337 case OCS_IO_TYPE_CT_RESP: {
1338 rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio,
1339 &io->els_rsp, io->wire_len,
1340 NULL, &io->node->rnode, &io->iparam,
1341 io->hw_cb, io);
1342 break;
1343 }
1344 case OCS_IO_TYPE_BLS_RESP: {
1345 /* no need to update tgt_task_tag for BLS response since the RX_ID
1346 * will be specified by the payload, not the XRI */
1347 rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio,
1348 NULL, 0, NULL, &io->node->rnode, &io->iparam, io->hw_cb, io);
1349 break;
1350 }
1351 default:
1352 scsi_io_printf(io, "Unknown IO type=%d\n", io->io_type);
1353 rc = -1;
1354 break;
1355 }
1356 return rc;
1357 }
1358
1359 /**
1360 * @brief Dispatch IO
1361 *
1362 * @par Description
1363 * An IO that does require a HW IO is dispatched to the HW.
1364 *
1365 * @param io Pointer to IO structure.
1366 *
1367 * @return Returns 0 on success, or a negative error code value on failure.
1368 */
1369
1370 static int32_t
1371 ocs_scsi_io_dispatch_no_hw_io(ocs_io_t *io)
1372 {
1373 int32_t rc;
1374
1375 switch (io->io_type) {
1376 case OCS_IO_TYPE_ABORT: {
1377 ocs_hw_io_t *hio_to_abort = NULL;
1378 ocs_assert(io->io_to_abort, -1);
1379 hio_to_abort = io->io_to_abort->hio;
1380
1381 if (hio_to_abort == NULL) {
1382 /*
1383 * If "IO to abort" does not have an associated HW IO, immediately
1384 * make callback with success. The command must have been sent to
1385 * the backend, but the data phase has not yet started, so we don't
1386 * have a HW IO.
1387 *
1388 * Note: since the backend shims should be taking a reference
1389 * on io_to_abort, it should not be possible to have been completed
1390 * and freed by the backend before the abort got here.
1391 */
1392 scsi_io_printf(io, "IO: " SCSI_IOFMT " not active\n",
1393 SCSI_IOFMT_ARGS(io->io_to_abort));
1394 ((ocs_hw_done_t)io->hw_cb)(io->hio, NULL, 0, SLI4_FC_WCQE_STATUS_SUCCESS, 0, io);
1395 rc = 0;
1396 } else {
1397 /* HW IO is valid, abort it */
1398 scsi_io_printf(io, "aborting " SCSI_IOFMT "\n", SCSI_IOFMT_ARGS(io->io_to_abort));
1399 rc = ocs_hw_io_abort(&io->ocs->hw, hio_to_abort, io->send_abts,
1400 io->hw_cb, io);
1401 if (rc) {
1402 int status = SLI4_FC_WCQE_STATUS_SUCCESS;
1403 if ((rc != OCS_HW_RTN_IO_NOT_ACTIVE) &&
1404 (rc != OCS_HW_RTN_IO_ABORT_IN_PROGRESS)) {
1405 status = -1;
1406 scsi_io_printf(io, "Failed to abort IO: " SCSI_IOFMT " status=%d\n",
1407 SCSI_IOFMT_ARGS(io->io_to_abort), rc);
1408 }
1409 ((ocs_hw_done_t)io->hw_cb)(io->hio, NULL, 0, status, 0, io);
1410 rc = 0;
1411 }
1412 }
1413
1414 break;
1415 }
1416 default:
1417 scsi_io_printf(io, "Unknown IO type=%d\n", io->io_type);
1418 rc = -1;
1419 break;
1420 }
1421 return rc;
1422 }
1423
1424 /**
1425 * @ingroup scsi_api_base
1426 * @brief Send read/write data.
1427 *
1428 * @par Description
1429 * This call is made by a target-server to initiate a SCSI read or write data phase, transferring
1430 * data between the target to the remote initiator. The payload is specified by the
1431 * scatter-gather list @c sgl of length @c sgl_count. The @c wire_len argument
1432 * specifies the payload length (independent of the scatter-gather list cumulative length).
1433 * @n @n
1434 * The @c flags argument has one bit, OCS_SCSI_LAST_DATAPHASE, which is a hint to the base
1435 * driver that it may use auto SCSI response features if the hardware supports it.
1436 * @n @n
1437 * Upon completion, the callback function @b cb is called with flags indicating that the
1438 * IO has completed (OCS_SCSI_IO_COMPL) and another data phase or response may be sent;
1439 * that the IO has completed and no response needs to be sent (OCS_SCSI_IO_COMPL_NO_RSP);
1440 * or that the IO was aborted (OCS_SCSI_IO_ABORTED).
1441 *
1442 * @param io Pointer to the IO context.
1443 * @param flags Flags controlling the sending of data.
1444 * @param dif_info Pointer to T10 DIF fields, or NULL if no DIF.
1445 * @param sgl Pointer to the payload scatter-gather list.
1446 * @param sgl_count Count of the scatter-gather list elements.
1447 * @param xwire_len Length of the payload on wire, in bytes.
1448 * @param type HW IO type.
1449 * @param enable_ar Enable auto-response if true.
1450 * @param cb Completion callback.
1451 * @param arg Application-supplied callback data.
1452 *
1453 * @return Returns 0 on success, or a negative error code value on failure.
1454 */
1455
1456 static inline int32_t
1457 ocs_scsi_xfer_data(ocs_io_t *io, uint32_t flags,
1458 ocs_scsi_dif_info_t *dif_info,
1459 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t xwire_len,
1460 ocs_hw_io_type_e type, int enable_ar,
1461 ocs_scsi_io_cb_t cb, void *arg)
1462 {
1463 int32_t rc;
1464 ocs_t *ocs;
1465 uint32_t disable_ar_tgt_dif = FALSE;
1466 size_t residual = 0;
1467
1468 if ((dif_info != NULL) && (dif_info->dif_oper == OCS_SCSI_DIF_OPER_DISABLED)) {
1469 dif_info = NULL;
1470 }
1471
1472 ocs_assert(io, -1);
1473
1474 if (dif_info != NULL) {
1475 ocs_hw_get(&io->ocs->hw, OCS_HW_DISABLE_AR_TGT_DIF, &disable_ar_tgt_dif);
1476 if (disable_ar_tgt_dif) {
1477 enable_ar = FALSE;
1478 }
1479 }
1480
1481 io->sgl_count = sgl_count;
1482
1483 /* If needed, copy SGL */
1484 if (sgl && (sgl != io->sgl)) {
1485 ocs_assert(sgl_count <= io->sgl_allocated, -1);
1486 ocs_memcpy(io->sgl, sgl, sgl_count*sizeof(*io->sgl));
1487 }
1488
1489 ocs = io->ocs;
1490 ocs_assert(ocs, -1);
1491 ocs_assert(io->node, -1);
1492
1493 scsi_io_trace(io, "%s wire_len %d\n", (type == OCS_HW_IO_TARGET_READ) ? "send" : "recv", xwire_len);
1494
1495 ocs_assert(sgl, -1);
1496 ocs_assert(sgl_count > 0, -1);
1497 ocs_assert(io->exp_xfer_len > io->transferred, -1);
1498
1499 io->hio_type = type;
1500
1501 io->scsi_tgt_cb = cb;
1502 io->scsi_tgt_cb_arg = arg;
1503
1504 rc = ocs_scsi_convert_dif_info(ocs, dif_info, &io->hw_dif);
1505 if (rc) {
1506 return rc;
1507 }
1508
1509 /* If DIF is used, then save lba for error recovery */
1510 if (dif_info) {
1511 io->scsi_dif_info = *dif_info;
1512 }
1513
1514 io->wire_len = MIN(xwire_len, io->exp_xfer_len - io->transferred);
1515 residual = (xwire_len - io->wire_len);
1516
1517 ocs_memset(&io->iparam, 0, sizeof(io->iparam));
1518 io->iparam.fcp_tgt.ox_id = io->init_task_tag;
1519 io->iparam.fcp_tgt.offset = io->transferred;
1520 io->iparam.fcp_tgt.dif_oper = io->hw_dif.dif;
1521 io->iparam.fcp_tgt.blk_size = io->hw_dif.blk_size;
1522 io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
1523 io->iparam.fcp_tgt.timeout = io->timeout;
1524
1525 /* if this is the last data phase and there is no residual, enable
1526 * auto-good-response
1527 */
1528 if (enable_ar && (flags & OCS_SCSI_LAST_DATAPHASE) &&
1529 (residual == 0) && ((io->transferred + io->wire_len) == io->exp_xfer_len) && (!(flags & OCS_SCSI_NO_AUTO_RESPONSE))) {
1530 io->iparam.fcp_tgt.flags |= SLI4_IO_AUTO_GOOD_RESPONSE;
1531 io->auto_resp = TRUE;
1532 } else {
1533 io->auto_resp = FALSE;
1534 }
1535
1536 /* save this transfer length */
1537 io->xfer_req = io->wire_len;
1538
1539 /* Adjust the transferred count to account for overrun
1540 * when the residual is calculated in ocs_scsi_send_resp
1541 */
1542 io->transferred += residual;
1543
1544 /* Adjust the SGL size if there is overrun */
1545
1546 if (residual) {
1547 ocs_scsi_sgl_t *sgl_ptr = &io->sgl[sgl_count-1];
1548
1549 while (residual) {
1550 size_t len = sgl_ptr->len;
1551 if ( len > residual) {
1552 sgl_ptr->len = len - residual;
1553 residual = 0;
1554 } else {
1555 sgl_ptr->len = 0;
1556 residual -= len;
1557 io->sgl_count--;
1558 }
1559 sgl_ptr--;
1560 }
1561 }
1562
1563 /* Set latency and WQ steering */
1564 io->low_latency = (flags & OCS_SCSI_LOW_LATENCY) != 0;
1565 io->wq_steering = (flags & OCS_SCSI_WQ_STEERING_MASK) >> OCS_SCSI_WQ_STEERING_SHIFT;
1566 io->wq_class = (flags & OCS_SCSI_WQ_CLASS_MASK) >> OCS_SCSI_WQ_CLASS_SHIFT;
1567
1568 return ocs_scsi_io_dispatch(io, ocs_target_io_cb);
1569 }
1570
1571 int32_t
1572 ocs_scsi_send_rd_data(ocs_io_t *io, uint32_t flags,
1573 ocs_scsi_dif_info_t *dif_info,
1574 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len,
1575 ocs_scsi_io_cb_t cb, void *arg)
1576 {
1577 return ocs_scsi_xfer_data(io, flags, dif_info, sgl, sgl_count, len, OCS_HW_IO_TARGET_READ,
1578 enable_tsend_auto_resp(io->ocs), cb, arg);
1579 }
1580
1581 int32_t
1582 ocs_scsi_recv_wr_data(ocs_io_t *io, uint32_t flags,
1583 ocs_scsi_dif_info_t *dif_info,
1584 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len,
1585 ocs_scsi_io_cb_t cb, void *arg)
1586 {
1587 return ocs_scsi_xfer_data(io, flags, dif_info, sgl, sgl_count, len, OCS_HW_IO_TARGET_WRITE,
1588 enable_treceive_auto_resp(io->ocs), cb, arg);
1589 }
1590
1591 /**
1592 * @ingroup scsi_api_base
1593 * @brief Free overflow SGL.
1594 *
1595 * @par Description
1596 * Free the overflow SGL if it is present.
1597 *
1598 * @param io Pointer to IO object.
1599 *
1600 * @return None.
1601 */
1602 static void
1603 ocs_scsi_io_free_ovfl(ocs_io_t *io) {
1604 if (io->ovfl_sgl.size) {
1605 ocs_dma_free(io->ocs, &io->ovfl_sgl);
1606 }
1607 }
1608
1609 /**
1610 * @ingroup scsi_api_base
1611 * @brief Send response data.
1612 *
1613 * @par Description
1614 * This function is used by a target-server to send the SCSI response data to a remote
1615 * initiator node. The target-server populates the @c ocs_scsi_cmd_resp_t
1616 * argument with scsi status, status qualifier, sense data, and response data, as
1617 * needed.
1618 * @n @n
1619 * Upon completion, the callback function @c cb is invoked. The target-server will generally
1620 * clean up its IO context resources and call ocs_scsi_io_complete().
1621 *
1622 * @param io Pointer to the IO context.
1623 * @param flags Flags to control sending of the SCSI response.
1624 * @param rsp Pointer to the response data populated by the caller.
1625 * @param cb Completion callback.
1626 * @param arg Application-specified completion callback argument.
1627
1628 * @return Returns 0 on success, or a negative error code value on failure.
1629 */
1630 int32_t
1631 ocs_scsi_send_resp(ocs_io_t *io, uint32_t flags, ocs_scsi_cmd_resp_t *rsp, ocs_scsi_io_cb_t cb, void *arg)
1632 {
1633 ocs_t *ocs;
1634 int32_t residual;
1635 int auto_resp = TRUE; /* Always try auto resp */
1636 uint8_t scsi_status = 0;
1637 uint16_t scsi_status_qualifier = 0;
1638 uint8_t *sense_data = NULL;
1639 uint32_t sense_data_length = 0;
1640
1641 ocs_assert(io, -1);
1642
1643 ocs = io->ocs;
1644 ocs_assert(ocs, -1);
1645
1646 ocs_assert(io->node, -1);
1647
1648 ocs_scsi_convert_dif_info(ocs, NULL, &io->hw_dif);
1649
1650 if (rsp) {
1651 scsi_status = rsp->scsi_status;
1652 scsi_status_qualifier = rsp->scsi_status_qualifier;
1653 sense_data = rsp->sense_data;
1654 sense_data_length = rsp->sense_data_length;
1655 residual = rsp->residual;
1656 } else {
1657 residual = io->exp_xfer_len - io->transferred;
1658 }
1659
1660 io->wire_len = 0;
1661 io->hio_type = OCS_HW_IO_TARGET_RSP;
1662
1663 io->scsi_tgt_cb = cb;
1664 io->scsi_tgt_cb_arg = arg;
1665
1666 ocs_memset(&io->iparam, 0, sizeof(io->iparam));
1667 io->iparam.fcp_tgt.ox_id = io->init_task_tag;
1668 io->iparam.fcp_tgt.offset = 0;
1669 io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
1670 io->iparam.fcp_tgt.timeout = io->timeout;
1671
1672 /* Set low latency queueing request */
1673 io->low_latency = (flags & OCS_SCSI_LOW_LATENCY) != 0;
1674 io->wq_steering = (flags & OCS_SCSI_WQ_STEERING_MASK) >> OCS_SCSI_WQ_STEERING_SHIFT;
1675 io->wq_class = (flags & OCS_SCSI_WQ_CLASS_MASK) >> OCS_SCSI_WQ_CLASS_SHIFT;
1676
1677 if ((scsi_status != 0) || residual || sense_data_length) {
1678 fcp_rsp_iu_t *fcprsp = io->rspbuf.virt;
1679
1680 if (!fcprsp) {
1681 ocs_log_err(ocs, "NULL response buffer\n");
1682 return -1;
1683 }
1684
1685 auto_resp = FALSE;
1686
1687 ocs_memset(fcprsp, 0, sizeof(*fcprsp));
1688
1689 io->wire_len += (sizeof(*fcprsp) - sizeof(fcprsp->data));
1690
1691 fcprsp->scsi_status = scsi_status;
1692 *((uint16_t*)fcprsp->status_qualifier) = ocs_htobe16(scsi_status_qualifier);
1693
1694 /* set residual status if necessary */
1695 if (residual != 0) {
1696 /* FCP: if data transferred is less than the amount expected, then this is an
1697 * underflow. If data transferred would have been greater than the amount expected
1698 * then this is an overflow
1699 */
1700 if (residual > 0) {
1701 fcprsp->flags |= FCP_RESID_UNDER;
1702 *((uint32_t *)fcprsp->fcp_resid) = ocs_htobe32(residual);
1703 } else {
1704 fcprsp->flags |= FCP_RESID_OVER;
1705 *((uint32_t *)fcprsp->fcp_resid) = ocs_htobe32(-residual);
1706 }
1707 }
1708
1709 if (sense_data && sense_data_length) {
1710 ocs_assert(sense_data_length <= sizeof(fcprsp->data), -1);
1711 fcprsp->flags |= FCP_SNS_LEN_VALID;
1712 ocs_memcpy(fcprsp->data, sense_data, sense_data_length);
1713 *((uint32_t*)fcprsp->fcp_sns_len) = ocs_htobe32(sense_data_length);
1714 io->wire_len += sense_data_length;
1715 }
1716
1717 io->sgl[0].addr = io->rspbuf.phys;
1718 io->sgl[0].dif_addr = 0;
1719 io->sgl[0].len = io->wire_len;
1720 io->sgl_count = 1;
1721 }
1722
1723 if (auto_resp) {
1724 io->iparam.fcp_tgt.flags |= SLI4_IO_AUTO_GOOD_RESPONSE;
1725 }
1726
1727 return ocs_scsi_io_dispatch(io, ocs_target_io_cb);
1728 }
1729
1730 /**
1731 * @ingroup scsi_api_base
1732 * @brief Send TMF response data.
1733 *
1734 * @par Description
1735 * This function is used by a target-server to send SCSI TMF response data to a remote
1736 * initiator node.
1737 * Upon completion, the callback function @c cb is invoked. The target-server will generally
1738 * clean up its IO context resources and call ocs_scsi_io_complete().
1739 *
1740 * @param io Pointer to the IO context.
1741 * @param rspcode TMF response code.
1742 * @param addl_rsp_info Additional TMF response information (may be NULL for zero data).
1743 * @param cb Completion callback.
1744 * @param arg Application-specified completion callback argument.
1745 *
1746 * @return Returns 0 on success, or a negative error code value on failure.
1747 */
1748 int32_t
1749 ocs_scsi_send_tmf_resp(ocs_io_t *io, ocs_scsi_tmf_resp_e rspcode, uint8_t addl_rsp_info[3],
1750 ocs_scsi_io_cb_t cb, void *arg)
1751 {
1752 int32_t rc = -1;
1753 ocs_t *ocs = NULL;
1754 fcp_rsp_iu_t *fcprsp = NULL;
1755 fcp_rsp_info_t *rspinfo = NULL;
1756 uint8_t fcp_rspcode;
1757
1758 ocs_assert(io, -1);
1759 ocs_assert(io->ocs, -1);
1760 ocs_assert(io->node, -1);
1761
1762 ocs = io->ocs;
1763
1764 io->wire_len = 0;
1765 ocs_scsi_convert_dif_info(ocs, NULL, &io->hw_dif);
1766
1767 switch(rspcode) {
1768 case OCS_SCSI_TMF_FUNCTION_COMPLETE:
1769 fcp_rspcode = FCP_TMF_COMPLETE;
1770 break;
1771 case OCS_SCSI_TMF_FUNCTION_SUCCEEDED:
1772 case OCS_SCSI_TMF_FUNCTION_IO_NOT_FOUND:
1773 fcp_rspcode = FCP_TMF_SUCCEEDED;
1774 break;
1775 case OCS_SCSI_TMF_FUNCTION_REJECTED:
1776 fcp_rspcode = FCP_TMF_REJECTED;
1777 break;
1778 case OCS_SCSI_TMF_INCORRECT_LOGICAL_UNIT_NUMBER:
1779 fcp_rspcode = FCP_TMF_INCORRECT_LUN;
1780 break;
1781 case OCS_SCSI_TMF_SERVICE_DELIVERY:
1782 fcp_rspcode = FCP_TMF_FAILED;
1783 break;
1784 default:
1785 fcp_rspcode = FCP_TMF_REJECTED;
1786 break;
1787 }
1788
1789 io->hio_type = OCS_HW_IO_TARGET_RSP;
1790
1791 io->scsi_tgt_cb = cb;
1792 io->scsi_tgt_cb_arg = arg;
1793
1794 if (io->tmf_cmd == OCS_SCSI_TMF_ABORT_TASK) {
1795 rc = ocs_target_send_bls_resp(io, cb, arg);
1796 return rc;
1797 }
1798
1799 /* populate the FCP TMF response */
1800 fcprsp = io->rspbuf.virt;
1801 ocs_memset(fcprsp, 0, sizeof(*fcprsp));
1802
1803 fcprsp->flags |= FCP_RSP_LEN_VALID;
1804
1805 rspinfo = (fcp_rsp_info_t*) fcprsp->data;
1806 if (addl_rsp_info != NULL) {
1807 ocs_memcpy(rspinfo->addl_rsp_info, addl_rsp_info, sizeof(rspinfo->addl_rsp_info));
1808 }
1809 rspinfo->rsp_code = fcp_rspcode;
1810
1811 io->wire_len = sizeof(*fcprsp) - sizeof(fcprsp->data) + sizeof(*rspinfo);
1812
1813 *((uint32_t*)fcprsp->fcp_rsp_len) = ocs_htobe32(sizeof(*rspinfo));
1814
1815 io->sgl[0].addr = io->rspbuf.phys;
1816 io->sgl[0].dif_addr = 0;
1817 io->sgl[0].len = io->wire_len;
1818 io->sgl_count = 1;
1819
1820 ocs_memset(&io->iparam, 0, sizeof(io->iparam));
1821 io->iparam.fcp_tgt.ox_id = io->init_task_tag;
1822 io->iparam.fcp_tgt.offset = 0;
1823 io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
1824 io->iparam.fcp_tgt.timeout = io->timeout;
1825
1826 rc = ocs_scsi_io_dispatch(io, ocs_target_io_cb);
1827
1828 return rc;
1829 }
1830
1831 /**
1832 * @brief Process target abort callback.
1833 *
1834 * @par Description
1835 * Accepts HW abort requests.
1836 *
1837 * @param hio HW IO context.
1838 * @param rnode Remote node.
1839 * @param length Length of response data.
1840 * @param status Completion status.
1841 * @param ext_status Extended completion status.
1842 * @param app Application-specified callback data.
1843 *
1844 * @return Returns 0 on success, or a negative error code value on failure.
1845 */
1846
1847 static int32_t
1848 ocs_target_abort_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *app)
1849 {
1850 ocs_io_t *io = app;
1851 ocs_t *ocs;
1852 ocs_scsi_io_status_e scsi_status;
1853
1854 ocs_assert(io, -1);
1855 ocs_assert(io->ocs, -1);
1856
1857 ocs = io->ocs;
1858
1859 if (io->abort_cb) {
1860 ocs_scsi_io_cb_t abort_cb = io->abort_cb;
1861 void *abort_cb_arg = io->abort_cb_arg;
1862
1863 io->abort_cb = NULL;
1864 io->abort_cb_arg = NULL;
1865
1866 switch (status) {
1867 case SLI4_FC_WCQE_STATUS_SUCCESS:
1868 scsi_status = OCS_SCSI_STATUS_GOOD;
1869 break;
1870 case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
1871 switch (ext_status) {
1872 case SLI4_FC_LOCAL_REJECT_NO_XRI:
1873 scsi_status = OCS_SCSI_STATUS_NO_IO;
1874 break;
1875 case SLI4_FC_LOCAL_REJECT_ABORT_IN_PROGRESS:
1876 scsi_status = OCS_SCSI_STATUS_ABORT_IN_PROGRESS;
1877 break;
1878 default:
1879 /* TODO: we have seen 0x15 (abort in progress) */
1880 scsi_status = OCS_SCSI_STATUS_ERROR;
1881 break;
1882 }
1883 break;
1884 case SLI4_FC_WCQE_STATUS_FCP_RSP_FAILURE:
1885 scsi_status = OCS_SCSI_STATUS_CHECK_RESPONSE;
1886 break;
1887 default:
1888 scsi_status = OCS_SCSI_STATUS_ERROR;
1889 break;
1890 }
1891 /* invoke callback */
1892 abort_cb(io->io_to_abort, scsi_status, 0, abort_cb_arg);
1893 }
1894
1895 ocs_assert(io != io->io_to_abort, -1);
1896
1897 /* done with IO to abort */
1898 ocs_ref_put(&io->io_to_abort->ref); /* ocs_ref_get(): ocs_scsi_tgt_abort_io() */
1899
1900 ocs_io_free(ocs, io);
1901
1902 ocs_scsi_check_pending(ocs);
1903 return 0;
1904 }
1905
1906 /**
1907 * @ingroup scsi_api_base
1908 * @brief Abort a target IO.
1909 *
1910 * @par Description
1911 * This routine is called from a SCSI target-server. It initiates an abort of a
1912 * previously-issued target data phase or response request.
1913 *
1914 * @param io IO context.
1915 * @param cb SCSI target server callback.
1916 * @param arg SCSI target server supplied callback argument.
1917 *
1918 * @return Returns 0 on success, or a non-zero value on failure.
1919 */
1920 int32_t
1921 ocs_scsi_tgt_abort_io(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg)
1922 {
1923 ocs_t *ocs;
1924 ocs_xport_t *xport;
1925 int32_t rc;
1926
1927 ocs_io_t *abort_io = NULL;
1928 ocs_assert(io, -1);
1929 ocs_assert(io->node, -1);
1930 ocs_assert(io->ocs, -1);
1931
1932 ocs = io->ocs;
1933 xport = ocs->xport;
1934
1935 /* take a reference on IO being aborted */
1936 if ((ocs_ref_get_unless_zero(&io->ref) == 0)) {
1937 /* command no longer active */
1938 scsi_io_printf(io, "command no longer active\n");
1939 return -1;
1940 }
1941
1942 /*
1943 * allocate a new IO to send the abort request. Use ocs_io_alloc() directly, as
1944 * we need an IO object that will not fail allocation due to allocations being
1945 * disabled (in ocs_scsi_io_alloc())
1946 */
1947 abort_io = ocs_io_alloc(ocs);
1948 if (abort_io == NULL) {
1949 ocs_atomic_add_return(&xport->io_alloc_failed_count, 1);
1950 ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */
1951 return -1;
1952 }
1953
1954 /* Save the target server callback and argument */
1955 ocs_assert(abort_io->hio == NULL, -1);
1956
1957 /* set generic fields */
1958 abort_io->cmd_tgt = TRUE;
1959 abort_io->node = io->node;
1960
1961 /* set type and abort-specific fields */
1962 abort_io->io_type = OCS_IO_TYPE_ABORT;
1963 abort_io->display_name = "tgt_abort";
1964 abort_io->io_to_abort = io;
1965 abort_io->send_abts = FALSE;
1966 abort_io->abort_cb = cb;
1967 abort_io->abort_cb_arg = arg;
1968
1969 /* now dispatch IO */
1970 rc = ocs_scsi_io_dispatch_abort(abort_io, ocs_target_abort_cb);
1971 if (rc) {
1972 ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */
1973 }
1974 return rc;
1975 }
1976
1977 /**
1978 * @brief Process target BLS response callback.
1979 *
1980 * @par Description
1981 * Accepts HW abort requests.
1982 *
1983 * @param hio HW IO context.
1984 * @param rnode Remote node.
1985 * @param length Length of response data.
1986 * @param status Completion status.
1987 * @param ext_status Extended completion status.
1988 * @param app Application-specified callback data.
1989 *
1990 * @return Returns 0 on success, or a negative error code value on failure.
1991 */
1992
1993 static int32_t
1994 ocs_target_bls_resp_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *app)
1995 {
1996 ocs_io_t *io = app;
1997 ocs_t *ocs;
1998 ocs_scsi_io_status_e bls_status;
1999
2000 ocs_assert(io, -1);
2001 ocs_assert(io->ocs, -1);
2002
2003 ocs = io->ocs;
2004
2005 /* BLS isn't really a "SCSI" concept, but use SCSI status */
2006 if (status) {
2007 io_error_log(io, "s=%#x x=%#x\n", status, ext_status);
2008 bls_status = OCS_SCSI_STATUS_ERROR;
2009 } else {
2010 bls_status = OCS_SCSI_STATUS_GOOD;
2011 }
2012
2013 if (io->bls_cb) {
2014 ocs_scsi_io_cb_t bls_cb = io->bls_cb;
2015 void *bls_cb_arg = io->bls_cb_arg;
2016
2017 io->bls_cb = NULL;
2018 io->bls_cb_arg = NULL;
2019
2020 /* invoke callback */
2021 bls_cb(io, bls_status, 0, bls_cb_arg);
2022 }
2023
2024 ocs_scsi_check_pending(ocs);
2025 return 0;
2026 }
2027
2028 /**
2029 * @brief Complete abort request.
2030 *
2031 * @par Description
2032 * An abort request is completed by posting a BA_ACC for the IO that requested the abort.
2033 *
2034 * @param io Pointer to the IO context.
2035 * @param cb Callback function to invoke upon completion.
2036 * @param arg Application-specified completion callback argument.
2037 *
2038 * @return Returns 0 on success, or a negative error code value on failure.
2039 */
2040
2041 static int32_t
2042 ocs_target_send_bls_resp(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg)
2043 {
2044 int32_t rc;
2045 fc_ba_acc_payload_t *acc;
2046
2047 ocs_assert(io, -1);
2048
2049 /* fill out IO structure with everything needed to send BA_ACC */
2050 ocs_memset(&io->iparam, 0, sizeof(io->iparam));
2051 io->iparam.bls.ox_id = io->init_task_tag;
2052 io->iparam.bls.rx_id = io->abort_rx_id;
2053
2054 acc = (void *)io->iparam.bls.payload;
2055
2056 ocs_memset(io->iparam.bls.payload, 0, sizeof(io->iparam.bls.payload));
2057 acc->ox_id = io->iparam.bls.ox_id;
2058 acc->rx_id = io->iparam.bls.rx_id;
2059 acc->high_seq_cnt = UINT16_MAX;
2060
2061 /* generic io fields have already been populated */
2062
2063 /* set type and BLS-specific fields */
2064 io->io_type = OCS_IO_TYPE_BLS_RESP;
2065 io->display_name = "bls_rsp";
2066 io->hio_type = OCS_HW_BLS_ACC;
2067 io->bls_cb = cb;
2068 io->bls_cb_arg = arg;
2069
2070 /* dispatch IO */
2071 rc = ocs_scsi_io_dispatch(io, ocs_target_bls_resp_cb);
2072 return rc;
2073 }
2074
2075 /**
2076 * @ingroup scsi_api_base
2077 * @brief Notify the base driver that the IO is complete.
2078 *
2079 * @par Description
2080 * This function is called by a target-server to notify the base driver that an IO
2081 * has completed, allowing for the base driver to free resources.
2082 * @n
2083 * @n @b Note: This function is not called by initiator-clients.
2084 *
2085 * @param io Pointer to IO context.
2086 *
2087 * @return None.
2088 */
2089 void
2090 ocs_scsi_io_complete(ocs_io_t *io)
2091 {
2092 ocs_assert(io);
2093
2094 if (!ocs_io_busy(io)) {
2095 ocs_log_test(io->ocs, "Got completion for non-busy io with tag 0x%x\n", io->tag);
2096 return;
2097 }
2098
2099 scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
2100 ocs_assert(ocs_ref_read_count(&io->ref) > 0);
2101 ocs_ref_put(&io->ref); /* ocs_ref_get(): ocs_scsi_io_alloc() */
2102 }
2103
2104 /**
2105 * @brief Handle initiator IO completion.
2106 *
2107 * @par Description
2108 * This callback is made upon completion of an initiator operation (initiator read/write command).
2109 *
2110 * @param hio HW IO context.
2111 * @param rnode Remote node.
2112 * @param length Length of completion data.
2113 * @param status Completion status.
2114 * @param ext_status Extended completion status.
2115 * @param app Application-specified callback data.
2116 *
2117 * @return None.
2118 */
2119
2120 static void
2121 ocs_initiator_io_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length,
2122 int32_t status, uint32_t ext_status, void *app)
2123 {
2124 ocs_io_t *io = app;
2125 ocs_t *ocs;
2126 ocs_scsi_io_status_e scsi_status;
2127
2128 ocs_assert(io);
2129 ocs_assert(io->scsi_ini_cb);
2130
2131 scsi_io_trace(io, "status x%x ext_status x%x\n", status, ext_status);
2132
2133 ocs = io->ocs;
2134 ocs_assert(ocs);
2135
2136 ocs_scsi_io_free_ovfl(io);
2137
2138 /* Call target server completion */
2139 if (io->scsi_ini_cb) {
2140 fcp_rsp_iu_t *fcprsp = io->rspbuf.virt;
2141 ocs_scsi_cmd_resp_t rsp;
2142 ocs_scsi_rsp_io_cb_t cb = io->scsi_ini_cb;
2143 uint32_t flags = 0;
2144 uint8_t *pd = fcprsp->data;
2145
2146 /* Clear the callback before invoking the callback */
2147 io->scsi_ini_cb = NULL;
2148
2149 ocs_memset(&rsp, 0, sizeof(rsp));
2150
2151 /* Unless status is FCP_RSP_FAILURE, fcprsp is not filled in */
2152 switch (status) {
2153 case SLI4_FC_WCQE_STATUS_SUCCESS:
2154 scsi_status = OCS_SCSI_STATUS_GOOD;
2155 break;
2156 case SLI4_FC_WCQE_STATUS_FCP_RSP_FAILURE:
2157 scsi_status = OCS_SCSI_STATUS_CHECK_RESPONSE;
2158 rsp.scsi_status = fcprsp->scsi_status;
2159 rsp.scsi_status_qualifier = ocs_be16toh(*((uint16_t*)fcprsp->status_qualifier));
2160
2161 if (fcprsp->flags & FCP_RSP_LEN_VALID) {
2162 rsp.response_data = pd;
2163 rsp.response_data_length = ocs_fc_getbe32(fcprsp->fcp_rsp_len);
2164 pd += rsp.response_data_length;
2165 }
2166 if (fcprsp->flags & FCP_SNS_LEN_VALID) {
2167 uint32_t sns_len = ocs_fc_getbe32(fcprsp->fcp_sns_len);
2168 rsp.sense_data = pd;
2169 rsp.sense_data_length = sns_len;
2170 pd += sns_len;
2171 }
2172 /* Set residual */
2173 if (fcprsp->flags & FCP_RESID_OVER) {
2174 rsp.residual = -ocs_fc_getbe32(fcprsp->fcp_resid);
2175 rsp.response_wire_length = length;
2176 } else if (fcprsp->flags & FCP_RESID_UNDER) {
2177 rsp.residual = ocs_fc_getbe32(fcprsp->fcp_resid);
2178 rsp.response_wire_length = length;
2179 }
2180
2181 /*
2182 * Note: The FCP_RSP_FAILURE can be returned for initiator IOs when the total data
2183 * placed does not match the requested length even if the status is good. If
2184 * the status is all zeroes, then we have to assume that a frame(s) were
2185 * dropped and change the status to LOCAL_REJECT/OUT_OF_ORDER_DATA
2186 */
2187 if (length != io->wire_len) {
2188 uint32_t rsp_len = ext_status;
2189 uint8_t *rsp_bytes = io->rspbuf.virt;
2190 uint32_t i;
2191 uint8_t all_zeroes = (rsp_len > 0);
2192 /* Check if the rsp is zero */
2193 for (i = 0; i < rsp_len; i++) {
2194 if (rsp_bytes[i] != 0) {
2195 all_zeroes = FALSE;
2196 break;
2197 }
2198 }
2199 if (all_zeroes) {
2200 scsi_status = OCS_SCSI_STATUS_ERROR;
2201 ocs_log_test(io->ocs, "[%s]" SCSI_IOFMT "local reject=0x%02x\n",
2202 io->node->display_name, SCSI_IOFMT_ARGS(io),
2203 SLI4_FC_LOCAL_REJECT_OUT_OF_ORDER_DATA);
2204 }
2205 }
2206 break;
2207 case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
2208 if (ext_status == SLI4_FC_LOCAL_REJECT_SEQUENCE_TIMEOUT) {
2209 scsi_status = OCS_SCSI_STATUS_COMMAND_TIMEOUT;
2210 } else {
2211 scsi_status = OCS_SCSI_STATUS_ERROR;
2212 }
2213 break;
2214 case SLI4_FC_WCQE_STATUS_DI_ERROR:
2215 if (ext_status & 0x01) {
2216 scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
2217 } else if (ext_status & 0x02) {
2218 scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR;
2219 } else if (ext_status & 0x04) {
2220 scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR;
2221 } else {
2222 scsi_status = OCS_SCSI_STATUS_DIF_UNKNOWN_ERROR;
2223 }
2224 break;
2225 default:
2226 scsi_status = OCS_SCSI_STATUS_ERROR;
2227 break;
2228 }
2229
2230 cb(io, scsi_status, &rsp, flags, io->scsi_ini_cb_arg);
2231 }
2232 ocs_scsi_check_pending(ocs);
2233 }
2234
2235 /**
2236 * @ingroup scsi_api_base
2237 * @brief Initiate initiator read IO.
2238 *
2239 * @par Description
2240 * This call is made by an initiator-client to send a SCSI read command. The payload
2241 * for the command is given by a scatter-gather list @c sgl for @c sgl_count
2242 * entries.
2243 * @n @n
2244 * Upon completion, the callback @b cb is invoked and passed request status.
2245 * If the command completed successfully, the callback is given SCSI response data.
2246 *
2247 * @param node Pointer to the node.
2248 * @param io Pointer to the IO context.
2249 * @param lun LUN value.
2250 * @param cdb Pointer to the CDB.
2251 * @param cdb_len Length of the CDB.
2252 * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF.
2253 * @param sgl Pointer to the scatter-gather list.
2254 * @param sgl_count Count of the scatter-gather list elements.
2255 * @param wire_len Length of the payload.
2256 * @param cb Completion callback.
2257 * @param arg Application-specified completion callback argument.
2258 *
2259 * @return Returns 0 on success, or a negative error code value on failure.
2260 */
2261 int32_t
2262 ocs_scsi_send_rd_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len,
2263 ocs_scsi_dif_info_t *dif_info,
2264 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len,
2265 ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2266 {
2267 int32_t rc;
2268
2269 rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_READ, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count,
2270 wire_len, 0, cb, arg, flags);
2271
2272 return rc;
2273 }
2274
2275 /**
2276 * @ingroup scsi_api_base
2277 * @brief Initiate initiator write IO.
2278 *
2279 * @par Description
2280 * This call is made by an initiator-client to send a SCSI write command. The payload
2281 * for the command is given by a scatter-gather list @c sgl for @c sgl_count
2282 * entries.
2283 * @n @n
2284 * Upon completion, the callback @c cb is invoked and passed request status. If the command
2285 * completed successfully, the callback is given SCSI response data.
2286 *
2287 * @param node Pointer to the node.
2288 * @param io Pointer to IO context.
2289 * @param lun LUN value.
2290 * @param cdb Pointer to the CDB.
2291 * @param cdb_len Length of the CDB.
2292 * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF.
2293 * @param sgl Pointer to the scatter-gather list.
2294 * @param sgl_count Count of the scatter-gather list elements.
2295 * @param wire_len Length of the payload.
2296 * @param cb Completion callback.
2297 * @param arg Application-specified completion callback argument.
2298 *
2299 * @return Returns 0 on success, or a negative error code value on failure.
2300 */
2301 int32_t ocs_scsi_send_wr_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len,
2302 ocs_scsi_dif_info_t *dif_info,
2303 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len,
2304 ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2305 {
2306 int32_t rc;
2307
2308 rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_WRITE, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count,
2309 wire_len, 0, cb, arg, flags);
2310
2311 return rc;
2312 }
2313
2314 /**
2315 * @ingroup scsi_api_base
2316 * @brief Initiate initiator write IO.
2317 *
2318 * @par Description
2319 * This call is made by an initiator-client to send a SCSI write command. The payload
2320 * for the command is given by a scatter-gather list @c sgl for @c sgl_count
2321 * entries.
2322 * @n @n
2323 * Upon completion, the callback @c cb is invoked and passed request status. If the command
2324 * completed successfully, the callback is given SCSI response data.
2325 *
2326 * @param node Pointer to the node.
2327 * @param io Pointer to IO context.
2328 * @param lun LUN value.
2329 * @param cdb Pointer to the CDB.
2330 * @param cdb_len Length of the CDB.
2331 * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF.
2332 * @param sgl Pointer to the scatter-gather list.
2333 * @param sgl_count Count of the scatter-gather list elements.
2334 * @param wire_len Length of the payload.
2335 * @param first_burst Number of first burst bytes to send.
2336 * @param cb Completion callback.
2337 * @param arg Application-specified completion callback argument.
2338 *
2339 * @return Returns 0 on success, or a negative error code value on failure.
2340 */
2341 int32_t
2342 ocs_scsi_send_wr_io_first_burst(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len,
2343 ocs_scsi_dif_info_t *dif_info,
2344 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst,
2345 ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2346 {
2347 int32_t rc;
2348
2349 rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_WRITE, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count,
2350 wire_len, 0, cb, arg, flags);
2351
2352 return rc;
2353 }
2354
2355 /**
2356 * @ingroup scsi_api_base
2357 * @brief Initiate initiator SCSI command with no data.
2358 *
2359 * @par Description
2360 * This call is made by an initiator-client to send a SCSI command with no data.
2361 * @n @n
2362 * Upon completion, the callback @c cb is invoked and passed request status. If the command
2363 * completed successfully, the callback is given SCSI response data.
2364 *
2365 * @param node Pointer to the node.
2366 * @param io Pointer to the IO context.
2367 * @param lun LUN value.
2368 * @param cdb Pointer to the CDB.
2369 * @param cdb_len Length of the CDB.
2370 * @param cb Completion callback.
2371 * @param arg Application-specified completion callback argument.
2372 *
2373 * @return Returns 0 on success, or a negative error code value on failure.
2374 */
2375 int32_t ocs_scsi_send_nodata_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len,
2376 ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2377 {
2378 int32_t rc;
2379
2380 rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_NODATA, node, io, lun, 0, cdb, cdb_len, NULL, NULL, 0, 0, 0, cb, arg, flags);
2381
2382 return rc;
2383 }
2384 /**
2385 * @ingroup scsi_api_base
2386 * @brief Initiate initiator task management operation.
2387 *
2388 * @par Description
2389 * This command is used to send a SCSI task management function command. If the command
2390 * requires it (QUERY_TASK_SET for example), a payload may be associated with the command.
2391 * If no payload is required, then @c sgl_count may be zero and @c sgl is ignored.
2392 * @n @n
2393 * Upon completion @c cb is invoked with status and SCSI response data.
2394 *
2395 * @param node Pointer to the node.
2396 * @param io Pointer to the IO context.
2397 * @param io_to_abort Pointer to the IO context to abort in the
2398 * case of OCS_SCSI_TMF_ABORT_TASK. Note: this can point to the
2399 * same the same ocs_io_t as @c io, provided that @c io does not
2400 * have any outstanding work requests.
2401 * @param lun LUN value.
2402 * @param tmf Task management command.
2403 * @param sgl Pointer to the scatter-gather list.
2404 * @param sgl_count Count of the scatter-gather list elements.
2405 * @param len Length of the payload.
2406 * @param cb Completion callback.
2407 * @param arg Application-specified completion callback argument.
2408 *
2409 * @return Returns 0 on success, or a negative error code value on failure.
2410 */
2411 int32_t
2412 ocs_scsi_send_tmf(ocs_node_t *node, ocs_io_t *io, ocs_io_t *io_to_abort, uint64_t lun, ocs_scsi_tmf_cmd_e tmf,
2413 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len, ocs_scsi_rsp_io_cb_t cb, void *arg)
2414 {
2415 int32_t rc;
2416 ocs_assert(io, -1);
2417
2418 if (tmf == OCS_SCSI_TMF_ABORT_TASK) {
2419 ocs_assert(io_to_abort, -1);
2420
2421 /* take a reference on IO being aborted */
2422 if ((ocs_ref_get_unless_zero(&io_to_abort->ref) == 0)) {
2423 /* command no longer active */
2424 scsi_io_printf(io, "command no longer active\n");
2425 return -1;
2426 }
2427 /* generic io fields have already been populated */
2428
2429 /* abort-specific fields */
2430 io->io_type = OCS_IO_TYPE_ABORT;
2431 io->display_name = "abort_task";
2432 io->io_to_abort = io_to_abort;
2433 io->send_abts = TRUE;
2434 io->scsi_ini_cb = cb;
2435 io->scsi_ini_cb_arg = arg;
2436
2437 /* now dispatch IO */
2438 rc = ocs_scsi_io_dispatch_abort(io, ocs_scsi_abort_io_cb);
2439 if (rc) {
2440 scsi_io_printf(io, "Failed to dispatch abort\n");
2441 ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */
2442 }
2443 } else {
2444 io->display_name = "tmf";
2445 rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_READ, node, io, lun, tmf, NULL, 0, NULL,
2446 sgl, sgl_count, len, 0, cb, arg, 0);
2447 }
2448
2449 return rc;
2450 }
2451
2452 /**
2453 * @ingroup scsi_api_base
2454 * @brief Send an FCP IO.
2455 *
2456 * @par Description
2457 * An FCP read/write IO command, with optional task management flags, is sent to @c node.
2458 *
2459 * @param type HW IO type to send.
2460 * @param node Pointer to the node destination of the IO.
2461 * @param io Pointer to the IO context.
2462 * @param lun LUN value.
2463 * @param tmf Task management command.
2464 * @param cdb Pointer to the SCSI CDB.
2465 * @param cdb_len Length of the CDB, in bytes.
2466 * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF.
2467 * @param sgl Pointer to the scatter-gather list.
2468 * @param sgl_count Number of SGL entries in SGL.
2469 * @param wire_len Payload length, in bytes, of data on wire.
2470 * @param first_burst Number of first burst bytes to send.
2471 * @param cb Completion callback.
2472 * @param arg Application-specified completion callback argument.
2473 *
2474 * @return Returns 0 on success, or a negative error code value on failure.
2475 */
2476
2477 /* tc: could elminiate LUN, as it's part of the IO structure */
2478
2479 static int32_t ocs_scsi_send_io(ocs_hw_io_type_e type, ocs_node_t *node, ocs_io_t *io, uint64_t lun,
2480 ocs_scsi_tmf_cmd_e tmf, uint8_t *cdb, uint32_t cdb_len,
2481 ocs_scsi_dif_info_t *dif_info,
2482 ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst,
2483 ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2484 {
2485 int32_t rc;
2486 ocs_t *ocs;
2487 fcp_cmnd_iu_t *cmnd;
2488 uint32_t cmnd_bytes = 0;
2489 uint32_t *fcp_dl;
2490 uint8_t tmf_flags = 0;
2491
2492 ocs_assert(io->node, -1);
2493 ocs_assert(io->node == node, -1);
2494 ocs_assert(io, -1);
2495 ocs = io->ocs;
2496 ocs_assert(cb, -1);
2497
2498 io->sgl_count = sgl_count;
2499
2500 /* Copy SGL if needed */
2501 if (sgl != io->sgl) {
2502 ocs_assert(sgl_count <= io->sgl_allocated, -1);
2503 ocs_memcpy(io->sgl, sgl, sizeof(*io->sgl) * sgl_count);
2504 }
2505
2506 /* save initiator and target task tags for debugging */
2507 io->tgt_task_tag = 0xffff;
2508
2509 io->wire_len = wire_len;
2510 io->hio_type = type;
2511
2512 if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) {
2513 char buf[80];
2514 ocs_textbuf_t txtbuf;
2515 uint32_t i;
2516
2517 ocs_textbuf_init(ocs, &txtbuf, buf, sizeof(buf));
2518
2519 ocs_textbuf_printf(&txtbuf, "cdb%d: ", cdb_len);
2520 for (i = 0; i < cdb_len; i ++) {
2521 ocs_textbuf_printf(&txtbuf, "%02X%s", cdb[i], (i == (cdb_len-1)) ? "" : " ");
2522 }
2523 scsi_io_printf(io, "%s len %d, %s\n", (io->hio_type == OCS_HW_IO_INITIATOR_READ) ? "read" :
2524 (io->hio_type == OCS_HW_IO_INITIATOR_WRITE) ? "write" : "", io->wire_len,
2525 ocs_textbuf_get_buffer(&txtbuf));
2526 }
2527
2528 ocs_assert(io->cmdbuf.virt, -1);
2529
2530 cmnd = io->cmdbuf.virt;
2531
2532 ocs_assert(sizeof(*cmnd) <= io->cmdbuf.size, -1);
2533
2534 ocs_memset(cmnd, 0, sizeof(*cmnd));
2535
2536 /* Default FCP_CMND IU doesn't include additional CDB bytes but does include FCP_DL */
2537 cmnd_bytes = sizeof(fcp_cmnd_iu_t) - sizeof(cmnd->fcp_cdb_and_dl) + sizeof(uint32_t);
2538
2539 fcp_dl = (uint32_t*)(&(cmnd->fcp_cdb_and_dl));
2540
2541 if (cdb) {
2542 if (cdb_len <= 16) {
2543 ocs_memcpy(cmnd->fcp_cdb, cdb, cdb_len);
2544 } else {
2545 uint32_t addl_cdb_bytes;
2546
2547 ocs_memcpy(cmnd->fcp_cdb, cdb, 16);
2548 addl_cdb_bytes = cdb_len - 16;
2549 ocs_memcpy(cmnd->fcp_cdb_and_dl, &(cdb[16]), addl_cdb_bytes);
2550 /* additional_fcp_cdb_length is in words, not bytes */
2551 cmnd->additional_fcp_cdb_length = (addl_cdb_bytes + 3) / 4;
2552 fcp_dl += cmnd->additional_fcp_cdb_length;
2553
2554 /* Round up additional CDB bytes */
2555 cmnd_bytes += (addl_cdb_bytes + 3) & ~0x3;
2556 }
2557 }
2558
2559 be64enc(cmnd->fcp_lun, CAM_EXTLUN_BYTE_SWIZZLE(lun));
2560
2561 if (node->fcp2device) {
2562 if(ocs_get_crn(node, &cmnd->command_reference_number,
2563 lun)) {
2564 return -1;
2565 }
2566 }
2567 if (flags & OCS_SCSI_CMD_HEAD_OF_QUEUE)
2568 cmnd->task_attribute = FCP_TASK_ATTR_HEAD_OF_QUEUE;
2569 else if (flags & OCS_SCSI_CMD_ORDERED)
2570 cmnd->task_attribute = FCP_TASK_ATTR_ORDERED;
2571 else if (flags & OCS_SCSI_CMD_UNTAGGED)
2572 cmnd->task_attribute = FCP_TASK_ATTR_UNTAGGED;
2573 else if (flags & OCS_SCSI_CMD_ACA)
2574 cmnd->task_attribute = FCP_TASK_ATTR_ACA;
2575 else
2576 cmnd->task_attribute = FCP_TASK_ATTR_SIMPLE;
2577 cmnd->command_priority = (flags & OCS_SCSI_PRIORITY_MASK) >>
2578 OCS_SCSI_PRIORITY_SHIFT;
2579
2580 switch (tmf) {
2581 case OCS_SCSI_TMF_QUERY_TASK_SET:
2582 tmf_flags = FCP_QUERY_TASK_SET;
2583 break;
2584 case OCS_SCSI_TMF_ABORT_TASK_SET:
2585 tmf_flags = FCP_ABORT_TASK_SET;
2586 break;
2587 case OCS_SCSI_TMF_CLEAR_TASK_SET:
2588 tmf_flags = FCP_CLEAR_TASK_SET;
2589 break;
2590 case OCS_SCSI_TMF_QUERY_ASYNCHRONOUS_EVENT:
2591 tmf_flags = FCP_QUERY_ASYNCHRONOUS_EVENT;
2592 break;
2593 case OCS_SCSI_TMF_LOGICAL_UNIT_RESET:
2594 tmf_flags = FCP_LOGICAL_UNIT_RESET;
2595 break;
2596 case OCS_SCSI_TMF_CLEAR_ACA:
2597 tmf_flags = FCP_CLEAR_ACA;
2598 break;
2599 case OCS_SCSI_TMF_TARGET_RESET:
2600 tmf_flags = FCP_TARGET_RESET;
2601 break;
2602 default:
2603 tmf_flags = 0;
2604 }
2605 cmnd->task_management_flags = tmf_flags;
2606
2607 *fcp_dl = ocs_htobe32(io->wire_len);
2608
2609 switch (io->hio_type) {
2610 case OCS_HW_IO_INITIATOR_READ:
2611 cmnd->rddata = 1;
2612 break;
2613 case OCS_HW_IO_INITIATOR_WRITE:
2614 cmnd->wrdata = 1;
2615 break;
2616 case OCS_HW_IO_INITIATOR_NODATA:
2617 /* sets neither */
2618 break;
2619 default:
2620 ocs_log_test(ocs, "bad IO type %d\n", io->hio_type);
2621 return -1;
2622 }
2623
2624 rc = ocs_scsi_convert_dif_info(ocs, dif_info, &io->hw_dif);
2625 if (rc) {
2626 return rc;
2627 }
2628
2629 io->scsi_ini_cb = cb;
2630 io->scsi_ini_cb_arg = arg;
2631
2632 /* set command and response buffers in the iparam */
2633 io->iparam.fcp_ini.cmnd = &io->cmdbuf;
2634 io->iparam.fcp_ini.cmnd_size = cmnd_bytes;
2635 io->iparam.fcp_ini.rsp = &io->rspbuf;
2636 io->iparam.fcp_ini.flags = 0;
2637 io->iparam.fcp_ini.dif_oper = io->hw_dif.dif;
2638 io->iparam.fcp_ini.blk_size = io->hw_dif.blk_size;
2639 io->iparam.fcp_ini.timeout = io->timeout;
2640 io->iparam.fcp_ini.first_burst = first_burst;
2641
2642 return ocs_scsi_io_dispatch(io, ocs_initiator_io_cb);
2643 }
2644
2645 /**
2646 * @ingroup scsi_api_base
2647 * @brief Callback for an aborted IO.
2648 *
2649 * @par Description
2650 * Callback function invoked upon completion of an IO abort request.
2651 *
2652 * @param hio HW IO context.
2653 * @param rnode Remote node.
2654 * @param len Response length.
2655 * @param status Completion status.
2656 * @param ext_status Extended completion status.
2657 * @param arg Application-specific callback, usually IO context.
2658
2659 * @return Returns 0 on success, or a negative error code value on failure.
2660 */
2661
2662 static int32_t
2663 ocs_scsi_abort_io_cb(struct ocs_hw_io_s *hio, ocs_remote_node_t *rnode, uint32_t len, int32_t status,
2664 uint32_t ext_status, void *arg)
2665 {
2666 ocs_io_t *io = arg;
2667 ocs_t *ocs;
2668 ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_GOOD;
2669
2670 ocs_assert(io, -1);
2671 ocs_assert(ocs_io_busy(io), -1);
2672 ocs_assert(io->ocs, -1);
2673 ocs_assert(io->io_to_abort, -1);
2674 ocs = io->ocs;
2675
2676 ocs_log_debug(ocs, "status %d ext %d\n", status, ext_status);
2677
2678 /* done with IO to abort */
2679 ocs_ref_put(&io->io_to_abort->ref); /* ocs_ref_get(): ocs_scsi_send_tmf() */
2680
2681 ocs_scsi_io_free_ovfl(io);
2682
2683 switch (status) {
2684 case SLI4_FC_WCQE_STATUS_SUCCESS:
2685 scsi_status = OCS_SCSI_STATUS_GOOD;
2686 break;
2687 case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
2688 if (ext_status == SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED) {
2689 scsi_status = OCS_SCSI_STATUS_ABORTED;
2690 } else if (ext_status == SLI4_FC_LOCAL_REJECT_NO_XRI) {
2691 scsi_status = OCS_SCSI_STATUS_NO_IO;
2692 } else if (ext_status == SLI4_FC_LOCAL_REJECT_ABORT_IN_PROGRESS) {
2693 scsi_status = OCS_SCSI_STATUS_ABORT_IN_PROGRESS;
2694 } else {
2695 ocs_log_test(ocs, "Unhandled local reject 0x%x/0x%x\n", status, ext_status);
2696 scsi_status = OCS_SCSI_STATUS_ERROR;
2697 }
2698 break;
2699 default:
2700 scsi_status = OCS_SCSI_STATUS_ERROR;
2701 break;
2702 }
2703
2704 if (io->scsi_ini_cb) {
2705 (*io->scsi_ini_cb)(io, scsi_status, NULL, 0, io->scsi_ini_cb_arg);
2706 } else {
2707 ocs_scsi_io_free(io);
2708 }
2709
2710 ocs_scsi_check_pending(ocs);
2711 return 0;
2712 }
2713
2714 /**
2715 * @ingroup scsi_api_base
2716 * @brief Return SCSI API integer valued property.
2717 *
2718 * @par Description
2719 * This function is called by a target-server or initiator-client to
2720 * retrieve an integer valued property.
2721 *
2722 * @param ocs Pointer to the ocs.
2723 * @param prop Property value to return.
2724 *
2725 * @return Returns a value, or 0 if invalid property was requested.
2726 */
2727 uint32_t
2728 ocs_scsi_get_property(ocs_t *ocs, ocs_scsi_property_e prop)
2729 {
2730 ocs_xport_t *xport = ocs->xport;
2731 uint32_t val;
2732
2733 switch (prop) {
2734 case OCS_SCSI_MAX_SGE:
2735 if (0 == ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGE, &val)) {
2736 return val;
2737 }
2738 break;
2739 case OCS_SCSI_MAX_SGL:
2740 if (ocs->ctrlmask & OCS_CTRLMASK_TEST_CHAINED_SGLS) {
2741 /*
2742 * If chain SGL test-mode is enabled, the number of HW SGEs
2743 * has been limited; report back original max.
2744 */
2745 return (OCS_FC_MAX_SGL);
2746 }
2747 if (0 == ocs_hw_get(&ocs->hw, OCS_HW_N_SGL, &val)) {
2748 return val;
2749 }
2750 break;
2751 case OCS_SCSI_MAX_IOS:
2752 return ocs_io_pool_allocated(xport->io_pool);
2753 case OCS_SCSI_DIF_CAPABLE:
2754 if (0 == ocs_hw_get(&ocs->hw, OCS_HW_DIF_CAPABLE, &val)) {
2755 return val;
2756 }
2757 break;
2758 case OCS_SCSI_MAX_FIRST_BURST:
2759 return 0;
2760 case OCS_SCSI_DIF_MULTI_SEPARATE:
2761 if (ocs_hw_get(&ocs->hw, OCS_HW_DIF_MULTI_SEPARATE, &val) == 0) {
2762 return val;
2763 }
2764 break;
2765 case OCS_SCSI_ENABLE_TASK_SET_FULL:
2766 /* Return FALSE if we are send frame capable */
2767 if (ocs_hw_get(&ocs->hw, OCS_HW_SEND_FRAME_CAPABLE, &val) == 0) {
2768 return ! val;
2769 }
2770 break;
2771 default:
2772 break;
2773 }
2774
2775 ocs_log_debug(ocs, "invalid property request %d\n", prop);
2776 return 0;
2777 }
2778
2779 /**
2780 * @ingroup scsi_api_base
2781 * @brief Return a property pointer.
2782 *
2783 * @par Description
2784 * This function is called by a target-server or initiator-client to
2785 * retrieve a pointer to the requested property.
2786 *
2787 * @param ocs Pointer to the ocs.
2788 * @param prop Property value to return.
2789 *
2790 * @return Returns pointer to the requested property, or NULL otherwise.
2791 */
2792 void *ocs_scsi_get_property_ptr(ocs_t *ocs, ocs_scsi_property_e prop)
2793 {
2794 void *rc = NULL;
2795
2796 switch (prop) {
2797 case OCS_SCSI_WWNN:
2798 rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_WWN_NODE);
2799 break;
2800 case OCS_SCSI_WWPN:
2801 rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_WWN_PORT);
2802 break;
2803 case OCS_SCSI_PORTNUM:
2804 rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_PORTNUM);
2805 break;
2806 case OCS_SCSI_BIOS_VERSION_STRING:
2807 rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_BIOS_VERSION_STRING);
2808 break;
2809 case OCS_SCSI_SERIALNUMBER:
2810 {
2811 uint8_t *pvpd;
2812 uint32_t vpd_len;
2813
2814 if (ocs_hw_get(&ocs->hw, OCS_HW_VPD_LEN, &vpd_len)) {
2815 ocs_log_test(ocs, "Can't get VPD length\n");
2816 rc = "\012sn-unknown";
2817 break;
2818 }
2819
2820 pvpd = ocs_hw_get_ptr(&ocs->hw, OCS_HW_VPD);
2821 if (pvpd) {
2822 rc = ocs_find_vpd(pvpd, vpd_len, "SN");
2823 }
2824
2825 if (rc == NULL ||
2826 ocs_strlen(rc) == 0) {
2827 /* Note: VPD is missing, using wwnn for serial number */
2828 scsi_log(ocs, "Note: VPD is missing, using wwnn for serial number\n");
2829 /* Use the last 32 bits of the WWN */
2830 if ((ocs == NULL) || (ocs->domain == NULL) || (ocs->domain->sport == NULL)) {
2831 rc = "\011(Unknown)";
2832 } else {
2833 rc = &ocs->domain->sport->wwnn_str[8];
2834 }
2835 }
2836 break;
2837 }
2838 case OCS_SCSI_PARTNUMBER:
2839 {
2840 uint8_t *pvpd;
2841 uint32_t vpd_len;
2842
2843 if (ocs_hw_get(&ocs->hw, OCS_HW_VPD_LEN, &vpd_len)) {
2844 ocs_log_test(ocs, "Can't get VPD length\n");
2845 rc = "\012pn-unknown";
2846 break;
2847 }
2848 pvpd = ocs_hw_get_ptr(&ocs->hw, OCS_HW_VPD);
2849 if (pvpd) {
2850 rc = ocs_find_vpd(pvpd, vpd_len, "PN");
2851 if (rc == NULL) {
2852 rc = "\012pn-unknown";
2853 }
2854 } else {
2855 rc = "\012pn-unknown";
2856 }
2857 break;
2858 }
2859 default:
2860 break;
2861 }
2862
2863 if (rc == NULL) {
2864 ocs_log_debug(ocs, "invalid property request %d\n", prop);
2865 }
2866 return rc;
2867 }
2868
2869 /**
2870 * @ingroup scsi_api_base
2871 * @brief Notify that delete initiator is complete.
2872 *
2873 * @par Description
2874 * Sent by the target-server to notify the base driver that the work started from
2875 * ocs_scsi_del_initiator() is now complete and that it is safe for the node to
2876 * release the rest of its resources.
2877 *
2878 * @param node Pointer to the node.
2879 *
2880 * @return None.
2881 */
2882 void
2883 ocs_scsi_del_initiator_complete(ocs_node_t *node)
2884 {
2885 /* Notify the node to resume */
2886 ocs_node_post_event(node, OCS_EVT_NODE_DEL_INI_COMPLETE, NULL);
2887 }
2888
2889 /**
2890 * @ingroup scsi_api_base
2891 * @brief Notify that delete target is complete.
2892 *
2893 * @par Description
2894 * Sent by the initiator-client to notify the base driver that the work started from
2895 * ocs_scsi_del_target() is now complete and that it is safe for the node to
2896 * release the rest of its resources.
2897 *
2898 * @param node Pointer to the node.
2899 *
2900 * @return None.
2901 */
2902 void
2903 ocs_scsi_del_target_complete(ocs_node_t *node)
2904 {
2905 /* Notify the node to resume */
2906 ocs_node_post_event(node, OCS_EVT_NODE_DEL_TGT_COMPLETE, NULL);
2907 }
2908
2909 /**
2910 * @brief Update transferred count
2911 *
2912 * @par Description
2913 * Updates io->transferred, as required when using first burst, when the amount
2914 * of first burst data processed differs from the amount of first burst
2915 * data received.
2916 *
2917 * @param io Pointer to the io object.
2918 * @param transferred Number of bytes transferred out of first burst buffers.
2919 *
2920 * @return None.
2921 */
2922 void
2923 ocs_scsi_update_first_burst_transferred(ocs_io_t *io, uint32_t transferred)
2924 {
2925 io->transferred = transferred;
2926 }
2927
2928 /**
2929 * @brief Register bounce callback for multi-threading.
2930 *
2931 * @par Description
2932 * Register the back end bounce function.
2933 *
2934 * @param ocs Pointer to device object.
2935 * @param fctn Function pointer of bounce function.
2936 *
2937 * @return None.
2938 */
2939 void
2940 ocs_scsi_register_bounce(ocs_t *ocs, void(*fctn)(void(*fctn)(void *arg), void *arg, uint32_t s_id, uint32_t d_id,
2941 uint32_t ox_id))
2942 {
2943 ocs_hw_rtn_e rc;
2944
2945 rc = ocs_hw_callback(&ocs->hw, OCS_HW_CB_BOUNCE, fctn, NULL);
2946 if (rc) {
2947 ocs_log_test(ocs, "ocs_hw_callback(OCS_HW_CB_BOUNCE) failed: %d\n", rc);
2948 }
2949 }
Cache object: 3ad89713a6ecd68638d5d6fe9b7a5943
|