The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/pci/sv.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: sv.c,v 1.22 2003/05/03 18:11:37 wiz Exp $ */
    2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
    3 
    4 /*
    5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
    6  * All rights reserved.
    7  *
    8  * This code is derived from software contributed to The NetBSD Foundation
    9  * by Charles M. Hannum.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *        This product includes software developed by the NetBSD
   22  *        Foundation, Inc. and its contributors.
   23  * 4. Neither the name of The NetBSD Foundation nor the names of its
   24  *    contributors may be used to endorse or promote products derived
   25  *    from this software without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   37  * POSSIBILITY OF SUCH DAMAGE.
   38  */
   39 
   40 /*
   41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
   42  * All rights reserved
   43  *
   44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
   45  *
   46  * Redistribution and use in source and binary forms, with or without
   47  * modification, are permitted provided that the following conditions
   48  * are met:
   49  * 1. Redistributions of source code must retain the above copyright
   50  *    notice, this list of conditions and the following disclaimer.
   51  * 2. Redistributions in binary form must reproduce the above copyright
   52  *    notice, this list of conditions and the following disclaimer in the
   53  *    documentation and/or other materials provided with the distribution.
   54  * 3. The author's name or those of the contributors may be used to
   55  *    endorse or promote products derived from this software without 
   56  *    specific prior written permission.
   57  *
   58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
   59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   68  * POSSIBILITY OF SUCH DAMAGE.
   69  */
   70 
   71 /*
   72  * S3 SonicVibes driver
   73  *   Heavily based on the eap driver by Lennart Augustsson
   74  */
   75 
   76 #include <sys/cdefs.h>
   77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.22 2003/05/03 18:11:37 wiz Exp $");
   78 
   79 #include <sys/param.h>
   80 #include <sys/systm.h>
   81 #include <sys/kernel.h>
   82 #include <sys/malloc.h>
   83 #include <sys/device.h>
   84 
   85 #include <dev/pci/pcireg.h>
   86 #include <dev/pci/pcivar.h>
   87 #include <dev/pci/pcidevs.h>
   88 
   89 #include <sys/audioio.h>
   90 #include <dev/audio_if.h>
   91 #include <dev/mulaw.h>
   92 #include <dev/auconv.h>
   93 
   94 #include <dev/ic/i8237reg.h>
   95 #include <dev/pci/svreg.h>
   96 #include <dev/pci/svvar.h>
   97 
   98 #include <machine/bus.h>
   99 
  100 /* XXX
  101  * The SonicVibes DMA is broken and only works on 24-bit addresses.
  102  * As long as bus_dmamem_alloc_range() is missing we use the ISA
  103  * DMA tag on i386.
  104  */
  105 #if defined(i386)
  106 #include "isa.h"
  107 #if NISA > 0
  108 #include <dev/isa/isavar.h>
  109 #endif
  110 #endif
  111 
  112 #ifdef AUDIO_DEBUG
  113 #define DPRINTF(x)      if (svdebug) printf x
  114 #define DPRINTFN(n,x)   if (svdebug>(n)) printf x
  115 int     svdebug = 0;
  116 #else
  117 #define DPRINTF(x)
  118 #define DPRINTFN(n,x)
  119 #endif
  120 
  121 int     sv_match __P((struct device *, struct cfdata *, void *));
  122 void    sv_attach __P((struct device *, struct device *, void *));
  123 int     sv_intr __P((void *));
  124 
  125 struct sv_dma {
  126         bus_dmamap_t map;
  127         caddr_t addr;
  128         bus_dma_segment_t segs[1];
  129         int nsegs;
  130         size_t size;
  131         struct sv_dma *next;
  132 };
  133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
  134 #define KERNADDR(p) ((void *)((p)->addr))
  135 
  136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
  137     sv_match, sv_attach, NULL, NULL);
  138 
  139 struct audio_device sv_device = {
  140         "S3 SonicVibes",
  141         "",
  142         "sv"
  143 };
  144 
  145 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
  146 
  147 int     sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
  148 int     sv_freemem __P((struct sv_softc *, struct sv_dma *));
  149 
  150 int     sv_open __P((void *, int));
  151 void    sv_close __P((void *));
  152 int     sv_query_encoding __P((void *, struct audio_encoding *));
  153 int     sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
  154 int     sv_round_blocksize __P((void *, int));
  155 int     sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
  156             void *, struct audio_params *));
  157 int     sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
  158             void *, struct audio_params *));
  159 int     sv_halt_output __P((void *));
  160 int     sv_halt_input __P((void *));
  161 int     sv_getdev __P((void *, struct audio_device *));
  162 int     sv_mixer_set_port __P((void *, mixer_ctrl_t *));
  163 int     sv_mixer_get_port __P((void *, mixer_ctrl_t *));
  164 int     sv_query_devinfo __P((void *, mixer_devinfo_t *));
  165 void   *sv_malloc __P((void *, int, size_t, struct malloc_type *, int));
  166 void    sv_free __P((void *, void *, struct malloc_type *));
  167 size_t  sv_round_buffersize __P((void *, int, size_t));
  168 paddr_t sv_mappage __P((void *, void *, off_t, int));
  169 int     sv_get_props __P((void *));
  170 
  171 #ifdef AUDIO_DEBUG
  172 void    sv_dumpregs __P((struct sv_softc *sc));
  173 #endif
  174 
  175 struct audio_hw_if sv_hw_if = {
  176         sv_open,
  177         sv_close,
  178         NULL,
  179         sv_query_encoding,
  180         sv_set_params,
  181         sv_round_blocksize,
  182         NULL,
  183         NULL,
  184         NULL,
  185         NULL,
  186         NULL,
  187         sv_halt_output,
  188         sv_halt_input,
  189         NULL,
  190         sv_getdev,
  191         NULL,
  192         sv_mixer_set_port,
  193         sv_mixer_get_port,
  194         sv_query_devinfo,
  195         sv_malloc,
  196         sv_free,
  197         sv_round_buffersize,
  198         sv_mappage,
  199         sv_get_props,
  200         sv_trigger_output,
  201         sv_trigger_input,
  202         NULL,
  203 };
  204 
  205 
  206 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
  207 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
  208 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
  209 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
  210 static void sv_init_mixer __P((struct sv_softc *));
  211 
  212 static void sv_defer __P((struct device *self));
  213 
  214 static void
  215 sv_write (sc, reg, val)
  216         struct sv_softc *sc;
  217         u_int8_t reg, val;
  218      
  219 {
  220         DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
  221         bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
  222 }
  223 
  224 static u_int8_t
  225 sv_read(sc, reg)
  226         struct sv_softc *sc;
  227         u_int8_t reg;
  228      
  229 {
  230         u_int8_t val;
  231 
  232         val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
  233         DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
  234         return val;
  235 }
  236 
  237 static u_int8_t
  238 sv_read_indirect(sc, reg)
  239         struct sv_softc *sc;
  240         u_int8_t reg;
  241 {
  242         u_int8_t val;
  243         int s = splaudio();
  244 
  245         sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
  246         val = sv_read(sc, SV_CODEC_IDATA);
  247         splx(s);
  248         return (val);
  249 }
  250 
  251 static void
  252 sv_write_indirect(sc, reg, val)
  253         struct sv_softc *sc;
  254         u_int8_t reg, val;
  255 {
  256         u_int8_t iaddr = reg & SV_IADDR_MASK;
  257         int s = splaudio();
  258 
  259         if (reg == SV_DMA_DATA_FORMAT)
  260                 iaddr |= SV_IADDR_MCE;
  261 
  262         sv_write(sc, SV_CODEC_IADDR, iaddr);
  263         sv_write(sc, SV_CODEC_IDATA, val);
  264         splx(s);
  265 }
  266 
  267 int
  268 sv_match(parent, match, aux)
  269         struct device *parent;
  270         struct cfdata *match;
  271         void *aux;
  272 {
  273         struct pci_attach_args *pa = aux;
  274 
  275         if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
  276             PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
  277                 return (1);
  278         
  279         return (0);
  280 }
  281 
  282 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
  283                       int pcioffs,
  284                       bus_space_tag_t iot, bus_size_t size,
  285                       bus_size_t align, bus_size_t bound, int flags,
  286                       bus_space_handle_t *ioh));
  287 
  288 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
  289 
  290 int
  291 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
  292         pci_chipset_tag_t pc;
  293         pcitag_t pt;
  294         int pcioffs;
  295         bus_space_tag_t iot;
  296         bus_size_t size;
  297         bus_size_t align;
  298         bus_size_t bound;
  299         int flags;
  300         bus_space_handle_t *ioh;
  301 {
  302         bus_addr_t addr;
  303         int error;
  304 
  305         error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
  306                                 size, align, bound, flags, &addr, ioh);
  307         if (error)
  308                 return(error);
  309 
  310         pci_conf_write(pc, pt, pcioffs, addr);
  311         return (0);
  312 }
  313 
  314 /*
  315  * Allocate IO addresses when all other configuration is done.
  316  */
  317 void
  318 sv_defer(self)
  319         struct device *self;
  320 {
  321         struct sv_softc *sc = (struct sv_softc *)self;
  322         pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
  323         pcitag_t pt = sc->sc_pa.pa_tag;
  324         pcireg_t dmaio;
  325 
  326         DPRINTF(("sv_defer: %p\n", sc));
  327 
  328         /* XXX
  329          * Get a reasonable default for the I/O range.
  330          * Assume the range around SB_PORTBASE is valid on this PCI bus.
  331          */
  332         pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
  333         pci_io_alloc_high = pci_io_alloc_low + 0x1000;
  334 
  335         if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 
  336                           sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
  337                           0, &sc->sc_dmaa_ioh)) {
  338                 printf("sv_attach: cannot allocate DMA A range\n");
  339                 return;
  340         }
  341         dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
  342         DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
  343         pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 
  344                        dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
  345 
  346         if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 
  347                           sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
  348                           0, &sc->sc_dmac_ioh)) {
  349                 printf("sv_attach: cannot allocate DMA C range\n");
  350                 return;
  351         }
  352         dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
  353         DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
  354         pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 
  355                        dmaio | SV_DMA_CHANNEL_ENABLE);
  356 
  357         sc->sc_dmaset = 1;
  358 }
  359 
  360 void
  361 sv_attach(parent, self, aux)
  362         struct device *parent, *self;
  363         void *aux;
  364 {
  365         struct sv_softc *sc = (struct sv_softc *)self;
  366         struct pci_attach_args *pa = aux;
  367         pci_chipset_tag_t pc = pa->pa_pc;
  368         pcitag_t pt = pa->pa_tag;
  369         pci_intr_handle_t ih;
  370         pcireg_t csr;
  371         char const *intrstr;
  372         u_int8_t reg;
  373         struct audio_attach_args arg;
  374         
  375         printf ("\n");
  376         
  377         /* Map I/O registers */
  378         if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
  379                            PCI_MAPREG_TYPE_IO, 0,
  380                            &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
  381                 printf("%s: can't map enhanced i/o space\n", 
  382                        sc->sc_dev.dv_xname);
  383                 return;
  384         }
  385         if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
  386                            PCI_MAPREG_TYPE_IO, 0,
  387                            &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
  388                 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
  389                 return;
  390         }
  391         if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
  392                            PCI_MAPREG_TYPE_IO, 0,
  393                            &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
  394                 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
  395                 return;
  396         }
  397         DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
  398                  (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
  399 
  400 #if defined(alpha)
  401         /* XXX Force allocation through the SGMAP. */
  402         sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
  403 #elif defined(i386) && NISA > 0
  404 /* XXX
  405  * The SonicVibes DMA is broken and only works on 24-bit addresses.
  406  * As long as bus_dmamem_alloc_range() is missing we use the ISA
  407  * DMA tag on i386.
  408  */
  409         sc->sc_dmatag = &isa_bus_dma_tag;
  410 #else
  411         sc->sc_dmatag = pa->pa_dmat;
  412 #endif
  413 
  414         pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
  415         pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
  416 
  417         /* Enable the device. */
  418         csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
  419         pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
  420                        csr | PCI_COMMAND_MASTER_ENABLE);
  421 
  422         sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
  423         sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
  424         
  425         /* initialize codec registers */
  426         reg = sv_read(sc, SV_CODEC_CONTROL);
  427         reg |= SV_CTL_RESET;
  428         sv_write(sc, SV_CODEC_CONTROL, reg);
  429         delay(50);
  430 
  431         reg = sv_read(sc, SV_CODEC_CONTROL);
  432         reg &= ~SV_CTL_RESET;
  433         reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
  434 
  435         /* This write clears the reset */
  436         sv_write(sc, SV_CODEC_CONTROL, reg);
  437         delay(50);
  438 
  439         /* This write actually shoves the new values in */
  440         sv_write(sc, SV_CODEC_CONTROL, reg);
  441 
  442         DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
  443 
  444         /* Enable DMA interrupts */
  445         reg = sv_read(sc, SV_CODEC_INTMASK);
  446         reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
  447         reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
  448         sv_write(sc, SV_CODEC_INTMASK, reg);
  449 
  450         sv_read(sc, SV_CODEC_STATUS);
  451         
  452         /* Map and establish the interrupt. */
  453         if (pci_intr_map(pa, &ih)) {
  454                 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
  455                 return;
  456         }
  457         intrstr = pci_intr_string(pc, ih);
  458         sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
  459         if (sc->sc_ih == NULL) {
  460                 printf("%s: couldn't establish interrupt",
  461                        sc->sc_dev.dv_xname);
  462                 if (intrstr != NULL)
  463                         printf(" at %s", intrstr);
  464                 printf("\n");
  465                 return;
  466         }
  467         printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
  468         printf("%s: rev %d", sc->sc_dev.dv_xname, 
  469                sv_read_indirect(sc, SV_REVISION_LEVEL));
  470         if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
  471                 printf(", reverb SRAM present");
  472         if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
  473                 printf(", wavetable ROM present");
  474         printf("\n");
  475         
  476         sv_init_mixer(sc);
  477         
  478         audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
  479 
  480         arg.type = AUDIODEV_TYPE_OPL;
  481         arg.hwif = 0;
  482         arg.hdl = 0;
  483         (void)config_found(&sc->sc_dev, &arg, audioprint);
  484 
  485         sc->sc_pa = *pa;        /* for deferred setup */
  486         config_defer(self, sv_defer);
  487 }
  488 
  489 #ifdef AUDIO_DEBUG
  490 void
  491 sv_dumpregs(sc)
  492         struct sv_softc *sc;
  493 {
  494         int idx;
  495 
  496 #if 0
  497         for (idx = 0; idx < 0x50; idx += 4)
  498                 printf ("%02x = %x\n", idx, 
  499                         pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
  500 #endif
  501 
  502         for (idx = 0; idx < 6; idx++)
  503                 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
  504         
  505         for (idx = 0; idx < 0x32; idx++)
  506                 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
  507 
  508         for (idx = 0; idx < 0x10; idx++)
  509                 printf ("DMA %02x = %02x\n", idx, 
  510                         bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
  511 }
  512 #endif
  513 
  514 int
  515 sv_intr(p)
  516         void *p;
  517 {
  518         struct sv_softc *sc = p;
  519         u_int8_t intr;
  520 
  521         intr = sv_read(sc, SV_CODEC_STATUS);
  522         DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
  523 
  524         if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 
  525                 return (0);
  526 
  527         if (intr & SV_INTSTATUS_DMAA) {
  528                 if (sc->sc_pintr)
  529                         sc->sc_pintr(sc->sc_parg);
  530         }
  531 
  532         if (intr & SV_INTSTATUS_DMAC) {
  533                 if (sc->sc_rintr)
  534                         sc->sc_rintr(sc->sc_rarg);
  535         }
  536         
  537         return (1);
  538 }
  539 
  540 int
  541 sv_allocmem(sc, size, align, direction, p)
  542         struct sv_softc *sc;
  543         size_t size;
  544         size_t align;
  545         int direction;
  546         struct sv_dma *p;
  547 {
  548         int error;
  549 
  550         p->size = size;
  551         error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
  552                                  p->segs, ARRAY_SIZE(p->segs),
  553                                  &p->nsegs, BUS_DMA_NOWAIT);
  554         if (error)
  555                 return (error);
  556 
  557         error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 
  558                                &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
  559         if (error)
  560                 goto free;
  561 
  562         error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
  563                                   0, BUS_DMA_NOWAIT, &p->map);
  564         if (error)
  565                 goto unmap;
  566 
  567         error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 
  568                                 BUS_DMA_NOWAIT |
  569                                 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
  570         if (error)
  571                 goto destroy;
  572         DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
  573             (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
  574         return (0);
  575 
  576 destroy:
  577         bus_dmamap_destroy(sc->sc_dmatag, p->map);
  578 unmap:
  579         bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
  580 free:
  581         bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
  582         return (error);
  583 }
  584 
  585 int
  586 sv_freemem(sc, p)
  587         struct sv_softc *sc;
  588         struct sv_dma *p;
  589 {
  590         bus_dmamap_unload(sc->sc_dmatag, p->map);
  591         bus_dmamap_destroy(sc->sc_dmatag, p->map);
  592         bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
  593         bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
  594         return (0);
  595 }
  596 
  597 int
  598 sv_open(addr, flags)
  599         void *addr;
  600         int flags;
  601 {
  602         struct sv_softc *sc = addr;
  603 
  604         DPRINTF(("sv_open\n"));
  605         if (!sc->sc_dmaset)
  606                 return (ENXIO);
  607         sc->sc_pintr = 0;
  608         sc->sc_rintr = 0;
  609 
  610         return (0);
  611 }
  612 
  613 /*
  614  * Close function is called at splaudio().
  615  */
  616 void
  617 sv_close(addr)
  618         void *addr;
  619 {
  620         struct sv_softc *sc = addr;
  621     
  622         DPRINTF(("sv_close\n"));
  623         sv_halt_output(sc);
  624         sv_halt_input(sc);
  625 
  626         sc->sc_pintr = 0;
  627         sc->sc_rintr = 0;
  628 }
  629 
  630 int
  631 sv_query_encoding(addr, fp)
  632         void *addr;
  633         struct audio_encoding *fp;
  634 {
  635         switch (fp->index) {
  636         case 0:
  637                 strcpy(fp->name, AudioEulinear);
  638                 fp->encoding = AUDIO_ENCODING_ULINEAR;
  639                 fp->precision = 8;
  640                 fp->flags = 0;
  641                 return (0);
  642         case 1:
  643                 strcpy(fp->name, AudioEmulaw);
  644                 fp->encoding = AUDIO_ENCODING_ULAW;
  645                 fp->precision = 8;
  646                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  647                 return (0);
  648         case 2:
  649                 strcpy(fp->name, AudioEalaw);
  650                 fp->encoding = AUDIO_ENCODING_ALAW;
  651                 fp->precision = 8;
  652                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  653                 return (0);
  654         case 3:
  655                 strcpy(fp->name, AudioEslinear);
  656                 fp->encoding = AUDIO_ENCODING_SLINEAR;
  657                 fp->precision = 8;
  658                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  659                 return (0);
  660         case 4:
  661                 strcpy(fp->name, AudioEslinear_le);
  662                 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
  663                 fp->precision = 16;
  664                 fp->flags = 0;
  665                 return (0);
  666         case 5:
  667                 strcpy(fp->name, AudioEulinear_le);
  668                 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
  669                 fp->precision = 16;
  670                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  671                 return (0);
  672         case 6:
  673                 strcpy(fp->name, AudioEslinear_be);
  674                 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
  675                 fp->precision = 16;
  676                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  677                 return (0);
  678         case 7:
  679                 strcpy(fp->name, AudioEulinear_be);
  680                 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
  681                 fp->precision = 16;
  682                 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
  683                 return (0);
  684         default:
  685                 return (EINVAL);
  686         }
  687 }
  688 
  689 int
  690 sv_set_params(addr, setmode, usemode, play, rec)
  691         void *addr;
  692         int setmode, usemode;
  693         struct audio_params *play, *rec;
  694 {
  695         struct sv_softc *sc = addr;
  696         struct audio_params *p = NULL;
  697         int mode;
  698         u_int32_t val;
  699         
  700         /*
  701          * This device only has one clock, so make the sample rates match.
  702          */
  703         if (play->sample_rate != rec->sample_rate &&
  704             usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
  705                 if (setmode == AUMODE_PLAY) {
  706                         rec->sample_rate = play->sample_rate;
  707                         setmode |= AUMODE_RECORD;
  708                 } else if (setmode == AUMODE_RECORD) {
  709                         play->sample_rate = rec->sample_rate;
  710                         setmode |= AUMODE_PLAY;
  711                 } else
  712                         return (EINVAL);
  713         }
  714 
  715         for (mode = AUMODE_RECORD; mode != -1; 
  716              mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
  717                 if ((setmode & mode) == 0)
  718                         continue;
  719 
  720                 p = mode == AUMODE_PLAY ? play : rec;
  721 
  722                 if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
  723                     (p->precision != 8 && p->precision != 16) ||
  724                     (p->channels != 1 && p->channels != 2))
  725                         return (EINVAL);
  726 
  727                 p->factor = 1;
  728                 p->sw_code = 0;
  729                 switch (p->encoding) {
  730                 case AUDIO_ENCODING_SLINEAR_BE:
  731                         if (p->precision == 16)
  732                                 p->sw_code = swap_bytes;
  733                         else
  734                                 p->sw_code = change_sign8;
  735                         break;
  736                 case AUDIO_ENCODING_SLINEAR_LE:
  737                         if (p->precision != 16)
  738                                 p->sw_code = change_sign8;
  739                         break;
  740                 case AUDIO_ENCODING_ULINEAR_BE:
  741                         if (p->precision == 16) {
  742                                 if (mode == AUMODE_PLAY)
  743                                         p->sw_code = swap_bytes_change_sign16_le;
  744                                 else
  745                                         p->sw_code = change_sign16_swap_bytes_le;
  746                         }
  747                         break;
  748                 case AUDIO_ENCODING_ULINEAR_LE:
  749                         if (p->precision == 16)
  750                                 p->sw_code = change_sign16_le;
  751                         break;
  752                 case AUDIO_ENCODING_ULAW:
  753                         if (mode == AUMODE_PLAY) {
  754                                 p->factor = 2;
  755                                 p->sw_code = mulaw_to_slinear16_le;
  756                         } else
  757                                 p->sw_code = ulinear8_to_mulaw;
  758                         break;
  759                 case AUDIO_ENCODING_ALAW:
  760                         if (mode == AUMODE_PLAY) {
  761                                 p->factor = 2;
  762                                 p->sw_code = alaw_to_slinear16_le;
  763                         } else
  764                                 p->sw_code = ulinear8_to_alaw;
  765                         break;
  766                 default:
  767                         return (EINVAL);
  768                 }
  769         }
  770         
  771         val = p->sample_rate * 65536 / 48000;
  772         /*
  773          * If the sample rate is exactly 48KHz, the fraction would overflow the
  774          * register, so we have to bias it.  This causes a little clock drift.
  775          * The drift is below normal crystal tolerance (.0001%), so although
  776          * this seems a little silly, we can pretty much ignore it.
  777          * (I tested the output speed with values of 1-20, just to be sure this
  778          * register isn't *supposed* to have a bias.  It isn't.)
  779          * - mycroft
  780          */
  781         if (val > 65535)
  782                 val = 65535;
  783 
  784         sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
  785         sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
  786 
  787 #define F_REF 24576000
  788 
  789 #define ABS(x) (((x) < 0) ? (-x) : (x))
  790 
  791         if (setmode & AUMODE_RECORD) {
  792                 /* The ADC reference frequency (f_out) is 512 * sample rate */
  793 
  794                 /* f_out is dervied from the 24.576MHz crystal by three values:
  795                    M & N & R. The equation is as follows:
  796 
  797                    f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
  798 
  799                    with the constraint that:
  800 
  801                    80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
  802                    and n, m >= 1
  803                 */
  804 
  805                 int  goal_f_out = 512 * rec->sample_rate;
  806                 int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
  807                 int  pll_sample;
  808                 int  error;
  809 
  810                 for (a = 0; a < 8; a++) {
  811                         if ((goal_f_out * (1 << a)) >= 80000000)
  812                                 break;
  813                 }
  814           
  815                 /* a != 8 because sample_rate >= 2000 */
  816 
  817                 for (n = 33; n > 2; n--) {
  818                         m = (goal_f_out * n * (1 << a)) / F_REF;
  819                         if ((m > 257) || (m < 3))
  820                                 continue;
  821  
  822                         pll_sample = (m * F_REF) / (n * (1 << a));
  823                         pll_sample /= 512;
  824 
  825                         /* Threshold might be good here */
  826                         error = pll_sample - rec->sample_rate;
  827                         error = ABS(error);
  828             
  829                         if (error < best_error) {
  830                                 best_error = error;
  831                                 best_n = n;
  832                                 best_m = m;
  833                                 if (error == 0) break;
  834                         }
  835                 }
  836 
  837                 best_n -= 2;
  838                 best_m -= 2;
  839           
  840                 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
  841                 sv_write_indirect(sc, SV_ADC_PLL_N, 
  842                                   best_n | (a << SV_PLL_R_SHIFT));
  843         }
  844 
  845         return (0);
  846 }
  847 
  848 int
  849 sv_round_blocksize(addr, blk)
  850         void *addr;
  851         int blk;
  852 {
  853         return (blk & -32);     /* keep good alignment */
  854 }
  855 
  856 int
  857 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
  858         void *addr;
  859         void *start, *end;
  860         int blksize;
  861         void (*intr) __P((void *));
  862         void *arg;
  863         struct audio_params *param;
  864 {
  865         struct sv_softc *sc = addr;
  866         struct sv_dma *p;
  867         u_int8_t mode;
  868         int dma_count;
  869 
  870         DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 
  871             addr, start, end, blksize, intr, arg));
  872         sc->sc_pintr = intr;
  873         sc->sc_parg = arg;
  874 
  875         mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
  876         mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
  877         if (param->precision * param->factor == 16)
  878                 mode |= SV_DMAA_FORMAT16;
  879         if (param->channels == 2)
  880                 mode |= SV_DMAA_STEREO;
  881         sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
  882 
  883         for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
  884                 ;
  885         if (!p) {
  886                 printf("sv_trigger_output: bad addr %p\n", start);
  887                 return (EINVAL);
  888         }
  889 
  890         dma_count = ((char *)end - (char *)start) - 1;
  891         DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n", 
  892             (int)DMAADDR(p), dma_count));
  893 
  894         bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
  895                           DMAADDR(p));
  896         bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
  897                           dma_count);
  898         bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
  899                           DMA37MD_READ | DMA37MD_LOOP);
  900 
  901         DPRINTF(("sv_trigger_output: current addr=%x\n",
  902             bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
  903 
  904         dma_count = blksize - 1;
  905 
  906         sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
  907         sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
  908 
  909         mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
  910         sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
  911 
  912         return (0);
  913 }
  914 
  915 int
  916 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
  917         void *addr;
  918         void *start, *end;
  919         int blksize;
  920         void (*intr) __P((void *));
  921         void *arg;
  922         struct audio_params *param;
  923 {
  924         struct sv_softc *sc = addr;
  925         struct sv_dma *p;
  926         u_int8_t mode;
  927         int dma_count;
  928 
  929         DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 
  930             addr, start, end, blksize, intr, arg));
  931         sc->sc_rintr = intr;
  932         sc->sc_rarg = arg;
  933 
  934         mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
  935         mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
  936         if (param->precision * param->factor == 16)
  937                 mode |= SV_DMAC_FORMAT16;
  938         if (param->channels == 2)
  939                 mode |= SV_DMAC_STEREO;
  940         sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
  941 
  942         for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
  943                 ;
  944         if (!p) {
  945                 printf("sv_trigger_input: bad addr %p\n", start);
  946                 return (EINVAL);
  947         }
  948 
  949         dma_count = (((char *)end - (char *)start) >> 1) - 1;
  950         DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n", 
  951             (int)DMAADDR(p), dma_count));
  952 
  953         bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
  954                           DMAADDR(p));
  955         bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
  956                           dma_count);
  957         bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
  958                           DMA37MD_WRITE | DMA37MD_LOOP);
  959 
  960         DPRINTF(("sv_trigger_input: current addr=%x\n",
  961             bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
  962 
  963         dma_count = (blksize >> 1) - 1;
  964 
  965         sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
  966         sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
  967 
  968         mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
  969         sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
  970 
  971         return (0);
  972 }
  973 
  974 int
  975 sv_halt_output(addr)
  976         void *addr;
  977 {
  978         struct sv_softc *sc = addr;
  979         u_int8_t mode;
  980         
  981         DPRINTF(("sv: sv_halt_output\n"));
  982         mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
  983         sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
  984 
  985         return (0);
  986 }
  987 
  988 int
  989 sv_halt_input(addr)
  990         void *addr;
  991 {
  992         struct sv_softc *sc = addr;
  993         u_int8_t mode;
  994     
  995         DPRINTF(("sv: sv_halt_input\n"));
  996         mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
  997         sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
  998 
  999         return (0);
 1000 }
 1001 
 1002 int
 1003 sv_getdev(addr, retp)
 1004         void *addr;
 1005         struct audio_device *retp;
 1006 {
 1007         *retp = sv_device;
 1008         return (0);
 1009 }
 1010 
 1011 
 1012 /*
 1013  * Mixer related code is here
 1014  *
 1015  */
 1016 
 1017 #define SV_INPUT_CLASS 0
 1018 #define SV_OUTPUT_CLASS 1
 1019 #define SV_RECORD_CLASS 2
 1020 
 1021 #define SV_LAST_CLASS 2
 1022 
 1023 static const char *mixer_classes[] = 
 1024         { AudioCinputs, AudioCoutputs, AudioCrecord };
 1025 
 1026 static const struct {
 1027         u_int8_t   l_port;
 1028         u_int8_t   r_port;
 1029         u_int8_t   mask;
 1030         u_int8_t   class;
 1031         const char *audio;
 1032 } ports[] = {
 1033   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
 1034     SV_INPUT_CLASS, "aux1" },
 1035   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 
 1036     SV_INPUT_CLASS, AudioNcd },
 1037   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
 1038     SV_INPUT_CLASS, AudioNline },
 1039   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
 1040   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 
 1041     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
 1042   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
 1043     SV_INPUT_CLASS, "aux2" },
 1044   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
 1045     SV_INPUT_CLASS, AudioNdac },
 1046   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 
 1047     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
 1048 };
 1049 
 1050 
 1051 static const struct {
 1052         int idx;
 1053         const char *name;
 1054 } record_sources[] = {
 1055         { SV_REC_CD, AudioNcd },
 1056         { SV_REC_DAC, AudioNdac },
 1057         { SV_REC_AUX2, "aux2" },
 1058         { SV_REC_LINE, AudioNline },
 1059         { SV_REC_AUX1, "aux1" },
 1060         { SV_REC_MIC, AudioNmicrophone },
 1061         { SV_REC_MIXER, AudioNmixerout }
 1062 };
 1063 
 1064 
 1065 #define SV_DEVICES_PER_PORT 2
 1066 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
 1067 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
 1068 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
 1069 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
 1070 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
 1071 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
 1072 
 1073 int 
 1074 sv_query_devinfo(addr, dip)
 1075         void *addr;
 1076         mixer_devinfo_t *dip;
 1077 {
 1078         int i;
 1079 
 1080         /* It's a class */
 1081         if (dip->index <= SV_LAST_CLASS) {
 1082                 dip->type = AUDIO_MIXER_CLASS;
 1083                 dip->mixer_class = dip->index;
 1084                 dip->next = dip->prev = AUDIO_MIXER_LAST;
 1085                 strcpy(dip->label.name, 
 1086                        mixer_classes[dip->index]);
 1087                 return (0);
 1088         }
 1089 
 1090         if (dip->index >= SV_FIRST_MIXER &&
 1091             dip->index <= SV_LAST_MIXER) {
 1092                 int off = dip->index - SV_FIRST_MIXER;
 1093                 int mute = (off % SV_DEVICES_PER_PORT);
 1094                 int idx = off / SV_DEVICES_PER_PORT;
 1095                 
 1096                 dip->mixer_class = ports[idx].class;
 1097                 strcpy(dip->label.name, ports[idx].audio);
 1098                 
 1099                 if (!mute) {
 1100                         dip->type = AUDIO_MIXER_VALUE;
 1101                         dip->prev = AUDIO_MIXER_LAST;
 1102                         dip->next = dip->index + 1;
 1103 
 1104                         if (ports[idx].r_port != 0)
 1105                                 dip->un.v.num_channels = 2;
 1106                         else
 1107                                 dip->un.v.num_channels = 1;
 1108       
 1109                         strcpy(dip->un.v.units.name, AudioNvolume);
 1110                 } else {
 1111                         dip->type = AUDIO_MIXER_ENUM;
 1112                         dip->prev = dip->index - 1;
 1113                         dip->next = AUDIO_MIXER_LAST;
 1114                         
 1115                         strcpy(dip->label.name, AudioNmute);
 1116                         dip->un.e.num_mem = 2;
 1117                         strcpy(dip->un.e.member[0].label.name, AudioNoff);
 1118                         dip->un.e.member[0].ord = 0;
 1119                         strcpy(dip->un.e.member[1].label.name, AudioNon);
 1120                         dip->un.e.member[1].ord = 1;
 1121                 }
 1122                 
 1123                 return (0);
 1124         }
 1125 
 1126         switch (dip->index) {
 1127         case SV_RECORD_SOURCE:
 1128                 dip->mixer_class = SV_RECORD_CLASS;
 1129                 dip->prev = AUDIO_MIXER_LAST;
 1130                 dip->next = SV_RECORD_GAIN;
 1131                 strcpy(dip->label.name, AudioNsource);
 1132                 dip->type = AUDIO_MIXER_ENUM;
 1133                 
 1134                 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
 1135                 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
 1136                         strcpy(dip->un.e.member[i].label.name, 
 1137                                record_sources[i].name);
 1138                         dip->un.e.member[i].ord = record_sources[i].idx;
 1139                 }
 1140                 return (0);
 1141 
 1142         case SV_RECORD_GAIN:
 1143                 dip->mixer_class = SV_RECORD_CLASS;
 1144                 dip->prev = SV_RECORD_SOURCE;
 1145                 dip->next = AUDIO_MIXER_LAST;
 1146                 strcpy(dip->label.name, "gain");
 1147                 dip->type = AUDIO_MIXER_VALUE;
 1148                 dip->un.v.num_channels = 1;
 1149                 strcpy(dip->un.v.units.name, AudioNvolume);
 1150                 return (0);
 1151                 
 1152         case SV_MIC_BOOST:
 1153                 dip->mixer_class = SV_RECORD_CLASS;
 1154                 dip->prev = AUDIO_MIXER_LAST;
 1155                 dip->next = AUDIO_MIXER_LAST;
 1156                 strcpy(dip->label.name, "micboost");
 1157                 goto on_off;
 1158                 
 1159         case SV_SRS_MODE:
 1160                 dip->mixer_class = SV_OUTPUT_CLASS;
 1161                 dip->prev = dip->next = AUDIO_MIXER_LAST;
 1162                 strcpy(dip->label.name, AudioNspatial);
 1163                 
 1164         on_off:
 1165                 dip->type = AUDIO_MIXER_ENUM;
 1166                 dip->un.e.num_mem = 2;
 1167                 strcpy(dip->un.e.member[0].label.name, AudioNoff);
 1168                 dip->un.e.member[0].ord = 0;
 1169                 strcpy(dip->un.e.member[1].label.name, AudioNon);
 1170                 dip->un.e.member[1].ord = 1;
 1171                 return (0);
 1172         }
 1173         
 1174         return (ENXIO);
 1175 }
 1176 
 1177 int
 1178 sv_mixer_set_port(addr, cp)
 1179         void *addr;
 1180         mixer_ctrl_t *cp;
 1181 {
 1182         struct sv_softc *sc = addr;
 1183         u_int8_t reg;
 1184         int idx;
 1185 
 1186         if (cp->dev >= SV_FIRST_MIXER &&
 1187             cp->dev <= SV_LAST_MIXER) {
 1188                 int off = cp->dev - SV_FIRST_MIXER;
 1189                 int mute = (off % SV_DEVICES_PER_PORT);
 1190                 idx = off / SV_DEVICES_PER_PORT;
 1191                 
 1192                 if (mute) {
 1193                         if (cp->type != AUDIO_MIXER_ENUM) 
 1194                                 return (EINVAL);
 1195 
 1196                         reg = sv_read_indirect(sc, ports[idx].l_port);
 1197                         if (cp->un.ord) 
 1198                                 reg |= SV_MUTE_BIT;
 1199                         else
 1200                                 reg &= ~SV_MUTE_BIT;
 1201                         sv_write_indirect(sc, ports[idx].l_port, reg);
 1202                         
 1203                         if (ports[idx].r_port) {
 1204                                 reg = sv_read_indirect(sc, ports[idx].r_port);
 1205                                 if (cp->un.ord) 
 1206                                         reg |= SV_MUTE_BIT;
 1207                                 else
 1208                                         reg &= ~SV_MUTE_BIT;
 1209                                 sv_write_indirect(sc, ports[idx].r_port, reg);
 1210                         }
 1211                 } else {
 1212                         int  lval, rval;
 1213                         
 1214                         if (cp->type != AUDIO_MIXER_VALUE)
 1215                                 return (EINVAL);
 1216                         
 1217                         if (cp->un.value.num_channels != 1 &&
 1218                             cp->un.value.num_channels != 2)
 1219                                 return (EINVAL);
 1220                         
 1221                         if (ports[idx].r_port == 0) {
 1222                                 if (cp->un.value.num_channels != 1)
 1223                                         return (EINVAL);
 1224                                 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
 1225                                 rval = 0; /* shut up GCC */
 1226                         } else {
 1227                                 if (cp->un.value.num_channels != 2)
 1228                                         return (EINVAL);
 1229                                 
 1230                                 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
 1231                                 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
 1232       }
 1233 
 1234 
 1235                         reg = sv_read_indirect(sc, ports[idx].l_port);
 1236                         reg &= ~(ports[idx].mask);
 1237                         lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 
 1238                                 AUDIO_MAX_GAIN;
 1239                         reg |= lval;
 1240                         sv_write_indirect(sc, ports[idx].l_port, reg);
 1241 
 1242                         if (ports[idx].r_port != 0) {
 1243                                 reg = sv_read_indirect(sc, ports[idx].r_port);
 1244                                 reg &= ~(ports[idx].mask);
 1245                                 
 1246                                 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
 1247                                         AUDIO_MAX_GAIN;
 1248                                 reg |= rval;
 1249 
 1250                                 sv_write_indirect(sc, ports[idx].r_port, reg);
 1251                         }
 1252 
 1253                         sv_read_indirect(sc, ports[idx].l_port);
 1254                 }
 1255 
 1256                 return (0);
 1257         }
 1258 
 1259 
 1260         switch (cp->dev) {
 1261         case SV_RECORD_SOURCE:
 1262                 if (cp->type != AUDIO_MIXER_ENUM)
 1263                         return (EINVAL);
 1264                 
 1265                 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
 1266                         if (record_sources[idx].idx == cp->un.ord)
 1267                                 goto found;
 1268                 }
 1269     
 1270                 return (EINVAL);
 1271 
 1272         found:
 1273                 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1274                 reg &= ~SV_REC_SOURCE_MASK;
 1275                 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
 1276                 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
 1277                 
 1278                 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
 1279                 reg &= ~SV_REC_SOURCE_MASK;
 1280                 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
 1281                 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
 1282                 return (0);
 1283                 
 1284         case SV_RECORD_GAIN:
 1285         {
 1286                 int val;
 1287                 
 1288                 if (cp->type != AUDIO_MIXER_VALUE)
 1289                         return (EINVAL);
 1290                 
 1291                 if (cp->un.value.num_channels != 1)
 1292                         return (EINVAL);
 1293                 
 1294                 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) 
 1295                         / AUDIO_MAX_GAIN;
 1296                 
 1297                 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1298                 reg &= ~SV_REC_GAIN_MASK;
 1299                 reg |= val;
 1300                 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
 1301                 
 1302                 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
 1303                 reg &= ~SV_REC_GAIN_MASK;
 1304                 reg |= val;
 1305                 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
 1306         }
 1307         return (0);
 1308 
 1309         case SV_MIC_BOOST:
 1310                 if (cp->type != AUDIO_MIXER_ENUM)
 1311                         return (EINVAL);
 1312                 
 1313                 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1314                 if (cp->un.ord) {
 1315                         reg |= SV_MIC_BOOST_BIT;
 1316                 } else {
 1317                         reg &= ~SV_MIC_BOOST_BIT;
 1318                 }
 1319                 
 1320                 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
 1321                 return (0);
 1322                 
 1323         case SV_SRS_MODE:
 1324                 if (cp->type != AUDIO_MIXER_ENUM)
 1325                         return (EINVAL);
 1326                 
 1327                 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
 1328                 if (cp->un.ord) {
 1329                         reg &= ~SV_SRS_SPACE_ONOFF;
 1330                 } else {
 1331                         reg |= SV_SRS_SPACE_ONOFF;
 1332                 }
 1333                 
 1334                 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
 1335                 return (0);
 1336         }
 1337         
 1338         return (EINVAL);
 1339 }
 1340 
 1341 int
 1342 sv_mixer_get_port(addr, cp)
 1343         void *addr;
 1344         mixer_ctrl_t *cp;
 1345 {
 1346         struct sv_softc *sc = addr;
 1347         int val;
 1348         u_int8_t reg;
 1349         
 1350         if (cp->dev >= SV_FIRST_MIXER &&
 1351             cp->dev <= SV_LAST_MIXER) {
 1352                 int off = cp->dev - SV_FIRST_MIXER;
 1353                 int mute = (off % 2);
 1354                 int idx = off / 2;
 1355                 
 1356                 if (mute) {
 1357                         if (cp->type != AUDIO_MIXER_ENUM) 
 1358                                 return (EINVAL);
 1359                         
 1360                         reg = sv_read_indirect(sc, ports[idx].l_port);
 1361                         cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
 1362                 } else {
 1363                         if (cp->type != AUDIO_MIXER_VALUE)
 1364                                 return (EINVAL);
 1365                         
 1366                         if (cp->un.value.num_channels != 1 &&
 1367                             cp->un.value.num_channels != 2)
 1368                                 return (EINVAL);
 1369                         
 1370                         if ((ports[idx].r_port == 0 &&
 1371                              cp->un.value.num_channels != 1) ||
 1372                             (ports[idx].r_port != 0 &&
 1373                              cp->un.value.num_channels != 2))
 1374                                 return (EINVAL);
 1375                         
 1376                         reg = sv_read_indirect(sc, ports[idx].l_port);
 1377                         reg &= ports[idx].mask;
 1378                         
 1379                         val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
 1380                         
 1381                         if (ports[idx].r_port != 0) {
 1382                                 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
 1383                                 
 1384                                 reg = sv_read_indirect(sc, ports[idx].r_port);
 1385                                 reg &= ports[idx].mask;
 1386                                 
 1387                                 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
 1388                                 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
 1389                         } else 
 1390                                 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
 1391                 }
 1392 
 1393                 return (0);
 1394   }
 1395 
 1396         switch (cp->dev) {
 1397         case SV_RECORD_SOURCE:
 1398                 if (cp->type != AUDIO_MIXER_ENUM)
 1399                         return (EINVAL);
 1400                 
 1401                 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1402                 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
 1403                 
 1404                 return (0);
 1405                 
 1406         case SV_RECORD_GAIN:
 1407                 if (cp->type != AUDIO_MIXER_VALUE)
 1408                         return (EINVAL);
 1409                 if (cp->un.value.num_channels != 1)
 1410                         return (EINVAL);
 1411                 
 1412                 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
 1413                 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 
 1414                         (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
 1415                 
 1416                 return (0);
 1417                 
 1418         case SV_MIC_BOOST:
 1419                 if (cp->type != AUDIO_MIXER_ENUM)
 1420                         return (EINVAL);
 1421                 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
 1422                 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
 1423                 return (0);
 1424                 
 1425                 
 1426         case SV_SRS_MODE:
 1427                 if (cp->type != AUDIO_MIXER_ENUM)
 1428                         return (EINVAL);
 1429                 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
 1430                 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
 1431                 return (0);
 1432         }
 1433         
 1434         return (EINVAL);
 1435 }
 1436 
 1437 
 1438 static void
 1439 sv_init_mixer(sc)
 1440         struct sv_softc *sc;
 1441 {
 1442         mixer_ctrl_t cp;
 1443         int i;
 1444         
 1445         cp.type = AUDIO_MIXER_ENUM;
 1446         cp.dev = SV_SRS_MODE;
 1447         cp.un.ord = 0;
 1448 
 1449         sv_mixer_set_port(sc, &cp);
 1450 
 1451         for (i = 0; i < ARRAY_SIZE(ports); i++) {
 1452                 if (ports[i].audio == AudioNdac) {
 1453                         cp.type = AUDIO_MIXER_ENUM;
 1454                         cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
 1455                         cp.un.ord = 0;
 1456                         sv_mixer_set_port(sc, &cp);
 1457                         break;
 1458                 }
 1459         }
 1460 }
 1461 
 1462 void *
 1463 sv_malloc(addr, direction, size, pool, flags)
 1464         void *addr;
 1465         int direction;
 1466         size_t size;
 1467         struct malloc_type *pool;
 1468         int flags;
 1469 {
 1470         struct sv_softc *sc = addr;
 1471         struct sv_dma *p;
 1472         int error;
 1473 
 1474         p = malloc(sizeof(*p), pool, flags);
 1475         if (!p)
 1476                 return (0);
 1477         error = sv_allocmem(sc, size, 16, direction, p);
 1478         if (error) {
 1479                 free(p, pool);
 1480                 return (0);
 1481         }
 1482         p->next = sc->sc_dmas;
 1483         sc->sc_dmas = p;
 1484         return (KERNADDR(p));
 1485 }
 1486 
 1487 void
 1488 sv_free(addr, ptr, pool)
 1489         void *addr;
 1490         void *ptr;
 1491         struct malloc_type *pool;
 1492 {
 1493         struct sv_softc *sc = addr;
 1494         struct sv_dma **pp, *p;
 1495 
 1496         for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
 1497                 if (KERNADDR(p) == ptr) {
 1498                         sv_freemem(sc, p);
 1499                         *pp = p->next;
 1500                         free(p, pool);
 1501                         return;
 1502                 }
 1503         }
 1504 }
 1505 
 1506 size_t
 1507 sv_round_buffersize(addr, direction, size)
 1508         void *addr;
 1509         int direction;
 1510         size_t size;
 1511 {
 1512         return (size);
 1513 }
 1514 
 1515 paddr_t
 1516 sv_mappage(addr, mem, off, prot)
 1517         void *addr;
 1518         void *mem;
 1519         off_t off;
 1520         int prot;
 1521 {
 1522         struct sv_softc *sc = addr;
 1523         struct sv_dma *p;
 1524 
 1525         if (off < 0)
 1526                 return (-1);
 1527         for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
 1528                 ;
 1529         if (!p)
 1530                 return (-1);
 1531         return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 
 1532                                 off, prot, BUS_DMA_WAITOK));
 1533 }
 1534 
 1535 int
 1536 sv_get_props(addr)
 1537         void *addr;
 1538 {
 1539         return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
 1540 }

Cache object: b1c179a23c18d94f2738b25400fd2e7f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.