The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/qlnx/qlnxe/ecore_cxt.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2017-2018 Cavium, Inc.
    3  * All rights reserved.
    4  *
    5  *  Redistribution and use in source and binary forms, with or without
    6  *  modification, are permitted provided that the following conditions
    7  *  are met:
    8  *
    9  *  1. Redistributions of source code must retain the above copyright
   10  *     notice, this list of conditions and the following disclaimer.
   11  *  2. Redistributions in binary form must reproduce the above copyright
   12  *     notice, this list of conditions and the following disclaimer in the
   13  *     documentation and/or other materials provided with the distribution.
   14  *
   15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
   19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   25  *  POSSIBILITY OF SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * File : ecore_cxt.c
   30  */
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include "bcm_osal.h"
   35 #include "reg_addr.h"
   36 #include "common_hsi.h"
   37 #include "ecore_hsi_common.h"
   38 #include "ecore_hsi_eth.h"
   39 #include "tcp_common.h"
   40 #include "ecore_hsi_iscsi.h"
   41 #include "ecore_hsi_fcoe.h"
   42 #include "ecore_hsi_roce.h"
   43 #include "ecore_hsi_iwarp.h"
   44 #include "ecore_rt_defs.h"
   45 #include "ecore_status.h"
   46 #include "ecore.h"
   47 #include "ecore_init_ops.h"
   48 #include "ecore_init_fw_funcs.h"
   49 #include "ecore_cxt.h"
   50 #include "ecore_hw.h"
   51 #include "ecore_dev_api.h"
   52 #include "ecore_sriov.h"
   53 #include "ecore_rdma.h"
   54 #include "ecore_mcp.h"
   55 
   56 /* Max number of connection types in HW (DQ/CDU etc.) */
   57 #define MAX_CONN_TYPES          PROTOCOLID_COMMON
   58 #define NUM_TASK_TYPES          2
   59 #define NUM_TASK_PF_SEGMENTS    4
   60 #define NUM_TASK_VF_SEGMENTS    1
   61 
   62 /* Doorbell-Queue constants */
   63 #define DQ_RANGE_SHIFT  4
   64 #define DQ_RANGE_ALIGN  (1 << DQ_RANGE_SHIFT)
   65 
   66 /* Searcher constants */
   67 #define SRC_MIN_NUM_ELEMS 256
   68 
   69 /* Timers constants */
   70 #define TM_SHIFT        7
   71 #define TM_ALIGN        (1 << TM_SHIFT)
   72 #define TM_ELEM_SIZE    4
   73 
   74 /* ILT constants */
   75 #define ILT_PAGE_IN_BYTES(hw_p_size)    (1U << ((hw_p_size) + 12))
   76 #define ILT_CFG_REG(cli, reg)           PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
   77 
   78 /* ILT entry structure */
   79 #define ILT_ENTRY_PHY_ADDR_MASK         0x000FFFFFFFFFFFULL
   80 #define ILT_ENTRY_PHY_ADDR_SHIFT        0
   81 #define ILT_ENTRY_VALID_MASK            0x1ULL
   82 #define ILT_ENTRY_VALID_SHIFT           52
   83 #define ILT_ENTRY_IN_REGS               2
   84 #define ILT_REG_SIZE_IN_BYTES           4
   85 
   86 /* connection context union */
   87 union conn_context {
   88         struct e4_core_conn_context  core_ctx;
   89         struct e4_eth_conn_context        eth_ctx;
   90         struct e4_iscsi_conn_context iscsi_ctx;
   91         struct e4_fcoe_conn_context  fcoe_ctx;
   92         struct e4_roce_conn_context  roce_ctx;
   93 };
   94 
   95 /* TYPE-0 task context - iSCSI, FCOE */
   96 union type0_task_context {
   97         struct e4_iscsi_task_context iscsi_ctx;
   98         struct e4_fcoe_task_context  fcoe_ctx;
   99 };
  100 
  101 /* TYPE-1 task context - ROCE */
  102 union type1_task_context {
  103         struct e4_rdma_task_context roce_ctx;
  104 };
  105 
  106 struct src_ent {
  107         u8  opaque[56];
  108         u64 next;
  109 };
  110 
  111 #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */
  112 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
  113 
  114 #define CONN_CXT_SIZE(p_hwfn) \
  115         ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
  116 
  117 #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
  118 #define XRC_SRQ_CXT_SIZE (sizeof(struct rdma_xrc_srq_context))
  119 
  120 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
  121         ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
  122 
  123 /* Alignment is inherent to the type1_task_context structure */
  124 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
  125 
  126 /* PF per protocl configuration object */
  127 #define TASK_SEGMENTS   (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
  128 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
  129 
  130 struct ecore_tid_seg {
  131         u32     count;
  132         u8      type;
  133         bool    has_fl_mem;
  134 };
  135 
  136 struct ecore_conn_type_cfg {
  137         u32                     cid_count;
  138         u32                     cids_per_vf;
  139         struct ecore_tid_seg    tid_seg[TASK_SEGMENTS];
  140 };
  141 
  142 /* ILT Client configuration,
  143  * Per connection type (protocol) resources (cids, tis, vf cids etc.)
  144  * 1 - for connection context (CDUC) and for each task context we need two
  145  * values, for regular task context and for force load memory
  146  */
  147 #define ILT_CLI_PF_BLOCKS       (1 + NUM_TASK_PF_SEGMENTS * 2)
  148 #define ILT_CLI_VF_BLOCKS       (1 + NUM_TASK_VF_SEGMENTS * 2)
  149 #define CDUC_BLK                (0)
  150 #define SRQ_BLK                 (0)
  151 #define CDUT_SEG_BLK(n)         (1 + (u8)(n))
  152 #define CDUT_FL_SEG_BLK(n, X)   (1 + (n) + NUM_TASK_##X##_SEGMENTS)
  153 
  154 struct ilt_cfg_pair {
  155         u32 reg;
  156         u32 val;
  157 };
  158 
  159 struct ecore_ilt_cli_blk {
  160         u32 total_size; /* 0 means not active */
  161         u32 real_size_in_page;
  162         u32 start_line;
  163         u32 dynamic_line_cnt;
  164 };
  165 
  166 struct ecore_ilt_client_cfg {
  167         bool                            active;
  168 
  169         /* ILT boundaries */
  170         struct ilt_cfg_pair             first;
  171         struct ilt_cfg_pair             last;
  172         struct ilt_cfg_pair             p_size;
  173 
  174         /* ILT client blocks for PF */
  175         struct ecore_ilt_cli_blk        pf_blks[ILT_CLI_PF_BLOCKS];
  176         u32                             pf_total_lines;
  177 
  178         /* ILT client blocks for VFs */
  179         struct ecore_ilt_cli_blk        vf_blks[ILT_CLI_VF_BLOCKS];
  180         u32                             vf_total_lines;
  181 };
  182 
  183 /* Per Path -
  184  *      ILT shadow table
  185  *      Protocol acquired CID lists
  186  *      PF start line in ILT
  187  */
  188 struct ecore_dma_mem {
  189         dma_addr_t      p_phys;
  190         void            *p_virt;
  191         osal_size_t     size;
  192 };
  193 
  194 #define MAP_WORD_SIZE           sizeof(unsigned long)
  195 #define BITS_PER_MAP_WORD       (MAP_WORD_SIZE * 8)
  196 
  197 struct ecore_cid_acquired_map {
  198         u32             start_cid;
  199         u32             max_count;
  200         unsigned long   *cid_map;
  201 };
  202 
  203 struct ecore_cxt_mngr {
  204         /* Per protocl configuration */
  205         struct ecore_conn_type_cfg      conn_cfg[MAX_CONN_TYPES];
  206 
  207         /* computed ILT structure */
  208         struct ecore_ilt_client_cfg     clients[ILT_CLI_MAX];
  209 
  210         /* Task type sizes */
  211         u32                             task_type_size[NUM_TASK_TYPES];
  212 
  213         /* total number of VFs for this hwfn -
  214          * ALL VFs are symmetric in terms of HW resources
  215          */
  216         u32                             vf_count;
  217 
  218         /* Acquired CIDs */
  219         struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
  220         /* TBD - do we want this allocated to reserve space? */
  221         struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
  222 
  223         /* ILT shadow table */
  224         struct ecore_dma_mem            *ilt_shadow;
  225         u32                             pf_start_line;
  226 
  227         /* Mutex for a dynamic ILT allocation */
  228         osal_mutex_t                    mutex;
  229 
  230         /* SRC T2 */
  231         struct ecore_dma_mem            *t2;
  232         u32                             t2_num_pages;
  233         u64                             first_free;
  234         u64                             last_free;
  235 
  236         /* The infrastructure originally was very generic and context/task
  237          * oriented - per connection-type we would set how many of those
  238          * are needed, and later when determining how much memory we're
  239          * needing for a given block we'd iterate over all the relevant
  240          * connection-types.
  241          * But since then we've had some additional resources, some of which
  242          * require memory which is independent of the general context/task
  243          * scheme. We add those here explicitly per-feature.
  244          */
  245 
  246         /* total number of SRQ's for this hwfn */
  247         u32                             srq_count;
  248         u32                             xrc_srq_count;
  249 
  250         /* Maximal number of L2 steering filters */
  251         u32                             arfs_count;
  252 
  253         /* TODO - VF arfs filters ? */
  254 };
  255 
  256 /* check if resources/configuration is required according to protocol type */
  257 static bool src_proto(enum protocol_type type)
  258 {
  259         return  type == PROTOCOLID_ISCSI        ||
  260                 type == PROTOCOLID_FCOE         ||
  261                 type == PROTOCOLID_IWARP;
  262 }
  263 
  264 static bool tm_cid_proto(enum protocol_type type)
  265 {
  266         return type == PROTOCOLID_ISCSI ||
  267                type == PROTOCOLID_FCOE  ||
  268                type == PROTOCOLID_ROCE  ||
  269                type == PROTOCOLID_IWARP;
  270 }
  271 
  272 static bool tm_tid_proto(enum protocol_type type)
  273 {
  274         return type == PROTOCOLID_FCOE;
  275 }
  276 
  277 /* counts the iids for the CDU/CDUC ILT client configuration */
  278 struct ecore_cdu_iids {
  279         u32 pf_cids;
  280         u32 per_vf_cids;
  281 };
  282 
  283 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr   *p_mngr,
  284                                struct ecore_cdu_iids    *iids)
  285 {
  286         u32 type;
  287 
  288         for (type = 0; type < MAX_CONN_TYPES; type++) {
  289                 iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
  290                 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
  291         }
  292 }
  293 
  294 /* counts the iids for the Searcher block configuration */
  295 struct ecore_src_iids {
  296         u32                     pf_cids;
  297         u32                     per_vf_cids;
  298 };
  299 
  300 static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
  301                                struct ecore_src_iids *iids)
  302 {
  303         u32 i;
  304 
  305         for (i = 0; i < MAX_CONN_TYPES; i++) {
  306                 if (!src_proto(i))
  307                         continue;
  308 
  309                 iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
  310                 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
  311         }
  312 
  313         /* Add L2 filtering filters in addition */
  314         iids->pf_cids += p_mngr->arfs_count;
  315 }
  316 
  317 /* counts the iids for the Timers block configuration */
  318 struct ecore_tm_iids {
  319         u32 pf_cids;
  320         u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */
  321         u32 pf_tids_total;
  322         u32 per_vf_cids;
  323         u32 per_vf_tids;
  324 };
  325 
  326 static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
  327                               struct ecore_tm_iids *iids)
  328 {
  329         bool tm_vf_required = false;
  330         bool tm_required = false;
  331         int i, j;
  332 
  333         /* Timers is a special case -> we don't count how many cids require
  334          * timers but what's the max cid that will be used by the timer block.
  335          * therefore we traverse in reverse order, and once we hit a protocol
  336          * that requires the timers memory, we'll sum all the protocols up
  337          * to that one.
  338          */
  339         for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
  340                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
  341 
  342                 if (tm_cid_proto(i) || tm_required) {
  343                         if (p_cfg->cid_count)
  344                                 tm_required = true;
  345 
  346                         iids->pf_cids += p_cfg->cid_count;
  347                 }
  348 
  349                 if (tm_cid_proto(i) || tm_vf_required) {
  350                         if (p_cfg->cids_per_vf)
  351                                 tm_vf_required = true;
  352 
  353                         iids->per_vf_cids += p_cfg->cids_per_vf;
  354                 }
  355 
  356                 if (tm_tid_proto(i)) {
  357                         struct ecore_tid_seg *segs = p_cfg->tid_seg;
  358 
  359                         /* for each segment there is at most one
  360                          * protocol for which count is not 0.
  361                          */
  362                         for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
  363                                 iids->pf_tids[j] += segs[j].count;
  364 
  365                         /* The last array elelment is for the VFs. As for PF
  366                          * segments there can be only one protocol for
  367                          * which this value is not 0.
  368                          */
  369                         iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
  370                 }
  371         }
  372 
  373         iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
  374         iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
  375         iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
  376 
  377         for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
  378                 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
  379                 iids->pf_tids_total += iids->pf_tids[j];
  380         }
  381 }
  382 
  383 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
  384                               struct ecore_qm_iids *iids)
  385 {
  386         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
  387         struct ecore_tid_seg *segs;
  388         u32 vf_cids = 0, type, j;
  389         u32 vf_tids = 0;
  390 
  391         for (type = 0; type < MAX_CONN_TYPES; type++) {
  392                 iids->cids += p_mngr->conn_cfg[type].cid_count;
  393                 vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
  394 
  395                 segs = p_mngr->conn_cfg[type].tid_seg;
  396                 /* for each segment there is at most one
  397                  * protocol for which count is not 0.
  398                  */
  399                 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
  400                         iids->tids += segs[j].count;
  401 
  402                 /* The last array elelment is for the VFs. As for PF
  403                  * segments there can be only one protocol for
  404                  * which this value is not 0.
  405                  */
  406                 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
  407         }
  408 
  409         iids->vf_cids += vf_cids * p_mngr->vf_count;
  410         iids->tids += vf_tids * p_mngr->vf_count;
  411 
  412         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
  413                    "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
  414                    iids->cids, iids->vf_cids, iids->tids, vf_tids);
  415 }
  416 
  417 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn   *p_hwfn,
  418                                                     u32                 seg)
  419 {
  420         struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
  421         u32 i;
  422 
  423         /* Find the protocol with tid count > 0 for this segment.
  424            Note: there can only be one and this is already validated.
  425          */
  426         for (i = 0; i < MAX_CONN_TYPES; i++) {
  427                 if (p_cfg->conn_cfg[i].tid_seg[seg].count)
  428                         return &p_cfg->conn_cfg[i].tid_seg[seg];
  429         }
  430         return OSAL_NULL;
  431 }
  432 
  433 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn,
  434                                     u32 num_srqs, u32 num_xrc_srqs)
  435 {
  436         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
  437 
  438         p_mgr->srq_count = num_srqs;
  439         p_mgr->xrc_srq_count = num_xrc_srqs;
  440 }
  441 
  442 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
  443 {
  444         return p_hwfn->p_cxt_mngr->srq_count;
  445 }
  446 
  447 u32 ecore_cxt_get_xrc_srq_count(struct ecore_hwfn *p_hwfn)
  448 {
  449         return p_hwfn->p_cxt_mngr->xrc_srq_count;
  450 }
  451 
  452 u32 ecore_cxt_get_ilt_page_size(struct ecore_hwfn *p_hwfn,
  453                                 enum ilt_clients ilt_client)
  454 {
  455         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
  456         struct ecore_ilt_client_cfg *p_cli = &p_mngr->clients[ilt_client];
  457 
  458         return ILT_PAGE_IN_BYTES(p_cli->p_size.val);
  459 }
  460 
  461 static u32 ecore_cxt_srqs_per_page(struct ecore_hwfn *p_hwfn)
  462 {
  463         u32 page_size;
  464 
  465         page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
  466         return page_size / SRQ_CXT_SIZE;
  467 }
  468 
  469 u32 ecore_cxt_get_total_srq_count(struct ecore_hwfn *p_hwfn)
  470 {
  471         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
  472         u32 total_srqs;
  473 
  474         total_srqs = p_mgr->srq_count;
  475 
  476         /* XRC SRQs use the first and only the first SRQ ILT page. So if XRC
  477          * SRQs are requested we need to allocate an extra SRQ ILT page for
  478          * them. For that We increase the number of regular SRQs to cause the
  479          * allocation of that extra page.
  480          */
  481         if (p_mgr->xrc_srq_count)
  482                 total_srqs += ecore_cxt_srqs_per_page(p_hwfn);
  483 
  484         return total_srqs;
  485 }
  486 
  487 /* set the iids (cid/tid) count per protocol */
  488 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
  489                                           enum protocol_type type,
  490                                           u32 cid_count, u32 vf_cid_cnt)
  491 {
  492         struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
  493         struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
  494 
  495         p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
  496         p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
  497 
  498         if (type == PROTOCOLID_ROCE) {
  499                 u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
  500                 u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
  501                 u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
  502                 u32 align = elems_per_page * DQ_RANGE_ALIGN;
  503 
  504                 p_conn->cid_count = ROUNDUP(p_conn->cid_count, align);
  505         }
  506 }
  507 
  508 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn     *p_hwfn,
  509                                   enum protocol_type    type,
  510                                   u32                   *vf_cid)
  511 {
  512         if (vf_cid)
  513                 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
  514 
  515         return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
  516 }
  517 
  518 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn     *p_hwfn,
  519                                   enum protocol_type    type)
  520 {
  521         return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
  522 }
  523 
  524 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
  525                                   enum protocol_type type)
  526 {
  527         u32 cnt = 0;
  528         int i;
  529 
  530         for (i = 0; i < TASK_SEGMENTS; i++)
  531                 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
  532 
  533         return cnt;
  534 }
  535 
  536 static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
  537                                           enum protocol_type proto,
  538                                           u8 seg,
  539                                           u8 seg_type,
  540                                           u32 count,
  541                                           bool has_fl)
  542 {
  543         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
  544         struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
  545 
  546         p_seg->count = count;
  547         p_seg->has_fl_mem = has_fl;
  548         p_seg->type = seg_type;
  549 }
  550 
  551 /* the *p_line parameter must be either 0 for the first invocation or the
  552    value returned in the previous invocation.
  553  */
  554 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg  *p_cli,
  555                                    struct ecore_ilt_cli_blk     *p_blk,
  556                                    u32                          start_line,
  557                                    u32                          total_size,
  558                                    u32                          elem_size)
  559 {
  560         u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
  561 
  562         /* verify that it's called once for each block */
  563         if (p_blk->total_size)
  564                 return;
  565 
  566         p_blk->total_size = total_size;
  567         p_blk->real_size_in_page = 0;
  568         if (elem_size)
  569                 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
  570         p_blk->start_line = start_line;
  571 }
  572 
  573 static void ecore_ilt_cli_adv_line(struct ecore_hwfn            *p_hwfn,
  574                                     struct ecore_ilt_client_cfg *p_cli,
  575                                     struct ecore_ilt_cli_blk    *p_blk,
  576                                     u32                         *p_line,
  577                                     enum ilt_clients            client_id)
  578 {
  579         if (!p_blk->total_size)
  580                 return;
  581 
  582         if (!p_cli->active)
  583                 p_cli->first.val = *p_line;
  584 
  585         p_cli->active = true;
  586         *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
  587         p_cli->last.val = *p_line-1;
  588 
  589         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
  590                    "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
  591                    client_id, p_cli->first.val, p_cli->last.val,
  592                    p_blk->total_size, p_blk->real_size_in_page,
  593                    p_blk->start_line);
  594 }
  595 
  596 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
  597                                           enum ilt_clients ilt_client)
  598 {
  599         u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
  600         struct ecore_ilt_client_cfg *p_cli;
  601         u32 lines_to_skip = 0;
  602         u32 cxts_per_p;
  603 
  604         /* TBD MK: ILT code should be simplified once PROTO enum is changed */
  605 
  606         if (ilt_client == ILT_CLI_CDUC) {
  607                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
  608 
  609                 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
  610                              (u32)CONN_CXT_SIZE(p_hwfn);
  611 
  612                 lines_to_skip = cid_count / cxts_per_p;
  613         }
  614 
  615         return lines_to_skip;
  616 }
  617 
  618 static struct ecore_ilt_client_cfg *
  619 ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli)
  620 {
  621         p_cli->active = false;
  622         p_cli->first.val = 0;
  623         p_cli->last.val = 0;
  624         return p_cli;
  625 }
  626 
  627 static struct ecore_ilt_cli_blk *
  628 ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk)
  629 {
  630         p_blk->total_size = 0;
  631         return p_blk;
  632 }
  633 
  634 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn,
  635                                                u32 *line_count)
  636 {
  637         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
  638         u32 curr_line, total, i, task_size, line;
  639         struct ecore_ilt_client_cfg *p_cli;
  640         struct ecore_ilt_cli_blk *p_blk;
  641         struct ecore_cdu_iids cdu_iids;
  642         struct ecore_src_iids src_iids;
  643         struct ecore_qm_iids qm_iids;
  644         struct ecore_tm_iids tm_iids;
  645         struct ecore_tid_seg *p_seg;
  646 
  647         OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
  648         OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
  649         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
  650         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
  651 
  652         p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
  653 
  654         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
  655                    "hwfn [%d] - Set context manager starting line to be 0x%08x\n",
  656                    p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
  657 
  658         /* CDUC */
  659         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
  660 
  661         curr_line = p_mngr->pf_start_line;
  662 
  663         /* CDUC PF */
  664         p_cli->pf_total_lines = 0;
  665 
  666         /* get the counters for the CDUC,CDUC and QM clients  */
  667         ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
  668 
  669         p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
  670 
  671         total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
  672 
  673         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
  674                                total, CONN_CXT_SIZE(p_hwfn));
  675 
  676         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
  677         p_cli->pf_total_lines = curr_line - p_blk->start_line;
  678 
  679         p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
  680                                                                  ILT_CLI_CDUC);
  681 
  682         /* CDUC VF */
  683         p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
  684         total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
  685 
  686         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
  687                                total, CONN_CXT_SIZE(p_hwfn));
  688 
  689         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
  690         p_cli->vf_total_lines = curr_line - p_blk->start_line;
  691 
  692         for (i = 1; i < p_mngr->vf_count; i++)
  693                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  694                                        ILT_CLI_CDUC);
  695 
  696         /* CDUT PF */
  697         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
  698         p_cli->first.val = curr_line;
  699 
  700         /* first the 'working' task memory */
  701         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
  702                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
  703                 if (!p_seg || p_seg->count == 0)
  704                         continue;
  705 
  706                 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
  707                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
  708                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
  709                                        p_mngr->task_type_size[p_seg->type]);
  710 
  711                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  712                                        ILT_CLI_CDUT);
  713         }
  714 
  715         /* next the 'init' task memory (forced load memory) */
  716         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
  717                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
  718                 if (!p_seg || p_seg->count == 0)
  719                         continue;
  720 
  721                 p_blk = ecore_cxt_set_blk(
  722                                 &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
  723 
  724                 if (!p_seg->has_fl_mem) {
  725                         /* The segment is active (total size pf 'working'
  726                          * memory is > 0) but has no FL (forced-load, Init)
  727                          * memory. Thus:
  728                          *
  729                          * 1.   The total-size in the corrsponding FL block of
  730                          *      the ILT client is set to 0 - No ILT line are
  731                          *      provisioned and no ILT memory allocated.
  732                          *
  733                          * 2.   The start-line of said block is set to the
  734                          *      start line of the matching working memory
  735                          *      block in the ILT client. This is later used to
  736                          *      configure the CDU segment offset registers and
  737                          *      results in an FL command for TIDs of this
  738                          *      segement behaves as regular load commands
  739                          *      (loading TIDs from the working memory).
  740                          */
  741                         line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
  742 
  743                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
  744                         continue;
  745                 }
  746                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
  747 
  748                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
  749                                        curr_line, total,
  750                                        p_mngr->task_type_size[p_seg->type]);
  751 
  752                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  753                                        ILT_CLI_CDUT);
  754         }
  755         p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
  756 
  757         /* CDUT VF */
  758         p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
  759         if (p_seg && p_seg->count) {
  760                 /* Stricly speaking we need to iterate over all VF
  761                  * task segment types, but a VF has only 1 segment
  762                  */
  763 
  764                 /* 'working' memory */
  765                 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
  766 
  767                 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
  768                 ecore_ilt_cli_blk_fill(p_cli, p_blk,
  769                                        curr_line, total,
  770                                        p_mngr->task_type_size[p_seg->type]);
  771 
  772                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  773                                        ILT_CLI_CDUT);
  774 
  775                 /* 'init' memory */
  776                 p_blk = ecore_cxt_set_blk(
  777                                 &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
  778                 if (!p_seg->has_fl_mem) {
  779                         /* see comment above */
  780                         line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
  781                         ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
  782                 } else {
  783                         task_size = p_mngr->task_type_size[p_seg->type];
  784                         ecore_ilt_cli_blk_fill(p_cli, p_blk,
  785                                                curr_line, total,
  786                                                task_size);
  787                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  788                                                ILT_CLI_CDUT);
  789                 }
  790                 p_cli->vf_total_lines = curr_line -
  791                                         p_cli->vf_blks[0].start_line;
  792 
  793                 /* Now for the rest of the VFs */
  794                 for (i = 1; i < p_mngr->vf_count; i++) {
  795                         /* don't set p_blk i.e. don't clear total_size */
  796                         p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
  797                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  798                                                ILT_CLI_CDUT);
  799 
  800                         /* don't set p_blk i.e. don't clear total_size */
  801                         p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
  802                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  803                                                ILT_CLI_CDUT);
  804                 }
  805         }
  806 
  807         /* QM */
  808         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
  809         p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
  810 
  811         ecore_cxt_qm_iids(p_hwfn, &qm_iids);
  812         total = ecore_qm_pf_mem_size(qm_iids.cids,
  813                                      qm_iids.vf_cids, qm_iids.tids,
  814                                      p_hwfn->qm_info.num_pqs,
  815                                      p_hwfn->qm_info.num_vf_pqs);
  816 
  817         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
  818                    "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
  819                    qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
  820                    p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
  821 
  822         ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
  823                                QM_PQ_ELEMENT_SIZE);
  824 
  825         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
  826         p_cli->pf_total_lines = curr_line - p_blk->start_line;
  827 
  828         /* SRC */
  829         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
  830         ecore_cxt_src_iids(p_mngr, &src_iids);
  831 
  832         /* Both the PF and VFs searcher connections are stored in the per PF
  833          * database. Thus sum the PF searcher cids and all the VFs searcher
  834          * cids.
  835          */
  836         total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
  837         if (total) {
  838                 u32 local_max = OSAL_MAX_T(u32, total,
  839                                            SRC_MIN_NUM_ELEMS);
  840 
  841                 total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
  842 
  843                 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
  844                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
  845                                        total * sizeof(struct src_ent),
  846                                        sizeof(struct src_ent));
  847 
  848                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  849                                        ILT_CLI_SRC);
  850                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
  851         }
  852 
  853         /* TM PF */
  854         p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
  855         ecore_cxt_tm_iids(p_mngr, &tm_iids);
  856         total = tm_iids.pf_cids + tm_iids.pf_tids_total;
  857         if (total) {
  858                 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
  859                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
  860                                        total * TM_ELEM_SIZE,
  861                                        TM_ELEM_SIZE);
  862 
  863                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  864                                        ILT_CLI_TM);
  865                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
  866         }
  867 
  868         /* TM VF */
  869         total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
  870         if (total) {
  871                 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]);
  872                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
  873                                        total * TM_ELEM_SIZE,
  874                                        TM_ELEM_SIZE);
  875 
  876                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  877                                        ILT_CLI_TM);
  878 
  879                 p_cli->vf_total_lines = curr_line - p_blk->start_line;
  880                 for (i = 1; i < p_mngr->vf_count; i++) {
  881                         ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  882                                                ILT_CLI_TM);
  883                 }
  884         }
  885 
  886         /* TSDM (SRQ CONTEXT) */
  887         total = ecore_cxt_get_total_srq_count(p_hwfn);
  888         if (total) {
  889                 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
  890                 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
  891                 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
  892                                        total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
  893 
  894                 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
  895                                        ILT_CLI_TSDM);
  896                 p_cli->pf_total_lines = curr_line - p_blk->start_line;
  897         }
  898 
  899         *line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
  900 
  901         if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
  902             RESC_NUM(p_hwfn, ECORE_ILT)) {
  903                 return ECORE_INVAL;
  904         }
  905 
  906         return ECORE_SUCCESS;
  907 }
  908 
  909 u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines)
  910 {
  911         struct ecore_ilt_client_cfg *p_cli;
  912         u32 excess_lines, available_lines;
  913         struct ecore_cxt_mngr *p_mngr;
  914         u32 ilt_page_size, elem_size;
  915         struct ecore_tid_seg *p_seg;
  916         int i;
  917 
  918         available_lines = RESC_NUM(p_hwfn, ECORE_ILT);
  919         excess_lines = used_lines - available_lines;
  920 
  921         if (!excess_lines)
  922                 return 0;
  923 
  924         if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn))
  925                 return 0;
  926 
  927         p_mngr = p_hwfn->p_cxt_mngr;
  928         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
  929         ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
  930 
  931         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
  932                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
  933                 if (!p_seg || p_seg->count == 0)
  934                         continue;
  935 
  936                 elem_size = p_mngr->task_type_size[p_seg->type];
  937                 if (!elem_size)
  938                         continue;
  939 
  940                 return (ilt_page_size / elem_size) * excess_lines;
  941         }
  942 
  943         DP_ERR(p_hwfn, "failed computing excess ILT lines\n");
  944         return 0;
  945 }
  946 
  947 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
  948 {
  949         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
  950         u32 i;
  951 
  952         if (!p_mngr->t2)
  953                 return;
  954 
  955         for (i = 0; i < p_mngr->t2_num_pages; i++)
  956                 if (p_mngr->t2[i].p_virt)
  957                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
  958                                                p_mngr->t2[i].p_virt,
  959                                                p_mngr->t2[i].p_phys,
  960                                                p_mngr->t2[i].size);
  961 
  962         OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
  963         p_mngr->t2 = OSAL_NULL;
  964 }
  965 
  966 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
  967 {
  968         struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
  969         u32 conn_num, total_size, ent_per_page, psz, i;
  970         struct ecore_ilt_client_cfg *p_src;
  971         struct ecore_src_iids src_iids;
  972         struct ecore_dma_mem *p_t2;
  973         enum _ecore_status_t rc;
  974 
  975         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
  976 
  977         /* if the SRC ILT client is inactive - there are no connection
  978          * requiring the searcer, leave.
  979          */
  980         p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
  981         if (!p_src->active)
  982                 return ECORE_SUCCESS;
  983 
  984         ecore_cxt_src_iids(p_mngr, &src_iids);
  985         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
  986         total_size = conn_num * sizeof(struct src_ent);
  987 
  988         /* use the same page size as the SRC ILT client */
  989         psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
  990         p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
  991 
  992         /* allocate t2 */
  993         p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
  994                                  p_mngr->t2_num_pages *
  995                                  sizeof(struct ecore_dma_mem));
  996         if (!p_mngr->t2) {
  997                 DP_NOTICE(p_hwfn, false, "Failed to allocate t2 table\n");
  998                 rc = ECORE_NOMEM;
  999                 goto t2_fail;
 1000         }
 1001 
 1002         /* allocate t2 pages */
 1003         for (i = 0; i < p_mngr->t2_num_pages; i++) {
 1004                 u32 size = OSAL_MIN_T(u32, total_size, psz);
 1005                 void **p_virt = &p_mngr->t2[i].p_virt;
 1006 
 1007                 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
 1008                                                   &p_mngr->t2[i].p_phys,
 1009                                                   size);
 1010                 if (!p_mngr->t2[i].p_virt) {
 1011                         rc = ECORE_NOMEM;
 1012                         goto t2_fail;
 1013                 }
 1014                 OSAL_MEM_ZERO(*p_virt, size);
 1015                 p_mngr->t2[i].size = size;
 1016                 total_size -= size;
 1017         }
 1018 
 1019         /* Set the t2 pointers */
 1020 
 1021         /* entries per page - must be a power of two */
 1022         ent_per_page = psz / sizeof(struct src_ent);
 1023 
 1024         p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
 1025 
 1026         p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
 1027         p_mngr->last_free = (u64)p_t2->p_phys +
 1028                                  ((conn_num - 1) & (ent_per_page - 1)) *
 1029                                  sizeof(struct src_ent);
 1030 
 1031         for (i = 0; i < p_mngr->t2_num_pages; i++) {
 1032                 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
 1033                 struct src_ent *entries = p_mngr->t2[i].p_virt;
 1034                 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
 1035                 u32 j;
 1036 
 1037                 for (j = 0; j < ent_num - 1; j++) {
 1038                         val = p_ent_phys +
 1039                               (j + 1) * sizeof(struct src_ent);
 1040                         entries[j].next = OSAL_CPU_TO_BE64(val);
 1041                 }
 1042 
 1043                 if (i < p_mngr->t2_num_pages - 1)
 1044                         val = (u64)p_mngr->t2[i + 1].p_phys;
 1045                 else
 1046                         val = 0;
 1047                 entries[j].next = OSAL_CPU_TO_BE64(val);
 1048 
 1049                 conn_num -= ent_num;
 1050         }
 1051 
 1052         return ECORE_SUCCESS;
 1053 
 1054 t2_fail:
 1055         ecore_cxt_src_t2_free(p_hwfn);
 1056         return rc;
 1057 }
 1058 
 1059 #define for_each_ilt_valid_client(pos, clients) \
 1060         for (pos = 0; pos < ILT_CLI_MAX; pos++) \
 1061                 if (!clients[pos].active) {     \
 1062                         continue;               \
 1063                 } else                          \
 1064 
 1065 /* Total number of ILT lines used by this PF */
 1066 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
 1067 {
 1068         u32 size = 0;
 1069         u32 i;
 1070 
 1071         for_each_ilt_valid_client(i, ilt_clients)
 1072                 size += (ilt_clients[i].last.val -
 1073                          ilt_clients[i].first.val + 1);
 1074 
 1075         return size;
 1076 }
 1077 
 1078 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
 1079 {
 1080         struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
 1081         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1082         u32 ilt_size, i;
 1083 
 1084         if (p_mngr->ilt_shadow == OSAL_NULL)
 1085                 return;
 1086 
 1087         ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
 1088 
 1089         for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
 1090                 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
 1091 
 1092                 if (p_dma->p_virt)
 1093                         OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
 1094                                                p_dma->p_virt,
 1095                                                p_dma->p_phys,
 1096                                                p_dma->size);
 1097                 p_dma->p_virt = OSAL_NULL;
 1098         }
 1099         OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
 1100         p_mngr->ilt_shadow = OSAL_NULL;
 1101 }
 1102 
 1103 static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
 1104                                                 struct ecore_ilt_cli_blk *p_blk,
 1105                                                 enum ilt_clients ilt_client,
 1106                                                 u32 start_line_offset)
 1107 {
 1108         struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
 1109         u32 lines, line, sz_left, lines_to_skip = 0;
 1110 
 1111         /* Special handling for RoCE that supports dynamic allocation */
 1112         if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) &&
 1113             ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
 1114                 return ECORE_SUCCESS;
 1115 
 1116         lines_to_skip = p_blk->dynamic_line_cnt;
 1117 
 1118         if (!p_blk->total_size)
 1119                 return ECORE_SUCCESS;
 1120 
 1121         sz_left = p_blk->total_size;
 1122         lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) -
 1123                 lines_to_skip;
 1124         line = p_blk->start_line + start_line_offset -
 1125                p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
 1126 
 1127         for (; lines; lines--) {
 1128                 dma_addr_t p_phys;
 1129                 void *p_virt;
 1130                 u32 size;
 1131 
 1132                 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
 1133                 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
 1134                                                  &p_phys, size);
 1135                 if (!p_virt)
 1136                         return ECORE_NOMEM;
 1137                 OSAL_MEM_ZERO(p_virt, size);
 1138 
 1139                 ilt_shadow[line].p_phys = p_phys;
 1140                 ilt_shadow[line].p_virt = p_virt;
 1141                 ilt_shadow[line].size = size;
 1142 
 1143                 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
 1144                            "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
 1145                            line, (unsigned long long)p_phys, p_virt, size);
 1146 
 1147                 sz_left -= size;
 1148                 line++;
 1149         }
 1150 
 1151         return ECORE_SUCCESS;
 1152 }
 1153 
 1154 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
 1155 {
 1156         struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
 1157         struct ecore_ilt_client_cfg *clients = p_mngr->clients;
 1158         struct ecore_ilt_cli_blk *p_blk;
 1159         u32 size, i, j, k;
 1160         enum _ecore_status_t rc;
 1161 
 1162         size = ecore_cxt_ilt_shadow_size(clients);
 1163         p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
 1164                                          size * sizeof(struct ecore_dma_mem));
 1165 
 1166         if (p_mngr->ilt_shadow == OSAL_NULL) {
 1167                 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt shadow table\n");
 1168                 rc = ECORE_NOMEM;
 1169                 goto ilt_shadow_fail;
 1170         }
 1171 
 1172         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
 1173                    "Allocated 0x%x bytes for ilt shadow\n",
 1174                    (u32)(size * sizeof(struct ecore_dma_mem)));
 1175 
 1176         for_each_ilt_valid_client(i, clients) {
 1177                 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
 1178                         p_blk = &clients[i].pf_blks[j];
 1179                         rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
 1180                         if (rc != ECORE_SUCCESS)
 1181                                 goto ilt_shadow_fail;
 1182                 }
 1183                 for (k = 0; k < p_mngr->vf_count; k++) {
 1184                         for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
 1185                                 u32 lines = clients[i].vf_total_lines * k;
 1186 
 1187                                 p_blk = &clients[i].vf_blks[j];
 1188                                 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
 1189                                                          i, lines);
 1190                                 if (rc != ECORE_SUCCESS)
 1191                                         goto ilt_shadow_fail;
 1192                         }
 1193                 }
 1194         }
 1195 
 1196         return ECORE_SUCCESS;
 1197 
 1198 ilt_shadow_fail:
 1199         ecore_ilt_shadow_free(p_hwfn);
 1200         return rc;
 1201 }
 1202 
 1203 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
 1204 {
 1205         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1206         u32 type, vf;
 1207 
 1208         for (type = 0; type < MAX_CONN_TYPES; type++) {
 1209                 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
 1210                 p_mngr->acquired[type].cid_map = OSAL_NULL;
 1211                 p_mngr->acquired[type].max_count = 0;
 1212                 p_mngr->acquired[type].start_cid = 0;
 1213 
 1214                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
 1215                         OSAL_FREE(p_hwfn->p_dev,
 1216                                   p_mngr->acquired_vf[type][vf].cid_map);
 1217                         p_mngr->acquired_vf[type][vf].cid_map = OSAL_NULL;
 1218                         p_mngr->acquired_vf[type][vf].max_count = 0;
 1219                         p_mngr->acquired_vf[type][vf].start_cid = 0;
 1220                 }
 1221         }
 1222 }
 1223 
 1224 static enum _ecore_status_t
 1225 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
 1226                            u32 cid_start, u32 cid_count,
 1227                            struct ecore_cid_acquired_map *p_map)
 1228 {
 1229         u32 size;
 1230 
 1231         if (!cid_count)
 1232                 return ECORE_SUCCESS;
 1233 
 1234         size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
 1235         p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
 1236         if (p_map->cid_map == OSAL_NULL)
 1237                 return ECORE_NOMEM;
 1238 
 1239         p_map->max_count = cid_count;
 1240         p_map->start_cid = cid_start;
 1241 
 1242         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
 1243                    "Type %08x start: %08x count %08x\n",
 1244                    type, p_map->start_cid, p_map->max_count);
 1245 
 1246         return ECORE_SUCCESS;
 1247 }
 1248 
 1249 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
 1250 {
 1251         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1252         u32 start_cid = 0, vf_start_cid = 0;
 1253         u32 type, vf;
 1254 
 1255         for (type = 0; type < MAX_CONN_TYPES; type++) {
 1256                 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
 1257                 struct ecore_cid_acquired_map *p_map;
 1258 
 1259                 /* Handle PF maps */
 1260                 p_map = &p_mngr->acquired[type];
 1261                 if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
 1262                                                p_cfg->cid_count, p_map))
 1263                         goto cid_map_fail;
 1264 
 1265                 /* Handle VF maps */
 1266                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
 1267                         p_map = &p_mngr->acquired_vf[type][vf];
 1268                         if (ecore_cid_map_alloc_single(p_hwfn, type,
 1269                                                        vf_start_cid,
 1270                                                        p_cfg->cids_per_vf,
 1271                                                        p_map))
 1272                                 goto cid_map_fail;
 1273                 }
 1274 
 1275                 start_cid += p_cfg->cid_count;
 1276                 vf_start_cid += p_cfg->cids_per_vf;
 1277         }
 1278 
 1279         return ECORE_SUCCESS;
 1280 
 1281 cid_map_fail:
 1282         ecore_cid_map_free(p_hwfn);
 1283         return ECORE_NOMEM;
 1284 }
 1285 
 1286 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
 1287 {
 1288         struct ecore_ilt_client_cfg *clients;
 1289         struct ecore_cxt_mngr *p_mngr;
 1290         u32 i;
 1291 
 1292         p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
 1293         if (!p_mngr) {
 1294                 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_cxt_mngr'\n");
 1295                 return ECORE_NOMEM;
 1296         }
 1297 
 1298         /* Initialize ILT client registers */
 1299         clients = p_mngr->clients;
 1300         clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
 1301         clients[ILT_CLI_CDUC].last.reg  = ILT_CFG_REG(CDUC, LAST_ILT);
 1302         clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
 1303 
 1304         clients[ILT_CLI_QM].first.reg   = ILT_CFG_REG(QM, FIRST_ILT);
 1305         clients[ILT_CLI_QM].last.reg    = ILT_CFG_REG(QM, LAST_ILT);
 1306         clients[ILT_CLI_QM].p_size.reg  = ILT_CFG_REG(QM, P_SIZE);
 1307 
 1308         clients[ILT_CLI_TM].first.reg   = ILT_CFG_REG(TM, FIRST_ILT);
 1309         clients[ILT_CLI_TM].last.reg    = ILT_CFG_REG(TM, LAST_ILT);
 1310         clients[ILT_CLI_TM].p_size.reg  = ILT_CFG_REG(TM, P_SIZE);
 1311 
 1312         clients[ILT_CLI_SRC].first.reg  = ILT_CFG_REG(SRC, FIRST_ILT);
 1313         clients[ILT_CLI_SRC].last.reg   = ILT_CFG_REG(SRC, LAST_ILT);
 1314         clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
 1315 
 1316         clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
 1317         clients[ILT_CLI_CDUT].last.reg  = ILT_CFG_REG(CDUT, LAST_ILT);
 1318         clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
 1319 
 1320         clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
 1321         clients[ILT_CLI_TSDM].last.reg  = ILT_CFG_REG(TSDM, LAST_ILT);
 1322         clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
 1323 
 1324         /* default ILT page size for all clients is 64K */
 1325         for (i = 0; i < ILT_CLI_MAX; i++)
 1326                 p_mngr->clients[i].p_size.val = p_hwfn->p_dev->ilt_page_size;
 1327 
 1328         /* Initialize task sizes */
 1329         p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
 1330         p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
 1331 
 1332         if (p_hwfn->p_dev->p_iov_info)
 1333                 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
 1334 
 1335         /* Initialize the dynamic ILT allocation mutex */
 1336 #ifdef CONFIG_ECORE_LOCK_ALLOC
 1337         OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
 1338 #endif
 1339         OSAL_MUTEX_INIT(&p_mngr->mutex);
 1340 
 1341         /* Set the cxt mangr pointer priori to further allocations */
 1342         p_hwfn->p_cxt_mngr = p_mngr;
 1343 
 1344         return ECORE_SUCCESS;
 1345 }
 1346 
 1347 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
 1348 {
 1349         enum _ecore_status_t    rc;
 1350 
 1351         /* Allocate the ILT shadow table */
 1352         rc = ecore_ilt_shadow_alloc(p_hwfn);
 1353         if (rc) {
 1354                 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt memory\n");
 1355                 goto tables_alloc_fail;
 1356         }
 1357 
 1358         /* Allocate the T2  table */
 1359         rc = ecore_cxt_src_t2_alloc(p_hwfn);
 1360         if (rc) {
 1361                 DP_NOTICE(p_hwfn, false, "Failed to allocate T2 memory\n");
 1362                 goto tables_alloc_fail;
 1363         }
 1364 
 1365         /* Allocate and initialize the acquired cids bitmaps */
 1366         rc = ecore_cid_map_alloc(p_hwfn);
 1367         if (rc) {
 1368                 DP_NOTICE(p_hwfn, false, "Failed to allocate cid maps\n");
 1369                 goto tables_alloc_fail;
 1370         }
 1371 
 1372         return ECORE_SUCCESS;
 1373 
 1374 tables_alloc_fail:
 1375         ecore_cxt_mngr_free(p_hwfn);
 1376         return rc;
 1377 }
 1378 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
 1379 {
 1380         if (!p_hwfn->p_cxt_mngr)
 1381                 return;
 1382 
 1383         ecore_cid_map_free(p_hwfn);
 1384         ecore_cxt_src_t2_free(p_hwfn);
 1385         ecore_ilt_shadow_free(p_hwfn);
 1386 #ifdef CONFIG_ECORE_LOCK_ALLOC
 1387         OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
 1388 #endif
 1389         OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
 1390 
 1391         p_hwfn->p_cxt_mngr = OSAL_NULL;
 1392 }
 1393 
 1394 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
 1395 {
 1396         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1397         struct ecore_cid_acquired_map *p_map;
 1398         struct ecore_conn_type_cfg *p_cfg;
 1399         int type;
 1400         u32 len;
 1401 
 1402         /* Reset acquired cids */
 1403         for (type = 0; type < MAX_CONN_TYPES; type++) {
 1404                 u32 vf;
 1405 
 1406                 p_cfg = &p_mngr->conn_cfg[type];
 1407                 if (p_cfg->cid_count) {
 1408                         p_map = &p_mngr->acquired[type];
 1409                         len = DIV_ROUND_UP(p_map->max_count,
 1410                                            BITS_PER_MAP_WORD) *
 1411                               MAP_WORD_SIZE;
 1412                         OSAL_MEM_ZERO(p_map->cid_map, len);
 1413                 }
 1414 
 1415                 if (!p_cfg->cids_per_vf)
 1416                         continue;
 1417 
 1418                 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
 1419                         p_map = &p_mngr->acquired_vf[type][vf];
 1420                         len = DIV_ROUND_UP(p_map->max_count,
 1421                                            BITS_PER_MAP_WORD) *
 1422                               MAP_WORD_SIZE;
 1423                         OSAL_MEM_ZERO(p_map->cid_map, len);
 1424                 }
 1425         }
 1426 }
 1427 
 1428 /* HW initialization helper (per Block, per phase) */
 1429 
 1430 /* CDU Common */
 1431 #define CDUC_CXT_SIZE_SHIFT                                             \
 1432         CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
 1433 
 1434 #define CDUC_CXT_SIZE_MASK                                              \
 1435         (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
 1436 
 1437 #define CDUC_BLOCK_WASTE_SHIFT                                          \
 1438         CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
 1439 
 1440 #define CDUC_BLOCK_WASTE_MASK                                           \
 1441         (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
 1442 
 1443 #define CDUC_NCIB_SHIFT                                                 \
 1444         CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
 1445 
 1446 #define CDUC_NCIB_MASK                                                  \
 1447         (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
 1448 
 1449 #define CDUT_TYPE0_CXT_SIZE_SHIFT                                       \
 1450         CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
 1451 
 1452 #define CDUT_TYPE0_CXT_SIZE_MASK                                        \
 1453         (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>                         \
 1454         CDUT_TYPE0_CXT_SIZE_SHIFT)
 1455 
 1456 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT                                    \
 1457         CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
 1458 
 1459 #define CDUT_TYPE0_BLOCK_WASTE_MASK                                     \
 1460         (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >>                  \
 1461         CDUT_TYPE0_BLOCK_WASTE_SHIFT)
 1462 
 1463 #define CDUT_TYPE0_NCIB_SHIFT                                           \
 1464         CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
 1465 
 1466 #define CDUT_TYPE0_NCIB_MASK                                            \
 1467         (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >>                \
 1468         CDUT_TYPE0_NCIB_SHIFT)
 1469 
 1470 #define CDUT_TYPE1_CXT_SIZE_SHIFT                                       \
 1471         CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
 1472 
 1473 #define CDUT_TYPE1_CXT_SIZE_MASK                                        \
 1474         (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>                         \
 1475         CDUT_TYPE1_CXT_SIZE_SHIFT)
 1476 
 1477 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT                                    \
 1478         CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
 1479 
 1480 #define CDUT_TYPE1_BLOCK_WASTE_MASK                                     \
 1481         (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >>                  \
 1482         CDUT_TYPE1_BLOCK_WASTE_SHIFT)
 1483 
 1484 #define CDUT_TYPE1_NCIB_SHIFT                                           \
 1485         CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
 1486 
 1487 #define CDUT_TYPE1_NCIB_MASK                                            \
 1488         (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >>                \
 1489         CDUT_TYPE1_NCIB_SHIFT)
 1490 
 1491 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
 1492 {
 1493         u32 page_sz, elems_per_page, block_waste,  cxt_size, cdu_params = 0;
 1494 
 1495         /* CDUC - connection configuration */
 1496         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
 1497         cxt_size = CONN_CXT_SIZE(p_hwfn);
 1498         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
 1499         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
 1500 
 1501         SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
 1502         SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
 1503         SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page);
 1504         STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
 1505 
 1506         /* CDUT - type-0 tasks configuration */
 1507         page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
 1508         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
 1509         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
 1510         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
 1511 
 1512         /* cxt size and block-waste are multipes of 8 */
 1513         cdu_params = 0;
 1514         SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
 1515         SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
 1516         SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
 1517         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
 1518 
 1519         /* CDUT - type-1 tasks configuration */
 1520         cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
 1521         elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
 1522         block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
 1523 
 1524         /* cxt size and block-waste are multipes of 8 */
 1525         cdu_params = 0;
 1526         SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
 1527         SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
 1528         SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
 1529         STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
 1530 }
 1531 
 1532 /* CDU PF */
 1533 #define CDU_SEG_REG_TYPE_SHIFT          CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
 1534 #define CDU_SEG_REG_TYPE_MASK           0x1
 1535 #define CDU_SEG_REG_OFFSET_SHIFT        0
 1536 #define CDU_SEG_REG_OFFSET_MASK         CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
 1537 
 1538 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
 1539 {
 1540         struct ecore_ilt_client_cfg *p_cli;
 1541         struct ecore_tid_seg *p_seg;
 1542         u32 cdu_seg_params, offset;
 1543         int i;
 1544 
 1545         static const u32 rt_type_offset_arr[] = {
 1546                 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
 1547                 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
 1548                 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
 1549                 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
 1550         };
 1551 
 1552         static const u32 rt_type_offset_fl_arr[] = {
 1553                 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
 1554                 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
 1555                 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
 1556                 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
 1557         };
 1558 
 1559         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
 1560 
 1561         /* There are initializations only for CDUT during pf Phase */
 1562         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
 1563                 /* Segment 0*/
 1564                 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
 1565                 if (!p_seg)
 1566                         continue;
 1567 
 1568                 /* Note: start_line is already adjusted for the CDU
 1569                  * segment register granularity, so we just need to
 1570                  * divide. Adjustment is implicit as we assume ILT
 1571                  * Page size is larger than 32K!
 1572                  */
 1573                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
 1574                          (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
 1575                           p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
 1576 
 1577                 cdu_seg_params = 0;
 1578                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
 1579                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
 1580                 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i],
 1581                              cdu_seg_params);
 1582 
 1583                 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
 1584                          (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
 1585                           p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
 1586 
 1587                 cdu_seg_params = 0;
 1588                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
 1589                 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
 1590                 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i],
 1591                              cdu_seg_params);
 1592         }
 1593 }
 1594 
 1595 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
 1596                       bool is_pf_loading)
 1597 {
 1598         struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
 1599         struct ecore_mcp_link_state *p_link;
 1600         struct ecore_qm_iids iids;
 1601 
 1602         OSAL_MEM_ZERO(&iids, sizeof(iids));
 1603         ecore_cxt_qm_iids(p_hwfn, &iids);
 1604 
 1605         p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output;
 1606 
 1607         ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->port_id,
 1608                             p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
 1609                             is_pf_loading,
 1610                             iids.cids, iids.vf_cids, iids.tids,
 1611                             qm_info->start_pq,
 1612                             qm_info->num_pqs - qm_info->num_vf_pqs,
 1613                             qm_info->num_vf_pqs,
 1614                             qm_info->start_vport,
 1615                             qm_info->num_vports, qm_info->pf_wfq,
 1616                             qm_info->pf_rl, p_link->speed,
 1617                             p_hwfn->qm_info.qm_pq_params,
 1618                             p_hwfn->qm_info.qm_vport_params);
 1619 }
 1620 
 1621 /* CM PF */
 1622 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
 1623 {
 1624         STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
 1625 }
 1626 
 1627 /* DQ PF */
 1628 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
 1629 {
 1630         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1631         u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
 1632 
 1633         dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
 1634         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
 1635 
 1636         dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
 1637         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
 1638 
 1639         dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
 1640         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
 1641 
 1642         dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
 1643         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
 1644 
 1645         dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
 1646         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
 1647 
 1648         dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
 1649         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
 1650 
 1651         dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
 1652         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
 1653 
 1654         dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
 1655         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
 1656 
 1657         dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
 1658         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
 1659 
 1660         dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
 1661         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
 1662 
 1663         dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
 1664         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
 1665 
 1666         dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
 1667         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
 1668 
 1669         /* Connection types 6 & 7 are not in use, yet they must be configured
 1670          * as the highest possible connection. Not configuring them means the
 1671          * defaults will be  used, and with a large number of cids a bug may
 1672          * occur, if the defaults will be smaller than dq_pf_max_cid /
 1673          * dq_vf_max_cid.
 1674          */
 1675         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
 1676         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
 1677 
 1678         STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
 1679         STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
 1680 }
 1681 
 1682 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
 1683 {
 1684         struct ecore_ilt_client_cfg *ilt_clients;
 1685         int i;
 1686 
 1687         ilt_clients = p_hwfn->p_cxt_mngr->clients;
 1688         for_each_ilt_valid_client(i, ilt_clients) {
 1689                 STORE_RT_REG(p_hwfn,
 1690                              ilt_clients[i].first.reg,
 1691                              ilt_clients[i].first.val);
 1692                 STORE_RT_REG(p_hwfn,
 1693                              ilt_clients[i].last.reg,
 1694                              ilt_clients[i].last.val);
 1695                 STORE_RT_REG(p_hwfn,
 1696                              ilt_clients[i].p_size.reg,
 1697                              ilt_clients[i].p_size.val);
 1698         }
 1699 }
 1700 
 1701 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
 1702 {
 1703         struct ecore_ilt_client_cfg *p_cli;
 1704         u32 blk_factor;
 1705 
 1706         /* For simplicty  we set the 'block' to be an ILT page */
 1707         if (p_hwfn->p_dev->p_iov_info) {
 1708                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
 1709 
 1710                 STORE_RT_REG(p_hwfn,
 1711                              PSWRQ2_REG_VF_BASE_RT_OFFSET,
 1712                              p_iov->first_vf_in_pf);
 1713                 STORE_RT_REG(p_hwfn,
 1714                              PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
 1715                              p_iov->first_vf_in_pf + p_iov->total_vfs);
 1716         }
 1717 
 1718         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
 1719         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
 1720         if (p_cli->active) {
 1721                 STORE_RT_REG(p_hwfn,
 1722                              PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
 1723                              blk_factor);
 1724                 STORE_RT_REG(p_hwfn,
 1725                              PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
 1726                              p_cli->pf_total_lines);
 1727                 STORE_RT_REG(p_hwfn,
 1728                              PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
 1729                              p_cli->vf_total_lines);
 1730         }
 1731 
 1732         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
 1733         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
 1734         if (p_cli->active) {
 1735                 STORE_RT_REG(p_hwfn,
 1736                              PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
 1737                              blk_factor);
 1738                 STORE_RT_REG(p_hwfn,
 1739                              PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
 1740                              p_cli->pf_total_lines);
 1741                 STORE_RT_REG(p_hwfn,
 1742                              PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
 1743                              p_cli->vf_total_lines);
 1744         }
 1745 
 1746         p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
 1747         blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
 1748         if (p_cli->active) {
 1749                 STORE_RT_REG(p_hwfn,
 1750                              PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET,
 1751                              blk_factor);
 1752                 STORE_RT_REG(p_hwfn,
 1753                              PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
 1754                              p_cli->pf_total_lines);
 1755                 STORE_RT_REG(p_hwfn,
 1756                              PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
 1757                              p_cli->vf_total_lines);
 1758         }
 1759 }
 1760 
 1761 /* ILT (PSWRQ2) PF */
 1762 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
 1763 {
 1764         struct ecore_ilt_client_cfg *clients;
 1765         struct ecore_cxt_mngr *p_mngr;
 1766         struct ecore_dma_mem *p_shdw;
 1767         u32 line, rt_offst, i;
 1768 
 1769         ecore_ilt_bounds_init(p_hwfn);
 1770         ecore_ilt_vf_bounds_init(p_hwfn);
 1771 
 1772         p_mngr  = p_hwfn->p_cxt_mngr;
 1773         p_shdw  = p_mngr->ilt_shadow;
 1774         clients = p_hwfn->p_cxt_mngr->clients;
 1775 
 1776         for_each_ilt_valid_client(i, clients) {
 1777                 /* Client's 1st val and RT array are absolute, ILT shadows'
 1778                  * lines are relative.
 1779                  */
 1780                 line = clients[i].first.val - p_mngr->pf_start_line;
 1781                 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
 1782                            clients[i].first.val * ILT_ENTRY_IN_REGS;
 1783 
 1784                 for (; line <= clients[i].last.val - p_mngr->pf_start_line;
 1785                      line++, rt_offst += ILT_ENTRY_IN_REGS) {
 1786                         u64 ilt_hw_entry = 0;
 1787 
 1788                         /** p_virt could be OSAL_NULL incase of dynamic
 1789                          *  allocation
 1790                          */
 1791                         if (p_shdw[line].p_virt != OSAL_NULL) {
 1792                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
 1793                                 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
 1794                                           (unsigned long long)(p_shdw[line].p_phys >> 12));
 1795 
 1796                                 DP_VERBOSE(
 1797                                         p_hwfn, ECORE_MSG_ILT,
 1798                                         "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
 1799                                         rt_offst, line, i,
 1800                                         (unsigned long long)(p_shdw[line].p_phys >> 12));
 1801                         }
 1802 
 1803                         STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
 1804                 }
 1805         }
 1806 }
 1807 
 1808 /* SRC (Searcher) PF */
 1809 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
 1810 {
 1811         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1812         u32 rounded_conn_num, conn_num, conn_max;
 1813         struct ecore_src_iids src_iids;
 1814 
 1815         OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
 1816         ecore_cxt_src_iids(p_mngr, &src_iids);
 1817         conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
 1818         if (!conn_num)
 1819                 return;
 1820 
 1821         conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
 1822         rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
 1823 
 1824         STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
 1825         STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
 1826                      OSAL_LOG2(rounded_conn_num));
 1827 
 1828         STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
 1829                          p_hwfn->p_cxt_mngr->first_free);
 1830         STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
 1831                          p_hwfn->p_cxt_mngr->last_free);
 1832         DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
 1833                    "Configured SEARCHER for 0x%08x connections\n",
 1834                    conn_num);
 1835 }
 1836 
 1837 /* Timers PF */
 1838 #define TM_CFG_NUM_IDS_SHIFT            0
 1839 #define TM_CFG_NUM_IDS_MASK             0xFFFFULL
 1840 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT    16
 1841 #define TM_CFG_PRE_SCAN_OFFSET_MASK     0x1FFULL
 1842 #define TM_CFG_PARENT_PF_SHIFT          25
 1843 #define TM_CFG_PARENT_PF_MASK           0x7ULL
 1844 
 1845 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT  30
 1846 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK   0x1FFULL
 1847 
 1848 #define TM_CFG_TID_OFFSET_SHIFT         30
 1849 #define TM_CFG_TID_OFFSET_MASK          0x7FFFFULL
 1850 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT  49
 1851 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK   0x1FFULL
 1852 
 1853 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
 1854 {
 1855         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1856         u32 active_seg_mask = 0, tm_offset, rt_reg;
 1857         struct ecore_tm_iids tm_iids;
 1858         u64 cfg_word;
 1859         u8 i;
 1860 
 1861         OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
 1862         ecore_cxt_tm_iids(p_mngr, &tm_iids);
 1863 
 1864         /* @@@TBD No pre-scan for now */
 1865 
 1866         /* Note: We assume consecutive VFs for a PF */
 1867         for (i = 0; i < p_mngr->vf_count; i++) {
 1868                 cfg_word = 0;
 1869                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
 1870                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
 1871                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
 1872                 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
 1873 
 1874                 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
 1875                          (sizeof(cfg_word) / sizeof(u32)) *
 1876                          (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
 1877                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
 1878         }
 1879 
 1880         cfg_word = 0;
 1881         SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
 1882         SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
 1883         SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);         /* n/a for PF */
 1884         SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all   */
 1885 
 1886         rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
 1887                  (sizeof(cfg_word) / sizeof(u32)) *
 1888                  (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
 1889         STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
 1890 
 1891         /* enale scan */
 1892         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
 1893                      tm_iids.pf_cids  ? 0x1 : 0x0);
 1894 
 1895         /* @@@TBD how to enable the scan for the VFs */
 1896 
 1897         tm_offset = tm_iids.per_vf_cids;
 1898 
 1899         /* Note: We assume consecutive VFs for a PF */
 1900         for (i = 0; i < p_mngr->vf_count; i++) {
 1901                 cfg_word = 0;
 1902                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
 1903                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
 1904                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
 1905                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
 1906                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
 1907 
 1908                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
 1909                          (sizeof(cfg_word) / sizeof(u32)) *
 1910                          (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
 1911 
 1912                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
 1913         }
 1914 
 1915         tm_offset = tm_iids.pf_cids;
 1916         for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
 1917                 cfg_word = 0;
 1918                 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
 1919                 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
 1920                 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
 1921                 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
 1922                 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
 1923 
 1924                 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
 1925                          (sizeof(cfg_word) / sizeof(u32)) *
 1926                          (NUM_OF_VFS(p_hwfn->p_dev) +
 1927                          p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
 1928 
 1929                 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
 1930                 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
 1931 
 1932                 tm_offset += tm_iids.pf_tids[i];
 1933         }
 1934 
 1935         if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
 1936                 active_seg_mask = 0;
 1937 
 1938         STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
 1939 
 1940         /* @@@TBD how to enable the scan for the VFs */
 1941 }
 1942 
 1943 static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn)
 1944 {
 1945         if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) &&
 1946             p_hwfn->pf_params.fcoe_pf_params.is_target)
 1947                 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
 1948 }
 1949 
 1950 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
 1951 {
 1952         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1953         struct ecore_conn_type_cfg *p_fcoe;
 1954         struct ecore_tid_seg *p_tid;
 1955 
 1956         p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
 1957 
 1958         /* If FCoE is active set the MAX OX_ID (tid) in the Parser */
 1959         if (!p_fcoe->cid_count)
 1960                 return;
 1961 
 1962         p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
 1963         if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
 1964                 STORE_RT_REG_AGG(p_hwfn,
 1965                                  PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
 1966                                  p_tid->count);
 1967         } else {
 1968                 STORE_RT_REG_AGG(p_hwfn,
 1969                                 PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
 1970                                 p_tid->count);
 1971         }
 1972 }
 1973 
 1974 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
 1975 {
 1976         /* CDU configuration */
 1977         ecore_cdu_init_common(p_hwfn);
 1978         ecore_prs_init_common(p_hwfn);
 1979 }
 1980 
 1981 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
 1982 {
 1983         ecore_qm_init_pf(p_hwfn, p_ptt, true);
 1984         ecore_cm_init_pf(p_hwfn);
 1985         ecore_dq_init_pf(p_hwfn);
 1986         ecore_cdu_init_pf(p_hwfn);
 1987         ecore_ilt_init_pf(p_hwfn);
 1988         ecore_src_init_pf(p_hwfn);
 1989         ecore_tm_init_pf(p_hwfn);
 1990         ecore_prs_init_pf(p_hwfn);
 1991 }
 1992 
 1993 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
 1994                                             enum protocol_type type,
 1995                                             u32 *p_cid, u8 vfid)
 1996 {
 1997         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 1998         struct ecore_cid_acquired_map *p_map;
 1999         u32 rel_cid;
 2000 
 2001         if (type >= MAX_CONN_TYPES) {
 2002                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
 2003                 return ECORE_INVAL;
 2004         }
 2005 
 2006         if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
 2007                 DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
 2008                 return ECORE_INVAL;
 2009         }
 2010 
 2011         /* Determine the right map to take this CID from */
 2012         if (vfid == ECORE_CXT_PF_CID)
 2013                 p_map = &p_mngr->acquired[type];
 2014         else
 2015                 p_map = &p_mngr->acquired_vf[type][vfid];
 2016 
 2017         if (p_map->cid_map == OSAL_NULL) {
 2018                 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
 2019                 return ECORE_INVAL;
 2020         }
 2021 
 2022         rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
 2023                                            p_map->max_count);
 2024 
 2025         if (rel_cid >= p_map->max_count) {
 2026                 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
 2027                           type);
 2028                 return ECORE_NORESOURCES;
 2029         }
 2030 
 2031         OSAL_SET_BIT(rel_cid, p_map->cid_map);
 2032 
 2033         *p_cid = rel_cid + p_map->start_cid;
 2034 
 2035         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
 2036                    "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
 2037                    *p_cid, rel_cid, vfid, type);
 2038 
 2039         return ECORE_SUCCESS;
 2040 }
 2041 
 2042 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
 2043                                            enum protocol_type type,
 2044                                            u32 *p_cid)
 2045 {
 2046         return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
 2047 }
 2048 
 2049 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
 2050                                         u32 cid, u8 vfid,
 2051                                         enum protocol_type *p_type,
 2052                                         struct ecore_cid_acquired_map **pp_map)
 2053 {
 2054         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 2055         u32 rel_cid;
 2056 
 2057         /* Iterate over protocols and find matching cid range */
 2058         for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
 2059                 if (vfid == ECORE_CXT_PF_CID)
 2060                         *pp_map = &p_mngr->acquired[*p_type];
 2061                 else
 2062                         *pp_map = &p_mngr->acquired_vf[*p_type][vfid];
 2063 
 2064                 if (!((*pp_map)->cid_map))
 2065                         continue;
 2066                 if (cid >= (*pp_map)->start_cid &&
 2067                     cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
 2068                         break;
 2069                 }
 2070         }
 2071 
 2072         if (*p_type == MAX_CONN_TYPES) {
 2073                 DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
 2074                 goto fail;
 2075         }
 2076 
 2077         rel_cid = cid - (*pp_map)->start_cid;
 2078         if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
 2079                 DP_NOTICE(p_hwfn, true,
 2080                           "CID %d [vifd %02x] not acquired", cid, vfid);
 2081                 goto fail;
 2082         }
 2083 
 2084         return true;
 2085 fail:
 2086         *p_type = MAX_CONN_TYPES;
 2087         *pp_map = OSAL_NULL;
 2088         return false;
 2089 }
 2090 
 2091 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
 2092 {
 2093         struct ecore_cid_acquired_map *p_map = OSAL_NULL;
 2094         enum protocol_type type;
 2095         bool b_acquired;
 2096         u32 rel_cid;
 2097 
 2098         if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
 2099                 DP_NOTICE(p_hwfn, true,
 2100                           "Trying to return incorrect CID belonging to VF %02x\n",
 2101                           vfid);
 2102                 return;
 2103         }
 2104 
 2105         /* Test acquired and find matching per-protocol map */
 2106         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
 2107                                                  &type, &p_map);
 2108 
 2109         if (!b_acquired)
 2110                 return;
 2111 
 2112         rel_cid = cid - p_map->start_cid;
 2113         OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
 2114 
 2115         DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
 2116                    "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
 2117                    cid, rel_cid, vfid, type);
 2118 }
 2119 
 2120 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
 2121 {
 2122         _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
 2123 }
 2124 
 2125 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
 2126                                             struct ecore_cxt_info *p_info)
 2127 {
 2128         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 2129         struct ecore_cid_acquired_map *p_map = OSAL_NULL;
 2130         u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
 2131         enum protocol_type type;
 2132         bool b_acquired;
 2133 
 2134         /* Test acquired and find matching per-protocol map */
 2135         b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
 2136                                                  ECORE_CXT_PF_CID,
 2137                                                  &type, &p_map);
 2138 
 2139         if (!b_acquired)
 2140                 return ECORE_INVAL;
 2141 
 2142         /* set the protocl type */
 2143         p_info->type = type;
 2144 
 2145         /* compute context virtual pointer */
 2146         hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
 2147 
 2148         conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
 2149         cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
 2150         line = p_info->iid / cxts_per_p;
 2151 
 2152         /* Make sure context is allocated (dynamic allocation) */
 2153         if (!p_mngr->ilt_shadow[line].p_virt)
 2154                 return ECORE_INVAL;
 2155 
 2156         p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
 2157                               p_info->iid % cxts_per_p * conn_cxt_size;
 2158 
 2159         DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
 2160                    "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
 2161                    (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
 2162 
 2163         return ECORE_SUCCESS;
 2164 }
 2165 
 2166 static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn,
 2167                                      struct ecore_rdma_pf_params *p_params,
 2168                                      u32 num_tasks)
 2169 {
 2170         u32 num_cons, num_qps;
 2171         enum protocol_type proto;
 2172 
 2173         /* The only case RDMA personality can be overriden is if NVRAM is
 2174          * configured with ETH_RDMA or if no rdma protocol was requested
 2175          */
 2176         switch (p_params->rdma_protocol) {
 2177         case ECORE_RDMA_PROTOCOL_DEFAULT:
 2178                 if (p_hwfn->mcp_info->func_info.protocol ==
 2179                     ECORE_PCI_ETH_RDMA) {
 2180                         DP_NOTICE(p_hwfn, false,
 2181                                   "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n");
 2182                         p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
 2183                 }
 2184                 break;
 2185         case ECORE_RDMA_PROTOCOL_NONE:
 2186                 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
 2187                 return; /* intentional... nothing left to do... */
 2188         case ECORE_RDMA_PROTOCOL_ROCE:
 2189                 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
 2190                         p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
 2191                 break;
 2192         case ECORE_RDMA_PROTOCOL_IWARP:
 2193                 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
 2194                         p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP;
 2195                 break;
 2196         }
 2197 
 2198         switch (p_hwfn->hw_info.personality) {
 2199         case ECORE_PCI_ETH_IWARP:
 2200                 /* Each QP requires one connection */
 2201                 num_cons = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps);
 2202 #ifdef CONFIG_ECORE_IWARP /* required for the define */
 2203                 /* additional connections required for passive tcp handling */
 2204                 num_cons += ECORE_IWARP_PREALLOC_CNT;
 2205 #endif
 2206                 proto = PROTOCOLID_IWARP;
 2207                 break;
 2208         case ECORE_PCI_ETH_ROCE:
 2209                 num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps);
 2210                 num_cons = num_qps * 2; /* each QP requires two connections */
 2211                 proto = PROTOCOLID_ROCE;
 2212                 break;
 2213         default:
 2214                 return;
 2215         }
 2216 
 2217         if (num_cons && num_tasks) {
 2218                 u32 num_srqs, num_xrc_srqs, max_xrc_srqs, page_size;
 2219 
 2220                 ecore_cxt_set_proto_cid_count(p_hwfn, proto,
 2221                                               num_cons, 0);
 2222 
 2223                 /* Deliberatly passing ROCE for tasks id. This is because
 2224                  * iWARP / RoCE share the task id.
 2225                  */
 2226                 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
 2227                                               ECORE_CXT_ROCE_TID_SEG,
 2228                                               1, /* RoCE segment type */
 2229                                               num_tasks,
 2230                                               false); /* !force load */
 2231 
 2232                 num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS,
 2233                                       p_params->num_srqs);
 2234 
 2235                 /* XRC SRQs populate a single ILT page */
 2236                 page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
 2237                 max_xrc_srqs =  page_size / XRC_SRQ_CXT_SIZE;
 2238                 max_xrc_srqs = OSAL_MIN_T(u32, max_xrc_srqs, ECORE_RDMA_MAX_XRC_SRQS);
 2239 
 2240                 num_xrc_srqs = OSAL_MIN_T(u32, p_params->num_xrc_srqs,
 2241                                           max_xrc_srqs);
 2242                 ecore_cxt_set_srq_count(p_hwfn, num_srqs, num_xrc_srqs);
 2243 
 2244         } else {
 2245                 DP_INFO(p_hwfn->p_dev,
 2246                         "RDMA personality used without setting params!\n");
 2247         }
 2248 }
 2249 
 2250 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn,
 2251                                              u32 rdma_tasks)
 2252 {
 2253         /* Set the number of required CORE connections */
 2254         u32 core_cids = 1; /* SPQ */
 2255 
 2256         if (p_hwfn->using_ll2)
 2257                 core_cids += 4; /* @@@TBD Use the proper #define */
 2258 
 2259         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
 2260 
 2261         switch (p_hwfn->hw_info.personality) {
 2262         case ECORE_PCI_ETH_RDMA:
 2263         case ECORE_PCI_ETH_IWARP:
 2264         case ECORE_PCI_ETH_ROCE:
 2265         {
 2266                 ecore_rdma_set_pf_params(p_hwfn,
 2267                                          &p_hwfn->pf_params.rdma_pf_params,
 2268                                          rdma_tasks);
 2269 
 2270                 /* no need for break since RoCE coexist with Ethernet */
 2271         }
 2272         case ECORE_PCI_ETH:
 2273         {
 2274                 u32 count = 0;
 2275 
 2276                 struct ecore_eth_pf_params *p_params =
 2277                                         &p_hwfn->pf_params.eth_pf_params;
 2278 
 2279                 if (!p_params->num_vf_cons)
 2280                         p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
 2281                 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
 2282                                               p_params->num_cons,
 2283                                               p_params->num_vf_cons);
 2284 
 2285                 count = p_params->num_arfs_filters;
 2286 
 2287                 if (!OSAL_TEST_BIT(ECORE_MF_DISABLE_ARFS,
 2288                                    &p_hwfn->p_dev->mf_bits))
 2289                         p_hwfn->p_cxt_mngr->arfs_count = count;
 2290 
 2291                 break;
 2292         }
 2293         case ECORE_PCI_FCOE:
 2294         {
 2295                 struct ecore_fcoe_pf_params *p_params;
 2296 
 2297                 p_params = &p_hwfn->pf_params.fcoe_pf_params;
 2298 
 2299                 if (p_params->num_cons && p_params->num_tasks) {
 2300                         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE,
 2301                                                       p_params->num_cons, 0);
 2302 
 2303                         ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
 2304                                                       ECORE_CXT_FCOE_TID_SEG,
 2305                                                       0, /* segment type */
 2306                                                       p_params->num_tasks,
 2307                                                       true);
 2308                 } else {
 2309                         DP_INFO(p_hwfn->p_dev,
 2310                                 "Fcoe personality used without setting params!\n");
 2311                 }
 2312                 break;
 2313         }
 2314         case ECORE_PCI_ISCSI:
 2315         {
 2316                 struct ecore_iscsi_pf_params *p_params;
 2317 
 2318                 p_params = &p_hwfn->pf_params.iscsi_pf_params;
 2319 
 2320                 if (p_params->num_cons && p_params->num_tasks) {
 2321                         ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI,
 2322                                                       p_params->num_cons, 0);
 2323 
 2324                         ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI,
 2325                                                       ECORE_CXT_ISCSI_TID_SEG,
 2326                                                       0, /* segment type */
 2327                                                       p_params->num_tasks,
 2328                                                       true);
 2329                 } else {
 2330                         DP_INFO(p_hwfn->p_dev,
 2331                                 "Iscsi personality used without setting params!\n");
 2332                 }
 2333                 break;
 2334         }
 2335         default:
 2336                 return ECORE_INVAL;
 2337         }
 2338 
 2339         return ECORE_SUCCESS;
 2340 }
 2341 
 2342 enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
 2343                                                 struct ecore_tid_mem *p_info)
 2344 {
 2345         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 2346         u32 proto, seg, total_lines, i, shadow_line;
 2347         struct ecore_ilt_client_cfg *p_cli;
 2348         struct ecore_ilt_cli_blk *p_fl_seg;
 2349         struct ecore_tid_seg *p_seg_info;
 2350 
 2351         /* Verify the personality */
 2352         switch (p_hwfn->hw_info.personality) {
 2353         case ECORE_PCI_FCOE:
 2354                 proto = PROTOCOLID_FCOE;
 2355                 seg = ECORE_CXT_FCOE_TID_SEG;
 2356                 break;
 2357         case ECORE_PCI_ISCSI:
 2358                 proto = PROTOCOLID_ISCSI;
 2359                 seg = ECORE_CXT_ISCSI_TID_SEG;
 2360                 break;
 2361         default:
 2362                 return ECORE_INVAL;
 2363         }
 2364 
 2365         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
 2366         if (!p_cli->active) {
 2367                 return ECORE_INVAL;
 2368         }
 2369 
 2370         p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
 2371         if (!p_seg_info->has_fl_mem)
 2372                 return ECORE_INVAL;
 2373 
 2374         p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
 2375         total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
 2376                                    p_fl_seg->real_size_in_page);
 2377 
 2378         for (i = 0; i < total_lines; i++) {
 2379                 shadow_line = i + p_fl_seg->start_line -
 2380                               p_hwfn->p_cxt_mngr->pf_start_line;
 2381                 p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
 2382         }
 2383         p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
 2384                         p_fl_seg->real_size_in_page;
 2385         p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
 2386         p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
 2387                                      p_info->tid_size;
 2388 
 2389         return ECORE_SUCCESS;
 2390 }
 2391 
 2392 /* This function is very RoCE oriented, if another protocol in the future
 2393  * will want this feature we'll need to modify the function to be more generic
 2394  */
 2395 enum _ecore_status_t
 2396 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
 2397                             enum ecore_cxt_elem_type elem_type,
 2398                             u32 iid)
 2399 {
 2400         u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
 2401         struct ecore_ilt_client_cfg *p_cli;
 2402         struct ecore_ilt_cli_blk *p_blk;
 2403         struct ecore_ptt *p_ptt;
 2404         dma_addr_t p_phys;
 2405         u64 ilt_hw_entry;
 2406         void *p_virt;
 2407         enum _ecore_status_t rc = ECORE_SUCCESS;
 2408 
 2409         switch (elem_type) {
 2410         case ECORE_ELEM_CXT:
 2411                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
 2412                 elem_size = CONN_CXT_SIZE(p_hwfn);
 2413                 p_blk = &p_cli->pf_blks[CDUC_BLK];
 2414                 break;
 2415         case ECORE_ELEM_SRQ:
 2416                 /* The first ILT page is not used for regular SRQs. Skip it. */
 2417                 iid += ecore_cxt_srqs_per_page(p_hwfn);
 2418                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
 2419                 elem_size = SRQ_CXT_SIZE;
 2420                 p_blk = &p_cli->pf_blks[SRQ_BLK];
 2421                 break;
 2422         case ECORE_ELEM_XRC_SRQ:
 2423                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
 2424                 elem_size = XRC_SRQ_CXT_SIZE;
 2425                 p_blk = &p_cli->pf_blks[SRQ_BLK];
 2426                 break;
 2427         case ECORE_ELEM_TASK:
 2428                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
 2429                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
 2430                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
 2431                 break;
 2432         default:
 2433                 DP_NOTICE(p_hwfn, false,
 2434                           "ECORE_INVALID elem type = %d", elem_type);
 2435                 return ECORE_INVAL;
 2436         }
 2437 
 2438         /* Calculate line in ilt */
 2439         hw_p_size = p_cli->p_size.val;
 2440         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
 2441         line = p_blk->start_line + (iid / elems_per_p);
 2442         shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
 2443 
 2444         /* If line is already allocated, do nothing, otherwise allocate it and
 2445          * write it to the PSWRQ2 registers.
 2446          * This section can be run in parallel from different contexts and thus
 2447          * a mutex protection is needed.
 2448          */
 2449 #ifdef _NTDDK_
 2450 #pragma warning(suppress : 28121)
 2451 #endif
 2452         OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
 2453 
 2454         if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
 2455                 goto out0;
 2456 
 2457         p_ptt = ecore_ptt_acquire(p_hwfn);
 2458         if (!p_ptt) {
 2459                 DP_NOTICE(p_hwfn, false,
 2460                           "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
 2461                 rc = ECORE_TIMEOUT;
 2462                 goto out0;
 2463         }
 2464 
 2465         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
 2466                                          &p_phys,
 2467                                          p_blk->real_size_in_page);
 2468         if (!p_virt) {
 2469                 rc = ECORE_NOMEM;
 2470                 goto out1;
 2471         }
 2472         OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
 2473 
 2474         /* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
 2475          * to compensate for a HW bug, but it is configured even if DIF is not
 2476          * enabled. This is harmless and allows us to avoid a dedicated API. We
 2477          * configure the field for all of the contexts on the newly allocated
 2478          * page.
 2479          */
 2480         if (elem_type == ECORE_ELEM_TASK) {
 2481                 u32 elem_i;
 2482                 u8 *elem_start = (u8 *)p_virt;
 2483                 union type1_task_context *elem;
 2484 
 2485                 for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
 2486                         elem = (union type1_task_context *)elem_start;
 2487                         SET_FIELD(elem->roce_ctx.tdif_context.flags1,
 2488                                   TDIF_TASK_CONTEXT_REF_TAG_MASK , 0xf);
 2489                         elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
 2490                 }
 2491         }
 2492 
 2493         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
 2494         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
 2495         p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
 2496                 p_blk->real_size_in_page;
 2497 
 2498         /* compute absolute offset */
 2499         reg_offset = PSWRQ2_REG_ILT_MEMORY +
 2500                      (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
 2501 
 2502         ilt_hw_entry = 0;
 2503         SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
 2504         SET_FIELD(ilt_hw_entry,
 2505                   ILT_ENTRY_PHY_ADDR,
 2506                   (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
 2507 
 2508         /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
 2509         ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
 2510                             reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
 2511                             OSAL_NULL /* default parameters */);
 2512 
 2513         if (elem_type == ECORE_ELEM_CXT) {
 2514                 u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
 2515                                          elems_per_p;
 2516 
 2517                 /* Update the relevant register in the parser */
 2518                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
 2519                          last_cid_allocated - 1);
 2520 
 2521                 /* RoCE w/a -> we don't write to the prs search reg until first
 2522                  * cid is allocated. This is because the prs checks
 2523                  * last_cid-1 >=0 making 0 a valid value... this will cause
 2524                  * the a context load to occur on a RoCE packet received with
 2525                  * cid=0 even before context was initialized, can happen with a
 2526                  * stray packet from switch or a packet with crc-error
 2527                  */
 2528 
 2529                 if (!p_hwfn->b_rdma_enabled_in_prs) {
 2530                         /* Enable Rdma search */
 2531                         ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
 2532                         p_hwfn->b_rdma_enabled_in_prs = true;
 2533                 }
 2534         }
 2535 
 2536 out1:
 2537         ecore_ptt_release(p_hwfn, p_ptt);
 2538 out0:
 2539         OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
 2540 
 2541         return rc;
 2542 }
 2543 
 2544 /* This function is very RoCE oriented, if another protocol in the future
 2545  * will want this feature we'll need to modify the function to be more generic
 2546  */
 2547 enum _ecore_status_t
 2548 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
 2549                          enum ecore_cxt_elem_type elem_type,
 2550                          u32 start_iid, u32 count)
 2551 {
 2552         u32 start_line, end_line, shadow_start_line, shadow_end_line;
 2553         u32 reg_offset, elem_size, hw_p_size, elems_per_p;
 2554         struct ecore_ilt_client_cfg *p_cli;
 2555         struct ecore_ilt_cli_blk *p_blk;
 2556         u32 end_iid = start_iid + count;
 2557         struct ecore_ptt *p_ptt;
 2558         u64 ilt_hw_entry = 0;
 2559         u32 i;
 2560 
 2561         switch (elem_type) {
 2562         case ECORE_ELEM_CXT:
 2563                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
 2564                 elem_size = CONN_CXT_SIZE(p_hwfn);
 2565                 p_blk = &p_cli->pf_blks[CDUC_BLK];
 2566                 break;
 2567         case ECORE_ELEM_SRQ:
 2568                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
 2569                 elem_size = SRQ_CXT_SIZE;
 2570                 p_blk = &p_cli->pf_blks[SRQ_BLK];
 2571                 break;
 2572         case ECORE_ELEM_TASK:
 2573                 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
 2574                 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
 2575                 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
 2576                 break;
 2577         default:
 2578                 DP_NOTICE(p_hwfn, false,
 2579                           "ECORE_INVALID elem type = %d", elem_type);
 2580                 return ECORE_INVAL;
 2581         }
 2582 
 2583         /* Calculate line in ilt */
 2584         hw_p_size = p_cli->p_size.val;
 2585         elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
 2586         start_line = p_blk->start_line + (start_iid / elems_per_p);
 2587         end_line = p_blk->start_line + (end_iid / elems_per_p);
 2588         if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
 2589                 end_line--;
 2590 
 2591         shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
 2592         shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
 2593 
 2594         p_ptt = ecore_ptt_acquire(p_hwfn);
 2595         if (!p_ptt) {
 2596                 DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
 2597                 return ECORE_TIMEOUT;
 2598         }
 2599 
 2600         for (i = shadow_start_line; i < shadow_end_line; i++) {
 2601                 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
 2602                         continue;
 2603 
 2604                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
 2605                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
 2606                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
 2607                                        p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
 2608 
 2609                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
 2610                 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
 2611                 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
 2612 
 2613                 /* compute absolute offset */
 2614                 reg_offset = PSWRQ2_REG_ILT_MEMORY +
 2615                              ((start_line++) * ILT_REG_SIZE_IN_BYTES *
 2616                               ILT_ENTRY_IN_REGS);
 2617 
 2618                 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
 2619                  * wide-bus.
 2620                  */
 2621                 ecore_dmae_host2grc(p_hwfn, p_ptt,
 2622                                     (u64)(osal_uintptr_t)&ilt_hw_entry,
 2623                                     reg_offset,
 2624                                     sizeof(ilt_hw_entry) / sizeof(u32),
 2625                                     OSAL_NULL /* default parameters */);
 2626         }
 2627 
 2628         ecore_ptt_release(p_hwfn, p_ptt);
 2629 
 2630         return ECORE_SUCCESS;
 2631 }
 2632 
 2633 enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
 2634                                             u32 tid,
 2635                                             u8 ctx_type,
 2636                                             void **pp_task_ctx)
 2637 {
 2638         struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
 2639         struct ecore_ilt_client_cfg *p_cli;
 2640         struct ecore_tid_seg *p_seg_info;
 2641         struct ecore_ilt_cli_blk *p_seg;
 2642         u32 num_tids_per_block;
 2643         u32 tid_size, ilt_idx;
 2644         u32 total_lines;
 2645         u32 proto, seg;
 2646 
 2647         /* Verify the personality */
 2648         switch (p_hwfn->hw_info.personality) {
 2649         case ECORE_PCI_FCOE:
 2650                 proto = PROTOCOLID_FCOE;
 2651                 seg = ECORE_CXT_FCOE_TID_SEG;
 2652                 break;
 2653         case ECORE_PCI_ISCSI:
 2654                 proto = PROTOCOLID_ISCSI;
 2655                 seg = ECORE_CXT_ISCSI_TID_SEG;
 2656                 break;
 2657         default:
 2658                 return ECORE_INVAL;
 2659         }
 2660 
 2661         p_cli = &p_mngr->clients[ILT_CLI_CDUT];
 2662         if (!p_cli->active) {
 2663                 return ECORE_INVAL;
 2664         }
 2665 
 2666         p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
 2667 
 2668         if (ctx_type == ECORE_CTX_WORKING_MEM) {
 2669                 p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
 2670         } else if (ctx_type == ECORE_CTX_FL_MEM) {
 2671                 if (!p_seg_info->has_fl_mem) {
 2672                         return ECORE_INVAL;
 2673                 }
 2674                 p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
 2675         } else {
 2676                 return ECORE_INVAL;
 2677         }
 2678         total_lines = DIV_ROUND_UP(p_seg->total_size,
 2679                                    p_seg->real_size_in_page);
 2680         tid_size = p_mngr->task_type_size[p_seg_info->type];
 2681         num_tids_per_block = p_seg->real_size_in_page / tid_size;
 2682 
 2683         if (total_lines < tid/num_tids_per_block)
 2684                 return ECORE_INVAL;
 2685 
 2686         ilt_idx = tid / num_tids_per_block + p_seg->start_line -
 2687                   p_mngr->pf_start_line;
 2688         *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
 2689                              (tid % num_tids_per_block) * tid_size;
 2690 
 2691         return ECORE_SUCCESS;
 2692 }

Cache object: 2769080c4da555815c6e68ac5bcbe087


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.