1 /*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * File : ecore_cxt.c
30 */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include "bcm_osal.h"
35 #include "reg_addr.h"
36 #include "common_hsi.h"
37 #include "ecore_hsi_common.h"
38 #include "ecore_hsi_eth.h"
39 #include "tcp_common.h"
40 #include "ecore_hsi_iscsi.h"
41 #include "ecore_hsi_fcoe.h"
42 #include "ecore_hsi_roce.h"
43 #include "ecore_hsi_iwarp.h"
44 #include "ecore_rt_defs.h"
45 #include "ecore_status.h"
46 #include "ecore.h"
47 #include "ecore_init_ops.h"
48 #include "ecore_init_fw_funcs.h"
49 #include "ecore_cxt.h"
50 #include "ecore_hw.h"
51 #include "ecore_dev_api.h"
52 #include "ecore_sriov.h"
53 #include "ecore_rdma.h"
54 #include "ecore_mcp.h"
55
56 /* Max number of connection types in HW (DQ/CDU etc.) */
57 #define MAX_CONN_TYPES PROTOCOLID_COMMON
58 #define NUM_TASK_TYPES 2
59 #define NUM_TASK_PF_SEGMENTS 4
60 #define NUM_TASK_VF_SEGMENTS 1
61
62 /* Doorbell-Queue constants */
63 #define DQ_RANGE_SHIFT 4
64 #define DQ_RANGE_ALIGN (1 << DQ_RANGE_SHIFT)
65
66 /* Searcher constants */
67 #define SRC_MIN_NUM_ELEMS 256
68
69 /* Timers constants */
70 #define TM_SHIFT 7
71 #define TM_ALIGN (1 << TM_SHIFT)
72 #define TM_ELEM_SIZE 4
73
74 /* ILT constants */
75 #define ILT_PAGE_IN_BYTES(hw_p_size) (1U << ((hw_p_size) + 12))
76 #define ILT_CFG_REG(cli, reg) PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
77
78 /* ILT entry structure */
79 #define ILT_ENTRY_PHY_ADDR_MASK 0x000FFFFFFFFFFFULL
80 #define ILT_ENTRY_PHY_ADDR_SHIFT 0
81 #define ILT_ENTRY_VALID_MASK 0x1ULL
82 #define ILT_ENTRY_VALID_SHIFT 52
83 #define ILT_ENTRY_IN_REGS 2
84 #define ILT_REG_SIZE_IN_BYTES 4
85
86 /* connection context union */
87 union conn_context {
88 struct e4_core_conn_context core_ctx;
89 struct e4_eth_conn_context eth_ctx;
90 struct e4_iscsi_conn_context iscsi_ctx;
91 struct e4_fcoe_conn_context fcoe_ctx;
92 struct e4_roce_conn_context roce_ctx;
93 };
94
95 /* TYPE-0 task context - iSCSI, FCOE */
96 union type0_task_context {
97 struct e4_iscsi_task_context iscsi_ctx;
98 struct e4_fcoe_task_context fcoe_ctx;
99 };
100
101 /* TYPE-1 task context - ROCE */
102 union type1_task_context {
103 struct e4_rdma_task_context roce_ctx;
104 };
105
106 struct src_ent {
107 u8 opaque[56];
108 u64 next;
109 };
110
111 #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */
112 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
113
114 #define CONN_CXT_SIZE(p_hwfn) \
115 ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
116
117 #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
118 #define XRC_SRQ_CXT_SIZE (sizeof(struct rdma_xrc_srq_context))
119
120 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
121 ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
122
123 /* Alignment is inherent to the type1_task_context structure */
124 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
125
126 /* PF per protocl configuration object */
127 #define TASK_SEGMENTS (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
128 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
129
130 struct ecore_tid_seg {
131 u32 count;
132 u8 type;
133 bool has_fl_mem;
134 };
135
136 struct ecore_conn_type_cfg {
137 u32 cid_count;
138 u32 cids_per_vf;
139 struct ecore_tid_seg tid_seg[TASK_SEGMENTS];
140 };
141
142 /* ILT Client configuration,
143 * Per connection type (protocol) resources (cids, tis, vf cids etc.)
144 * 1 - for connection context (CDUC) and for each task context we need two
145 * values, for regular task context and for force load memory
146 */
147 #define ILT_CLI_PF_BLOCKS (1 + NUM_TASK_PF_SEGMENTS * 2)
148 #define ILT_CLI_VF_BLOCKS (1 + NUM_TASK_VF_SEGMENTS * 2)
149 #define CDUC_BLK (0)
150 #define SRQ_BLK (0)
151 #define CDUT_SEG_BLK(n) (1 + (u8)(n))
152 #define CDUT_FL_SEG_BLK(n, X) (1 + (n) + NUM_TASK_##X##_SEGMENTS)
153
154 struct ilt_cfg_pair {
155 u32 reg;
156 u32 val;
157 };
158
159 struct ecore_ilt_cli_blk {
160 u32 total_size; /* 0 means not active */
161 u32 real_size_in_page;
162 u32 start_line;
163 u32 dynamic_line_cnt;
164 };
165
166 struct ecore_ilt_client_cfg {
167 bool active;
168
169 /* ILT boundaries */
170 struct ilt_cfg_pair first;
171 struct ilt_cfg_pair last;
172 struct ilt_cfg_pair p_size;
173
174 /* ILT client blocks for PF */
175 struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS];
176 u32 pf_total_lines;
177
178 /* ILT client blocks for VFs */
179 struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS];
180 u32 vf_total_lines;
181 };
182
183 /* Per Path -
184 * ILT shadow table
185 * Protocol acquired CID lists
186 * PF start line in ILT
187 */
188 struct ecore_dma_mem {
189 dma_addr_t p_phys;
190 void *p_virt;
191 osal_size_t size;
192 };
193
194 #define MAP_WORD_SIZE sizeof(unsigned long)
195 #define BITS_PER_MAP_WORD (MAP_WORD_SIZE * 8)
196
197 struct ecore_cid_acquired_map {
198 u32 start_cid;
199 u32 max_count;
200 unsigned long *cid_map;
201 };
202
203 struct ecore_cxt_mngr {
204 /* Per protocl configuration */
205 struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES];
206
207 /* computed ILT structure */
208 struct ecore_ilt_client_cfg clients[ILT_CLI_MAX];
209
210 /* Task type sizes */
211 u32 task_type_size[NUM_TASK_TYPES];
212
213 /* total number of VFs for this hwfn -
214 * ALL VFs are symmetric in terms of HW resources
215 */
216 u32 vf_count;
217
218 /* Acquired CIDs */
219 struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
220 /* TBD - do we want this allocated to reserve space? */
221 struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
222
223 /* ILT shadow table */
224 struct ecore_dma_mem *ilt_shadow;
225 u32 pf_start_line;
226
227 /* Mutex for a dynamic ILT allocation */
228 osal_mutex_t mutex;
229
230 /* SRC T2 */
231 struct ecore_dma_mem *t2;
232 u32 t2_num_pages;
233 u64 first_free;
234 u64 last_free;
235
236 /* The infrastructure originally was very generic and context/task
237 * oriented - per connection-type we would set how many of those
238 * are needed, and later when determining how much memory we're
239 * needing for a given block we'd iterate over all the relevant
240 * connection-types.
241 * But since then we've had some additional resources, some of which
242 * require memory which is independent of the general context/task
243 * scheme. We add those here explicitly per-feature.
244 */
245
246 /* total number of SRQ's for this hwfn */
247 u32 srq_count;
248 u32 xrc_srq_count;
249
250 /* Maximal number of L2 steering filters */
251 u32 arfs_count;
252
253 /* TODO - VF arfs filters ? */
254 };
255
256 /* check if resources/configuration is required according to protocol type */
257 static bool src_proto(enum protocol_type type)
258 {
259 return type == PROTOCOLID_ISCSI ||
260 type == PROTOCOLID_FCOE ||
261 type == PROTOCOLID_IWARP;
262 }
263
264 static bool tm_cid_proto(enum protocol_type type)
265 {
266 return type == PROTOCOLID_ISCSI ||
267 type == PROTOCOLID_FCOE ||
268 type == PROTOCOLID_ROCE ||
269 type == PROTOCOLID_IWARP;
270 }
271
272 static bool tm_tid_proto(enum protocol_type type)
273 {
274 return type == PROTOCOLID_FCOE;
275 }
276
277 /* counts the iids for the CDU/CDUC ILT client configuration */
278 struct ecore_cdu_iids {
279 u32 pf_cids;
280 u32 per_vf_cids;
281 };
282
283 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr,
284 struct ecore_cdu_iids *iids)
285 {
286 u32 type;
287
288 for (type = 0; type < MAX_CONN_TYPES; type++) {
289 iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
290 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
291 }
292 }
293
294 /* counts the iids for the Searcher block configuration */
295 struct ecore_src_iids {
296 u32 pf_cids;
297 u32 per_vf_cids;
298 };
299
300 static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
301 struct ecore_src_iids *iids)
302 {
303 u32 i;
304
305 for (i = 0; i < MAX_CONN_TYPES; i++) {
306 if (!src_proto(i))
307 continue;
308
309 iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
310 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
311 }
312
313 /* Add L2 filtering filters in addition */
314 iids->pf_cids += p_mngr->arfs_count;
315 }
316
317 /* counts the iids for the Timers block configuration */
318 struct ecore_tm_iids {
319 u32 pf_cids;
320 u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */
321 u32 pf_tids_total;
322 u32 per_vf_cids;
323 u32 per_vf_tids;
324 };
325
326 static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
327 struct ecore_tm_iids *iids)
328 {
329 bool tm_vf_required = false;
330 bool tm_required = false;
331 int i, j;
332
333 /* Timers is a special case -> we don't count how many cids require
334 * timers but what's the max cid that will be used by the timer block.
335 * therefore we traverse in reverse order, and once we hit a protocol
336 * that requires the timers memory, we'll sum all the protocols up
337 * to that one.
338 */
339 for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
340 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
341
342 if (tm_cid_proto(i) || tm_required) {
343 if (p_cfg->cid_count)
344 tm_required = true;
345
346 iids->pf_cids += p_cfg->cid_count;
347 }
348
349 if (tm_cid_proto(i) || tm_vf_required) {
350 if (p_cfg->cids_per_vf)
351 tm_vf_required = true;
352
353 iids->per_vf_cids += p_cfg->cids_per_vf;
354 }
355
356 if (tm_tid_proto(i)) {
357 struct ecore_tid_seg *segs = p_cfg->tid_seg;
358
359 /* for each segment there is at most one
360 * protocol for which count is not 0.
361 */
362 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
363 iids->pf_tids[j] += segs[j].count;
364
365 /* The last array elelment is for the VFs. As for PF
366 * segments there can be only one protocol for
367 * which this value is not 0.
368 */
369 iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
370 }
371 }
372
373 iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
374 iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
375 iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
376
377 for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
378 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
379 iids->pf_tids_total += iids->pf_tids[j];
380 }
381 }
382
383 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
384 struct ecore_qm_iids *iids)
385 {
386 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
387 struct ecore_tid_seg *segs;
388 u32 vf_cids = 0, type, j;
389 u32 vf_tids = 0;
390
391 for (type = 0; type < MAX_CONN_TYPES; type++) {
392 iids->cids += p_mngr->conn_cfg[type].cid_count;
393 vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
394
395 segs = p_mngr->conn_cfg[type].tid_seg;
396 /* for each segment there is at most one
397 * protocol for which count is not 0.
398 */
399 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
400 iids->tids += segs[j].count;
401
402 /* The last array elelment is for the VFs. As for PF
403 * segments there can be only one protocol for
404 * which this value is not 0.
405 */
406 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
407 }
408
409 iids->vf_cids += vf_cids * p_mngr->vf_count;
410 iids->tids += vf_tids * p_mngr->vf_count;
411
412 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
413 "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
414 iids->cids, iids->vf_cids, iids->tids, vf_tids);
415 }
416
417 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn,
418 u32 seg)
419 {
420 struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
421 u32 i;
422
423 /* Find the protocol with tid count > 0 for this segment.
424 Note: there can only be one and this is already validated.
425 */
426 for (i = 0; i < MAX_CONN_TYPES; i++) {
427 if (p_cfg->conn_cfg[i].tid_seg[seg].count)
428 return &p_cfg->conn_cfg[i].tid_seg[seg];
429 }
430 return OSAL_NULL;
431 }
432
433 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn,
434 u32 num_srqs, u32 num_xrc_srqs)
435 {
436 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
437
438 p_mgr->srq_count = num_srqs;
439 p_mgr->xrc_srq_count = num_xrc_srqs;
440 }
441
442 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
443 {
444 return p_hwfn->p_cxt_mngr->srq_count;
445 }
446
447 u32 ecore_cxt_get_xrc_srq_count(struct ecore_hwfn *p_hwfn)
448 {
449 return p_hwfn->p_cxt_mngr->xrc_srq_count;
450 }
451
452 u32 ecore_cxt_get_ilt_page_size(struct ecore_hwfn *p_hwfn,
453 enum ilt_clients ilt_client)
454 {
455 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
456 struct ecore_ilt_client_cfg *p_cli = &p_mngr->clients[ilt_client];
457
458 return ILT_PAGE_IN_BYTES(p_cli->p_size.val);
459 }
460
461 static u32 ecore_cxt_srqs_per_page(struct ecore_hwfn *p_hwfn)
462 {
463 u32 page_size;
464
465 page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
466 return page_size / SRQ_CXT_SIZE;
467 }
468
469 u32 ecore_cxt_get_total_srq_count(struct ecore_hwfn *p_hwfn)
470 {
471 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
472 u32 total_srqs;
473
474 total_srqs = p_mgr->srq_count;
475
476 /* XRC SRQs use the first and only the first SRQ ILT page. So if XRC
477 * SRQs are requested we need to allocate an extra SRQ ILT page for
478 * them. For that We increase the number of regular SRQs to cause the
479 * allocation of that extra page.
480 */
481 if (p_mgr->xrc_srq_count)
482 total_srqs += ecore_cxt_srqs_per_page(p_hwfn);
483
484 return total_srqs;
485 }
486
487 /* set the iids (cid/tid) count per protocol */
488 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
489 enum protocol_type type,
490 u32 cid_count, u32 vf_cid_cnt)
491 {
492 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
493 struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
494
495 p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
496 p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
497
498 if (type == PROTOCOLID_ROCE) {
499 u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
500 u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
501 u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
502 u32 align = elems_per_page * DQ_RANGE_ALIGN;
503
504 p_conn->cid_count = ROUNDUP(p_conn->cid_count, align);
505 }
506 }
507
508 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn,
509 enum protocol_type type,
510 u32 *vf_cid)
511 {
512 if (vf_cid)
513 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
514
515 return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
516 }
517
518 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn,
519 enum protocol_type type)
520 {
521 return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
522 }
523
524 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
525 enum protocol_type type)
526 {
527 u32 cnt = 0;
528 int i;
529
530 for (i = 0; i < TASK_SEGMENTS; i++)
531 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
532
533 return cnt;
534 }
535
536 static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
537 enum protocol_type proto,
538 u8 seg,
539 u8 seg_type,
540 u32 count,
541 bool has_fl)
542 {
543 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
544 struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
545
546 p_seg->count = count;
547 p_seg->has_fl_mem = has_fl;
548 p_seg->type = seg_type;
549 }
550
551 /* the *p_line parameter must be either 0 for the first invocation or the
552 value returned in the previous invocation.
553 */
554 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli,
555 struct ecore_ilt_cli_blk *p_blk,
556 u32 start_line,
557 u32 total_size,
558 u32 elem_size)
559 {
560 u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
561
562 /* verify that it's called once for each block */
563 if (p_blk->total_size)
564 return;
565
566 p_blk->total_size = total_size;
567 p_blk->real_size_in_page = 0;
568 if (elem_size)
569 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
570 p_blk->start_line = start_line;
571 }
572
573 static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn,
574 struct ecore_ilt_client_cfg *p_cli,
575 struct ecore_ilt_cli_blk *p_blk,
576 u32 *p_line,
577 enum ilt_clients client_id)
578 {
579 if (!p_blk->total_size)
580 return;
581
582 if (!p_cli->active)
583 p_cli->first.val = *p_line;
584
585 p_cli->active = true;
586 *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
587 p_cli->last.val = *p_line-1;
588
589 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
590 "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
591 client_id, p_cli->first.val, p_cli->last.val,
592 p_blk->total_size, p_blk->real_size_in_page,
593 p_blk->start_line);
594 }
595
596 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
597 enum ilt_clients ilt_client)
598 {
599 u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
600 struct ecore_ilt_client_cfg *p_cli;
601 u32 lines_to_skip = 0;
602 u32 cxts_per_p;
603
604 /* TBD MK: ILT code should be simplified once PROTO enum is changed */
605
606 if (ilt_client == ILT_CLI_CDUC) {
607 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
608
609 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
610 (u32)CONN_CXT_SIZE(p_hwfn);
611
612 lines_to_skip = cid_count / cxts_per_p;
613 }
614
615 return lines_to_skip;
616 }
617
618 static struct ecore_ilt_client_cfg *
619 ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli)
620 {
621 p_cli->active = false;
622 p_cli->first.val = 0;
623 p_cli->last.val = 0;
624 return p_cli;
625 }
626
627 static struct ecore_ilt_cli_blk *
628 ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk)
629 {
630 p_blk->total_size = 0;
631 return p_blk;
632 }
633
634 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn,
635 u32 *line_count)
636 {
637 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
638 u32 curr_line, total, i, task_size, line;
639 struct ecore_ilt_client_cfg *p_cli;
640 struct ecore_ilt_cli_blk *p_blk;
641 struct ecore_cdu_iids cdu_iids;
642 struct ecore_src_iids src_iids;
643 struct ecore_qm_iids qm_iids;
644 struct ecore_tm_iids tm_iids;
645 struct ecore_tid_seg *p_seg;
646
647 OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
648 OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
649 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
650 OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
651
652 p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
653
654 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
655 "hwfn [%d] - Set context manager starting line to be 0x%08x\n",
656 p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
657
658 /* CDUC */
659 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
660
661 curr_line = p_mngr->pf_start_line;
662
663 /* CDUC PF */
664 p_cli->pf_total_lines = 0;
665
666 /* get the counters for the CDUC,CDUC and QM clients */
667 ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
668
669 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
670
671 total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
672
673 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
674 total, CONN_CXT_SIZE(p_hwfn));
675
676 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
677 p_cli->pf_total_lines = curr_line - p_blk->start_line;
678
679 p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
680 ILT_CLI_CDUC);
681
682 /* CDUC VF */
683 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
684 total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
685
686 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
687 total, CONN_CXT_SIZE(p_hwfn));
688
689 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
690 p_cli->vf_total_lines = curr_line - p_blk->start_line;
691
692 for (i = 1; i < p_mngr->vf_count; i++)
693 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
694 ILT_CLI_CDUC);
695
696 /* CDUT PF */
697 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
698 p_cli->first.val = curr_line;
699
700 /* first the 'working' task memory */
701 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
702 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
703 if (!p_seg || p_seg->count == 0)
704 continue;
705
706 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
707 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
708 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
709 p_mngr->task_type_size[p_seg->type]);
710
711 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
712 ILT_CLI_CDUT);
713 }
714
715 /* next the 'init' task memory (forced load memory) */
716 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
717 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
718 if (!p_seg || p_seg->count == 0)
719 continue;
720
721 p_blk = ecore_cxt_set_blk(
722 &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
723
724 if (!p_seg->has_fl_mem) {
725 /* The segment is active (total size pf 'working'
726 * memory is > 0) but has no FL (forced-load, Init)
727 * memory. Thus:
728 *
729 * 1. The total-size in the corrsponding FL block of
730 * the ILT client is set to 0 - No ILT line are
731 * provisioned and no ILT memory allocated.
732 *
733 * 2. The start-line of said block is set to the
734 * start line of the matching working memory
735 * block in the ILT client. This is later used to
736 * configure the CDU segment offset registers and
737 * results in an FL command for TIDs of this
738 * segement behaves as regular load commands
739 * (loading TIDs from the working memory).
740 */
741 line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
742
743 ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
744 continue;
745 }
746 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
747
748 ecore_ilt_cli_blk_fill(p_cli, p_blk,
749 curr_line, total,
750 p_mngr->task_type_size[p_seg->type]);
751
752 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
753 ILT_CLI_CDUT);
754 }
755 p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
756
757 /* CDUT VF */
758 p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
759 if (p_seg && p_seg->count) {
760 /* Stricly speaking we need to iterate over all VF
761 * task segment types, but a VF has only 1 segment
762 */
763
764 /* 'working' memory */
765 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
766
767 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
768 ecore_ilt_cli_blk_fill(p_cli, p_blk,
769 curr_line, total,
770 p_mngr->task_type_size[p_seg->type]);
771
772 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
773 ILT_CLI_CDUT);
774
775 /* 'init' memory */
776 p_blk = ecore_cxt_set_blk(
777 &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
778 if (!p_seg->has_fl_mem) {
779 /* see comment above */
780 line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
781 ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
782 } else {
783 task_size = p_mngr->task_type_size[p_seg->type];
784 ecore_ilt_cli_blk_fill(p_cli, p_blk,
785 curr_line, total,
786 task_size);
787 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
788 ILT_CLI_CDUT);
789 }
790 p_cli->vf_total_lines = curr_line -
791 p_cli->vf_blks[0].start_line;
792
793 /* Now for the rest of the VFs */
794 for (i = 1; i < p_mngr->vf_count; i++) {
795 /* don't set p_blk i.e. don't clear total_size */
796 p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
797 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
798 ILT_CLI_CDUT);
799
800 /* don't set p_blk i.e. don't clear total_size */
801 p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
802 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
803 ILT_CLI_CDUT);
804 }
805 }
806
807 /* QM */
808 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
809 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
810
811 ecore_cxt_qm_iids(p_hwfn, &qm_iids);
812 total = ecore_qm_pf_mem_size(qm_iids.cids,
813 qm_iids.vf_cids, qm_iids.tids,
814 p_hwfn->qm_info.num_pqs,
815 p_hwfn->qm_info.num_vf_pqs);
816
817 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
818 "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
819 qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
820 p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
821
822 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
823 QM_PQ_ELEMENT_SIZE);
824
825 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
826 p_cli->pf_total_lines = curr_line - p_blk->start_line;
827
828 /* SRC */
829 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
830 ecore_cxt_src_iids(p_mngr, &src_iids);
831
832 /* Both the PF and VFs searcher connections are stored in the per PF
833 * database. Thus sum the PF searcher cids and all the VFs searcher
834 * cids.
835 */
836 total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
837 if (total) {
838 u32 local_max = OSAL_MAX_T(u32, total,
839 SRC_MIN_NUM_ELEMS);
840
841 total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
842
843 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
844 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
845 total * sizeof(struct src_ent),
846 sizeof(struct src_ent));
847
848 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
849 ILT_CLI_SRC);
850 p_cli->pf_total_lines = curr_line - p_blk->start_line;
851 }
852
853 /* TM PF */
854 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
855 ecore_cxt_tm_iids(p_mngr, &tm_iids);
856 total = tm_iids.pf_cids + tm_iids.pf_tids_total;
857 if (total) {
858 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
859 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
860 total * TM_ELEM_SIZE,
861 TM_ELEM_SIZE);
862
863 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
864 ILT_CLI_TM);
865 p_cli->pf_total_lines = curr_line - p_blk->start_line;
866 }
867
868 /* TM VF */
869 total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
870 if (total) {
871 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]);
872 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
873 total * TM_ELEM_SIZE,
874 TM_ELEM_SIZE);
875
876 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
877 ILT_CLI_TM);
878
879 p_cli->vf_total_lines = curr_line - p_blk->start_line;
880 for (i = 1; i < p_mngr->vf_count; i++) {
881 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
882 ILT_CLI_TM);
883 }
884 }
885
886 /* TSDM (SRQ CONTEXT) */
887 total = ecore_cxt_get_total_srq_count(p_hwfn);
888 if (total) {
889 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
890 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
891 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
892 total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
893
894 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
895 ILT_CLI_TSDM);
896 p_cli->pf_total_lines = curr_line - p_blk->start_line;
897 }
898
899 *line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
900
901 if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
902 RESC_NUM(p_hwfn, ECORE_ILT)) {
903 return ECORE_INVAL;
904 }
905
906 return ECORE_SUCCESS;
907 }
908
909 u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines)
910 {
911 struct ecore_ilt_client_cfg *p_cli;
912 u32 excess_lines, available_lines;
913 struct ecore_cxt_mngr *p_mngr;
914 u32 ilt_page_size, elem_size;
915 struct ecore_tid_seg *p_seg;
916 int i;
917
918 available_lines = RESC_NUM(p_hwfn, ECORE_ILT);
919 excess_lines = used_lines - available_lines;
920
921 if (!excess_lines)
922 return 0;
923
924 if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn))
925 return 0;
926
927 p_mngr = p_hwfn->p_cxt_mngr;
928 p_cli = &p_mngr->clients[ILT_CLI_CDUT];
929 ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
930
931 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
932 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
933 if (!p_seg || p_seg->count == 0)
934 continue;
935
936 elem_size = p_mngr->task_type_size[p_seg->type];
937 if (!elem_size)
938 continue;
939
940 return (ilt_page_size / elem_size) * excess_lines;
941 }
942
943 DP_ERR(p_hwfn, "failed computing excess ILT lines\n");
944 return 0;
945 }
946
947 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
948 {
949 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
950 u32 i;
951
952 if (!p_mngr->t2)
953 return;
954
955 for (i = 0; i < p_mngr->t2_num_pages; i++)
956 if (p_mngr->t2[i].p_virt)
957 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
958 p_mngr->t2[i].p_virt,
959 p_mngr->t2[i].p_phys,
960 p_mngr->t2[i].size);
961
962 OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
963 p_mngr->t2 = OSAL_NULL;
964 }
965
966 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
967 {
968 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
969 u32 conn_num, total_size, ent_per_page, psz, i;
970 struct ecore_ilt_client_cfg *p_src;
971 struct ecore_src_iids src_iids;
972 struct ecore_dma_mem *p_t2;
973 enum _ecore_status_t rc;
974
975 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
976
977 /* if the SRC ILT client is inactive - there are no connection
978 * requiring the searcer, leave.
979 */
980 p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
981 if (!p_src->active)
982 return ECORE_SUCCESS;
983
984 ecore_cxt_src_iids(p_mngr, &src_iids);
985 conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
986 total_size = conn_num * sizeof(struct src_ent);
987
988 /* use the same page size as the SRC ILT client */
989 psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
990 p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
991
992 /* allocate t2 */
993 p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
994 p_mngr->t2_num_pages *
995 sizeof(struct ecore_dma_mem));
996 if (!p_mngr->t2) {
997 DP_NOTICE(p_hwfn, false, "Failed to allocate t2 table\n");
998 rc = ECORE_NOMEM;
999 goto t2_fail;
1000 }
1001
1002 /* allocate t2 pages */
1003 for (i = 0; i < p_mngr->t2_num_pages; i++) {
1004 u32 size = OSAL_MIN_T(u32, total_size, psz);
1005 void **p_virt = &p_mngr->t2[i].p_virt;
1006
1007 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1008 &p_mngr->t2[i].p_phys,
1009 size);
1010 if (!p_mngr->t2[i].p_virt) {
1011 rc = ECORE_NOMEM;
1012 goto t2_fail;
1013 }
1014 OSAL_MEM_ZERO(*p_virt, size);
1015 p_mngr->t2[i].size = size;
1016 total_size -= size;
1017 }
1018
1019 /* Set the t2 pointers */
1020
1021 /* entries per page - must be a power of two */
1022 ent_per_page = psz / sizeof(struct src_ent);
1023
1024 p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
1025
1026 p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
1027 p_mngr->last_free = (u64)p_t2->p_phys +
1028 ((conn_num - 1) & (ent_per_page - 1)) *
1029 sizeof(struct src_ent);
1030
1031 for (i = 0; i < p_mngr->t2_num_pages; i++) {
1032 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
1033 struct src_ent *entries = p_mngr->t2[i].p_virt;
1034 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
1035 u32 j;
1036
1037 for (j = 0; j < ent_num - 1; j++) {
1038 val = p_ent_phys +
1039 (j + 1) * sizeof(struct src_ent);
1040 entries[j].next = OSAL_CPU_TO_BE64(val);
1041 }
1042
1043 if (i < p_mngr->t2_num_pages - 1)
1044 val = (u64)p_mngr->t2[i + 1].p_phys;
1045 else
1046 val = 0;
1047 entries[j].next = OSAL_CPU_TO_BE64(val);
1048
1049 conn_num -= ent_num;
1050 }
1051
1052 return ECORE_SUCCESS;
1053
1054 t2_fail:
1055 ecore_cxt_src_t2_free(p_hwfn);
1056 return rc;
1057 }
1058
1059 #define for_each_ilt_valid_client(pos, clients) \
1060 for (pos = 0; pos < ILT_CLI_MAX; pos++) \
1061 if (!clients[pos].active) { \
1062 continue; \
1063 } else \
1064
1065 /* Total number of ILT lines used by this PF */
1066 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
1067 {
1068 u32 size = 0;
1069 u32 i;
1070
1071 for_each_ilt_valid_client(i, ilt_clients)
1072 size += (ilt_clients[i].last.val -
1073 ilt_clients[i].first.val + 1);
1074
1075 return size;
1076 }
1077
1078 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
1079 {
1080 struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
1081 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1082 u32 ilt_size, i;
1083
1084 if (p_mngr->ilt_shadow == OSAL_NULL)
1085 return;
1086
1087 ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
1088
1089 for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
1090 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
1091
1092 if (p_dma->p_virt)
1093 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1094 p_dma->p_virt,
1095 p_dma->p_phys,
1096 p_dma->size);
1097 p_dma->p_virt = OSAL_NULL;
1098 }
1099 OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
1100 p_mngr->ilt_shadow = OSAL_NULL;
1101 }
1102
1103 static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
1104 struct ecore_ilt_cli_blk *p_blk,
1105 enum ilt_clients ilt_client,
1106 u32 start_line_offset)
1107 {
1108 struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
1109 u32 lines, line, sz_left, lines_to_skip = 0;
1110
1111 /* Special handling for RoCE that supports dynamic allocation */
1112 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) &&
1113 ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
1114 return ECORE_SUCCESS;
1115
1116 lines_to_skip = p_blk->dynamic_line_cnt;
1117
1118 if (!p_blk->total_size)
1119 return ECORE_SUCCESS;
1120
1121 sz_left = p_blk->total_size;
1122 lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) -
1123 lines_to_skip;
1124 line = p_blk->start_line + start_line_offset -
1125 p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
1126
1127 for (; lines; lines--) {
1128 dma_addr_t p_phys;
1129 void *p_virt;
1130 u32 size;
1131
1132 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
1133 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1134 &p_phys, size);
1135 if (!p_virt)
1136 return ECORE_NOMEM;
1137 OSAL_MEM_ZERO(p_virt, size);
1138
1139 ilt_shadow[line].p_phys = p_phys;
1140 ilt_shadow[line].p_virt = p_virt;
1141 ilt_shadow[line].size = size;
1142
1143 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1144 "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
1145 line, (unsigned long long)p_phys, p_virt, size);
1146
1147 sz_left -= size;
1148 line++;
1149 }
1150
1151 return ECORE_SUCCESS;
1152 }
1153
1154 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
1155 {
1156 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1157 struct ecore_ilt_client_cfg *clients = p_mngr->clients;
1158 struct ecore_ilt_cli_blk *p_blk;
1159 u32 size, i, j, k;
1160 enum _ecore_status_t rc;
1161
1162 size = ecore_cxt_ilt_shadow_size(clients);
1163 p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1164 size * sizeof(struct ecore_dma_mem));
1165
1166 if (p_mngr->ilt_shadow == OSAL_NULL) {
1167 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt shadow table\n");
1168 rc = ECORE_NOMEM;
1169 goto ilt_shadow_fail;
1170 }
1171
1172 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1173 "Allocated 0x%x bytes for ilt shadow\n",
1174 (u32)(size * sizeof(struct ecore_dma_mem)));
1175
1176 for_each_ilt_valid_client(i, clients) {
1177 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
1178 p_blk = &clients[i].pf_blks[j];
1179 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
1180 if (rc != ECORE_SUCCESS)
1181 goto ilt_shadow_fail;
1182 }
1183 for (k = 0; k < p_mngr->vf_count; k++) {
1184 for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1185 u32 lines = clients[i].vf_total_lines * k;
1186
1187 p_blk = &clients[i].vf_blks[j];
1188 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
1189 i, lines);
1190 if (rc != ECORE_SUCCESS)
1191 goto ilt_shadow_fail;
1192 }
1193 }
1194 }
1195
1196 return ECORE_SUCCESS;
1197
1198 ilt_shadow_fail:
1199 ecore_ilt_shadow_free(p_hwfn);
1200 return rc;
1201 }
1202
1203 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1204 {
1205 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1206 u32 type, vf;
1207
1208 for (type = 0; type < MAX_CONN_TYPES; type++) {
1209 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1210 p_mngr->acquired[type].cid_map = OSAL_NULL;
1211 p_mngr->acquired[type].max_count = 0;
1212 p_mngr->acquired[type].start_cid = 0;
1213
1214 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1215 OSAL_FREE(p_hwfn->p_dev,
1216 p_mngr->acquired_vf[type][vf].cid_map);
1217 p_mngr->acquired_vf[type][vf].cid_map = OSAL_NULL;
1218 p_mngr->acquired_vf[type][vf].max_count = 0;
1219 p_mngr->acquired_vf[type][vf].start_cid = 0;
1220 }
1221 }
1222 }
1223
1224 static enum _ecore_status_t
1225 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
1226 u32 cid_start, u32 cid_count,
1227 struct ecore_cid_acquired_map *p_map)
1228 {
1229 u32 size;
1230
1231 if (!cid_count)
1232 return ECORE_SUCCESS;
1233
1234 size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
1235 p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
1236 if (p_map->cid_map == OSAL_NULL)
1237 return ECORE_NOMEM;
1238
1239 p_map->max_count = cid_count;
1240 p_map->start_cid = cid_start;
1241
1242 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1243 "Type %08x start: %08x count %08x\n",
1244 type, p_map->start_cid, p_map->max_count);
1245
1246 return ECORE_SUCCESS;
1247 }
1248
1249 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1250 {
1251 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1252 u32 start_cid = 0, vf_start_cid = 0;
1253 u32 type, vf;
1254
1255 for (type = 0; type < MAX_CONN_TYPES; type++) {
1256 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1257 struct ecore_cid_acquired_map *p_map;
1258
1259 /* Handle PF maps */
1260 p_map = &p_mngr->acquired[type];
1261 if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
1262 p_cfg->cid_count, p_map))
1263 goto cid_map_fail;
1264
1265 /* Handle VF maps */
1266 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1267 p_map = &p_mngr->acquired_vf[type][vf];
1268 if (ecore_cid_map_alloc_single(p_hwfn, type,
1269 vf_start_cid,
1270 p_cfg->cids_per_vf,
1271 p_map))
1272 goto cid_map_fail;
1273 }
1274
1275 start_cid += p_cfg->cid_count;
1276 vf_start_cid += p_cfg->cids_per_vf;
1277 }
1278
1279 return ECORE_SUCCESS;
1280
1281 cid_map_fail:
1282 ecore_cid_map_free(p_hwfn);
1283 return ECORE_NOMEM;
1284 }
1285
1286 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1287 {
1288 struct ecore_ilt_client_cfg *clients;
1289 struct ecore_cxt_mngr *p_mngr;
1290 u32 i;
1291
1292 p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1293 if (!p_mngr) {
1294 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_cxt_mngr'\n");
1295 return ECORE_NOMEM;
1296 }
1297
1298 /* Initialize ILT client registers */
1299 clients = p_mngr->clients;
1300 clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1301 clients[ILT_CLI_CDUC].last.reg = ILT_CFG_REG(CDUC, LAST_ILT);
1302 clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1303
1304 clients[ILT_CLI_QM].first.reg = ILT_CFG_REG(QM, FIRST_ILT);
1305 clients[ILT_CLI_QM].last.reg = ILT_CFG_REG(QM, LAST_ILT);
1306 clients[ILT_CLI_QM].p_size.reg = ILT_CFG_REG(QM, P_SIZE);
1307
1308 clients[ILT_CLI_TM].first.reg = ILT_CFG_REG(TM, FIRST_ILT);
1309 clients[ILT_CLI_TM].last.reg = ILT_CFG_REG(TM, LAST_ILT);
1310 clients[ILT_CLI_TM].p_size.reg = ILT_CFG_REG(TM, P_SIZE);
1311
1312 clients[ILT_CLI_SRC].first.reg = ILT_CFG_REG(SRC, FIRST_ILT);
1313 clients[ILT_CLI_SRC].last.reg = ILT_CFG_REG(SRC, LAST_ILT);
1314 clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1315
1316 clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1317 clients[ILT_CLI_CDUT].last.reg = ILT_CFG_REG(CDUT, LAST_ILT);
1318 clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1319
1320 clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1321 clients[ILT_CLI_TSDM].last.reg = ILT_CFG_REG(TSDM, LAST_ILT);
1322 clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1323
1324 /* default ILT page size for all clients is 64K */
1325 for (i = 0; i < ILT_CLI_MAX; i++)
1326 p_mngr->clients[i].p_size.val = p_hwfn->p_dev->ilt_page_size;
1327
1328 /* Initialize task sizes */
1329 p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
1330 p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
1331
1332 if (p_hwfn->p_dev->p_iov_info)
1333 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1334
1335 /* Initialize the dynamic ILT allocation mutex */
1336 #ifdef CONFIG_ECORE_LOCK_ALLOC
1337 OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
1338 #endif
1339 OSAL_MUTEX_INIT(&p_mngr->mutex);
1340
1341 /* Set the cxt mangr pointer priori to further allocations */
1342 p_hwfn->p_cxt_mngr = p_mngr;
1343
1344 return ECORE_SUCCESS;
1345 }
1346
1347 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1348 {
1349 enum _ecore_status_t rc;
1350
1351 /* Allocate the ILT shadow table */
1352 rc = ecore_ilt_shadow_alloc(p_hwfn);
1353 if (rc) {
1354 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt memory\n");
1355 goto tables_alloc_fail;
1356 }
1357
1358 /* Allocate the T2 table */
1359 rc = ecore_cxt_src_t2_alloc(p_hwfn);
1360 if (rc) {
1361 DP_NOTICE(p_hwfn, false, "Failed to allocate T2 memory\n");
1362 goto tables_alloc_fail;
1363 }
1364
1365 /* Allocate and initialize the acquired cids bitmaps */
1366 rc = ecore_cid_map_alloc(p_hwfn);
1367 if (rc) {
1368 DP_NOTICE(p_hwfn, false, "Failed to allocate cid maps\n");
1369 goto tables_alloc_fail;
1370 }
1371
1372 return ECORE_SUCCESS;
1373
1374 tables_alloc_fail:
1375 ecore_cxt_mngr_free(p_hwfn);
1376 return rc;
1377 }
1378 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1379 {
1380 if (!p_hwfn->p_cxt_mngr)
1381 return;
1382
1383 ecore_cid_map_free(p_hwfn);
1384 ecore_cxt_src_t2_free(p_hwfn);
1385 ecore_ilt_shadow_free(p_hwfn);
1386 #ifdef CONFIG_ECORE_LOCK_ALLOC
1387 OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
1388 #endif
1389 OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1390
1391 p_hwfn->p_cxt_mngr = OSAL_NULL;
1392 }
1393
1394 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1395 {
1396 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1397 struct ecore_cid_acquired_map *p_map;
1398 struct ecore_conn_type_cfg *p_cfg;
1399 int type;
1400 u32 len;
1401
1402 /* Reset acquired cids */
1403 for (type = 0; type < MAX_CONN_TYPES; type++) {
1404 u32 vf;
1405
1406 p_cfg = &p_mngr->conn_cfg[type];
1407 if (p_cfg->cid_count) {
1408 p_map = &p_mngr->acquired[type];
1409 len = DIV_ROUND_UP(p_map->max_count,
1410 BITS_PER_MAP_WORD) *
1411 MAP_WORD_SIZE;
1412 OSAL_MEM_ZERO(p_map->cid_map, len);
1413 }
1414
1415 if (!p_cfg->cids_per_vf)
1416 continue;
1417
1418 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1419 p_map = &p_mngr->acquired_vf[type][vf];
1420 len = DIV_ROUND_UP(p_map->max_count,
1421 BITS_PER_MAP_WORD) *
1422 MAP_WORD_SIZE;
1423 OSAL_MEM_ZERO(p_map->cid_map, len);
1424 }
1425 }
1426 }
1427
1428 /* HW initialization helper (per Block, per phase) */
1429
1430 /* CDU Common */
1431 #define CDUC_CXT_SIZE_SHIFT \
1432 CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1433
1434 #define CDUC_CXT_SIZE_MASK \
1435 (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1436
1437 #define CDUC_BLOCK_WASTE_SHIFT \
1438 CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1439
1440 #define CDUC_BLOCK_WASTE_MASK \
1441 (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1442
1443 #define CDUC_NCIB_SHIFT \
1444 CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1445
1446 #define CDUC_NCIB_MASK \
1447 (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1448
1449 #define CDUT_TYPE0_CXT_SIZE_SHIFT \
1450 CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1451
1452 #define CDUT_TYPE0_CXT_SIZE_MASK \
1453 (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >> \
1454 CDUT_TYPE0_CXT_SIZE_SHIFT)
1455
1456 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT \
1457 CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1458
1459 #define CDUT_TYPE0_BLOCK_WASTE_MASK \
1460 (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >> \
1461 CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1462
1463 #define CDUT_TYPE0_NCIB_SHIFT \
1464 CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1465
1466 #define CDUT_TYPE0_NCIB_MASK \
1467 (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >> \
1468 CDUT_TYPE0_NCIB_SHIFT)
1469
1470 #define CDUT_TYPE1_CXT_SIZE_SHIFT \
1471 CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1472
1473 #define CDUT_TYPE1_CXT_SIZE_MASK \
1474 (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >> \
1475 CDUT_TYPE1_CXT_SIZE_SHIFT)
1476
1477 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT \
1478 CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1479
1480 #define CDUT_TYPE1_BLOCK_WASTE_MASK \
1481 (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >> \
1482 CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1483
1484 #define CDUT_TYPE1_NCIB_SHIFT \
1485 CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1486
1487 #define CDUT_TYPE1_NCIB_MASK \
1488 (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >> \
1489 CDUT_TYPE1_NCIB_SHIFT)
1490
1491 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1492 {
1493 u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0;
1494
1495 /* CDUC - connection configuration */
1496 page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1497 cxt_size = CONN_CXT_SIZE(p_hwfn);
1498 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1499 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1500
1501 SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1502 SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1503 SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page);
1504 STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1505
1506 /* CDUT - type-0 tasks configuration */
1507 page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1508 cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1509 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1510 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1511
1512 /* cxt size and block-waste are multipes of 8 */
1513 cdu_params = 0;
1514 SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1515 SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1516 SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1517 STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1518
1519 /* CDUT - type-1 tasks configuration */
1520 cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1521 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1522 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1523
1524 /* cxt size and block-waste are multipes of 8 */
1525 cdu_params = 0;
1526 SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1527 SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1528 SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1529 STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1530 }
1531
1532 /* CDU PF */
1533 #define CDU_SEG_REG_TYPE_SHIFT CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1534 #define CDU_SEG_REG_TYPE_MASK 0x1
1535 #define CDU_SEG_REG_OFFSET_SHIFT 0
1536 #define CDU_SEG_REG_OFFSET_MASK CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1537
1538 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1539 {
1540 struct ecore_ilt_client_cfg *p_cli;
1541 struct ecore_tid_seg *p_seg;
1542 u32 cdu_seg_params, offset;
1543 int i;
1544
1545 static const u32 rt_type_offset_arr[] = {
1546 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1547 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1548 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1549 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1550 };
1551
1552 static const u32 rt_type_offset_fl_arr[] = {
1553 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1554 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1555 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1556 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1557 };
1558
1559 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1560
1561 /* There are initializations only for CDUT during pf Phase */
1562 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1563 /* Segment 0*/
1564 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1565 if (!p_seg)
1566 continue;
1567
1568 /* Note: start_line is already adjusted for the CDU
1569 * segment register granularity, so we just need to
1570 * divide. Adjustment is implicit as we assume ILT
1571 * Page size is larger than 32K!
1572 */
1573 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1574 (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1575 p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1576
1577 cdu_seg_params = 0;
1578 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1579 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1580 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i],
1581 cdu_seg_params);
1582
1583 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1584 (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1585 p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1586
1587 cdu_seg_params = 0;
1588 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1589 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1590 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i],
1591 cdu_seg_params);
1592 }
1593 }
1594
1595 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1596 bool is_pf_loading)
1597 {
1598 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1599 struct ecore_mcp_link_state *p_link;
1600 struct ecore_qm_iids iids;
1601
1602 OSAL_MEM_ZERO(&iids, sizeof(iids));
1603 ecore_cxt_qm_iids(p_hwfn, &iids);
1604
1605 p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output;
1606
1607 ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->port_id,
1608 p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
1609 is_pf_loading,
1610 iids.cids, iids.vf_cids, iids.tids,
1611 qm_info->start_pq,
1612 qm_info->num_pqs - qm_info->num_vf_pqs,
1613 qm_info->num_vf_pqs,
1614 qm_info->start_vport,
1615 qm_info->num_vports, qm_info->pf_wfq,
1616 qm_info->pf_rl, p_link->speed,
1617 p_hwfn->qm_info.qm_pq_params,
1618 p_hwfn->qm_info.qm_vport_params);
1619 }
1620
1621 /* CM PF */
1622 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1623 {
1624 STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1625 }
1626
1627 /* DQ PF */
1628 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1629 {
1630 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1631 u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1632
1633 dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1634 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1635
1636 dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1637 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1638
1639 dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1640 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1641
1642 dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1643 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1644
1645 dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1646 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1647
1648 dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1649 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1650
1651 dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1652 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1653
1654 dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1655 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1656
1657 dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1658 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1659
1660 dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1661 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1662
1663 dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1664 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1665
1666 dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1667 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1668
1669 /* Connection types 6 & 7 are not in use, yet they must be configured
1670 * as the highest possible connection. Not configuring them means the
1671 * defaults will be used, and with a large number of cids a bug may
1672 * occur, if the defaults will be smaller than dq_pf_max_cid /
1673 * dq_vf_max_cid.
1674 */
1675 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1676 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1677
1678 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1679 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1680 }
1681
1682 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1683 {
1684 struct ecore_ilt_client_cfg *ilt_clients;
1685 int i;
1686
1687 ilt_clients = p_hwfn->p_cxt_mngr->clients;
1688 for_each_ilt_valid_client(i, ilt_clients) {
1689 STORE_RT_REG(p_hwfn,
1690 ilt_clients[i].first.reg,
1691 ilt_clients[i].first.val);
1692 STORE_RT_REG(p_hwfn,
1693 ilt_clients[i].last.reg,
1694 ilt_clients[i].last.val);
1695 STORE_RT_REG(p_hwfn,
1696 ilt_clients[i].p_size.reg,
1697 ilt_clients[i].p_size.val);
1698 }
1699 }
1700
1701 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1702 {
1703 struct ecore_ilt_client_cfg *p_cli;
1704 u32 blk_factor;
1705
1706 /* For simplicty we set the 'block' to be an ILT page */
1707 if (p_hwfn->p_dev->p_iov_info) {
1708 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1709
1710 STORE_RT_REG(p_hwfn,
1711 PSWRQ2_REG_VF_BASE_RT_OFFSET,
1712 p_iov->first_vf_in_pf);
1713 STORE_RT_REG(p_hwfn,
1714 PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1715 p_iov->first_vf_in_pf + p_iov->total_vfs);
1716 }
1717
1718 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1719 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1720 if (p_cli->active) {
1721 STORE_RT_REG(p_hwfn,
1722 PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1723 blk_factor);
1724 STORE_RT_REG(p_hwfn,
1725 PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1726 p_cli->pf_total_lines);
1727 STORE_RT_REG(p_hwfn,
1728 PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1729 p_cli->vf_total_lines);
1730 }
1731
1732 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1733 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1734 if (p_cli->active) {
1735 STORE_RT_REG(p_hwfn,
1736 PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1737 blk_factor);
1738 STORE_RT_REG(p_hwfn,
1739 PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1740 p_cli->pf_total_lines);
1741 STORE_RT_REG(p_hwfn,
1742 PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1743 p_cli->vf_total_lines);
1744 }
1745
1746 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1747 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1748 if (p_cli->active) {
1749 STORE_RT_REG(p_hwfn,
1750 PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET,
1751 blk_factor);
1752 STORE_RT_REG(p_hwfn,
1753 PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1754 p_cli->pf_total_lines);
1755 STORE_RT_REG(p_hwfn,
1756 PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1757 p_cli->vf_total_lines);
1758 }
1759 }
1760
1761 /* ILT (PSWRQ2) PF */
1762 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1763 {
1764 struct ecore_ilt_client_cfg *clients;
1765 struct ecore_cxt_mngr *p_mngr;
1766 struct ecore_dma_mem *p_shdw;
1767 u32 line, rt_offst, i;
1768
1769 ecore_ilt_bounds_init(p_hwfn);
1770 ecore_ilt_vf_bounds_init(p_hwfn);
1771
1772 p_mngr = p_hwfn->p_cxt_mngr;
1773 p_shdw = p_mngr->ilt_shadow;
1774 clients = p_hwfn->p_cxt_mngr->clients;
1775
1776 for_each_ilt_valid_client(i, clients) {
1777 /* Client's 1st val and RT array are absolute, ILT shadows'
1778 * lines are relative.
1779 */
1780 line = clients[i].first.val - p_mngr->pf_start_line;
1781 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1782 clients[i].first.val * ILT_ENTRY_IN_REGS;
1783
1784 for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1785 line++, rt_offst += ILT_ENTRY_IN_REGS) {
1786 u64 ilt_hw_entry = 0;
1787
1788 /** p_virt could be OSAL_NULL incase of dynamic
1789 * allocation
1790 */
1791 if (p_shdw[line].p_virt != OSAL_NULL) {
1792 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1793 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1794 (unsigned long long)(p_shdw[line].p_phys >> 12));
1795
1796 DP_VERBOSE(
1797 p_hwfn, ECORE_MSG_ILT,
1798 "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
1799 rt_offst, line, i,
1800 (unsigned long long)(p_shdw[line].p_phys >> 12));
1801 }
1802
1803 STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1804 }
1805 }
1806 }
1807
1808 /* SRC (Searcher) PF */
1809 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1810 {
1811 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1812 u32 rounded_conn_num, conn_num, conn_max;
1813 struct ecore_src_iids src_iids;
1814
1815 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1816 ecore_cxt_src_iids(p_mngr, &src_iids);
1817 conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1818 if (!conn_num)
1819 return;
1820
1821 conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1822 rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1823
1824 STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1825 STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1826 OSAL_LOG2(rounded_conn_num));
1827
1828 STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1829 p_hwfn->p_cxt_mngr->first_free);
1830 STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1831 p_hwfn->p_cxt_mngr->last_free);
1832 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1833 "Configured SEARCHER for 0x%08x connections\n",
1834 conn_num);
1835 }
1836
1837 /* Timers PF */
1838 #define TM_CFG_NUM_IDS_SHIFT 0
1839 #define TM_CFG_NUM_IDS_MASK 0xFFFFULL
1840 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT 16
1841 #define TM_CFG_PRE_SCAN_OFFSET_MASK 0x1FFULL
1842 #define TM_CFG_PARENT_PF_SHIFT 25
1843 #define TM_CFG_PARENT_PF_MASK 0x7ULL
1844
1845 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT 30
1846 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK 0x1FFULL
1847
1848 #define TM_CFG_TID_OFFSET_SHIFT 30
1849 #define TM_CFG_TID_OFFSET_MASK 0x7FFFFULL
1850 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT 49
1851 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK 0x1FFULL
1852
1853 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1854 {
1855 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1856 u32 active_seg_mask = 0, tm_offset, rt_reg;
1857 struct ecore_tm_iids tm_iids;
1858 u64 cfg_word;
1859 u8 i;
1860
1861 OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1862 ecore_cxt_tm_iids(p_mngr, &tm_iids);
1863
1864 /* @@@TBD No pre-scan for now */
1865
1866 /* Note: We assume consecutive VFs for a PF */
1867 for (i = 0; i < p_mngr->vf_count; i++) {
1868 cfg_word = 0;
1869 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1870 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1871 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1872 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1873
1874 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1875 (sizeof(cfg_word) / sizeof(u32)) *
1876 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1877 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1878 }
1879
1880 cfg_word = 0;
1881 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1882 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1883 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); /* n/a for PF */
1884 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1885
1886 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1887 (sizeof(cfg_word) / sizeof(u32)) *
1888 (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1889 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1890
1891 /* enale scan */
1892 STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1893 tm_iids.pf_cids ? 0x1 : 0x0);
1894
1895 /* @@@TBD how to enable the scan for the VFs */
1896
1897 tm_offset = tm_iids.per_vf_cids;
1898
1899 /* Note: We assume consecutive VFs for a PF */
1900 for (i = 0; i < p_mngr->vf_count; i++) {
1901 cfg_word = 0;
1902 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1903 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1904 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1905 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1906 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1907
1908 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1909 (sizeof(cfg_word) / sizeof(u32)) *
1910 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1911
1912 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1913 }
1914
1915 tm_offset = tm_iids.pf_cids;
1916 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1917 cfg_word = 0;
1918 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1919 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1920 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1921 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1922 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1923
1924 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1925 (sizeof(cfg_word) / sizeof(u32)) *
1926 (NUM_OF_VFS(p_hwfn->p_dev) +
1927 p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1928
1929 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1930 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1931
1932 tm_offset += tm_iids.pf_tids[i];
1933 }
1934
1935 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1936 active_seg_mask = 0;
1937
1938 STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1939
1940 /* @@@TBD how to enable the scan for the VFs */
1941 }
1942
1943 static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn)
1944 {
1945 if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) &&
1946 p_hwfn->pf_params.fcoe_pf_params.is_target)
1947 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
1948 }
1949
1950 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1951 {
1952 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1953 struct ecore_conn_type_cfg *p_fcoe;
1954 struct ecore_tid_seg *p_tid;
1955
1956 p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1957
1958 /* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1959 if (!p_fcoe->cid_count)
1960 return;
1961
1962 p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1963 if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
1964 STORE_RT_REG_AGG(p_hwfn,
1965 PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
1966 p_tid->count);
1967 } else {
1968 STORE_RT_REG_AGG(p_hwfn,
1969 PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1970 p_tid->count);
1971 }
1972 }
1973
1974 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1975 {
1976 /* CDU configuration */
1977 ecore_cdu_init_common(p_hwfn);
1978 ecore_prs_init_common(p_hwfn);
1979 }
1980
1981 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1982 {
1983 ecore_qm_init_pf(p_hwfn, p_ptt, true);
1984 ecore_cm_init_pf(p_hwfn);
1985 ecore_dq_init_pf(p_hwfn);
1986 ecore_cdu_init_pf(p_hwfn);
1987 ecore_ilt_init_pf(p_hwfn);
1988 ecore_src_init_pf(p_hwfn);
1989 ecore_tm_init_pf(p_hwfn);
1990 ecore_prs_init_pf(p_hwfn);
1991 }
1992
1993 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1994 enum protocol_type type,
1995 u32 *p_cid, u8 vfid)
1996 {
1997 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1998 struct ecore_cid_acquired_map *p_map;
1999 u32 rel_cid;
2000
2001 if (type >= MAX_CONN_TYPES) {
2002 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
2003 return ECORE_INVAL;
2004 }
2005
2006 if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
2007 DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
2008 return ECORE_INVAL;
2009 }
2010
2011 /* Determine the right map to take this CID from */
2012 if (vfid == ECORE_CXT_PF_CID)
2013 p_map = &p_mngr->acquired[type];
2014 else
2015 p_map = &p_mngr->acquired_vf[type][vfid];
2016
2017 if (p_map->cid_map == OSAL_NULL) {
2018 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
2019 return ECORE_INVAL;
2020 }
2021
2022 rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
2023 p_map->max_count);
2024
2025 if (rel_cid >= p_map->max_count) {
2026 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
2027 type);
2028 return ECORE_NORESOURCES;
2029 }
2030
2031 OSAL_SET_BIT(rel_cid, p_map->cid_map);
2032
2033 *p_cid = rel_cid + p_map->start_cid;
2034
2035 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2036 "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
2037 *p_cid, rel_cid, vfid, type);
2038
2039 return ECORE_SUCCESS;
2040 }
2041
2042 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
2043 enum protocol_type type,
2044 u32 *p_cid)
2045 {
2046 return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
2047 }
2048
2049 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
2050 u32 cid, u8 vfid,
2051 enum protocol_type *p_type,
2052 struct ecore_cid_acquired_map **pp_map)
2053 {
2054 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2055 u32 rel_cid;
2056
2057 /* Iterate over protocols and find matching cid range */
2058 for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
2059 if (vfid == ECORE_CXT_PF_CID)
2060 *pp_map = &p_mngr->acquired[*p_type];
2061 else
2062 *pp_map = &p_mngr->acquired_vf[*p_type][vfid];
2063
2064 if (!((*pp_map)->cid_map))
2065 continue;
2066 if (cid >= (*pp_map)->start_cid &&
2067 cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
2068 break;
2069 }
2070 }
2071
2072 if (*p_type == MAX_CONN_TYPES) {
2073 DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
2074 goto fail;
2075 }
2076
2077 rel_cid = cid - (*pp_map)->start_cid;
2078 if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
2079 DP_NOTICE(p_hwfn, true,
2080 "CID %d [vifd %02x] not acquired", cid, vfid);
2081 goto fail;
2082 }
2083
2084 return true;
2085 fail:
2086 *p_type = MAX_CONN_TYPES;
2087 *pp_map = OSAL_NULL;
2088 return false;
2089 }
2090
2091 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
2092 {
2093 struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2094 enum protocol_type type;
2095 bool b_acquired;
2096 u32 rel_cid;
2097
2098 if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
2099 DP_NOTICE(p_hwfn, true,
2100 "Trying to return incorrect CID belonging to VF %02x\n",
2101 vfid);
2102 return;
2103 }
2104
2105 /* Test acquired and find matching per-protocol map */
2106 b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
2107 &type, &p_map);
2108
2109 if (!b_acquired)
2110 return;
2111
2112 rel_cid = cid - p_map->start_cid;
2113 OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
2114
2115 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2116 "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
2117 cid, rel_cid, vfid, type);
2118 }
2119
2120 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
2121 {
2122 _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
2123 }
2124
2125 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
2126 struct ecore_cxt_info *p_info)
2127 {
2128 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2129 struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2130 u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
2131 enum protocol_type type;
2132 bool b_acquired;
2133
2134 /* Test acquired and find matching per-protocol map */
2135 b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
2136 ECORE_CXT_PF_CID,
2137 &type, &p_map);
2138
2139 if (!b_acquired)
2140 return ECORE_INVAL;
2141
2142 /* set the protocl type */
2143 p_info->type = type;
2144
2145 /* compute context virtual pointer */
2146 hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
2147
2148 conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
2149 cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
2150 line = p_info->iid / cxts_per_p;
2151
2152 /* Make sure context is allocated (dynamic allocation) */
2153 if (!p_mngr->ilt_shadow[line].p_virt)
2154 return ECORE_INVAL;
2155
2156 p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
2157 p_info->iid % cxts_per_p * conn_cxt_size;
2158
2159 DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
2160 "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
2161 (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
2162
2163 return ECORE_SUCCESS;
2164 }
2165
2166 static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn,
2167 struct ecore_rdma_pf_params *p_params,
2168 u32 num_tasks)
2169 {
2170 u32 num_cons, num_qps;
2171 enum protocol_type proto;
2172
2173 /* The only case RDMA personality can be overriden is if NVRAM is
2174 * configured with ETH_RDMA or if no rdma protocol was requested
2175 */
2176 switch (p_params->rdma_protocol) {
2177 case ECORE_RDMA_PROTOCOL_DEFAULT:
2178 if (p_hwfn->mcp_info->func_info.protocol ==
2179 ECORE_PCI_ETH_RDMA) {
2180 DP_NOTICE(p_hwfn, false,
2181 "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n");
2182 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2183 }
2184 break;
2185 case ECORE_RDMA_PROTOCOL_NONE:
2186 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2187 return; /* intentional... nothing left to do... */
2188 case ECORE_RDMA_PROTOCOL_ROCE:
2189 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2190 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2191 break;
2192 case ECORE_RDMA_PROTOCOL_IWARP:
2193 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2194 p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP;
2195 break;
2196 }
2197
2198 switch (p_hwfn->hw_info.personality) {
2199 case ECORE_PCI_ETH_IWARP:
2200 /* Each QP requires one connection */
2201 num_cons = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps);
2202 #ifdef CONFIG_ECORE_IWARP /* required for the define */
2203 /* additional connections required for passive tcp handling */
2204 num_cons += ECORE_IWARP_PREALLOC_CNT;
2205 #endif
2206 proto = PROTOCOLID_IWARP;
2207 break;
2208 case ECORE_PCI_ETH_ROCE:
2209 num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps);
2210 num_cons = num_qps * 2; /* each QP requires two connections */
2211 proto = PROTOCOLID_ROCE;
2212 break;
2213 default:
2214 return;
2215 }
2216
2217 if (num_cons && num_tasks) {
2218 u32 num_srqs, num_xrc_srqs, max_xrc_srqs, page_size;
2219
2220 ecore_cxt_set_proto_cid_count(p_hwfn, proto,
2221 num_cons, 0);
2222
2223 /* Deliberatly passing ROCE for tasks id. This is because
2224 * iWARP / RoCE share the task id.
2225 */
2226 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
2227 ECORE_CXT_ROCE_TID_SEG,
2228 1, /* RoCE segment type */
2229 num_tasks,
2230 false); /* !force load */
2231
2232 num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS,
2233 p_params->num_srqs);
2234
2235 /* XRC SRQs populate a single ILT page */
2236 page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
2237 max_xrc_srqs = page_size / XRC_SRQ_CXT_SIZE;
2238 max_xrc_srqs = OSAL_MIN_T(u32, max_xrc_srqs, ECORE_RDMA_MAX_XRC_SRQS);
2239
2240 num_xrc_srqs = OSAL_MIN_T(u32, p_params->num_xrc_srqs,
2241 max_xrc_srqs);
2242 ecore_cxt_set_srq_count(p_hwfn, num_srqs, num_xrc_srqs);
2243
2244 } else {
2245 DP_INFO(p_hwfn->p_dev,
2246 "RDMA personality used without setting params!\n");
2247 }
2248 }
2249
2250 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn,
2251 u32 rdma_tasks)
2252 {
2253 /* Set the number of required CORE connections */
2254 u32 core_cids = 1; /* SPQ */
2255
2256 if (p_hwfn->using_ll2)
2257 core_cids += 4; /* @@@TBD Use the proper #define */
2258
2259 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
2260
2261 switch (p_hwfn->hw_info.personality) {
2262 case ECORE_PCI_ETH_RDMA:
2263 case ECORE_PCI_ETH_IWARP:
2264 case ECORE_PCI_ETH_ROCE:
2265 {
2266 ecore_rdma_set_pf_params(p_hwfn,
2267 &p_hwfn->pf_params.rdma_pf_params,
2268 rdma_tasks);
2269
2270 /* no need for break since RoCE coexist with Ethernet */
2271 }
2272 case ECORE_PCI_ETH:
2273 {
2274 u32 count = 0;
2275
2276 struct ecore_eth_pf_params *p_params =
2277 &p_hwfn->pf_params.eth_pf_params;
2278
2279 if (!p_params->num_vf_cons)
2280 p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
2281 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2282 p_params->num_cons,
2283 p_params->num_vf_cons);
2284
2285 count = p_params->num_arfs_filters;
2286
2287 if (!OSAL_TEST_BIT(ECORE_MF_DISABLE_ARFS,
2288 &p_hwfn->p_dev->mf_bits))
2289 p_hwfn->p_cxt_mngr->arfs_count = count;
2290
2291 break;
2292 }
2293 case ECORE_PCI_FCOE:
2294 {
2295 struct ecore_fcoe_pf_params *p_params;
2296
2297 p_params = &p_hwfn->pf_params.fcoe_pf_params;
2298
2299 if (p_params->num_cons && p_params->num_tasks) {
2300 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE,
2301 p_params->num_cons, 0);
2302
2303 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
2304 ECORE_CXT_FCOE_TID_SEG,
2305 0, /* segment type */
2306 p_params->num_tasks,
2307 true);
2308 } else {
2309 DP_INFO(p_hwfn->p_dev,
2310 "Fcoe personality used without setting params!\n");
2311 }
2312 break;
2313 }
2314 case ECORE_PCI_ISCSI:
2315 {
2316 struct ecore_iscsi_pf_params *p_params;
2317
2318 p_params = &p_hwfn->pf_params.iscsi_pf_params;
2319
2320 if (p_params->num_cons && p_params->num_tasks) {
2321 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI,
2322 p_params->num_cons, 0);
2323
2324 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI,
2325 ECORE_CXT_ISCSI_TID_SEG,
2326 0, /* segment type */
2327 p_params->num_tasks,
2328 true);
2329 } else {
2330 DP_INFO(p_hwfn->p_dev,
2331 "Iscsi personality used without setting params!\n");
2332 }
2333 break;
2334 }
2335 default:
2336 return ECORE_INVAL;
2337 }
2338
2339 return ECORE_SUCCESS;
2340 }
2341
2342 enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
2343 struct ecore_tid_mem *p_info)
2344 {
2345 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2346 u32 proto, seg, total_lines, i, shadow_line;
2347 struct ecore_ilt_client_cfg *p_cli;
2348 struct ecore_ilt_cli_blk *p_fl_seg;
2349 struct ecore_tid_seg *p_seg_info;
2350
2351 /* Verify the personality */
2352 switch (p_hwfn->hw_info.personality) {
2353 case ECORE_PCI_FCOE:
2354 proto = PROTOCOLID_FCOE;
2355 seg = ECORE_CXT_FCOE_TID_SEG;
2356 break;
2357 case ECORE_PCI_ISCSI:
2358 proto = PROTOCOLID_ISCSI;
2359 seg = ECORE_CXT_ISCSI_TID_SEG;
2360 break;
2361 default:
2362 return ECORE_INVAL;
2363 }
2364
2365 p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2366 if (!p_cli->active) {
2367 return ECORE_INVAL;
2368 }
2369
2370 p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2371 if (!p_seg_info->has_fl_mem)
2372 return ECORE_INVAL;
2373
2374 p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2375 total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
2376 p_fl_seg->real_size_in_page);
2377
2378 for (i = 0; i < total_lines; i++) {
2379 shadow_line = i + p_fl_seg->start_line -
2380 p_hwfn->p_cxt_mngr->pf_start_line;
2381 p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
2382 }
2383 p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
2384 p_fl_seg->real_size_in_page;
2385 p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
2386 p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
2387 p_info->tid_size;
2388
2389 return ECORE_SUCCESS;
2390 }
2391
2392 /* This function is very RoCE oriented, if another protocol in the future
2393 * will want this feature we'll need to modify the function to be more generic
2394 */
2395 enum _ecore_status_t
2396 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
2397 enum ecore_cxt_elem_type elem_type,
2398 u32 iid)
2399 {
2400 u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2401 struct ecore_ilt_client_cfg *p_cli;
2402 struct ecore_ilt_cli_blk *p_blk;
2403 struct ecore_ptt *p_ptt;
2404 dma_addr_t p_phys;
2405 u64 ilt_hw_entry;
2406 void *p_virt;
2407 enum _ecore_status_t rc = ECORE_SUCCESS;
2408
2409 switch (elem_type) {
2410 case ECORE_ELEM_CXT:
2411 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2412 elem_size = CONN_CXT_SIZE(p_hwfn);
2413 p_blk = &p_cli->pf_blks[CDUC_BLK];
2414 break;
2415 case ECORE_ELEM_SRQ:
2416 /* The first ILT page is not used for regular SRQs. Skip it. */
2417 iid += ecore_cxt_srqs_per_page(p_hwfn);
2418 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2419 elem_size = SRQ_CXT_SIZE;
2420 p_blk = &p_cli->pf_blks[SRQ_BLK];
2421 break;
2422 case ECORE_ELEM_XRC_SRQ:
2423 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2424 elem_size = XRC_SRQ_CXT_SIZE;
2425 p_blk = &p_cli->pf_blks[SRQ_BLK];
2426 break;
2427 case ECORE_ELEM_TASK:
2428 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2429 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2430 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2431 break;
2432 default:
2433 DP_NOTICE(p_hwfn, false,
2434 "ECORE_INVALID elem type = %d", elem_type);
2435 return ECORE_INVAL;
2436 }
2437
2438 /* Calculate line in ilt */
2439 hw_p_size = p_cli->p_size.val;
2440 elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2441 line = p_blk->start_line + (iid / elems_per_p);
2442 shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2443
2444 /* If line is already allocated, do nothing, otherwise allocate it and
2445 * write it to the PSWRQ2 registers.
2446 * This section can be run in parallel from different contexts and thus
2447 * a mutex protection is needed.
2448 */
2449 #ifdef _NTDDK_
2450 #pragma warning(suppress : 28121)
2451 #endif
2452 OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
2453
2454 if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
2455 goto out0;
2456
2457 p_ptt = ecore_ptt_acquire(p_hwfn);
2458 if (!p_ptt) {
2459 DP_NOTICE(p_hwfn, false,
2460 "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2461 rc = ECORE_TIMEOUT;
2462 goto out0;
2463 }
2464
2465 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
2466 &p_phys,
2467 p_blk->real_size_in_page);
2468 if (!p_virt) {
2469 rc = ECORE_NOMEM;
2470 goto out1;
2471 }
2472 OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
2473
2474 /* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
2475 * to compensate for a HW bug, but it is configured even if DIF is not
2476 * enabled. This is harmless and allows us to avoid a dedicated API. We
2477 * configure the field for all of the contexts on the newly allocated
2478 * page.
2479 */
2480 if (elem_type == ECORE_ELEM_TASK) {
2481 u32 elem_i;
2482 u8 *elem_start = (u8 *)p_virt;
2483 union type1_task_context *elem;
2484
2485 for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
2486 elem = (union type1_task_context *)elem_start;
2487 SET_FIELD(elem->roce_ctx.tdif_context.flags1,
2488 TDIF_TASK_CONTEXT_REF_TAG_MASK , 0xf);
2489 elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
2490 }
2491 }
2492
2493 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
2494 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
2495 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2496 p_blk->real_size_in_page;
2497
2498 /* compute absolute offset */
2499 reg_offset = PSWRQ2_REG_ILT_MEMORY +
2500 (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2501
2502 ilt_hw_entry = 0;
2503 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2504 SET_FIELD(ilt_hw_entry,
2505 ILT_ENTRY_PHY_ADDR,
2506 (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2507
2508 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2509 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2510 reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2511 OSAL_NULL /* default parameters */);
2512
2513 if (elem_type == ECORE_ELEM_CXT) {
2514 u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2515 elems_per_p;
2516
2517 /* Update the relevant register in the parser */
2518 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2519 last_cid_allocated - 1);
2520
2521 /* RoCE w/a -> we don't write to the prs search reg until first
2522 * cid is allocated. This is because the prs checks
2523 * last_cid-1 >=0 making 0 a valid value... this will cause
2524 * the a context load to occur on a RoCE packet received with
2525 * cid=0 even before context was initialized, can happen with a
2526 * stray packet from switch or a packet with crc-error
2527 */
2528
2529 if (!p_hwfn->b_rdma_enabled_in_prs) {
2530 /* Enable Rdma search */
2531 ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2532 p_hwfn->b_rdma_enabled_in_prs = true;
2533 }
2534 }
2535
2536 out1:
2537 ecore_ptt_release(p_hwfn, p_ptt);
2538 out0:
2539 OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2540
2541 return rc;
2542 }
2543
2544 /* This function is very RoCE oriented, if another protocol in the future
2545 * will want this feature we'll need to modify the function to be more generic
2546 */
2547 enum _ecore_status_t
2548 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2549 enum ecore_cxt_elem_type elem_type,
2550 u32 start_iid, u32 count)
2551 {
2552 u32 start_line, end_line, shadow_start_line, shadow_end_line;
2553 u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2554 struct ecore_ilt_client_cfg *p_cli;
2555 struct ecore_ilt_cli_blk *p_blk;
2556 u32 end_iid = start_iid + count;
2557 struct ecore_ptt *p_ptt;
2558 u64 ilt_hw_entry = 0;
2559 u32 i;
2560
2561 switch (elem_type) {
2562 case ECORE_ELEM_CXT:
2563 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2564 elem_size = CONN_CXT_SIZE(p_hwfn);
2565 p_blk = &p_cli->pf_blks[CDUC_BLK];
2566 break;
2567 case ECORE_ELEM_SRQ:
2568 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2569 elem_size = SRQ_CXT_SIZE;
2570 p_blk = &p_cli->pf_blks[SRQ_BLK];
2571 break;
2572 case ECORE_ELEM_TASK:
2573 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2574 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2575 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2576 break;
2577 default:
2578 DP_NOTICE(p_hwfn, false,
2579 "ECORE_INVALID elem type = %d", elem_type);
2580 return ECORE_INVAL;
2581 }
2582
2583 /* Calculate line in ilt */
2584 hw_p_size = p_cli->p_size.val;
2585 elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2586 start_line = p_blk->start_line + (start_iid / elems_per_p);
2587 end_line = p_blk->start_line + (end_iid / elems_per_p);
2588 if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2589 end_line--;
2590
2591 shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2592 shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2593
2594 p_ptt = ecore_ptt_acquire(p_hwfn);
2595 if (!p_ptt) {
2596 DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2597 return ECORE_TIMEOUT;
2598 }
2599
2600 for (i = shadow_start_line; i < shadow_end_line; i++) {
2601 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2602 continue;
2603
2604 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2605 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2606 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2607 p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2608
2609 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2610 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2611 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2612
2613 /* compute absolute offset */
2614 reg_offset = PSWRQ2_REG_ILT_MEMORY +
2615 ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2616 ILT_ENTRY_IN_REGS);
2617
2618 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2619 * wide-bus.
2620 */
2621 ecore_dmae_host2grc(p_hwfn, p_ptt,
2622 (u64)(osal_uintptr_t)&ilt_hw_entry,
2623 reg_offset,
2624 sizeof(ilt_hw_entry) / sizeof(u32),
2625 OSAL_NULL /* default parameters */);
2626 }
2627
2628 ecore_ptt_release(p_hwfn, p_ptt);
2629
2630 return ECORE_SUCCESS;
2631 }
2632
2633 enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
2634 u32 tid,
2635 u8 ctx_type,
2636 void **pp_task_ctx)
2637 {
2638 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2639 struct ecore_ilt_client_cfg *p_cli;
2640 struct ecore_tid_seg *p_seg_info;
2641 struct ecore_ilt_cli_blk *p_seg;
2642 u32 num_tids_per_block;
2643 u32 tid_size, ilt_idx;
2644 u32 total_lines;
2645 u32 proto, seg;
2646
2647 /* Verify the personality */
2648 switch (p_hwfn->hw_info.personality) {
2649 case ECORE_PCI_FCOE:
2650 proto = PROTOCOLID_FCOE;
2651 seg = ECORE_CXT_FCOE_TID_SEG;
2652 break;
2653 case ECORE_PCI_ISCSI:
2654 proto = PROTOCOLID_ISCSI;
2655 seg = ECORE_CXT_ISCSI_TID_SEG;
2656 break;
2657 default:
2658 return ECORE_INVAL;
2659 }
2660
2661 p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2662 if (!p_cli->active) {
2663 return ECORE_INVAL;
2664 }
2665
2666 p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2667
2668 if (ctx_type == ECORE_CTX_WORKING_MEM) {
2669 p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
2670 } else if (ctx_type == ECORE_CTX_FL_MEM) {
2671 if (!p_seg_info->has_fl_mem) {
2672 return ECORE_INVAL;
2673 }
2674 p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2675 } else {
2676 return ECORE_INVAL;
2677 }
2678 total_lines = DIV_ROUND_UP(p_seg->total_size,
2679 p_seg->real_size_in_page);
2680 tid_size = p_mngr->task_type_size[p_seg_info->type];
2681 num_tids_per_block = p_seg->real_size_in_page / tid_size;
2682
2683 if (total_lines < tid/num_tids_per_block)
2684 return ECORE_INVAL;
2685
2686 ilt_idx = tid / num_tids_per_block + p_seg->start_line -
2687 p_mngr->pf_start_line;
2688 *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
2689 (tid % num_tids_per_block) * tid_size;
2690
2691 return ECORE_SUCCESS;
2692 }
Cache object: 2769080c4da555815c6e68ac5bcbe087
|