1 /*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * File : ecore_dev.c
30 */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include "bcm_osal.h"
35 #include "reg_addr.h"
36 #include "ecore_gtt_reg_addr.h"
37 #include "ecore.h"
38 #include "ecore_chain.h"
39 #include "ecore_status.h"
40 #include "ecore_hw.h"
41 #include "ecore_rt_defs.h"
42 #include "ecore_init_ops.h"
43 #include "ecore_int.h"
44 #include "ecore_cxt.h"
45 #include "ecore_spq.h"
46 #include "ecore_init_fw_funcs.h"
47 #include "ecore_sp_commands.h"
48 #include "ecore_dev_api.h"
49 #include "ecore_sriov.h"
50 #include "ecore_vf.h"
51 #include "ecore_ll2.h"
52 #include "ecore_fcoe.h"
53 #include "ecore_iscsi.h"
54 #include "ecore_ooo.h"
55 #include "ecore_mcp.h"
56 #include "ecore_hw_defs.h"
57 #include "mcp_public.h"
58 #include "ecore_rdma.h"
59 #include "ecore_iro.h"
60 #include "nvm_cfg.h"
61 #include "ecore_dev_api.h"
62 #include "ecore_dcbx.h"
63 #include "pcics_reg_driver.h"
64 #include "ecore_l2.h"
65 #ifndef LINUX_REMOVE
66 #include "ecore_tcp_ip.h"
67 #endif
68
69 #ifdef _NTDDK_
70 #pragma warning(push)
71 #pragma warning(disable : 28167)
72 #pragma warning(disable : 28123)
73 #endif
74
75 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
76 * registers involved are not split and thus configuration is a race where
77 * some of the PFs configuration might be lost.
78 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
79 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
80 * there's more than a single compiled ecore component in system].
81 */
82 static osal_spinlock_t qm_lock;
83 static u32 qm_lock_ref_cnt;
84
85 void ecore_set_ilt_page_size(struct ecore_dev *p_dev, u8 ilt_page_size)
86 {
87 p_dev->ilt_page_size = ilt_page_size;
88 }
89
90 /******************** Doorbell Recovery *******************/
91 /* The doorbell recovery mechanism consists of a list of entries which represent
92 * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
93 * entity needs to register with the mechanism and provide the parameters
94 * describing it's doorbell, including a location where last used doorbell data
95 * can be found. The doorbell execute function will traverse the list and
96 * doorbell all of the registered entries.
97 */
98 struct ecore_db_recovery_entry {
99 osal_list_entry_t list_entry;
100 void OSAL_IOMEM *db_addr;
101 void *db_data;
102 enum ecore_db_rec_width db_width;
103 enum ecore_db_rec_space db_space;
104 u8 hwfn_idx;
105 };
106
107 /* display a single doorbell recovery entry */
108 static void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
109 struct ecore_db_recovery_entry *db_entry,
110 char *action)
111 {
112 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
113 action, db_entry, db_entry->db_addr, db_entry->db_data,
114 db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
115 db_entry->db_space == DB_REC_USER ? "user" : "kernel",
116 db_entry->hwfn_idx);
117 }
118
119 /* doorbell address sanity (address within doorbell bar range) */
120 static bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
121 void *db_data)
122 {
123 /* make sure doorbell address is within the doorbell bar */
124 if (db_addr < p_dev->doorbells || (u8 *)db_addr >
125 (u8 *)p_dev->doorbells + p_dev->db_size) {
126 OSAL_WARN(true,
127 "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
128 db_addr, p_dev->doorbells,
129 (u8 *)p_dev->doorbells + p_dev->db_size);
130 return false;
131 }
132
133 /* make sure doorbell data pointer is not null */
134 if (!db_data) {
135 OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
136 return false;
137 }
138
139 return true;
140 }
141
142 /* find hwfn according to the doorbell address */
143 static struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
144 void OSAL_IOMEM *db_addr)
145 {
146 struct ecore_hwfn *p_hwfn;
147
148 /* in CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
149 if (ECORE_IS_CMT(p_dev))
150 p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
151 &p_dev->hwfns[0] : &p_dev->hwfns[1];
152 else
153 p_hwfn = ECORE_LEADING_HWFN(p_dev);
154
155 return p_hwfn;
156 }
157
158 /* add a new entry to the doorbell recovery mechanism */
159 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
160 void OSAL_IOMEM *db_addr,
161 void *db_data,
162 enum ecore_db_rec_width db_width,
163 enum ecore_db_rec_space db_space)
164 {
165 struct ecore_db_recovery_entry *db_entry;
166 struct ecore_hwfn *p_hwfn;
167
168 /* shortcircuit VFs, for now */
169 if (IS_VF(p_dev)) {
170 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
171 return ECORE_SUCCESS;
172 }
173
174 /* sanitize doorbell address */
175 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
176 return ECORE_INVAL;
177
178 /* obtain hwfn from doorbell address */
179 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
180
181 /* create entry */
182 db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
183 if (!db_entry) {
184 DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
185 return ECORE_NOMEM;
186 }
187
188 /* populate entry */
189 db_entry->db_addr = db_addr;
190 db_entry->db_data = db_data;
191 db_entry->db_width = db_width;
192 db_entry->db_space = db_space;
193 db_entry->hwfn_idx = p_hwfn->my_id;
194
195 /* display */
196 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
197
198 /* protect the list */
199 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
200 OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
201 &p_hwfn->db_recovery_info.list);
202 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
203
204 return ECORE_SUCCESS;
205 }
206
207 /* remove an entry from the doorbell recovery mechanism */
208 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
209 void OSAL_IOMEM *db_addr,
210 void *db_data)
211 {
212 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
213 enum _ecore_status_t rc = ECORE_INVAL;
214 struct ecore_hwfn *p_hwfn;
215
216 /* shortcircuit VFs, for now */
217 if (IS_VF(p_dev)) {
218 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
219 return ECORE_SUCCESS;
220 }
221
222 /* sanitize doorbell address */
223 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
224 return ECORE_INVAL;
225
226 /* obtain hwfn from doorbell address */
227 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
228
229 /* protect the list */
230 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
231 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
232 &p_hwfn->db_recovery_info.list,
233 list_entry,
234 struct ecore_db_recovery_entry) {
235 /* search according to db_data addr since db_addr is not unique (roce) */
236 if (db_entry->db_data == db_data) {
237 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
238 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
239 &p_hwfn->db_recovery_info.list);
240 rc = ECORE_SUCCESS;
241 break;
242 }
243 }
244
245 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
246
247 if (rc == ECORE_INVAL) {
248 /*OSAL_WARN(true,*/
249 DP_NOTICE(p_hwfn, false,
250 "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
251 db_data, db_addr);
252 } else
253 OSAL_FREE(p_dev, db_entry);
254
255 return rc;
256 }
257
258 /* initialize the doorbell recovery mechanism */
259 static enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
260 {
261 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
262
263 /* make sure db_size was set in p_dev */
264 if (!p_hwfn->p_dev->db_size) {
265 DP_ERR(p_hwfn->p_dev, "db_size not set\n");
266 return ECORE_INVAL;
267 }
268
269 OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
270 #ifdef CONFIG_ECORE_LOCK_ALLOC
271 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock))
272 return ECORE_NOMEM;
273 #endif
274 OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
275 p_hwfn->db_recovery_info.db_recovery_counter = 0;
276
277 return ECORE_SUCCESS;
278 }
279
280 /* destroy the doorbell recovery mechanism */
281 static void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
282 {
283 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
284
285 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
286 if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
287 DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
288 while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
289 db_entry = OSAL_LIST_FIRST_ENTRY(&p_hwfn->db_recovery_info.list,
290 struct ecore_db_recovery_entry,
291 list_entry);
292 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
293 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
294 &p_hwfn->db_recovery_info.list);
295 OSAL_FREE(p_hwfn->p_dev, db_entry);
296 }
297 }
298 #ifdef CONFIG_ECORE_LOCK_ALLOC
299 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
300 #endif
301 p_hwfn->db_recovery_info.db_recovery_counter = 0;
302 }
303
304 /* print the content of the doorbell recovery mechanism */
305 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
306 {
307 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
308
309 DP_NOTICE(p_hwfn, false,
310 "Dispalying doorbell recovery database. Counter was %d\n",
311 p_hwfn->db_recovery_info.db_recovery_counter);
312
313 /* protect the list */
314 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
315 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
316 &p_hwfn->db_recovery_info.list,
317 list_entry,
318 struct ecore_db_recovery_entry) {
319 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
320 }
321
322 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
323 }
324
325 /* ring the doorbell of a single doorbell recovery entry */
326 static void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
327 struct ecore_db_recovery_entry *db_entry,
328 enum ecore_db_rec_exec db_exec)
329 {
330 if (db_exec != DB_REC_ONCE) {
331 /* Print according to width */
332 if (db_entry->db_width == DB_REC_WIDTH_32B)
333 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
334 "%s doorbell address %p data %x\n",
335 db_exec == DB_REC_DRY_RUN ?
336 "would have rung" : "ringing",
337 db_entry->db_addr,
338 *(u32 *)db_entry->db_data);
339 else
340 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
341 "%s doorbell address %p data %llx\n",
342 db_exec == DB_REC_DRY_RUN ?
343 "would have rung" : "ringing",
344 db_entry->db_addr,
345 (unsigned long long)*(u64 *)(db_entry->db_data));
346 }
347
348 /* Sanity */
349 if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
350 db_entry->db_data))
351 return;
352
353 /* Flush the write combined buffer. Since there are multiple doorbelling
354 * entities using the same address, if we don't flush, a transaction
355 * could be lost.
356 */
357 OSAL_WMB(p_hwfn->p_dev);
358
359 /* Ring the doorbell */
360 if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
361 if (db_entry->db_width == DB_REC_WIDTH_32B)
362 DIRECT_REG_WR(p_hwfn, db_entry->db_addr, *(u32 *)(db_entry->db_data));
363 else
364 DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, *(u64 *)(db_entry->db_data));
365 }
366
367 /* Flush the write combined buffer. Next doorbell may come from a
368 * different entity to the same address...
369 */
370 OSAL_WMB(p_hwfn->p_dev);
371 }
372
373 /* traverse the doorbell recovery entry list and ring all the doorbells */
374 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
375 enum ecore_db_rec_exec db_exec)
376 {
377 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
378
379 if (db_exec != DB_REC_ONCE) {
380 DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
381 p_hwfn->db_recovery_info.db_recovery_counter);
382
383 /* track amount of times recovery was executed */
384 p_hwfn->db_recovery_info.db_recovery_counter++;
385 }
386
387 /* protect the list */
388 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
389 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
390 &p_hwfn->db_recovery_info.list,
391 list_entry,
392 struct ecore_db_recovery_entry) {
393 ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
394 if (db_exec == DB_REC_ONCE)
395 break;
396 }
397
398 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
399 }
400 /******************** Doorbell Recovery end ****************/
401
402 /********************************** NIG LLH ***********************************/
403
404 enum ecore_llh_filter_type {
405 ECORE_LLH_FILTER_TYPE_MAC,
406 ECORE_LLH_FILTER_TYPE_PROTOCOL,
407 };
408
409 struct ecore_llh_mac_filter {
410 u8 addr[ETH_ALEN];
411 };
412
413 struct ecore_llh_protocol_filter {
414 enum ecore_llh_prot_filter_type_t type;
415 u16 source_port_or_eth_type;
416 u16 dest_port;
417 };
418
419 union ecore_llh_filter {
420 struct ecore_llh_mac_filter mac;
421 struct ecore_llh_protocol_filter protocol;
422 };
423
424 struct ecore_llh_filter_info {
425 bool b_enabled;
426 u32 ref_cnt;
427 enum ecore_llh_filter_type type;
428 union ecore_llh_filter filter;
429 };
430
431 struct ecore_llh_info {
432 /* Number of LLH filters banks */
433 u8 num_ppfid;
434
435 #define MAX_NUM_PPFID 8
436 u8 ppfid_array[MAX_NUM_PPFID];
437
438 /* Array of filters arrays:
439 * "num_ppfid" elements of filters banks, where each is an array of
440 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
441 */
442 struct ecore_llh_filter_info **pp_filters;
443 };
444
445 static void ecore_llh_free(struct ecore_dev *p_dev)
446 {
447 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
448 u32 i;
449
450 if (p_llh_info != OSAL_NULL) {
451 if (p_llh_info->pp_filters != OSAL_NULL) {
452 for (i = 0; i < p_llh_info->num_ppfid; i++)
453 OSAL_FREE(p_dev, p_llh_info->pp_filters[i]);
454 }
455
456 OSAL_FREE(p_dev, p_llh_info->pp_filters);
457 }
458
459 OSAL_FREE(p_dev, p_llh_info);
460 p_dev->p_llh_info = OSAL_NULL;
461 }
462
463 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev)
464 {
465 struct ecore_llh_info *p_llh_info;
466 u32 size; u8 i;
467
468 p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info));
469 if (!p_llh_info)
470 return ECORE_NOMEM;
471 p_dev->p_llh_info = p_llh_info;
472
473 for (i = 0; i < MAX_NUM_PPFID; i++) {
474 if (!(p_dev->ppfid_bitmap & (0x1 << i)))
475 continue;
476
477 p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
478 DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n",
479 p_llh_info->num_ppfid, i);
480 p_llh_info->num_ppfid++;
481 }
482
483 size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
484 p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size);
485 if (!p_llh_info->pp_filters)
486 return ECORE_NOMEM;
487
488 size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
489 sizeof(**p_llh_info->pp_filters);
490 for (i = 0; i < p_llh_info->num_ppfid; i++) {
491 p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL,
492 size);
493 if (!p_llh_info->pp_filters[i])
494 return ECORE_NOMEM;
495 }
496
497 return ECORE_SUCCESS;
498 }
499
500 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev,
501 u8 ppfid, u8 filter_idx,
502 const char *action)
503 {
504 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
505
506 if (ppfid >= p_llh_info->num_ppfid) {
507 DP_NOTICE(p_dev, false,
508 "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
509 action, ppfid, p_llh_info->num_ppfid);
510 return ECORE_INVAL;
511 }
512
513 if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
514 DP_NOTICE(p_dev, false,
515 "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
516 action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
517 return ECORE_INVAL;
518 }
519
520 return ECORE_SUCCESS;
521 }
522
523 #define ECORE_LLH_INVALID_FILTER_IDX 0xff
524
525 static enum _ecore_status_t
526 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid,
527 union ecore_llh_filter *p_filter,
528 u8 *p_filter_idx)
529 {
530 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
531 struct ecore_llh_filter_info *p_filters;
532 enum _ecore_status_t rc;
533 u8 i;
534
535 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search");
536 if (rc != ECORE_SUCCESS)
537 return rc;
538
539 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
540
541 p_filters = p_llh_info->pp_filters[ppfid];
542 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
543 if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter,
544 sizeof(*p_filter))) {
545 *p_filter_idx = i;
546 break;
547 }
548 }
549
550 return ECORE_SUCCESS;
551 }
552
553 static enum _ecore_status_t
554 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid,
555 u8 *p_filter_idx)
556 {
557 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
558 struct ecore_llh_filter_info *p_filters;
559 enum _ecore_status_t rc;
560 u8 i;
561
562 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx");
563 if (rc != ECORE_SUCCESS)
564 return rc;
565
566 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
567
568 p_filters = p_llh_info->pp_filters[ppfid];
569 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
570 if (!p_filters[i].b_enabled) {
571 *p_filter_idx = i;
572 break;
573 }
574 }
575
576 return ECORE_SUCCESS;
577 }
578
579 static enum _ecore_status_t
580 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx,
581 enum ecore_llh_filter_type type,
582 union ecore_llh_filter *p_filter, u32 *p_ref_cnt)
583 {
584 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
585 struct ecore_llh_filter_info *p_filters;
586 enum _ecore_status_t rc;
587
588 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add");
589 if (rc != ECORE_SUCCESS)
590 return rc;
591
592 p_filters = p_llh_info->pp_filters[ppfid];
593 if (!p_filters[filter_idx].ref_cnt) {
594 p_filters[filter_idx].b_enabled = true;
595 p_filters[filter_idx].type = type;
596 OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter,
597 sizeof(p_filters[filter_idx].filter));
598 }
599
600 *p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
601
602 return ECORE_SUCCESS;
603 }
604
605 static enum _ecore_status_t
606 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid,
607 enum ecore_llh_filter_type type,
608 union ecore_llh_filter *p_filter,
609 u8 *p_filter_idx, u32 *p_ref_cnt)
610 {
611 enum _ecore_status_t rc;
612
613 /* Check if the same filter already exist */
614 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
615 p_filter_idx);
616 if (rc != ECORE_SUCCESS)
617 return rc;
618
619 /* Find a new entry in case of a new filter */
620 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
621 rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx);
622 if (rc != ECORE_SUCCESS)
623 return rc;
624 }
625
626 /* No free entry was found */
627 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
628 DP_NOTICE(p_dev, false,
629 "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
630 ppfid);
631 return ECORE_NORESOURCES;
632 }
633
634 return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type,
635 p_filter, p_ref_cnt);
636 }
637
638 static enum _ecore_status_t
639 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
640 u8 filter_idx, u32 *p_ref_cnt)
641 {
642 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
643 struct ecore_llh_filter_info *p_filters;
644 enum _ecore_status_t rc;
645
646 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove");
647 if (rc != ECORE_SUCCESS)
648 return rc;
649
650 p_filters = p_llh_info->pp_filters[ppfid];
651 if (!p_filters[filter_idx].ref_cnt) {
652 DP_NOTICE(p_dev, false,
653 "LLH shadow: trying to remove a filter with ref_cnt=0\n");
654 return ECORE_INVAL;
655 }
656
657 *p_ref_cnt = --p_filters[filter_idx].ref_cnt;
658 if (!p_filters[filter_idx].ref_cnt)
659 OSAL_MEM_ZERO(&p_filters[filter_idx],
660 sizeof(p_filters[filter_idx]));
661
662 return ECORE_SUCCESS;
663 }
664
665 static enum _ecore_status_t
666 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
667 union ecore_llh_filter *p_filter,
668 u8 *p_filter_idx, u32 *p_ref_cnt)
669 {
670 enum _ecore_status_t rc;
671
672 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
673 p_filter_idx);
674 if (rc != ECORE_SUCCESS)
675 return rc;
676
677 /* No matching filter was found */
678 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
679 DP_NOTICE(p_dev, false,
680 "Failed to find a filter in the LLH shadow\n");
681 return ECORE_INVAL;
682 }
683
684 return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx,
685 p_ref_cnt);
686 }
687
688 static enum _ecore_status_t
689 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid)
690 {
691 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
692 struct ecore_llh_filter_info *p_filters;
693 enum _ecore_status_t rc;
694
695 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all");
696 if (rc != ECORE_SUCCESS)
697 return rc;
698
699 p_filters = p_llh_info->pp_filters[ppfid];
700 OSAL_MEM_ZERO(p_filters,
701 NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters));
702
703 return ECORE_SUCCESS;
704 }
705
706 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev,
707 u8 rel_ppfid, u8 *p_abs_ppfid)
708 {
709 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
710
711 if (rel_ppfid >= p_llh_info->num_ppfid) {
712 DP_NOTICE(p_dev, false,
713 "rel_ppfid %d is not valid, available indices are 0..%hhd\n",
714 rel_ppfid, (u8)(p_llh_info->num_ppfid - 1));
715 return ECORE_INVAL;
716 }
717
718 *p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid];
719
720 return ECORE_SUCCESS;
721 }
722
723 static enum _ecore_status_t
724 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
725 {
726 struct ecore_dev *p_dev = p_hwfn->p_dev;
727 enum ecore_eng eng;
728 u8 ppfid;
729 enum _ecore_status_t rc;
730
731 rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt);
732 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
733 DP_NOTICE(p_hwfn, false,
734 "Failed to get the engine affinity configuration\n");
735 return rc;
736 }
737
738 /* RoCE PF is bound to a single engine */
739 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
740 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
741 rc = ecore_llh_set_roce_affinity(p_dev, eng);
742 if (rc != ECORE_SUCCESS) {
743 DP_NOTICE(p_dev, false,
744 "Failed to set the RoCE engine affinity\n");
745 return rc;
746 }
747
748 DP_VERBOSE(p_dev, ECORE_MSG_SP,
749 "LLH: Set the engine affinity of RoCE packets as %d\n",
750 eng);
751 }
752
753 /* Storage PF is bound to a single engine while L2 PF uses both */
754 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
755 ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
756 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
757 else /* L2_PERSONALITY */
758 eng = ECORE_BOTH_ENG;
759
760 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
761 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
762 if (rc != ECORE_SUCCESS) {
763 DP_NOTICE(p_dev, false,
764 "Failed to set the engine affinity of ppfid %d\n",
765 ppfid);
766 return rc;
767 }
768 }
769
770 DP_VERBOSE(p_dev, ECORE_MSG_SP,
771 "LLH: Set the engine affinity of non-RoCE packets as %d\n",
772 eng);
773
774 return ECORE_SUCCESS;
775 }
776
777 static enum _ecore_status_t
778 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
779 bool avoid_eng_affin)
780 {
781 struct ecore_dev *p_dev = p_hwfn->p_dev;
782 enum _ecore_status_t rc;
783
784 /* Backwards compatible mode:
785 * - RoCE packets - Use engine 0.
786 * - Non-RoCE packets - Use connection based classification for L2 PFs,
787 * and engine 0 otherwise.
788 */
789 if (avoid_eng_affin) {
790 enum ecore_eng eng;
791 u8 ppfid;
792
793 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
794 eng = ECORE_ENG0;
795 rc = ecore_llh_set_roce_affinity(p_dev, eng);
796 if (rc != ECORE_SUCCESS) {
797 DP_NOTICE(p_dev, false,
798 "Failed to set the RoCE engine affinity\n");
799 return rc;
800 }
801
802 DP_VERBOSE(p_dev, ECORE_MSG_SP,
803 "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n",
804 eng);
805 }
806
807 eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
808 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0
809 : ECORE_BOTH_ENG;
810 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
811 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
812 if (rc != ECORE_SUCCESS) {
813 DP_NOTICE(p_dev, false,
814 "Failed to set the engine affinity of ppfid %d\n",
815 ppfid);
816 return rc;
817 }
818 }
819
820 DP_VERBOSE(p_dev, ECORE_MSG_SP,
821 "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n",
822 eng);
823
824 return ECORE_SUCCESS;
825 }
826
827 return __ecore_llh_set_engine_affin(p_hwfn, p_ptt);
828 }
829
830 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn,
831 struct ecore_ptt *p_ptt,
832 bool avoid_eng_affin)
833 {
834 struct ecore_dev *p_dev = p_hwfn->p_dev;
835 u8 ppfid, abs_ppfid;
836 enum _ecore_status_t rc;
837
838 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
839 u32 addr;
840
841 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
842 if (rc != ECORE_SUCCESS)
843 return rc;
844
845 addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
846 ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
847 }
848
849 if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
850 !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) {
851 rc = ecore_llh_add_mac_filter(p_dev, 0,
852 p_hwfn->hw_info.hw_mac_addr);
853 if (rc != ECORE_SUCCESS)
854 DP_NOTICE(p_dev, false,
855 "Failed to add an LLH filter with the primary MAC\n");
856 }
857
858 if (ECORE_IS_CMT(p_dev)) {
859 rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin);
860 if (rc != ECORE_SUCCESS)
861 return rc;
862 }
863
864 return ECORE_SUCCESS;
865 }
866
867 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev)
868 {
869 return p_dev->p_llh_info->num_ppfid;
870 }
871
872 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev)
873 {
874 return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0;
875 }
876
877 /* TBD - should be removed when these definitions are available in reg_addr.h */
878 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK 0x3
879 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT 0
880 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK 0x3
881 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT 2
882
883 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev,
884 u8 ppfid, enum ecore_eng eng)
885 {
886 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
887 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
888 u32 addr, val, eng_sel;
889 enum _ecore_status_t rc = ECORE_SUCCESS;
890 u8 abs_ppfid;
891
892 if (p_ptt == OSAL_NULL)
893 return ECORE_AGAIN;
894
895 if (!ECORE_IS_CMT(p_dev))
896 goto out;
897
898 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
899 if (rc != ECORE_SUCCESS)
900 goto out;
901
902 switch (eng) {
903 case ECORE_ENG0:
904 eng_sel = 0;
905 break;
906 case ECORE_ENG1:
907 eng_sel = 1;
908 break;
909 case ECORE_BOTH_ENG:
910 eng_sel = 2;
911 break;
912 default:
913 DP_NOTICE(p_dev, false,
914 "Invalid affinity value for ppfid [%d]\n", eng);
915 rc = ECORE_INVAL;
916 goto out;
917 }
918
919 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
920 val = ecore_rd(p_hwfn, p_ptt, addr);
921 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
922 ecore_wr(p_hwfn, p_ptt, addr, val);
923
924 /* The iWARP affinity is set as the affinity of ppfid 0 */
925 if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn))
926 p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0;
927 out:
928 ecore_ptt_release(p_hwfn, p_ptt);
929
930 return rc;
931 }
932
933 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev,
934 enum ecore_eng eng)
935 {
936 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
937 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
938 u32 addr, val, eng_sel;
939 enum _ecore_status_t rc = ECORE_SUCCESS;
940 u8 ppfid, abs_ppfid;
941
942 if (p_ptt == OSAL_NULL)
943 return ECORE_AGAIN;
944
945 if (!ECORE_IS_CMT(p_dev))
946 goto out;
947
948 switch (eng) {
949 case ECORE_ENG0:
950 eng_sel = 0;
951 break;
952 case ECORE_ENG1:
953 eng_sel = 1;
954 break;
955 case ECORE_BOTH_ENG:
956 eng_sel = 2;
957 ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
958 0xf /* QP bit 15 */);
959 break;
960 default:
961 DP_NOTICE(p_dev, false,
962 "Invalid affinity value for RoCE [%d]\n", eng);
963 rc = ECORE_INVAL;
964 goto out;
965 }
966
967 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
968 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
969 if (rc != ECORE_SUCCESS)
970 goto out;
971
972 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
973 val = ecore_rd(p_hwfn, p_ptt, addr);
974 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
975 ecore_wr(p_hwfn, p_ptt, addr, val);
976 }
977 out:
978 ecore_ptt_release(p_hwfn, p_ptt);
979
980 return rc;
981 }
982
983 struct ecore_llh_filter_e4_details {
984 u64 value;
985 u32 mode;
986 u32 protocol_type;
987 u32 hdr_sel;
988 u32 enable;
989 };
990
991 static enum _ecore_status_t
992 ecore_llh_access_filter_e4(struct ecore_hwfn *p_hwfn,
993 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx,
994 struct ecore_llh_filter_e4_details *p_details,
995 bool b_write_access)
996 {
997 u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
998 struct ecore_dmae_params params;
999 enum _ecore_status_t rc;
1000 u32 addr;
1001
1002 /* The NIG/LLH registers that are accessed in this function have only 16
1003 * rows which are exposed to a PF. I.e. only the 16 filters of its
1004 * default ppfid
1005 * Accessing filters of other ppfids requires pretending to other PFs,
1006 * and thus the usage of the ecore_ppfid_rd/wr() functions.
1007 */
1008
1009 /* Filter enable - should be done first when removing a filter */
1010 if (b_write_access && !p_details->enable) {
1011 addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1012 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1013 p_details->enable);
1014 }
1015
1016 /* Filter value */
1017 addr = NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 + 2 * filter_idx * 0x4;
1018 OSAL_MEMSET(¶ms, 0, sizeof(params));
1019
1020 if (b_write_access) {
1021 params.flags = ECORE_DMAE_FLAG_PF_DST;
1022 params.dst_pfid = pfid;
1023 rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
1024 (u64)(osal_uintptr_t)&p_details->value,
1025 addr, 2 /* size_in_dwords */, ¶ms);
1026 } else {
1027 params.flags = ECORE_DMAE_FLAG_PF_SRC |
1028 ECORE_DMAE_FLAG_COMPLETION_DST;
1029 params.src_pfid = pfid;
1030 rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr,
1031 (u64)(osal_uintptr_t)&p_details->value,
1032 2 /* size_in_dwords */, ¶ms);
1033 }
1034
1035 if (rc != ECORE_SUCCESS)
1036 return rc;
1037
1038 /* Filter mode */
1039 addr = NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 + filter_idx * 0x4;
1040 if (b_write_access)
1041 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode);
1042 else
1043 p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1044 addr);
1045
1046 /* Filter protocol type */
1047 addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 + filter_idx * 0x4;
1048 if (b_write_access)
1049 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1050 p_details->protocol_type);
1051 else
1052 p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt,
1053 abs_ppfid, addr);
1054
1055 /* Filter header select */
1056 addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL_BB_K2 + filter_idx * 0x4;
1057 if (b_write_access)
1058 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1059 p_details->hdr_sel);
1060 else
1061 p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1062 addr);
1063
1064 /* Filter enable - should be done last when adding a filter */
1065 if (!b_write_access || p_details->enable) {
1066 addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1067 if (b_write_access)
1068 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1069 p_details->enable);
1070 else
1071 p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt,
1072 abs_ppfid, addr);
1073 }
1074
1075 return ECORE_SUCCESS;
1076 }
1077
1078 static enum _ecore_status_t
1079 ecore_llh_add_filter_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1080 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type,
1081 u32 high, u32 low)
1082 {
1083 struct ecore_llh_filter_e4_details filter_details;
1084
1085 filter_details.enable = 1;
1086 filter_details.value = ((u64)high << 32) | low;
1087 filter_details.hdr_sel = 0;
1088 filter_details.protocol_type = filter_prot_type;
1089 filter_details.mode = filter_prot_type ?
1090 1 : /* protocol-based classification */
1091 0; /* MAC-address based classification */
1092
1093 return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1094 &filter_details,
1095 true /* write access */);
1096 }
1097
1098 static enum _ecore_status_t
1099 ecore_llh_remove_filter_e4(struct ecore_hwfn *p_hwfn,
1100 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
1101 {
1102 struct ecore_llh_filter_e4_details filter_details;
1103
1104 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1105
1106 return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1107 &filter_details,
1108 true /* write access */);
1109 }
1110
1111 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1112 * Should be removed when the function is implemented.
1113 */
1114 static enum _ecore_status_t
1115 ecore_llh_add_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1116 struct ecore_ptt OSAL_UNUSED *p_ptt,
1117 u8 OSAL_UNUSED abs_ppfid, u8 OSAL_UNUSED filter_idx,
1118 u8 OSAL_UNUSED filter_prot_type, u32 OSAL_UNUSED high,
1119 u32 OSAL_UNUSED low)
1120 {
1121 ECORE_E5_MISSING_CODE;
1122
1123 return ECORE_NOTIMPL;
1124 }
1125
1126 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1127 * Should be removed when the function is implemented.
1128 */
1129 static enum _ecore_status_t
1130 ecore_llh_remove_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1131 struct ecore_ptt OSAL_UNUSED *p_ptt,
1132 u8 OSAL_UNUSED abs_ppfid,
1133 u8 OSAL_UNUSED filter_idx)
1134 {
1135 ECORE_E5_MISSING_CODE;
1136
1137 return ECORE_NOTIMPL;
1138 }
1139
1140 static enum _ecore_status_t
1141 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1142 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high,
1143 u32 low)
1144 {
1145 if (ECORE_IS_E4(p_hwfn->p_dev))
1146 return ecore_llh_add_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1147 filter_idx, filter_prot_type,
1148 high, low);
1149 else /* E5 */
1150 return ecore_llh_add_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1151 filter_idx, filter_prot_type,
1152 high, low);
1153 }
1154
1155 static enum _ecore_status_t
1156 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1157 u8 abs_ppfid, u8 filter_idx)
1158 {
1159 if (ECORE_IS_E4(p_hwfn->p_dev))
1160 return ecore_llh_remove_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1161 filter_idx);
1162 else /* E5 */
1163 return ecore_llh_remove_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1164 filter_idx);
1165 }
1166
1167 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1168 u8 mac_addr[ETH_ALEN])
1169 {
1170 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1171 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1172 union ecore_llh_filter filter;
1173 u8 filter_idx, abs_ppfid;
1174 u32 high, low, ref_cnt;
1175 enum _ecore_status_t rc = ECORE_SUCCESS;
1176
1177 if (p_ptt == OSAL_NULL)
1178 return ECORE_AGAIN;
1179
1180 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1181 goto out;
1182
1183 OSAL_MEM_ZERO(&filter, sizeof(filter));
1184 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1185 rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1186 ECORE_LLH_FILTER_TYPE_MAC,
1187 &filter, &filter_idx, &ref_cnt);
1188 if (rc != ECORE_SUCCESS)
1189 goto err;
1190
1191 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1192 if (rc != ECORE_SUCCESS)
1193 goto err;
1194
1195 /* Configure the LLH only in case of a new the filter */
1196 if (ref_cnt == 1) {
1197 high = mac_addr[1] | (mac_addr[0] << 8);
1198 low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1199 (mac_addr[2] << 24);
1200 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1201 0, high, low);
1202 if (rc != ECORE_SUCCESS)
1203 goto err;
1204 }
1205
1206 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1207 "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1208 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1209 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1210 ref_cnt);
1211
1212 goto out;
1213
1214 err:
1215 DP_NOTICE(p_dev, false,
1216 "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n",
1217 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1218 mac_addr[4], mac_addr[5], ppfid);
1219 out:
1220 ecore_ptt_release(p_hwfn, p_ptt);
1221
1222 return rc;
1223 }
1224
1225 static enum _ecore_status_t
1226 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev,
1227 enum ecore_llh_prot_filter_type_t type,
1228 u16 source_port_or_eth_type, u16 dest_port,
1229 u8 *str, osal_size_t str_len)
1230 {
1231 switch (type) {
1232 case ECORE_LLH_FILTER_ETHERTYPE:
1233 OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x",
1234 source_port_or_eth_type);
1235 break;
1236 case ECORE_LLH_FILTER_TCP_SRC_PORT:
1237 OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x",
1238 source_port_or_eth_type);
1239 break;
1240 case ECORE_LLH_FILTER_UDP_SRC_PORT:
1241 OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x",
1242 source_port_or_eth_type);
1243 break;
1244 case ECORE_LLH_FILTER_TCP_DEST_PORT:
1245 OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port);
1246 break;
1247 case ECORE_LLH_FILTER_UDP_DEST_PORT:
1248 OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port);
1249 break;
1250 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1251 OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1252 source_port_or_eth_type, dest_port);
1253 break;
1254 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1255 OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1256 source_port_or_eth_type, dest_port);
1257 break;
1258 default:
1259 DP_NOTICE(p_dev, true,
1260 "Non valid LLH protocol filter type %d\n", type);
1261 return ECORE_INVAL;
1262 }
1263
1264 return ECORE_SUCCESS;
1265 }
1266
1267 static enum _ecore_status_t
1268 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev,
1269 enum ecore_llh_prot_filter_type_t type,
1270 u16 source_port_or_eth_type, u16 dest_port,
1271 u32 *p_high, u32 *p_low)
1272 {
1273 *p_high = 0;
1274 *p_low = 0;
1275
1276 switch (type) {
1277 case ECORE_LLH_FILTER_ETHERTYPE:
1278 *p_high = source_port_or_eth_type;
1279 break;
1280 case ECORE_LLH_FILTER_TCP_SRC_PORT:
1281 case ECORE_LLH_FILTER_UDP_SRC_PORT:
1282 *p_low = source_port_or_eth_type << 16;
1283 break;
1284 case ECORE_LLH_FILTER_TCP_DEST_PORT:
1285 case ECORE_LLH_FILTER_UDP_DEST_PORT:
1286 *p_low = dest_port;
1287 break;
1288 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1289 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1290 *p_low = (source_port_or_eth_type << 16) | dest_port;
1291 break;
1292 default:
1293 DP_NOTICE(p_dev, true,
1294 "Non valid LLH protocol filter type %d\n", type);
1295 return ECORE_INVAL;
1296 }
1297
1298 return ECORE_SUCCESS;
1299 }
1300
1301 enum _ecore_status_t
1302 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1303 enum ecore_llh_prot_filter_type_t type,
1304 u16 source_port_or_eth_type, u16 dest_port)
1305 {
1306 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1307 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1308 u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1309 union ecore_llh_filter filter;
1310 u32 high, low, ref_cnt;
1311 enum _ecore_status_t rc = ECORE_SUCCESS;
1312
1313 if (p_ptt == OSAL_NULL)
1314 return ECORE_AGAIN;
1315
1316 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1317 goto out;
1318
1319 rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1320 source_port_or_eth_type,
1321 dest_port, str, sizeof(str));
1322 if (rc != ECORE_SUCCESS)
1323 goto err;
1324
1325 OSAL_MEM_ZERO(&filter, sizeof(filter));
1326 filter.protocol.type = type;
1327 filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1328 filter.protocol.dest_port = dest_port;
1329 rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1330 ECORE_LLH_FILTER_TYPE_PROTOCOL,
1331 &filter, &filter_idx, &ref_cnt);
1332 if (rc != ECORE_SUCCESS)
1333 goto err;
1334
1335 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1336 if (rc != ECORE_SUCCESS)
1337 goto err;
1338
1339 /* Configure the LLH only in case of a new the filter */
1340 if (ref_cnt == 1) {
1341 rc = ecore_llh_protocol_filter_to_hilo(p_dev, type,
1342 source_port_or_eth_type,
1343 dest_port, &high, &low);
1344 if (rc != ECORE_SUCCESS)
1345 goto err;
1346
1347 type_bitmap = 0x1 << type;
1348 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1349 type_bitmap, high, low);
1350 if (rc != ECORE_SUCCESS)
1351 goto err;
1352 }
1353
1354 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1355 "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1356 str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1357
1358 goto out;
1359
1360 err:
1361 DP_NOTICE(p_hwfn, false,
1362 "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1363 str, ppfid);
1364 out:
1365 ecore_ptt_release(p_hwfn, p_ptt);
1366
1367 return rc;
1368 }
1369
1370 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1371 u8 mac_addr[ETH_ALEN])
1372 {
1373 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1374 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1375 union ecore_llh_filter filter;
1376 u8 filter_idx, abs_ppfid;
1377 enum _ecore_status_t rc = ECORE_SUCCESS;
1378 u32 ref_cnt;
1379
1380 if (p_ptt == OSAL_NULL)
1381 return;
1382
1383 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1384 goto out;
1385
1386 OSAL_MEM_ZERO(&filter, sizeof(filter));
1387 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1388 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1389 &ref_cnt);
1390 if (rc != ECORE_SUCCESS)
1391 goto err;
1392
1393 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1394 if (rc != ECORE_SUCCESS)
1395 goto err;
1396
1397 /* Remove from the LLH in case the filter is not in use */
1398 if (!ref_cnt) {
1399 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1400 filter_idx);
1401 if (rc != ECORE_SUCCESS)
1402 goto err;
1403 }
1404
1405 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1406 "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1407 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1408 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1409 ref_cnt);
1410
1411 goto out;
1412
1413 err:
1414 DP_NOTICE(p_dev, false,
1415 "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n",
1416 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1417 mac_addr[4], mac_addr[5], ppfid);
1418 out:
1419 ecore_ptt_release(p_hwfn, p_ptt);
1420 }
1421
1422 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1423 enum ecore_llh_prot_filter_type_t type,
1424 u16 source_port_or_eth_type,
1425 u16 dest_port)
1426 {
1427 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1428 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1429 u8 filter_idx, abs_ppfid, str[32];
1430 union ecore_llh_filter filter;
1431 enum _ecore_status_t rc = ECORE_SUCCESS;
1432 u32 ref_cnt;
1433
1434 if (p_ptt == OSAL_NULL)
1435 return;
1436
1437 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1438 goto out;
1439
1440 rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1441 source_port_or_eth_type,
1442 dest_port, str, sizeof(str));
1443 if (rc != ECORE_SUCCESS)
1444 goto err;
1445
1446 OSAL_MEM_ZERO(&filter, sizeof(filter));
1447 filter.protocol.type = type;
1448 filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1449 filter.protocol.dest_port = dest_port;
1450 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1451 &ref_cnt);
1452 if (rc != ECORE_SUCCESS)
1453 goto err;
1454
1455 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1456 if (rc != ECORE_SUCCESS)
1457 goto err;
1458
1459 /* Remove from the LLH in case the filter is not in use */
1460 if (!ref_cnt) {
1461 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1462 filter_idx);
1463 if (rc != ECORE_SUCCESS)
1464 goto err;
1465 }
1466
1467 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1468 "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1469 str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1470
1471 goto out;
1472
1473 err:
1474 DP_NOTICE(p_dev, false,
1475 "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1476 str, ppfid);
1477 out:
1478 ecore_ptt_release(p_hwfn, p_ptt);
1479 }
1480
1481 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid)
1482 {
1483 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1484 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1485 u8 filter_idx, abs_ppfid;
1486 enum _ecore_status_t rc = ECORE_SUCCESS;
1487
1488 if (p_ptt == OSAL_NULL)
1489 return;
1490
1491 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1492 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1493 goto out;
1494
1495 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1496 if (rc != ECORE_SUCCESS)
1497 goto out;
1498
1499 rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid);
1500 if (rc != ECORE_SUCCESS)
1501 goto out;
1502
1503 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1504 filter_idx++) {
1505 if (ECORE_IS_E4(p_dev))
1506 rc = ecore_llh_remove_filter_e4(p_hwfn, p_ptt,
1507 abs_ppfid, filter_idx);
1508 else /* E5 */
1509 rc = ecore_llh_remove_filter_e5(p_hwfn, p_ptt,
1510 abs_ppfid, filter_idx);
1511 if (rc != ECORE_SUCCESS)
1512 goto out;
1513 }
1514 out:
1515 ecore_ptt_release(p_hwfn, p_ptt);
1516 }
1517
1518 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev)
1519 {
1520 u8 ppfid;
1521
1522 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1523 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1524 return;
1525
1526 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++)
1527 ecore_llh_clear_ppfid_filters(p_dev, ppfid);
1528 }
1529
1530 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn,
1531 struct ecore_ptt *p_ptt, u32 addr,
1532 u32 val)
1533 {
1534 struct ecore_dev *p_dev = p_hwfn->p_dev;
1535 u8 ppfid, abs_ppfid;
1536 enum _ecore_status_t rc;
1537
1538 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1539 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1540 if (rc != ECORE_SUCCESS)
1541 return rc;
1542
1543 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val);
1544 }
1545
1546 return ECORE_SUCCESS;
1547 }
1548
1549 static enum _ecore_status_t
1550 ecore_llh_dump_ppfid_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1551 u8 ppfid)
1552 {
1553 struct ecore_llh_filter_e4_details filter_details;
1554 u8 abs_ppfid, filter_idx;
1555 u32 addr;
1556 enum _ecore_status_t rc;
1557
1558 rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid);
1559 if (rc != ECORE_SUCCESS)
1560 return rc;
1561
1562 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
1563 DP_NOTICE(p_hwfn, false,
1564 "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n",
1565 p_hwfn->rel_pf_id, ppfid, abs_ppfid,
1566 ecore_rd(p_hwfn, p_ptt, addr));
1567
1568 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1569 filter_idx++) {
1570 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1571 rc = ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1572 filter_idx, &filter_details,
1573 false /* read access */);
1574 if (rc != ECORE_SUCCESS)
1575 return rc;
1576
1577 DP_NOTICE(p_hwfn, false,
1578 "filter %2hhd: enable %d, value 0x%016llx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n",
1579 filter_idx, filter_details.enable,
1580 (unsigned long long)filter_details.value, filter_details.mode,
1581 filter_details.protocol_type, filter_details.hdr_sel);
1582 }
1583
1584 return ECORE_SUCCESS;
1585 }
1586
1587 static enum _ecore_status_t
1588 ecore_llh_dump_ppfid_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1589 struct ecore_ptt OSAL_UNUSED *p_ptt,
1590 u8 OSAL_UNUSED ppfid)
1591 {
1592 ECORE_E5_MISSING_CODE;
1593
1594 return ECORE_NOTIMPL;
1595 }
1596
1597 enum _ecore_status_t ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid)
1598 {
1599 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1600 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1601 enum _ecore_status_t rc;
1602
1603 if (p_ptt == OSAL_NULL)
1604 return ECORE_AGAIN;
1605
1606 if (ECORE_IS_E4(p_dev))
1607 rc = ecore_llh_dump_ppfid_e4(p_hwfn, p_ptt, ppfid);
1608 else /* E5 */
1609 rc = ecore_llh_dump_ppfid_e5(p_hwfn, p_ptt, ppfid);
1610
1611 ecore_ptt_release(p_hwfn, p_ptt);
1612
1613 return rc;
1614 }
1615
1616 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev)
1617 {
1618 u8 ppfid;
1619 enum _ecore_status_t rc;
1620
1621 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1622 rc = ecore_llh_dump_ppfid(p_dev, ppfid);
1623 if (rc != ECORE_SUCCESS)
1624 return rc;
1625 }
1626
1627 return ECORE_SUCCESS;
1628 }
1629
1630 /******************************* NIG LLH - End ********************************/
1631
1632 /* Configurable */
1633 #define ECORE_MIN_DPIS (4) /* The minimal number of DPIs required to
1634 * load the driver. The number was
1635 * arbitrarily set.
1636 */
1637
1638 /* Derived */
1639 #define ECORE_MIN_PWM_REGION (ECORE_WID_SIZE * ECORE_MIN_DPIS)
1640
1641 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
1642 struct ecore_ptt *p_ptt,
1643 enum BAR_ID bar_id)
1644 {
1645 u32 bar_reg = (bar_id == BAR_ID_0 ?
1646 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1647 u32 val;
1648
1649 if (IS_VF(p_hwfn->p_dev))
1650 return ecore_vf_hw_bar_size(p_hwfn, bar_id);
1651
1652 val = ecore_rd(p_hwfn, p_ptt, bar_reg);
1653 if (val)
1654 return 1 << (val + 15);
1655
1656 /* The above registers were updated in the past only in CMT mode. Since
1657 * they were found to be useful MFW started updating them from 8.7.7.0.
1658 * In older MFW versions they are set to 0 which means disabled.
1659 */
1660 if (ECORE_IS_CMT(p_hwfn->p_dev)) {
1661 DP_INFO(p_hwfn,
1662 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1663 return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1664 } else {
1665 DP_INFO(p_hwfn,
1666 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1667 return 512 * 1024;
1668 }
1669 }
1670
1671 void ecore_init_dp(struct ecore_dev *p_dev,
1672 u32 dp_module,
1673 u8 dp_level,
1674 void *dp_ctx)
1675 {
1676 u32 i;
1677
1678 p_dev->dp_level = dp_level;
1679 p_dev->dp_module = dp_module;
1680 p_dev->dp_ctx = dp_ctx;
1681 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1682 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1683
1684 p_hwfn->dp_level = dp_level;
1685 p_hwfn->dp_module = dp_module;
1686 p_hwfn->dp_ctx = dp_ctx;
1687 }
1688 }
1689
1690 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev)
1691 {
1692 u8 i;
1693
1694 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1695 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1696
1697 p_hwfn->p_dev = p_dev;
1698 p_hwfn->my_id = i;
1699 p_hwfn->b_active = false;
1700
1701 #ifdef CONFIG_ECORE_LOCK_ALLOC
1702 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock))
1703 goto handle_err;
1704 #endif
1705 OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock);
1706 }
1707
1708 /* hwfn 0 is always active */
1709 p_dev->hwfns[0].b_active = true;
1710
1711 /* set the default cache alignment to 128 (may be overridden later) */
1712 p_dev->cache_shift = 7;
1713
1714 p_dev->ilt_page_size = ECORE_DEFAULT_ILT_PAGE_SIZE;
1715
1716 return ECORE_SUCCESS;
1717 #ifdef CONFIG_ECORE_LOCK_ALLOC
1718 handle_err:
1719 while (--i) {
1720 struct ecore_hwfn *p_hwfn = OSAL_NULL;
1721
1722 p_hwfn = &p_dev->hwfns[i];
1723 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
1724 }
1725 return ECORE_NOMEM;
1726 #endif
1727 }
1728
1729 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
1730 {
1731 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1732
1733 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
1734 qm_info->qm_pq_params = OSAL_NULL;
1735 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
1736 qm_info->qm_vport_params = OSAL_NULL;
1737 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
1738 qm_info->qm_port_params = OSAL_NULL;
1739 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
1740 qm_info->wfq_data = OSAL_NULL;
1741 }
1742
1743 void ecore_resc_free(struct ecore_dev *p_dev)
1744 {
1745 int i;
1746
1747 if (IS_VF(p_dev)) {
1748 for_each_hwfn(p_dev, i)
1749 ecore_l2_free(&p_dev->hwfns[i]);
1750 return;
1751 }
1752
1753 OSAL_FREE(p_dev, p_dev->fw_data);
1754 p_dev->fw_data = OSAL_NULL;
1755
1756 OSAL_FREE(p_dev, p_dev->reset_stats);
1757 p_dev->reset_stats = OSAL_NULL;
1758
1759 ecore_llh_free(p_dev);
1760
1761 for_each_hwfn(p_dev, i) {
1762 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1763
1764 ecore_cxt_mngr_free(p_hwfn);
1765 ecore_qm_info_free(p_hwfn);
1766 ecore_spq_free(p_hwfn);
1767 ecore_eq_free(p_hwfn);
1768 ecore_consq_free(p_hwfn);
1769 ecore_int_free(p_hwfn);
1770 #ifdef CONFIG_ECORE_LL2
1771 ecore_ll2_free(p_hwfn);
1772 #endif
1773 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1774 ecore_fcoe_free(p_hwfn);
1775
1776 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1777 ecore_iscsi_free(p_hwfn);
1778 ecore_ooo_free(p_hwfn);
1779 }
1780
1781 #ifdef CONFIG_ECORE_ROCE
1782 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1783 ecore_rdma_info_free(p_hwfn);
1784 #endif
1785 ecore_iov_free(p_hwfn);
1786 ecore_l2_free(p_hwfn);
1787 ecore_dmae_info_free(p_hwfn);
1788 ecore_dcbx_info_free(p_hwfn);
1789 /* @@@TBD Flush work-queue ?*/
1790
1791 /* destroy doorbell recovery mechanism */
1792 ecore_db_recovery_teardown(p_hwfn);
1793 }
1794 }
1795
1796 /******************** QM initialization *******************/
1797 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
1798 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
1799 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
1800
1801 /* determines the physical queue flags for a given PF. */
1802 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
1803 {
1804 u32 flags;
1805
1806 /* common flags */
1807 flags = PQ_FLAGS_LB;
1808
1809 /* feature flags */
1810 if (IS_ECORE_SRIOV(p_hwfn->p_dev))
1811 flags |= PQ_FLAGS_VFS;
1812 if (IS_ECORE_DCQCN(p_hwfn))
1813 flags |= PQ_FLAGS_RLS;
1814
1815 /* protocol flags */
1816 switch (p_hwfn->hw_info.personality) {
1817 case ECORE_PCI_ETH:
1818 flags |= PQ_FLAGS_MCOS;
1819 break;
1820 case ECORE_PCI_FCOE:
1821 flags |= PQ_FLAGS_OFLD;
1822 break;
1823 case ECORE_PCI_ISCSI:
1824 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1825 break;
1826 case ECORE_PCI_ETH_ROCE:
1827 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1828 break;
1829 case ECORE_PCI_ETH_IWARP:
1830 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1831 break;
1832 default:
1833 DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
1834 return 0;
1835 }
1836
1837 return flags;
1838 }
1839
1840 /* Getters for resource amounts necessary for qm initialization */
1841 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
1842 {
1843 return p_hwfn->hw_info.num_hw_tc;
1844 }
1845
1846 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
1847 {
1848 return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
1849 }
1850
1851 #define NUM_DEFAULT_RLS 1
1852
1853 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
1854 {
1855 u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
1856
1857 /* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
1858 num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
1859 (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
1860 ROCE_DCQCN_RP_MAX_QPS));
1861
1862 /* make sure after we reserve the default and VF rls we'll have something left */
1863 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
1864 if (IS_ECORE_DCQCN(p_hwfn))
1865 DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
1866 return 0;
1867 }
1868
1869 /* subtract rls necessary for VFs and one default one for the PF */
1870 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1871
1872 return num_pf_rls;
1873 }
1874
1875 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
1876 {
1877 u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1878
1879 /* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
1880 return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1881 (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
1882 }
1883
1884 /* calc amount of PQs according to the requested flags */
1885 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
1886 {
1887 u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1888
1889 return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1890 (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
1891 (!!(PQ_FLAGS_LB & pq_flags)) +
1892 (!!(PQ_FLAGS_OOO & pq_flags)) +
1893 (!!(PQ_FLAGS_ACK & pq_flags)) +
1894 (!!(PQ_FLAGS_OFLD & pq_flags)) +
1895 (!!(PQ_FLAGS_LLT & pq_flags)) +
1896 (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
1897 }
1898
1899 /* initialize the top level QM params */
1900 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
1901 {
1902 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1903 bool four_port;
1904
1905 /* pq and vport bases for this PF */
1906 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
1907 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
1908
1909 /* rate limiting and weighted fair queueing are always enabled */
1910 qm_info->vport_rl_en = 1;
1911 qm_info->vport_wfq_en = 1;
1912
1913 /* TC config is different for AH 4 port */
1914 four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1915
1916 /* in AH 4 port we have fewer TCs per port */
1917 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
1918
1919 /* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
1920 if (!qm_info->ooo_tc)
1921 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
1922 }
1923
1924 /* initialize qm vport params */
1925 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
1926 {
1927 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1928 u8 i;
1929
1930 /* all vports participate in weighted fair queueing */
1931 for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
1932 qm_info->qm_vport_params[i].vport_wfq = 1;
1933 }
1934
1935 /* initialize qm port params */
1936 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
1937 {
1938 /* Initialize qm port parameters */
1939 u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
1940
1941 /* indicate how ooo and high pri traffic is dealt with */
1942 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1943 ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
1944
1945 for (i = 0; i < num_ports; i++) {
1946 struct init_qm_port_params *p_qm_port =
1947 &p_hwfn->qm_info.qm_port_params[i];
1948
1949 p_qm_port->active = 1;
1950 p_qm_port->active_phys_tcs = active_phys_tcs;
1951 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
1952 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
1953 }
1954 }
1955
1956 /* Reset the params which must be reset for qm init. QM init may be called as
1957 * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1958 * params may be affected by the init but would simply recalculate to the same
1959 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1960 * affected as these amounts stay the same.
1961 */
1962 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
1963 {
1964 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1965
1966 qm_info->num_pqs = 0;
1967 qm_info->num_vports = 0;
1968 qm_info->num_pf_rls = 0;
1969 qm_info->num_vf_pqs = 0;
1970 qm_info->first_vf_pq = 0;
1971 qm_info->first_mcos_pq = 0;
1972 qm_info->first_rl_pq = 0;
1973 }
1974
1975 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
1976 {
1977 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1978
1979 qm_info->num_vports++;
1980
1981 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1982 DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
1983 }
1984
1985 /* initialize a single pq and manage qm_info resources accounting.
1986 * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
1987 * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
1988 */
1989
1990 /* flags for pq init */
1991 #define PQ_INIT_SHARE_VPORT (1 << 0)
1992 #define PQ_INIT_PF_RL (1 << 1)
1993 #define PQ_INIT_VF_RL (1 << 2)
1994
1995 /* defines for pq init */
1996 #define PQ_INIT_DEFAULT_WRR_GROUP 1
1997 #define PQ_INIT_DEFAULT_TC 0
1998 #define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc)
1999
2000 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
2001 struct ecore_qm_info *qm_info,
2002 u8 tc, u32 pq_init_flags)
2003 {
2004 u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
2005
2006 if (pq_idx > max_pq)
2007 DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
2008
2009 /* init pq params */
2010 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
2011 qm_info->qm_pq_params[pq_idx].tc_id = tc;
2012 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
2013 qm_info->qm_pq_params[pq_idx].rl_valid =
2014 (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
2015
2016 /* qm params accounting */
2017 qm_info->num_pqs++;
2018 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
2019 qm_info->num_vports++;
2020
2021 if (pq_init_flags & PQ_INIT_PF_RL)
2022 qm_info->num_pf_rls++;
2023
2024 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
2025 DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
2026
2027 if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
2028 DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
2029 }
2030
2031 /* get pq index according to PQ_FLAGS */
2032 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
2033 u32 pq_flags)
2034 {
2035 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2036
2037 /* Can't have multiple flags set here */
2038 if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
2039 goto err;
2040
2041 switch (pq_flags) {
2042 case PQ_FLAGS_RLS:
2043 return &qm_info->first_rl_pq;
2044 case PQ_FLAGS_MCOS:
2045 return &qm_info->first_mcos_pq;
2046 case PQ_FLAGS_LB:
2047 return &qm_info->pure_lb_pq;
2048 case PQ_FLAGS_OOO:
2049 return &qm_info->ooo_pq;
2050 case PQ_FLAGS_ACK:
2051 return &qm_info->pure_ack_pq;
2052 case PQ_FLAGS_OFLD:
2053 return &qm_info->offload_pq;
2054 case PQ_FLAGS_LLT:
2055 return &qm_info->low_latency_pq;
2056 case PQ_FLAGS_VFS:
2057 return &qm_info->first_vf_pq;
2058 default:
2059 goto err;
2060 }
2061
2062 err:
2063 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
2064 return OSAL_NULL;
2065 }
2066
2067 /* save pq index in qm info */
2068 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
2069 u32 pq_flags, u16 pq_val)
2070 {
2071 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2072
2073 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
2074 }
2075
2076 /* get tx pq index, with the PQ TX base already set (ready for context init) */
2077 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
2078 {
2079 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2080
2081 return *base_pq_idx + CM_TX_PQ_BASE;
2082 }
2083
2084 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
2085 {
2086 u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
2087
2088 if (tc > max_tc)
2089 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
2090
2091 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
2092 }
2093
2094 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
2095 {
2096 u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
2097
2098 if (vf > max_vf)
2099 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
2100
2101 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
2102 }
2103
2104 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
2105 {
2106 u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
2107
2108 if (rl > max_rl)
2109 DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
2110
2111 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
2112 }
2113
2114 /* Functions for creating specific types of pqs */
2115 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
2116 {
2117 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2118
2119 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
2120 return;
2121
2122 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
2123 ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
2124 }
2125
2126 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
2127 {
2128 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2129
2130 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
2131 return;
2132
2133 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
2134 ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
2135 }
2136
2137 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
2138 {
2139 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2140
2141 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
2142 return;
2143
2144 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
2145 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2146 }
2147
2148 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
2149 {
2150 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2151
2152 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
2153 return;
2154
2155 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
2156 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2157 }
2158
2159 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
2160 {
2161 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2162
2163 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
2164 return;
2165
2166 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
2167 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2168 }
2169
2170 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
2171 {
2172 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2173 u8 tc_idx;
2174
2175 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
2176 return;
2177
2178 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
2179 for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
2180 ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
2181 }
2182
2183 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
2184 {
2185 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2186 u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
2187
2188 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
2189 return;
2190
2191 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
2192 qm_info->num_vf_pqs = num_vfs;
2193 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
2194 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
2195 }
2196
2197 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
2198 {
2199 u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
2200 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2201
2202 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
2203 return;
2204
2205 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
2206 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
2207 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
2208 }
2209
2210 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
2211 {
2212 /* rate limited pqs, must come first (FW assumption) */
2213 ecore_init_qm_rl_pqs(p_hwfn);
2214
2215 /* pqs for multi cos */
2216 ecore_init_qm_mcos_pqs(p_hwfn);
2217
2218 /* pure loopback pq */
2219 ecore_init_qm_lb_pq(p_hwfn);
2220
2221 /* out of order pq */
2222 ecore_init_qm_ooo_pq(p_hwfn);
2223
2224 /* pure ack pq */
2225 ecore_init_qm_pure_ack_pq(p_hwfn);
2226
2227 /* pq for offloaded protocol */
2228 ecore_init_qm_offload_pq(p_hwfn);
2229
2230 /* low latency pq */
2231 ecore_init_qm_low_latency_pq(p_hwfn);
2232
2233 /* done sharing vports */
2234 ecore_init_qm_advance_vport(p_hwfn);
2235
2236 /* pqs for vfs */
2237 ecore_init_qm_vf_pqs(p_hwfn);
2238 }
2239
2240 /* compare values of getters against resources amounts */
2241 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
2242 {
2243 if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
2244 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
2245 return ECORE_INVAL;
2246 }
2247
2248 if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
2249 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
2250 return ECORE_INVAL;
2251 }
2252
2253 return ECORE_SUCCESS;
2254 }
2255
2256 /*
2257 * Function for verbose printing of the qm initialization results
2258 */
2259 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
2260 {
2261 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2262 struct init_qm_vport_params *vport;
2263 struct init_qm_port_params *port;
2264 struct init_qm_pq_params *pq;
2265 int i, tc;
2266
2267 /* top level params */
2268 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
2269 qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
2270 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2271 qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2272 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2273 qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
2274
2275 /* port table */
2276 for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
2277 port = &(qm_info->qm_port_params[i]);
2278 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2279 i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
2280 }
2281
2282 /* vport table */
2283 for (i = 0; i < qm_info->num_vports; i++) {
2284 vport = &(qm_info->qm_vport_params[i]);
2285 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
2286 qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
2287 for (tc = 0; tc < NUM_OF_TCS; tc++)
2288 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
2289 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
2290 }
2291
2292 /* pq table */
2293 for (i = 0; i < qm_info->num_pqs; i++) {
2294 pq = &(qm_info->qm_pq_params[i]);
2295 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
2296 qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
2297 }
2298 }
2299
2300 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
2301 {
2302 /* reset params required for init run */
2303 ecore_init_qm_reset_params(p_hwfn);
2304
2305 /* init QM top level params */
2306 ecore_init_qm_params(p_hwfn);
2307
2308 /* init QM port params */
2309 ecore_init_qm_port_params(p_hwfn);
2310
2311 /* init QM vport params */
2312 ecore_init_qm_vport_params(p_hwfn);
2313
2314 /* init QM physical queue params */
2315 ecore_init_qm_pq_params(p_hwfn);
2316
2317 /* display all that init */
2318 ecore_dp_init_qm_params(p_hwfn);
2319 }
2320
2321 /* This function reconfigures the QM pf on the fly.
2322 * For this purpose we:
2323 * 1. reconfigure the QM database
2324 * 2. set new values to runtime array
2325 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2326 * 4. activate init tool in QM_PF stage
2327 * 5. send an sdm_qm_cmd through rbc interface to release the QM
2328 */
2329 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
2330 struct ecore_ptt *p_ptt)
2331 {
2332 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2333 bool b_rc;
2334 enum _ecore_status_t rc;
2335
2336 /* initialize ecore's qm data structure */
2337 ecore_init_qm_info(p_hwfn);
2338
2339 /* stop PF's qm queues */
2340 OSAL_SPIN_LOCK(&qm_lock);
2341 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2342 qm_info->start_pq, qm_info->num_pqs);
2343 OSAL_SPIN_UNLOCK(&qm_lock);
2344 if (!b_rc)
2345 return ECORE_INVAL;
2346
2347 /* clear the QM_PF runtime phase leftovers from previous init */
2348 ecore_init_clear_rt_data(p_hwfn);
2349
2350 /* prepare QM portion of runtime array */
2351 ecore_qm_init_pf(p_hwfn, p_ptt, false);
2352
2353 /* activate init tool on runtime array */
2354 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2355 p_hwfn->hw_info.hw_mode);
2356 if (rc != ECORE_SUCCESS)
2357 return rc;
2358
2359 /* start PF's qm queues */
2360 OSAL_SPIN_LOCK(&qm_lock);
2361 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2362 qm_info->start_pq, qm_info->num_pqs);
2363 OSAL_SPIN_UNLOCK(&qm_lock);
2364 if (!b_rc)
2365 return ECORE_INVAL;
2366
2367 return ECORE_SUCCESS;
2368 }
2369
2370 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
2371 {
2372 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2373 enum _ecore_status_t rc;
2374
2375 rc = ecore_init_qm_sanity(p_hwfn);
2376 if (rc != ECORE_SUCCESS)
2377 goto alloc_err;
2378
2379 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2380 sizeof(struct init_qm_pq_params) *
2381 ecore_init_qm_get_num_pqs(p_hwfn));
2382 if (!qm_info->qm_pq_params)
2383 goto alloc_err;
2384
2385 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2386 sizeof(struct init_qm_vport_params) *
2387 ecore_init_qm_get_num_vports(p_hwfn));
2388 if (!qm_info->qm_vport_params)
2389 goto alloc_err;
2390
2391 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2392 sizeof(struct init_qm_port_params) *
2393 p_hwfn->p_dev->num_ports_in_engine);
2394 if (!qm_info->qm_port_params)
2395 goto alloc_err;
2396
2397 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2398 sizeof(struct ecore_wfq_data) *
2399 ecore_init_qm_get_num_vports(p_hwfn));
2400 if (!qm_info->wfq_data)
2401 goto alloc_err;
2402
2403 return ECORE_SUCCESS;
2404
2405 alloc_err:
2406 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
2407 ecore_qm_info_free(p_hwfn);
2408 return ECORE_NOMEM;
2409 }
2410 /******************** End QM initialization ***************/
2411
2412 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
2413 {
2414 u32 rdma_tasks, excess_tasks;
2415 u32 line_count;
2416 enum _ecore_status_t rc = ECORE_SUCCESS;
2417 int i;
2418
2419 if (IS_VF(p_dev)) {
2420 for_each_hwfn(p_dev, i) {
2421 rc = ecore_l2_alloc(&p_dev->hwfns[i]);
2422 if (rc != ECORE_SUCCESS)
2423 return rc;
2424 }
2425 return rc;
2426 }
2427
2428 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2429 sizeof(*p_dev->fw_data));
2430 if (!p_dev->fw_data)
2431 return ECORE_NOMEM;
2432
2433 for_each_hwfn(p_dev, i) {
2434 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2435 u32 n_eqes, num_cons;
2436
2437 /* initialize the doorbell recovery mechanism */
2438 rc = ecore_db_recovery_setup(p_hwfn);
2439 if (rc)
2440 goto alloc_err;
2441
2442 /* First allocate the context manager structure */
2443 rc = ecore_cxt_mngr_alloc(p_hwfn);
2444 if (rc)
2445 goto alloc_err;
2446
2447 /* Set the HW cid/tid numbers (in the context manager)
2448 * Must be done prior to any further computations.
2449 */
2450 rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2451 if (rc)
2452 goto alloc_err;
2453
2454 rc = ecore_alloc_qm_data(p_hwfn);
2455 if (rc)
2456 goto alloc_err;
2457
2458 /* init qm info */
2459 ecore_init_qm_info(p_hwfn);
2460
2461 /* Compute the ILT client partition */
2462 rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2463 if (rc) {
2464 DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
2465 /* In case there are not enough ILT lines we reduce the
2466 * number of RDMA tasks and re-compute.
2467 */
2468 excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
2469 p_hwfn, line_count);
2470 if (!excess_tasks)
2471 goto alloc_err;
2472
2473 rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2474 rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
2475 if (rc)
2476 goto alloc_err;
2477
2478 rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2479 if (rc) {
2480 DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
2481 line_count);
2482
2483 goto alloc_err;
2484 }
2485 }
2486
2487 /* CID map / ILT shadow table / T2
2488 * The talbes sizes are determined by the computations above
2489 */
2490 rc = ecore_cxt_tables_alloc(p_hwfn);
2491 if (rc)
2492 goto alloc_err;
2493
2494 /* SPQ, must follow ILT because initializes SPQ context */
2495 rc = ecore_spq_alloc(p_hwfn);
2496 if (rc)
2497 goto alloc_err;
2498
2499 /* SP status block allocation */
2500 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2501 RESERVED_PTT_DPC);
2502
2503 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2504 if (rc)
2505 goto alloc_err;
2506
2507 rc = ecore_iov_alloc(p_hwfn);
2508 if (rc)
2509 goto alloc_err;
2510
2511 /* EQ */
2512 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
2513 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2514 u32 n_srq = ecore_cxt_get_total_srq_count(p_hwfn);
2515
2516 /* Calculate the EQ size
2517 * ---------------------
2518 * Each ICID may generate up to one event at a time i.e.
2519 * the event must be handled/cleared before a new one
2520 * can be generated. We calculate the sum of events per
2521 * protocol and create an EQ deep enough to handle the
2522 * worst case:
2523 * - Core - according to SPQ.
2524 * - RoCE - per QP there are a couple of ICIDs, one
2525 * responder and one requester, each can
2526 * generate max 2 EQE (err+qp_destroyed) =>
2527 * n_eqes_qp = 4 * n_qp.
2528 * Each CQ can generate an EQE. There are 2 CQs
2529 * per QP => n_eqes_cq = 2 * n_qp.
2530 * Hence the RoCE total is 6 * n_qp or
2531 * 3 * num_cons.
2532 * On top of that one eqe shoule be added for
2533 * each XRC SRQ and SRQ.
2534 * - iWARP - can generate three async per QP (error
2535 * detected and qp in error) and an
2536 additional error per CQ. 4* num_cons.
2537 On top of that one eqe shoule be added for
2538 * each SRQ and XRC SRQ.
2539 * - ENet - There can be up to two events per VF. One
2540 * for VF-PF channel and another for VF FLR
2541 * initial cleanup. The number of VFs is
2542 * bounded by MAX_NUM_VFS_BB, and is much
2543 * smaller than RoCE's so we avoid exact
2544 * calculation.
2545 */
2546 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
2547 num_cons = ecore_cxt_get_proto_cid_count(
2548 p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
2549 num_cons *= 3;
2550 } else {
2551 num_cons = ecore_cxt_get_proto_cid_count(
2552 p_hwfn, PROTOCOLID_IWARP,
2553 OSAL_NULL);
2554 num_cons *= 4;
2555 }
2556 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq;
2557 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2558 num_cons = ecore_cxt_get_proto_cid_count(
2559 p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
2560 n_eqes += 2 * num_cons;
2561 }
2562
2563 if (n_eqes > 0xFF00) {
2564 DP_ERR(p_hwfn, "EQs maxing out at 0xFF00 elements\n");
2565 n_eqes = 0xFF00;
2566 }
2567
2568 rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
2569 if (rc)
2570 goto alloc_err;
2571
2572 rc = ecore_consq_alloc(p_hwfn);
2573 if (rc)
2574 goto alloc_err;
2575
2576 rc = ecore_l2_alloc(p_hwfn);
2577 if (rc != ECORE_SUCCESS)
2578 goto alloc_err;
2579
2580 #ifdef CONFIG_ECORE_LL2
2581 if (p_hwfn->using_ll2) {
2582 rc = ecore_ll2_alloc(p_hwfn);
2583 if (rc)
2584 goto alloc_err;
2585 }
2586 #endif
2587 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
2588 rc = ecore_fcoe_alloc(p_hwfn);
2589 if (rc)
2590 goto alloc_err;
2591 }
2592
2593 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2594 rc = ecore_iscsi_alloc(p_hwfn);
2595 if (rc)
2596 goto alloc_err;
2597
2598 rc = ecore_ooo_alloc(p_hwfn);
2599 if (rc)
2600 goto alloc_err;
2601 }
2602 #ifdef CONFIG_ECORE_ROCE
2603 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2604 rc = ecore_rdma_info_alloc(p_hwfn);
2605 if (rc)
2606 goto alloc_err;
2607 }
2608 #endif
2609
2610 /* DMA info initialization */
2611 rc = ecore_dmae_info_alloc(p_hwfn);
2612 if (rc) {
2613 DP_NOTICE(p_hwfn, false,
2614 "Failed to allocate memory for dmae_info structure\n");
2615 goto alloc_err;
2616 }
2617
2618 /* DCBX initialization */
2619 rc = ecore_dcbx_info_alloc(p_hwfn);
2620 if (rc) {
2621 DP_NOTICE(p_hwfn, false,
2622 "Failed to allocate memory for dcbx structure\n");
2623 goto alloc_err;
2624 }
2625 }
2626
2627 rc = ecore_llh_alloc(p_dev);
2628 if (rc != ECORE_SUCCESS) {
2629 DP_NOTICE(p_dev, false,
2630 "Failed to allocate memory for the llh_info structure\n");
2631 goto alloc_err;
2632 }
2633
2634 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2635 sizeof(*p_dev->reset_stats));
2636 if (!p_dev->reset_stats) {
2637 DP_NOTICE(p_dev, false,
2638 "Failed to allocate reset statistics\n");
2639 goto alloc_no_mem;
2640 }
2641
2642 return ECORE_SUCCESS;
2643
2644 alloc_no_mem:
2645 rc = ECORE_NOMEM;
2646 alloc_err:
2647 ecore_resc_free(p_dev);
2648 return rc;
2649 }
2650
2651 void ecore_resc_setup(struct ecore_dev *p_dev)
2652 {
2653 int i;
2654
2655 if (IS_VF(p_dev)) {
2656 for_each_hwfn(p_dev, i)
2657 ecore_l2_setup(&p_dev->hwfns[i]);
2658 return;
2659 }
2660
2661 for_each_hwfn(p_dev, i) {
2662 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2663
2664 ecore_cxt_mngr_setup(p_hwfn);
2665 ecore_spq_setup(p_hwfn);
2666 ecore_eq_setup(p_hwfn);
2667 ecore_consq_setup(p_hwfn);
2668
2669 /* Read shadow of current MFW mailbox */
2670 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2671 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2672 p_hwfn->mcp_info->mfw_mb_cur,
2673 p_hwfn->mcp_info->mfw_mb_length);
2674
2675 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2676
2677 ecore_l2_setup(p_hwfn);
2678 ecore_iov_setup(p_hwfn);
2679 #ifdef CONFIG_ECORE_LL2
2680 if (p_hwfn->using_ll2)
2681 ecore_ll2_setup(p_hwfn);
2682 #endif
2683 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2684 ecore_fcoe_setup(p_hwfn);
2685
2686 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2687 ecore_iscsi_setup(p_hwfn);
2688 ecore_ooo_setup(p_hwfn);
2689 }
2690 }
2691 }
2692
2693 #define FINAL_CLEANUP_POLL_CNT (100)
2694 #define FINAL_CLEANUP_POLL_TIME (10)
2695 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
2696 struct ecore_ptt *p_ptt,
2697 u16 id, bool is_vf)
2698 {
2699 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2700 enum _ecore_status_t rc = ECORE_TIMEOUT;
2701
2702 #ifndef ASIC_ONLY
2703 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
2704 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2705 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
2706 return ECORE_SUCCESS;
2707 }
2708 #endif
2709
2710 addr = GTT_BAR0_MAP_REG_USDM_RAM +
2711 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2712
2713 if (is_vf)
2714 id += 0x10;
2715
2716 command |= X_FINAL_CLEANUP_AGG_INT <<
2717 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2718 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2719 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2720 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2721
2722 /* Make sure notification is not set before initiating final cleanup */
2723 if (REG_RD(p_hwfn, addr)) {
2724 DP_NOTICE(p_hwfn, false,
2725 "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2726 REG_WR(p_hwfn, addr, 0);
2727 }
2728
2729 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
2730 "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2731 id, command);
2732
2733 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2734
2735 /* Poll until completion */
2736 while (!REG_RD(p_hwfn, addr) && count--)
2737 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
2738
2739 if (REG_RD(p_hwfn, addr))
2740 rc = ECORE_SUCCESS;
2741 else
2742 DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
2743
2744 /* Cleanup afterwards */
2745 REG_WR(p_hwfn, addr, 0);
2746
2747 return rc;
2748 }
2749
2750 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
2751 {
2752 int hw_mode = 0;
2753
2754 if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
2755 hw_mode |= 1 << MODE_BB;
2756 } else if (ECORE_IS_AH(p_hwfn->p_dev)) {
2757 hw_mode |= 1 << MODE_K2;
2758 } else if (ECORE_IS_E5(p_hwfn->p_dev)) {
2759 hw_mode |= 1 << MODE_E5;
2760 } else {
2761 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
2762 p_hwfn->p_dev->type);
2763 return ECORE_INVAL;
2764 }
2765
2766 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
2767 switch (p_hwfn->p_dev->num_ports_in_engine) {
2768 case 1:
2769 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2770 break;
2771 case 2:
2772 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2773 break;
2774 case 4:
2775 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2776 break;
2777 default:
2778 DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
2779 p_hwfn->p_dev->num_ports_in_engine);
2780 return ECORE_INVAL;
2781 }
2782
2783 if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS,
2784 &p_hwfn->p_dev->mf_bits))
2785 hw_mode |= 1 << MODE_MF_SD;
2786 else
2787 hw_mode |= 1 << MODE_MF_SI;
2788
2789 #ifndef ASIC_ONLY
2790 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2791 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2792 hw_mode |= 1 << MODE_FPGA;
2793 } else {
2794 if (p_hwfn->p_dev->b_is_emul_full)
2795 hw_mode |= 1 << MODE_EMUL_FULL;
2796 else
2797 hw_mode |= 1 << MODE_EMUL_REDUCED;
2798 }
2799 } else
2800 #endif
2801 hw_mode |= 1 << MODE_ASIC;
2802
2803 if (ECORE_IS_CMT(p_hwfn->p_dev))
2804 hw_mode |= 1 << MODE_100G;
2805
2806 p_hwfn->hw_info.hw_mode = hw_mode;
2807
2808 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
2809 "Configuring function for hw_mode: 0x%08x\n",
2810 p_hwfn->hw_info.hw_mode);
2811
2812 return ECORE_SUCCESS;
2813 }
2814
2815 #ifndef ASIC_ONLY
2816 /* MFW-replacement initializations for non-ASIC */
2817 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
2818 struct ecore_ptt *p_ptt)
2819 {
2820 struct ecore_dev *p_dev = p_hwfn->p_dev;
2821 u32 pl_hv = 1;
2822 int i;
2823
2824 if (CHIP_REV_IS_EMUL(p_dev)) {
2825 if (ECORE_IS_AH(p_dev))
2826 pl_hv |= 0x600;
2827 else if (ECORE_IS_E5(p_dev))
2828 ECORE_E5_MISSING_CODE;
2829 }
2830
2831 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
2832
2833 if (CHIP_REV_IS_EMUL(p_dev) &&
2834 (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
2835 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
2836 0x3ffffff);
2837
2838 /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
2839 /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
2840 if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
2841 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
2842
2843 if (CHIP_REV_IS_EMUL(p_dev)) {
2844 if (ECORE_IS_AH(p_dev)) {
2845 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */
2846 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
2847 (p_dev->num_ports_in_engine >> 1));
2848
2849 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
2850 p_dev->num_ports_in_engine == 4 ? 0 : 3);
2851 } else if (ECORE_IS_E5(p_dev)) {
2852 ECORE_E5_MISSING_CODE;
2853 }
2854
2855 /* Poll on RBC */
2856 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
2857 for (i = 0; i < 100; i++) {
2858 OSAL_UDELAY(50);
2859 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
2860 break;
2861 }
2862 if (i == 100)
2863 DP_NOTICE(p_hwfn, true,
2864 "RBC done failed to complete in PSWRQ2\n");
2865 }
2866
2867 return ECORE_SUCCESS;
2868 }
2869 #endif
2870
2871 /* Init run time data for all PFs and their VFs on an engine.
2872 * TBD - for VFs - Once we have parent PF info for each VF in
2873 * shmem available as CAU requires knowledge of parent PF for each VF.
2874 */
2875 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
2876 {
2877 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2878 int i, igu_sb_id;
2879
2880 for_each_hwfn(p_dev, i) {
2881 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2882 struct ecore_igu_info *p_igu_info;
2883 struct ecore_igu_block *p_block;
2884 struct cau_sb_entry sb_entry;
2885
2886 p_igu_info = p_hwfn->hw_info.p_igu_info;
2887
2888 for (igu_sb_id = 0;
2889 igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
2890 igu_sb_id++) {
2891 p_block = &p_igu_info->entry[igu_sb_id];
2892
2893 if (!p_block->is_pf)
2894 continue;
2895
2896 ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
2897 p_block->function_id,
2898 0, 0);
2899 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2900 sb_entry);
2901 }
2902 }
2903 }
2904
2905 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
2906 struct ecore_ptt *p_ptt)
2907 {
2908 u32 val, wr_mbs, cache_line_size;
2909
2910 val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2911 switch (val) {
2912 case 0:
2913 wr_mbs = 128;
2914 break;
2915 case 1:
2916 wr_mbs = 256;
2917 break;
2918 case 2:
2919 wr_mbs = 512;
2920 break;
2921 default:
2922 DP_INFO(p_hwfn,
2923 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2924 val);
2925 return;
2926 }
2927
2928 cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
2929 switch (cache_line_size) {
2930 case 32:
2931 val = 0;
2932 break;
2933 case 64:
2934 val = 1;
2935 break;
2936 case 128:
2937 val = 2;
2938 break;
2939 case 256:
2940 val = 3;
2941 break;
2942 default:
2943 DP_INFO(p_hwfn,
2944 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2945 cache_line_size);
2946 }
2947
2948 if (OSAL_CACHE_LINE_SIZE > wr_mbs)
2949 DP_INFO(p_hwfn,
2950 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2951 OSAL_CACHE_LINE_SIZE, wr_mbs);
2952
2953 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2954 if (val > 0) {
2955 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2956 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2957 }
2958 }
2959
2960 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
2961 struct ecore_ptt *p_ptt,
2962 int hw_mode)
2963 {
2964 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2965 struct ecore_dev *p_dev = p_hwfn->p_dev;
2966 u8 vf_id, max_num_vfs;
2967 u16 num_pfs, pf_id;
2968 u32 concrete_fid;
2969 enum _ecore_status_t rc = ECORE_SUCCESS;
2970
2971 ecore_init_cau_rt_data(p_dev);
2972
2973 /* Program GTT windows */
2974 ecore_gtt_init(p_hwfn, p_ptt);
2975
2976 #ifndef ASIC_ONLY
2977 if (CHIP_REV_IS_EMUL(p_dev)) {
2978 rc = ecore_hw_init_chip(p_hwfn, p_ptt);
2979 if (rc != ECORE_SUCCESS)
2980 return rc;
2981 }
2982 #endif
2983
2984 if (p_hwfn->mcp_info) {
2985 if (p_hwfn->mcp_info->func_info.bandwidth_max)
2986 qm_info->pf_rl_en = 1;
2987 if (p_hwfn->mcp_info->func_info.bandwidth_min)
2988 qm_info->pf_wfq_en = 1;
2989 }
2990
2991 ecore_qm_common_rt_init(p_hwfn,
2992 p_dev->num_ports_in_engine,
2993 qm_info->max_phys_tcs_per_port,
2994 qm_info->pf_rl_en, qm_info->pf_wfq_en,
2995 qm_info->vport_rl_en, qm_info->vport_wfq_en,
2996 qm_info->qm_port_params);
2997
2998 ecore_cxt_hw_init_common(p_hwfn);
2999
3000 ecore_init_cache_line_size(p_hwfn, p_ptt);
3001
3002 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn),
3003 hw_mode);
3004 if (rc != ECORE_SUCCESS)
3005 return rc;
3006
3007 /* @@TBD MichalK - should add VALIDATE_VFID to init tool...
3008 * need to decide with which value, maybe runtime
3009 */
3010 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
3011 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
3012
3013 if (ECORE_IS_BB(p_dev)) {
3014 /* Workaround clears ROCE search for all functions to prevent
3015 * involving non initialized function in processing ROCE packet.
3016 */
3017 num_pfs = NUM_OF_ENG_PFS(p_dev);
3018 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
3019 ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
3020 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3021 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3022 }
3023 /* pretend to original PF */
3024 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3025 }
3026
3027 /* Workaround for avoiding CCFC execution error when getting packets
3028 * with CRC errors, and allowing instead the invoking of the FW error
3029 * handler.
3030 * This is not done inside the init tool since it currently can't
3031 * perform a pretending to VFs.
3032 */
3033 max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
3034 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
3035 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
3036 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
3037 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
3038 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
3039 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
3040 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
3041 }
3042 /* pretend to original PF */
3043 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3044
3045 return rc;
3046 }
3047
3048 #ifndef ASIC_ONLY
3049 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
3050 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
3051
3052 #define PMEG_IF_BYTE_COUNT 8
3053
3054 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
3055 struct ecore_ptt *p_ptt,
3056 u32 addr,
3057 u64 data,
3058 u8 reg_type,
3059 u8 port)
3060 {
3061 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3062 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
3063 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
3064 (8 << PMEG_IF_BYTE_COUNT),
3065 (reg_type << 25) | (addr << 8) | port,
3066 (u32)((data >> 32) & 0xffffffff),
3067 (u32)(data & 0xffffffff));
3068
3069 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
3070 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
3071 0xffff00fe) |
3072 (8 << PMEG_IF_BYTE_COUNT));
3073 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
3074 (reg_type << 25) | (addr << 8) | port);
3075 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
3076 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
3077 (data >> 32) & 0xffffffff);
3078 }
3079
3080 #define XLPORT_MODE_REG (0x20a)
3081 #define XLPORT_MAC_CONTROL (0x210)
3082 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
3083 #define XLPORT_ENABLE_REG (0x20b)
3084
3085 #define XLMAC_CTRL (0x600)
3086 #define XLMAC_MODE (0x601)
3087 #define XLMAC_RX_MAX_SIZE (0x608)
3088 #define XLMAC_TX_CTRL (0x604)
3089 #define XLMAC_PAUSE_CTRL (0x60d)
3090 #define XLMAC_PFC_CTRL (0x60e)
3091
3092 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
3093 struct ecore_ptt *p_ptt)
3094 {
3095 u8 loopback = 0, port = p_hwfn->port_id * 2;
3096
3097 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3098
3099 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
3100 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
3101 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
3102 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
3103 0x40, 0, port); /*XLMAC: SOFT RESET */
3104 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
3105 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
3106 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
3107 0x3fff, 0, port); /* XLMAC: Max Size */
3108 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
3109 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
3110 0, port);
3111 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
3112 0x7c000, 0, port);
3113 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
3114 0x30ffffc000ULL, 0, port);
3115 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
3116 0, port); /* XLMAC: TX_EN, RX_EN */
3117 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
3118 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
3119 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
3120 1, 0, port); /* Enabled Parallel PFC interface */
3121 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
3122 0xf, 1, port); /* XLPORT port enable */
3123 }
3124
3125 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
3126 struct ecore_ptt *p_ptt)
3127 {
3128 u8 port = p_hwfn->port_id;
3129 u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
3130
3131 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3132
3133 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
3134 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
3135 (port <<
3136 CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
3137 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
3138
3139 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
3140 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
3141
3142 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
3143 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
3144
3145 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
3146 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
3147
3148 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
3149 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
3150
3151 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
3152 (0xA <<
3153 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
3154 (8 <<
3155 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
3156
3157 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
3158 0xa853);
3159 }
3160
3161 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
3162 struct ecore_ptt *p_ptt)
3163 {
3164 if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
3165 ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
3166 else /* BB */
3167 ecore_emul_link_init_bb(p_hwfn, p_ptt);
3168
3169 return;
3170 }
3171
3172 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
3173 struct ecore_ptt *p_ptt, u8 port)
3174 {
3175 int port_offset = port ? 0x800 : 0;
3176 u32 xmac_rxctrl = 0;
3177
3178 /* Reset of XMAC */
3179 /* FIXME: move to common start */
3180 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
3181 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
3182 OSAL_MSLEEP(1);
3183 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3184 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
3185
3186 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
3187
3188 /* Set the number of ports on the Warp Core to 10G */
3189 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
3190
3191 /* Soft reset of XMAC */
3192 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3193 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3194 OSAL_MSLEEP(1);
3195 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3196 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3197
3198 /* FIXME: move to common end */
3199 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3200 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
3201
3202 /* Set Max packet size: initialize XMAC block register for port 0 */
3203 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
3204
3205 /* CRC append for Tx packets: init XMAC block register for port 1 */
3206 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
3207
3208 /* Enable TX and RX: initialize XMAC block register for port 1 */
3209 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
3210 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
3211 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
3212 XMAC_REG_RX_CTRL_BB + port_offset);
3213 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
3214 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
3215 }
3216 #endif
3217
3218 static enum _ecore_status_t
3219 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
3220 struct ecore_ptt *p_ptt,
3221 u32 pwm_region_size,
3222 u32 n_cpus)
3223 {
3224 u32 dpi_bit_shift, dpi_count, dpi_page_size;
3225 u32 min_dpis;
3226 u32 n_wids;
3227
3228 /* Calculate DPI size
3229 * ------------------
3230 * The PWM region contains Doorbell Pages. The first is reserverd for
3231 * the kernel for, e.g, L2. The others are free to be used by non-
3232 * trusted applications, typically from user space. Each page, called a
3233 * doorbell page is sectioned into windows that allow doorbells to be
3234 * issued in parallel by the kernel/application. The size of such a
3235 * window (a.k.a. WID) is 1kB.
3236 * Summary:
3237 * 1kB WID x N WIDS = DPI page size
3238 * DPI page size x N DPIs = PWM region size
3239 * Notes:
3240 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
3241 * in order to ensure that two applications won't share the same page.
3242 * It also must contain at least one WID per CPU to allow parallelism.
3243 * It also must be a power of 2, since it is stored as a bit shift.
3244 *
3245 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
3246 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
3247 * containing 4 WIDs.
3248 */
3249 n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
3250 dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
3251 dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & ~(OSAL_PAGE_SIZE - 1);
3252 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
3253 dpi_count = pwm_region_size / dpi_page_size;
3254
3255 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
3256 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
3257
3258 /* Update hwfn */
3259 p_hwfn->dpi_size = dpi_page_size;
3260 p_hwfn->dpi_count = dpi_count;
3261
3262 /* Update registers */
3263 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
3264
3265 if (dpi_count < min_dpis)
3266 return ECORE_NORESOURCES;
3267
3268 return ECORE_SUCCESS;
3269 }
3270
3271 enum ECORE_ROCE_EDPM_MODE {
3272 ECORE_ROCE_EDPM_MODE_ENABLE = 0,
3273 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
3274 ECORE_ROCE_EDPM_MODE_DISABLE = 2,
3275 };
3276
3277 static enum _ecore_status_t
3278 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
3279 struct ecore_ptt *p_ptt)
3280 {
3281 struct ecore_rdma_pf_params *p_rdma_pf_params;
3282 u32 pwm_regsize, norm_regsize;
3283 u32 non_pwm_conn, min_addr_reg1;
3284 u32 db_bar_size, n_cpus = 1;
3285 u32 roce_edpm_mode;
3286 u32 pf_dems_shift;
3287 enum _ecore_status_t rc = ECORE_SUCCESS;
3288 u8 cond;
3289
3290 db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
3291 if (ECORE_IS_CMT(p_hwfn->p_dev))
3292 db_bar_size /= 2;
3293
3294 /* Calculate doorbell regions
3295 * -----------------------------------
3296 * The doorbell BAR is made of two regions. The first is called normal
3297 * region and the second is called PWM region. In the normal region
3298 * each ICID has its own set of addresses so that writing to that
3299 * specific address identifies the ICID. In the Process Window Mode
3300 * region the ICID is given in the data written to the doorbell. The
3301 * above per PF register denotes the offset in the doorbell BAR in which
3302 * the PWM region begins.
3303 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
3304 * non-PWM connection. The calculation below computes the total non-PWM
3305 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
3306 * in units of 4,096 bytes.
3307 */
3308 non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
3309 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
3310 OSAL_NULL) +
3311 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
3312 OSAL_NULL);
3313 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, OSAL_PAGE_SIZE);
3314 min_addr_reg1 = norm_regsize / 4096;
3315 pwm_regsize = db_bar_size - norm_regsize;
3316
3317 /* Check that the normal and PWM sizes are valid */
3318 if (db_bar_size < norm_regsize) {
3319 DP_ERR(p_hwfn->p_dev,
3320 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
3321 db_bar_size, norm_regsize);
3322 return ECORE_NORESOURCES;
3323 }
3324 if (pwm_regsize < ECORE_MIN_PWM_REGION) {
3325 DP_ERR(p_hwfn->p_dev,
3326 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
3327 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
3328 norm_regsize);
3329 return ECORE_NORESOURCES;
3330 }
3331
3332 p_rdma_pf_params = &p_hwfn->pf_params.rdma_pf_params;
3333
3334 /* Calculate number of DPIs */
3335 if (ECORE_IS_IWARP_PERSONALITY(p_hwfn))
3336 p_rdma_pf_params->roce_edpm_mode = ECORE_ROCE_EDPM_MODE_DISABLE;
3337
3338 if (p_rdma_pf_params->roce_edpm_mode <= ECORE_ROCE_EDPM_MODE_DISABLE) {
3339 roce_edpm_mode = p_rdma_pf_params->roce_edpm_mode;
3340 } else {
3341 DP_ERR(p_hwfn->p_dev,
3342 "roce edpm mode was configured to an illegal value of %u. Resetting it to 0-Enable EDPM if BAR size is adequate\n",
3343 p_rdma_pf_params->roce_edpm_mode);
3344 roce_edpm_mode = 0;
3345 }
3346
3347 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
3348 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
3349 /* Either EDPM is mandatory, or we are attempting to allocate a
3350 * WID per CPU.
3351 */
3352 n_cpus = OSAL_NUM_CPUS();
3353 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3354 }
3355
3356 cond = ((rc != ECORE_SUCCESS) &&
3357 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
3358 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
3359 if (cond || p_hwfn->dcbx_no_edpm) {
3360 /* Either EDPM is disabled from user configuration, or it is
3361 * disabled via DCBx, or it is not mandatory and we failed to
3362 * allocated a WID per CPU.
3363 */
3364 n_cpus = 1;
3365 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3366
3367 #ifdef CONFIG_ECORE_ROCE
3368 /* If we entered this flow due to DCBX then the DPM register is
3369 * already configured.
3370 */
3371 if (cond)
3372 ecore_rdma_dpm_bar(p_hwfn, p_ptt);
3373 #endif
3374 }
3375
3376 p_hwfn->wid_count = (u16)n_cpus;
3377
3378 /* Check return codes from above calls */
3379 if (rc != ECORE_SUCCESS) {
3380 #ifndef LINUX_REMOVE
3381 DP_ERR(p_hwfn,
3382 "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via user configuration min_dpis or by disabling EDPM via user configuration roce_edpm_mode\n",
3383 p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3384 ECORE_MIN_DPIS);
3385 #else
3386 DP_ERR(p_hwfn,
3387 "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via the module parameter min_rdma_dpis or by disabling EDPM by setting the module parameter roce_edpm to 2\n",
3388 p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3389 ECORE_MIN_DPIS);
3390 #endif
3391 DP_ERR(p_hwfn,
3392 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3393 norm_regsize, pwm_regsize, p_hwfn->dpi_size,
3394 p_hwfn->dpi_count,
3395 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3396 "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3397
3398 return ECORE_NORESOURCES;
3399 }
3400
3401 DP_INFO(p_hwfn,
3402 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3403 norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
3404 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3405 "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3406
3407 /* Update hwfn */
3408 p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
3409 * calculate the doorbell
3410 * address
3411 */
3412
3413 /* Update registers */
3414 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
3415 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
3416 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
3417 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
3418
3419 return ECORE_SUCCESS;
3420 }
3421
3422 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
3423 struct ecore_ptt *p_ptt,
3424 int hw_mode)
3425 {
3426 enum _ecore_status_t rc = ECORE_SUCCESS;
3427
3428 /* In CMT the gate should be cleared by the 2nd hwfn */
3429 if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn))
3430 STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
3431
3432 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
3433 hw_mode);
3434 if (rc != ECORE_SUCCESS)
3435 return rc;
3436
3437 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
3438
3439 #ifndef ASIC_ONLY
3440 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
3441 return ECORE_SUCCESS;
3442
3443 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
3444 if (ECORE_IS_AH(p_hwfn->p_dev))
3445 return ECORE_SUCCESS;
3446 else if (ECORE_IS_BB(p_hwfn->p_dev))
3447 ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
3448 else /* E5 */
3449 ECORE_E5_MISSING_CODE;
3450 } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3451 if (ECORE_IS_CMT(p_hwfn->p_dev)) {
3452 /* Activate OPTE in CMT */
3453 u32 val;
3454
3455 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
3456 val |= 0x10;
3457 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
3458 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
3459 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
3460 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
3461 ecore_wr(p_hwfn, p_ptt,
3462 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
3463 ecore_wr(p_hwfn, p_ptt,
3464 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
3465 ecore_wr(p_hwfn, p_ptt,
3466 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
3467 0x55555555);
3468 }
3469
3470 ecore_emul_link_init(p_hwfn, p_ptt);
3471 } else {
3472 DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
3473 }
3474 #endif
3475
3476 return rc;
3477 }
3478
3479 static enum _ecore_status_t
3480 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3481 int hw_mode, struct ecore_hw_init_params *p_params)
3482 {
3483 u8 rel_pf_id = p_hwfn->rel_pf_id;
3484 u32 prs_reg;
3485 enum _ecore_status_t rc = ECORE_SUCCESS;
3486 u16 ctrl;
3487 int pos;
3488
3489 if (p_hwfn->mcp_info) {
3490 struct ecore_mcp_function_info *p_info;
3491
3492 p_info = &p_hwfn->mcp_info->func_info;
3493 if (p_info->bandwidth_min)
3494 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
3495
3496 /* Update rate limit once we'll actually have a link */
3497 p_hwfn->qm_info.pf_rl = 100000;
3498 }
3499 ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
3500
3501 ecore_int_igu_init_rt(p_hwfn);
3502
3503 /* Set VLAN in NIG if needed */
3504 if (hw_mode & (1 << MODE_MF_SD)) {
3505 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
3506 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
3507 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
3508 p_hwfn->hw_info.ovlan);
3509
3510 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3511 "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
3512 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
3513 1);
3514 }
3515
3516 /* Enable classification by MAC if needed */
3517 if (hw_mode & (1 << MODE_MF_SI)) {
3518 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
3519 STORE_RT_REG(p_hwfn,
3520 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
3521 }
3522
3523 /* Protocl Configuration - @@@TBD - should we set 0 otherwise?*/
3524 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
3525 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
3526 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
3527 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
3528 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
3529
3530 /* perform debug configuration when chip is out of reset */
3531 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
3532
3533 /* Sanity check before the PF init sequence that uses DMAE */
3534 rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
3535 if (rc)
3536 return rc;
3537
3538 /* PF Init sequence */
3539 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
3540 if (rc)
3541 return rc;
3542
3543 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
3544 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
3545 if (rc)
3546 return rc;
3547
3548 /* Pure runtime initializations - directly to the HW */
3549 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
3550
3551 /* PCI relaxed ordering is generally beneficial for performance,
3552 * but can hurt performance or lead to instability on some setups.
3553 * If management FW is taking care of it go with that, otherwise
3554 * disable to be on the safe side.
3555 */
3556 pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
3557 if (!pos) {
3558 DP_NOTICE(p_hwfn, true,
3559 "Failed to find the PCI Express Capability structure in the PCI config space\n");
3560 return ECORE_IO;
3561 }
3562
3563 OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
3564
3565 if (p_params->pci_rlx_odr_mode == ECORE_ENABLE_RLX_ODR) {
3566 ctrl |= PCI_EXP_DEVCTL_RELAX_EN;
3567 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3568 pos + PCI_EXP_DEVCTL, ctrl);
3569 } else if (p_params->pci_rlx_odr_mode == ECORE_DISABLE_RLX_ODR) {
3570 ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3571 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3572 pos + PCI_EXP_DEVCTL, ctrl);
3573 } else if (ecore_mcp_rlx_odr_supported(p_hwfn)) {
3574 DP_INFO(p_hwfn, "PCI relax ordering configured by MFW\n");
3575 } else {
3576 ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3577 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3578 pos + PCI_EXP_DEVCTL, ctrl);
3579 }
3580
3581 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
3582 if (rc != ECORE_SUCCESS)
3583 return rc;
3584
3585 /* Use the leading hwfn since in CMT only NIG #0 is operational */
3586 if (IS_LEAD_HWFN(p_hwfn)) {
3587 rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt,
3588 p_params->avoid_eng_affin);
3589 if (rc != ECORE_SUCCESS)
3590 return rc;
3591 }
3592
3593 if (p_params->b_hw_start) {
3594 /* enable interrupts */
3595 rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode);
3596 if (rc != ECORE_SUCCESS)
3597 return rc;
3598
3599 /* send function start command */
3600 rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn,
3601 p_params->allow_npar_tx_switch);
3602 if (rc) {
3603 DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
3604 return rc;
3605 }
3606 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3607 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3608 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3609
3610 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3611 {
3612 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
3613 (1 << 2));
3614 ecore_wr(p_hwfn, p_ptt,
3615 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
3616 0x100);
3617 }
3618 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3619 "PRS_REG_SEARCH registers after start PFn\n");
3620 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
3621 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3622 "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
3623 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
3624 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3625 "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
3626 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
3627 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3628 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
3629 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
3630 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3631 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
3632 prs_reg = ecore_rd(p_hwfn, p_ptt,
3633 PRS_REG_SEARCH_TCP_FIRST_FRAG);
3634 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3635 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
3636 prs_reg);
3637 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3638 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3639 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3640 }
3641 return ECORE_SUCCESS;
3642 }
3643
3644 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
3645 struct ecore_ptt *p_ptt,
3646 bool b_enable)
3647 {
3648 u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
3649
3650 /* Configure the PF's internal FID_enable for master transactions */
3651 ecore_wr(p_hwfn, p_ptt,
3652 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
3653
3654 /* Wait until value is set - try for 1 second every 50us */
3655 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
3656 val = ecore_rd(p_hwfn, p_ptt,
3657 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
3658 if (val == set_val)
3659 break;
3660
3661 OSAL_UDELAY(50);
3662 }
3663
3664 if (val != set_val) {
3665 DP_NOTICE(p_hwfn, true,
3666 "PFID_ENABLE_MASTER wasn't changed after a second\n");
3667 return ECORE_UNKNOWN_ERROR;
3668 }
3669
3670 return ECORE_SUCCESS;
3671 }
3672
3673 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
3674 struct ecore_ptt *p_main_ptt)
3675 {
3676 /* Read shadow of current MFW mailbox */
3677 ecore_mcp_read_mb(p_hwfn, p_main_ptt);
3678 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
3679 p_hwfn->mcp_info->mfw_mb_cur,
3680 p_hwfn->mcp_info->mfw_mb_length);
3681 }
3682
3683 static enum _ecore_status_t
3684 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn,
3685 struct ecore_load_req_params *p_load_req,
3686 struct ecore_drv_load_params *p_drv_load)
3687 {
3688 /* Make sure that if ecore-client didn't provide inputs, all the
3689 * expected defaults are indeed zero.
3690 */
3691 OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
3692 OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
3693 OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
3694
3695 OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
3696
3697 if (p_drv_load == OSAL_NULL)
3698 goto out;
3699
3700 p_load_req->drv_role = p_drv_load->is_crash_kernel ?
3701 ECORE_DRV_ROLE_KDUMP :
3702 ECORE_DRV_ROLE_OS;
3703 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
3704 p_load_req->override_force_load = p_drv_load->override_force_load;
3705
3706 /* Old MFW versions don't support timeout values other than default and
3707 * none, so these values are replaced according to the fall-back action.
3708 */
3709
3710 if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT ||
3711 p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE ||
3712 (p_hwfn->mcp_info->capabilities &
3713 FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) {
3714 p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
3715 goto out;
3716 }
3717
3718 switch (p_drv_load->mfw_timeout_fallback) {
3719 case ECORE_TO_FALLBACK_TO_NONE:
3720 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE;
3721 break;
3722 case ECORE_TO_FALLBACK_TO_DEFAULT:
3723 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
3724 break;
3725 case ECORE_TO_FALLBACK_FAIL_LOAD:
3726 DP_NOTICE(p_hwfn, false,
3727 "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n",
3728 p_drv_load->mfw_timeout_val,
3729 ECORE_LOAD_REQ_LOCK_TO_DEFAULT,
3730 ECORE_LOAD_REQ_LOCK_TO_NONE);
3731 return ECORE_ABORTED;
3732 }
3733
3734 DP_INFO(p_hwfn,
3735 "Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n",
3736 p_drv_load->mfw_timeout_val,
3737 (p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ?
3738 "default" : "none",
3739 p_load_req->timeout_val);
3740 out:
3741 return ECORE_SUCCESS;
3742 }
3743
3744 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
3745 struct ecore_hw_init_params *p_params)
3746 {
3747 if (p_params->p_tunn) {
3748 ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
3749 ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
3750 }
3751
3752 p_hwfn->b_int_enabled = 1;
3753
3754 return ECORE_SUCCESS;
3755 }
3756
3757 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
3758 struct ecore_ptt *p_ptt)
3759 {
3760 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3761 1 << p_hwfn->abs_pf_id);
3762 }
3763
3764 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
3765 struct ecore_hw_init_params *p_params)
3766 {
3767 struct ecore_load_req_params load_req_params;
3768 u32 load_code, resp, param, drv_mb_param;
3769 bool b_default_mtu = true;
3770 struct ecore_hwfn *p_hwfn;
3771 enum _ecore_status_t rc = ECORE_SUCCESS, cancel_load;
3772 u16 ether_type;
3773 int i;
3774
3775 if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
3776 DP_NOTICE(p_dev, false,
3777 "MSI mode is not supported for CMT devices\n");
3778 return ECORE_INVAL;
3779 }
3780
3781 if (IS_PF(p_dev)) {
3782 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
3783 if (rc != ECORE_SUCCESS)
3784 return rc;
3785 }
3786
3787 for_each_hwfn(p_dev, i) {
3788 p_hwfn = &p_dev->hwfns[i];
3789
3790 /* If management didn't provide a default, set one of our own */
3791 if (!p_hwfn->hw_info.mtu) {
3792 p_hwfn->hw_info.mtu = 1500;
3793 b_default_mtu = false;
3794 }
3795
3796 if (IS_VF(p_dev)) {
3797 ecore_vf_start(p_hwfn, p_params);
3798 continue;
3799 }
3800
3801 rc = ecore_calc_hw_mode(p_hwfn);
3802 if (rc != ECORE_SUCCESS)
3803 return rc;
3804
3805 if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3806 &p_dev->mf_bits) ||
3807 OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING,
3808 &p_dev->mf_bits))) {
3809 if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3810 &p_dev->mf_bits))
3811 ether_type = ETH_P_8021Q;
3812 else
3813 ether_type = ETH_P_8021AD;
3814 STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3815 ether_type);
3816 STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3817 ether_type);
3818 STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3819 ether_type);
3820 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3821 ether_type);
3822 }
3823
3824 rc = ecore_fill_load_req_params(p_hwfn, &load_req_params,
3825 p_params->p_drv_load_params);
3826 if (rc != ECORE_SUCCESS)
3827 return rc;
3828
3829 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3830 &load_req_params);
3831 if (rc != ECORE_SUCCESS) {
3832 DP_NOTICE(p_hwfn, false,
3833 "Failed sending a LOAD_REQ command\n");
3834 return rc;
3835 }
3836
3837 load_code = load_req_params.load_code;
3838 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
3839 "Load request was sent. Load code: 0x%x\n",
3840 load_code);
3841
3842 ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3843
3844 /* CQ75580:
3845 * When coming back from hibernate state, the registers from
3846 * which shadow is read initially are not initialized. It turns
3847 * out that these registers get initialized during the call to
3848 * ecore_mcp_load_req request. So we need to reread them here
3849 * to get the proper shadow register value.
3850 * Note: This is a workaround for the missing MFW
3851 * initialization. It may be removed once the implementation
3852 * is done.
3853 */
3854 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3855
3856 /* Only relevant for recovery:
3857 * Clear the indication after the LOAD_REQ command is responded
3858 * by the MFW.
3859 */
3860 p_dev->recov_in_prog = false;
3861
3862 if (!qm_lock_ref_cnt) {
3863 #ifdef CONFIG_ECORE_LOCK_ALLOC
3864 rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock);
3865 if (rc) {
3866 DP_ERR(p_hwfn, "qm_lock allocation failed\n");
3867 goto qm_lock_fail;
3868 }
3869 #endif
3870 OSAL_SPIN_LOCK_INIT(&qm_lock);
3871 }
3872 ++qm_lock_ref_cnt;
3873
3874 /* Clean up chip from previous driver if such remains exist.
3875 * This is not needed when the PF is the first one on the
3876 * engine, since afterwards we are going to init the FW.
3877 */
3878 if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3879 rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3880 p_hwfn->rel_pf_id, false);
3881 if (rc != ECORE_SUCCESS) {
3882 ecore_hw_err_notify(p_hwfn,
3883 ECORE_HW_ERR_RAMROD_FAIL);
3884 goto load_err;
3885 }
3886 }
3887
3888 /* Log and clear previous pglue_b errors if such exist */
3889 ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3890
3891 /* Enable the PF's internal FID_enable in the PXP */
3892 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3893 true);
3894 if (rc != ECORE_SUCCESS)
3895 goto load_err;
3896
3897 /* Clear the pglue_b was_error indication.
3898 * In E4 it must be done after the BME and the internal
3899 * FID_enable for the PF are set, since VDMs may cause the
3900 * indication to be set again.
3901 */
3902 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3903
3904 switch (load_code) {
3905 case FW_MSG_CODE_DRV_LOAD_ENGINE:
3906 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3907 p_hwfn->hw_info.hw_mode);
3908 if (rc != ECORE_SUCCESS)
3909 break;
3910 /* Fall into */
3911 case FW_MSG_CODE_DRV_LOAD_PORT:
3912 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3913 p_hwfn->hw_info.hw_mode);
3914 if (rc != ECORE_SUCCESS)
3915 break;
3916 /* Fall into */
3917 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3918 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3919 p_hwfn->hw_info.hw_mode,
3920 p_params);
3921 break;
3922 default:
3923 DP_NOTICE(p_hwfn, false,
3924 "Unexpected load code [0x%08x]", load_code);
3925 rc = ECORE_NOTIMPL;
3926 break;
3927 }
3928
3929 if (rc != ECORE_SUCCESS) {
3930 DP_NOTICE(p_hwfn, false,
3931 "init phase failed for loadcode 0x%x (rc %d)\n",
3932 load_code, rc);
3933 goto load_err;
3934 }
3935
3936 rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3937 if (rc != ECORE_SUCCESS) {
3938 DP_NOTICE(p_hwfn, false, "Sending load done failed, rc = %d\n", rc);
3939 if (rc == ECORE_NOMEM) {
3940 DP_NOTICE(p_hwfn, false,
3941 "Sending load done was failed due to memory allocation failure\n");
3942 goto load_err;
3943 }
3944 return rc;
3945 }
3946
3947 /* send DCBX attention request command */
3948 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
3949 "sending phony dcbx set command to trigger DCBx attention handling\n");
3950 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3951 DRV_MSG_CODE_SET_DCBX,
3952 1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
3953 ¶m);
3954 if (rc != ECORE_SUCCESS) {
3955 DP_NOTICE(p_hwfn, false,
3956 "Failed to send DCBX attention request\n");
3957 return rc;
3958 }
3959
3960 p_hwfn->hw_init_done = true;
3961 }
3962
3963 if (IS_PF(p_dev)) {
3964 /* Get pre-negotiated values for stag, bandwidth etc. */
3965 p_hwfn = ECORE_LEADING_HWFN(p_dev);
3966 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3967 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3968 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3969 DRV_MSG_CODE_GET_OEM_UPDATES,
3970 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3971 &resp, ¶m);
3972 if (rc != ECORE_SUCCESS)
3973 DP_NOTICE(p_hwfn, false,
3974 "Failed to send GET_OEM_UPDATES attention request\n");
3975 }
3976
3977 if (IS_PF(p_dev)) {
3978 p_hwfn = ECORE_LEADING_HWFN(p_dev);
3979 drv_mb_param = STORM_FW_VERSION;
3980 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3981 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3982 drv_mb_param, &resp, ¶m);
3983 if (rc != ECORE_SUCCESS)
3984 DP_INFO(p_hwfn, "Failed to update firmware version\n");
3985
3986 if (!b_default_mtu) {
3987 rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3988 p_hwfn->hw_info.mtu);
3989 if (rc != ECORE_SUCCESS)
3990 DP_INFO(p_hwfn, "Failed to update default mtu\n");
3991 }
3992
3993 rc = ecore_mcp_ov_update_driver_state(p_hwfn,
3994 p_hwfn->p_main_ptt,
3995 ECORE_OV_DRIVER_STATE_DISABLED);
3996 if (rc != ECORE_SUCCESS)
3997 DP_INFO(p_hwfn, "Failed to update driver state\n");
3998
3999 rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
4000 ECORE_OV_ESWITCH_VEB);
4001 if (rc != ECORE_SUCCESS)
4002 DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
4003 }
4004
4005 return rc;
4006
4007 load_err:
4008 --qm_lock_ref_cnt;
4009 #ifdef CONFIG_ECORE_LOCK_ALLOC
4010 if (!qm_lock_ref_cnt)
4011 OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4012 qm_lock_fail:
4013 #endif
4014 /* The MFW load lock should be released also when initialization fails.
4015 * If supported, use a cancel_load request to update the MFW with the
4016 * load failure.
4017 */
4018 cancel_load = ecore_mcp_cancel_load_req(p_hwfn, p_hwfn->p_main_ptt);
4019 if (cancel_load == ECORE_NOTIMPL) {
4020 DP_INFO(p_hwfn,
4021 "Send a load done request instead of cancel load\n");
4022 ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
4023 }
4024 return rc;
4025 }
4026
4027 #define ECORE_HW_STOP_RETRY_LIMIT (10)
4028 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
4029 struct ecore_hwfn *p_hwfn,
4030 struct ecore_ptt *p_ptt)
4031 {
4032 int i;
4033
4034 /* close timers */
4035 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
4036 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
4037 for (i = 0;
4038 i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
4039 i++) {
4040 if ((!ecore_rd(p_hwfn, p_ptt,
4041 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
4042 (!ecore_rd(p_hwfn, p_ptt,
4043 TM_REG_PF_SCAN_ACTIVE_TASK)))
4044 break;
4045
4046 /* Dependent on number of connection/tasks, possibly
4047 * 1ms sleep is required between polls
4048 */
4049 OSAL_MSLEEP(1);
4050 }
4051
4052 if (i < ECORE_HW_STOP_RETRY_LIMIT)
4053 return;
4054
4055 DP_NOTICE(p_hwfn, false,
4056 "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
4057 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
4058 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
4059 }
4060
4061 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
4062 {
4063 int j;
4064
4065 for_each_hwfn(p_dev, j) {
4066 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4067 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
4068
4069 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4070 }
4071 }
4072
4073 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
4074 struct ecore_ptt *p_ptt,
4075 u32 addr, u32 expected_val)
4076 {
4077 u32 val = ecore_rd(p_hwfn, p_ptt, addr);
4078
4079 if (val != expected_val) {
4080 DP_NOTICE(p_hwfn, true,
4081 "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
4082 addr, val, expected_val);
4083 return ECORE_UNKNOWN_ERROR;
4084 }
4085
4086 return ECORE_SUCCESS;
4087 }
4088
4089 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
4090 {
4091 struct ecore_hwfn *p_hwfn;
4092 struct ecore_ptt *p_ptt;
4093 enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
4094 int j;
4095
4096 for_each_hwfn(p_dev, j) {
4097 p_hwfn = &p_dev->hwfns[j];
4098 p_ptt = p_hwfn->p_main_ptt;
4099
4100 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
4101
4102 if (IS_VF(p_dev)) {
4103 ecore_vf_pf_int_cleanup(p_hwfn);
4104 rc = ecore_vf_pf_reset(p_hwfn);
4105 if (rc != ECORE_SUCCESS) {
4106 DP_NOTICE(p_hwfn, true,
4107 "ecore_vf_pf_reset failed. rc = %d.\n",
4108 rc);
4109 rc2 = ECORE_UNKNOWN_ERROR;
4110 }
4111 continue;
4112 }
4113
4114 /* mark the hw as uninitialized... */
4115 p_hwfn->hw_init_done = false;
4116
4117 /* Send unload command to MCP */
4118 if (!p_dev->recov_in_prog) {
4119 rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
4120 if (rc != ECORE_SUCCESS) {
4121 DP_NOTICE(p_hwfn, false,
4122 "Failed sending a UNLOAD_REQ command. rc = %d.\n",
4123 rc);
4124 rc2 = ECORE_UNKNOWN_ERROR;
4125 }
4126 }
4127
4128 OSAL_DPC_SYNC(p_hwfn);
4129
4130 /* After this point no MFW attentions are expected, e.g. prevent
4131 * race between pf stop and dcbx pf update.
4132 */
4133
4134 rc = ecore_sp_pf_stop(p_hwfn);
4135 if (rc != ECORE_SUCCESS) {
4136 DP_NOTICE(p_hwfn, false,
4137 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
4138 rc);
4139 rc2 = ECORE_UNKNOWN_ERROR;
4140 }
4141
4142 /* perform debug action after PF stop was sent */
4143 OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
4144
4145 /* close NIG to BRB gate */
4146 ecore_wr(p_hwfn, p_ptt,
4147 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4148
4149 /* close parser */
4150 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4151 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4152 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4153 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4154 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4155
4156 /* @@@TBD - clean transmission queues (5.b) */
4157 /* @@@TBD - clean BTB (5.c) */
4158
4159 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4160
4161 /* @@@TBD - verify DMAE requests are done (8) */
4162
4163 /* Disable Attention Generation */
4164 ecore_int_igu_disable_int(p_hwfn, p_ptt);
4165 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
4166 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
4167 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
4168 rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
4169 if (rc != ECORE_SUCCESS) {
4170 DP_NOTICE(p_hwfn, true,
4171 "Failed to return IGU CAM to default\n");
4172 rc2 = ECORE_UNKNOWN_ERROR;
4173 }
4174
4175 /* Need to wait 1ms to guarantee SBs are cleared */
4176 OSAL_MSLEEP(1);
4177
4178 if (!p_dev->recov_in_prog) {
4179 ecore_verify_reg_val(p_hwfn, p_ptt,
4180 QM_REG_USG_CNT_PF_TX, 0);
4181 ecore_verify_reg_val(p_hwfn, p_ptt,
4182 QM_REG_USG_CNT_PF_OTHER, 0);
4183 /* @@@TBD - assert on incorrect xCFC values (10.b) */
4184 }
4185
4186 /* Disable PF in HW blocks */
4187 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
4188 ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
4189
4190 if (IS_LEAD_HWFN(p_hwfn) &&
4191 OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
4192 !ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4193 ecore_llh_remove_mac_filter(p_dev, 0,
4194 p_hwfn->hw_info.hw_mac_addr);
4195
4196 --qm_lock_ref_cnt;
4197 #ifdef CONFIG_ECORE_LOCK_ALLOC
4198 if (!qm_lock_ref_cnt)
4199 OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4200 #endif
4201
4202 if (!p_dev->recov_in_prog) {
4203 rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4204 if (rc == ECORE_NOMEM) {
4205 DP_NOTICE(p_hwfn, false,
4206 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n");
4207 rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4208 }
4209 if (rc != ECORE_SUCCESS) {
4210 DP_NOTICE(p_hwfn, false,
4211 "Failed sending a UNLOAD_DONE command. rc = %d.\n",
4212 rc);
4213 rc2 = ECORE_UNKNOWN_ERROR;
4214 }
4215 }
4216 } /* hwfn loop */
4217
4218 if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
4219 p_hwfn = ECORE_LEADING_HWFN(p_dev);
4220 p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
4221
4222 /* Clear the PF's internal FID_enable in the PXP.
4223 * In CMT this should only be done for first hw-function, and
4224 * only after all transactions have stopped for all active
4225 * hw-functions.
4226 */
4227 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
4228 false);
4229 if (rc != ECORE_SUCCESS) {
4230 DP_NOTICE(p_hwfn, true,
4231 "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
4232 rc);
4233 rc2 = ECORE_UNKNOWN_ERROR;
4234 }
4235 }
4236
4237 return rc2;
4238 }
4239
4240 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
4241 {
4242 int j;
4243
4244 for_each_hwfn(p_dev, j) {
4245 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4246 struct ecore_ptt *p_ptt;
4247
4248 if (IS_VF(p_dev)) {
4249 ecore_vf_pf_int_cleanup(p_hwfn);
4250 continue;
4251 }
4252 p_ptt = ecore_ptt_acquire(p_hwfn);
4253 if (!p_ptt)
4254 return ECORE_AGAIN;
4255
4256 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
4257
4258 ecore_wr(p_hwfn, p_ptt,
4259 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4260
4261 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4262 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4263 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4264 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4265 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4266
4267 /* @@@TBD - clean transmission queues (5.b) */
4268 /* @@@TBD - clean BTB (5.c) */
4269
4270 /* @@@TBD - verify DMAE requests are done (8) */
4271
4272 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
4273 /* Need to wait 1ms to guarantee SBs are cleared */
4274 OSAL_MSLEEP(1);
4275 ecore_ptt_release(p_hwfn, p_ptt);
4276 }
4277
4278 return ECORE_SUCCESS;
4279 }
4280
4281 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
4282 {
4283 struct ecore_ptt *p_ptt;
4284
4285 if (IS_VF(p_hwfn->p_dev))
4286 return ECORE_SUCCESS;
4287
4288 p_ptt = ecore_ptt_acquire(p_hwfn);
4289 if (!p_ptt)
4290 return ECORE_AGAIN;
4291
4292 /* If roce info is allocated it means roce is initialized and should
4293 * be enabled in searcher.
4294 */
4295 if (p_hwfn->p_rdma_info &&
4296 p_hwfn->p_rdma_info->active &&
4297 p_hwfn->b_rdma_enabled_in_prs)
4298 ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
4299
4300 /* Re-open incoming traffic */
4301 ecore_wr(p_hwfn, p_ptt,
4302 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
4303 ecore_ptt_release(p_hwfn, p_ptt);
4304
4305 return ECORE_SUCCESS;
4306 }
4307
4308 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev, u32 reg_idx,
4309 u32 pattern_size, u32 crc)
4310 {
4311 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4312 enum _ecore_status_t rc = ECORE_SUCCESS;
4313 struct ecore_ptt *p_ptt;
4314 u32 reg_len = 0;
4315 u32 reg_crc = 0;
4316
4317 p_ptt = ecore_ptt_acquire(p_hwfn);
4318 if (!p_ptt)
4319 return ECORE_AGAIN;
4320
4321 /* Get length and CRC register offsets */
4322 switch (reg_idx)
4323 {
4324 case 0:
4325 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
4326 WOL_REG_ACPI_PAT_0_LEN_K2_E5;
4327 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
4328 WOL_REG_ACPI_PAT_0_CRC_K2_E5;
4329 break;
4330 case 1:
4331 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
4332 WOL_REG_ACPI_PAT_1_LEN_K2_E5;
4333 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
4334 WOL_REG_ACPI_PAT_1_CRC_K2_E5;
4335 break;
4336 case 2:
4337 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
4338 WOL_REG_ACPI_PAT_2_LEN_K2_E5;
4339 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
4340 WOL_REG_ACPI_PAT_2_CRC_K2_E5;
4341 break;
4342 case 3:
4343 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
4344 WOL_REG_ACPI_PAT_3_LEN_K2_E5;
4345 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
4346 WOL_REG_ACPI_PAT_3_CRC_K2_E5;
4347 break;
4348 case 4:
4349 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
4350 WOL_REG_ACPI_PAT_4_LEN_K2_E5;
4351 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
4352 WOL_REG_ACPI_PAT_4_CRC_K2_E5;
4353 break;
4354 case 5:
4355 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
4356 WOL_REG_ACPI_PAT_5_LEN_K2_E5;
4357 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
4358 WOL_REG_ACPI_PAT_5_CRC_K2_E5;
4359 break;
4360 case 6:
4361 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
4362 WOL_REG_ACPI_PAT_6_LEN_K2_E5;
4363 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
4364 WOL_REG_ACPI_PAT_6_CRC_K2_E5;
4365 break;
4366 case 7:
4367 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
4368 WOL_REG_ACPI_PAT_7_LEN_K2_E5;
4369 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
4370 WOL_REG_ACPI_PAT_7_CRC_K2_E5;
4371 break;
4372 default:
4373 rc = ECORE_UNKNOWN_ERROR;
4374 goto out;
4375 }
4376
4377 /* Allign pattern size to 4 */
4378 while (pattern_size % 4)
4379 pattern_size++;
4380
4381 /* Write pattern length and crc value */
4382 if (ECORE_IS_BB(p_dev)) {
4383 rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4384 if (rc != ECORE_SUCCESS) {
4385 DP_NOTICE(p_hwfn, false,
4386 "Failed to update the ACPI pattern length\n");
4387 return rc;
4388 }
4389
4390 rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_crc, crc);
4391 if (rc != ECORE_SUCCESS) {
4392 DP_NOTICE(p_hwfn, false,
4393 "Failed to update the ACPI pattern crc value\n");
4394 return rc;
4395 }
4396 } else {
4397 ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4398 ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_crc, crc);
4399 }
4400
4401 DP_INFO(p_dev,
4402 "ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
4403 "reg_len[0x%x=0x%x]\n",
4404 reg_idx, reg_crc, crc, reg_len, pattern_size);
4405 out:
4406 ecore_ptt_release(p_hwfn, p_ptt);
4407
4408 return rc;
4409 }
4410
4411 void ecore_wol_buffer_clear(struct ecore_hwfn *p_hwfn,
4412 struct ecore_ptt *p_ptt)
4413 {
4414 const u32 wake_buffer_clear_offset =
4415 ECORE_IS_BB(p_hwfn->p_dev) ?
4416 NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
4417
4418 DP_INFO(p_hwfn->p_dev,
4419 "ecore_wol_buffer_clear: reset "
4420 "REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
4421 wake_buffer_clear_offset);
4422
4423 if (ECORE_IS_BB(p_hwfn->p_dev)) {
4424 ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4425 ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4426 } else {
4427 ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4428 ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4429 }
4430 }
4431
4432 enum _ecore_status_t ecore_get_wake_info(struct ecore_hwfn *p_hwfn,
4433 struct ecore_ptt *p_ptt,
4434 struct ecore_wake_info *wake_info)
4435 {
4436 struct ecore_dev *p_dev = p_hwfn->p_dev;
4437 u32 *buf = OSAL_NULL;
4438 u32 i = 0;
4439 const u32 reg_wake_buffer_offest =
4440 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
4441 WOL_REG_WAKE_BUFFER_K2_E5;
4442
4443 wake_info->wk_info = ecore_rd(p_hwfn, p_ptt,
4444 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
4445 WOL_REG_WAKE_INFO_K2_E5);
4446 wake_info->wk_details = ecore_rd(p_hwfn, p_ptt,
4447 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
4448 WOL_REG_WAKE_DETAILS_K2_E5);
4449 wake_info->wk_pkt_len = ecore_rd(p_hwfn, p_ptt,
4450 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
4451 WOL_REG_WAKE_PKT_LEN_K2_E5);
4452
4453 DP_INFO(p_dev,
4454 "ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
4455 "REG_WAKE_DETAILS=0x%08x "
4456 "REG_WAKE_PKT_LEN=0x%08x\n",
4457 wake_info->wk_info,
4458 wake_info->wk_details,
4459 wake_info->wk_pkt_len);
4460
4461 buf = (u32 *)wake_info->wk_buffer;
4462
4463 for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
4464 {
4465 if ((i*sizeof(u32)) >= sizeof(wake_info->wk_buffer))
4466 {
4467 DP_INFO(p_dev,
4468 "ecore_get_wake_info: i index to 0 high=%d\n",
4469 i);
4470 break;
4471 }
4472 buf[i] = ecore_rd(p_hwfn, p_ptt,
4473 reg_wake_buffer_offest + (i * sizeof(u32)));
4474 DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
4475 i, buf[i]);
4476 }
4477
4478 ecore_wol_buffer_clear(p_hwfn, p_ptt);
4479
4480 return ECORE_SUCCESS;
4481 }
4482
4483 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
4484 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
4485 {
4486 ecore_ptt_pool_free(p_hwfn);
4487 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
4488 p_hwfn->hw_info.p_igu_info = OSAL_NULL;
4489 }
4490
4491 /* Setup bar access */
4492 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
4493 {
4494 /* clear indirect access */
4495 if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
4496 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4497 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
4498 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4499 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
4500 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4501 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
4502 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4503 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
4504 } else {
4505 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4506 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
4507 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4508 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
4509 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4510 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
4511 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4512 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
4513 }
4514
4515 /* Clean previous pglue_b errors if such exist */
4516 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
4517
4518 /* enable internal target-read */
4519 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4520 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
4521 }
4522
4523 static void get_function_id(struct ecore_hwfn *p_hwfn)
4524 {
4525 /* ME Register */
4526 p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
4527 PXP_PF_ME_OPAQUE_ADDR);
4528
4529 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
4530
4531 /* Bits 16-19 from the ME registers are the pf_num */
4532 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
4533 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4534 PXP_CONCRETE_FID_PFID);
4535 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4536 PXP_CONCRETE_FID_PORT);
4537
4538 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4539 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
4540 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
4541 }
4542
4543 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
4544 {
4545 u32 *feat_num = p_hwfn->hw_info.feat_num;
4546 struct ecore_sb_cnt_info sb_cnt;
4547 u32 non_l2_sbs = 0;
4548
4549 OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
4550 ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
4551
4552 #ifdef CONFIG_ECORE_ROCE
4553 /* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
4554 * status blocks equally between L2 / RoCE but with consideration as
4555 * to how many l2 queues / cnqs we have
4556 */
4557 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
4558 #ifndef __EXTRACT__LINUX__THROW__
4559 u32 max_cnqs;
4560 #endif
4561
4562 feat_num[ECORE_RDMA_CNQ] =
4563 OSAL_MIN_T(u32,
4564 sb_cnt.cnt / 2,
4565 RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
4566
4567 #ifndef __EXTRACT__LINUX__THROW__
4568 /* Upper layer might require less */
4569 max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
4570 if (max_cnqs) {
4571 if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
4572 max_cnqs = 0;
4573 feat_num[ECORE_RDMA_CNQ] =
4574 OSAL_MIN_T(u32,
4575 feat_num[ECORE_RDMA_CNQ],
4576 max_cnqs);
4577 }
4578 #endif
4579
4580 non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
4581 }
4582 #endif
4583
4584 /* L2 Queues require each: 1 status block. 1 L2 queue */
4585 if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
4586 /* Start by allocating VF queues, then PF's */
4587 feat_num[ECORE_VF_L2_QUE] =
4588 OSAL_MIN_T(u32,
4589 RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
4590 sb_cnt.iov_cnt);
4591 feat_num[ECORE_PF_L2_QUE] =
4592 OSAL_MIN_T(u32,
4593 sb_cnt.cnt - non_l2_sbs,
4594 RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
4595 FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
4596 }
4597
4598 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4599 feat_num[ECORE_FCOE_CQ] =
4600 OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4601 ECORE_CMDQS_CQS));
4602
4603 if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
4604 feat_num[ECORE_ISCSI_CQ] =
4605 OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4606 ECORE_CMDQS_CQS));
4607
4608 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4609 "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
4610 (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
4611 (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
4612 (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
4613 (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
4614 (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
4615 (int)sb_cnt.cnt);
4616 }
4617
4618 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
4619 {
4620 switch (res_id) {
4621 case ECORE_L2_QUEUE:
4622 return "L2_QUEUE";
4623 case ECORE_VPORT:
4624 return "VPORT";
4625 case ECORE_RSS_ENG:
4626 return "RSS_ENG";
4627 case ECORE_PQ:
4628 return "PQ";
4629 case ECORE_RL:
4630 return "RL";
4631 case ECORE_MAC:
4632 return "MAC";
4633 case ECORE_VLAN:
4634 return "VLAN";
4635 case ECORE_RDMA_CNQ_RAM:
4636 return "RDMA_CNQ_RAM";
4637 case ECORE_ILT:
4638 return "ILT";
4639 case ECORE_LL2_QUEUE:
4640 return "LL2_QUEUE";
4641 case ECORE_CMDQS_CQS:
4642 return "CMDQS_CQS";
4643 case ECORE_RDMA_STATS_QUEUE:
4644 return "RDMA_STATS_QUEUE";
4645 case ECORE_BDQ:
4646 return "BDQ";
4647 case ECORE_SB:
4648 return "SB";
4649 default:
4650 return "UNKNOWN_RESOURCE";
4651 }
4652 }
4653
4654 static enum _ecore_status_t
4655 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4656 struct ecore_ptt *p_ptt,
4657 enum ecore_resources res_id,
4658 u32 resc_max_val,
4659 u32 *p_mcp_resp)
4660 {
4661 enum _ecore_status_t rc;
4662
4663 rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
4664 resc_max_val, p_mcp_resp);
4665 if (rc != ECORE_SUCCESS) {
4666 DP_NOTICE(p_hwfn, false,
4667 "MFW response failure for a max value setting of resource %d [%s]\n",
4668 res_id, ecore_hw_get_resc_name(res_id));
4669 return rc;
4670 }
4671
4672 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
4673 DP_INFO(p_hwfn,
4674 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
4675 res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
4676
4677 return ECORE_SUCCESS;
4678 }
4679
4680 static enum _ecore_status_t
4681 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4682 struct ecore_ptt *p_ptt)
4683 {
4684 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4685 u32 resc_max_val, mcp_resp;
4686 u8 res_id;
4687 enum _ecore_status_t rc;
4688
4689 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4690 switch (res_id) {
4691 case ECORE_LL2_QUEUE:
4692 resc_max_val = MAX_NUM_LL2_RX_QUEUES;
4693 break;
4694 case ECORE_RDMA_CNQ_RAM:
4695 /* No need for a case for ECORE_CMDQS_CQS since
4696 * CNQ/CMDQS are the same resource.
4697 */
4698 resc_max_val = NUM_OF_GLOBAL_QUEUES;
4699 break;
4700 case ECORE_RDMA_STATS_QUEUE:
4701 resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
4702 : RDMA_NUM_STATISTIC_COUNTERS_BB;
4703 break;
4704 case ECORE_BDQ:
4705 resc_max_val = BDQ_NUM_RESOURCES;
4706 break;
4707 default:
4708 continue;
4709 }
4710
4711 rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
4712 resc_max_val, &mcp_resp);
4713 if (rc != ECORE_SUCCESS)
4714 return rc;
4715
4716 /* There's no point to continue to the next resource if the
4717 * command is not supported by the MFW.
4718 * We do continue if the command is supported but the resource
4719 * is unknown to the MFW. Such a resource will be later
4720 * configured with the default allocation values.
4721 */
4722 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
4723 return ECORE_NOTIMPL;
4724 }
4725
4726 return ECORE_SUCCESS;
4727 }
4728
4729 static
4730 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
4731 enum ecore_resources res_id,
4732 u32 *p_resc_num, u32 *p_resc_start)
4733 {
4734 u8 num_funcs = p_hwfn->num_funcs_on_engine;
4735 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4736
4737 switch (res_id) {
4738 case ECORE_L2_QUEUE:
4739 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
4740 MAX_NUM_L2_QUEUES_BB) / num_funcs;
4741 break;
4742 case ECORE_VPORT:
4743 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
4744 MAX_NUM_VPORTS_BB) / num_funcs;
4745 break;
4746 case ECORE_RSS_ENG:
4747 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
4748 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
4749 break;
4750 case ECORE_PQ:
4751 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
4752 MAX_QM_TX_QUEUES_BB) / num_funcs;
4753 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
4754 break;
4755 case ECORE_RL:
4756 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
4757 break;
4758 case ECORE_MAC:
4759 case ECORE_VLAN:
4760 /* Each VFC resource can accommodate both a MAC and a VLAN */
4761 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
4762 break;
4763 case ECORE_ILT:
4764 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
4765 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
4766 break;
4767 case ECORE_LL2_QUEUE:
4768 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
4769 break;
4770 case ECORE_RDMA_CNQ_RAM:
4771 case ECORE_CMDQS_CQS:
4772 /* CNQ/CMDQS are the same resource */
4773 *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
4774 break;
4775 case ECORE_RDMA_STATS_QUEUE:
4776 *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
4777 RDMA_NUM_STATISTIC_COUNTERS_BB) /
4778 num_funcs;
4779 break;
4780 case ECORE_BDQ:
4781 if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
4782 p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
4783 *p_resc_num = 0;
4784 else
4785 *p_resc_num = 1;
4786 break;
4787 case ECORE_SB:
4788 /* Since we want its value to reflect whether MFW supports
4789 * the new scheme, have a default of 0.
4790 */
4791 *p_resc_num = 0;
4792 break;
4793 default:
4794 return ECORE_INVAL;
4795 }
4796
4797 switch (res_id) {
4798 case ECORE_BDQ:
4799 if (!*p_resc_num)
4800 *p_resc_start = 0;
4801 else if (p_hwfn->p_dev->num_ports_in_engine == 4)
4802 *p_resc_start = p_hwfn->port_id;
4803 else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
4804 *p_resc_start = p_hwfn->port_id;
4805 else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
4806 *p_resc_start = p_hwfn->port_id + 2;
4807 break;
4808 default:
4809 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
4810 break;
4811 }
4812
4813 return ECORE_SUCCESS;
4814 }
4815
4816 static enum _ecore_status_t
4817 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
4818 bool drv_resc_alloc)
4819 {
4820 u32 dflt_resc_num = 0, dflt_resc_start = 0;
4821 u32 mcp_resp, *p_resc_num, *p_resc_start;
4822 enum _ecore_status_t rc;
4823
4824 p_resc_num = &RESC_NUM(p_hwfn, res_id);
4825 p_resc_start = &RESC_START(p_hwfn, res_id);
4826
4827 rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
4828 &dflt_resc_start);
4829 if (rc != ECORE_SUCCESS) {
4830 DP_ERR(p_hwfn,
4831 "Failed to get default amount for resource %d [%s]\n",
4832 res_id, ecore_hw_get_resc_name(res_id));
4833 return rc;
4834 }
4835
4836 #ifndef ASIC_ONLY
4837 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4838 *p_resc_num = dflt_resc_num;
4839 *p_resc_start = dflt_resc_start;
4840 goto out;
4841 }
4842 #endif
4843
4844 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
4845 &mcp_resp, p_resc_num, p_resc_start);
4846 if (rc != ECORE_SUCCESS) {
4847 DP_NOTICE(p_hwfn, false,
4848 "MFW response failure for an allocation request for resource %d [%s]\n",
4849 res_id, ecore_hw_get_resc_name(res_id));
4850 return rc;
4851 }
4852
4853 /* Default driver values are applied in the following cases:
4854 * - The resource allocation MB command is not supported by the MFW
4855 * - There is an internal error in the MFW while processing the request
4856 * - The resource ID is unknown to the MFW
4857 */
4858 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
4859 DP_INFO(p_hwfn,
4860 "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
4861 res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
4862 dflt_resc_num, dflt_resc_start);
4863 *p_resc_num = dflt_resc_num;
4864 *p_resc_start = dflt_resc_start;
4865 goto out;
4866 }
4867
4868 if ((*p_resc_num != dflt_resc_num ||
4869 *p_resc_start != dflt_resc_start) &&
4870 res_id != ECORE_SB) {
4871 DP_INFO(p_hwfn,
4872 "MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
4873 res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
4874 *p_resc_start, dflt_resc_num, dflt_resc_start,
4875 drv_resc_alloc ? " - Applying default values" : "");
4876 if (drv_resc_alloc) {
4877 *p_resc_num = dflt_resc_num;
4878 *p_resc_start = dflt_resc_start;
4879 }
4880 }
4881 out:
4882 /* PQs have to divide by 8 [that's the HW granularity].
4883 * Reduce number so it would fit.
4884 */
4885 if ((res_id == ECORE_PQ) &&
4886 ((*p_resc_num % 8) || (*p_resc_start % 8))) {
4887 DP_INFO(p_hwfn,
4888 "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
4889 *p_resc_num, (*p_resc_num) & ~0x7,
4890 *p_resc_start, (*p_resc_start) & ~0x7);
4891 *p_resc_num &= ~0x7;
4892 *p_resc_start &= ~0x7;
4893 }
4894
4895 return ECORE_SUCCESS;
4896 }
4897
4898 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
4899 bool drv_resc_alloc)
4900 {
4901 enum _ecore_status_t rc;
4902 u8 res_id;
4903
4904 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4905 rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
4906 if (rc != ECORE_SUCCESS)
4907 return rc;
4908 }
4909
4910 return ECORE_SUCCESS;
4911 }
4912
4913 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn,
4914 struct ecore_ptt *p_ptt)
4915 {
4916 u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn);
4917 struct ecore_dev *p_dev = p_hwfn->p_dev;
4918 enum _ecore_status_t rc;
4919
4920 rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
4921 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL)
4922 return rc;
4923 else if (rc == ECORE_NOTIMPL)
4924 p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4925
4926 if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
4927 DP_INFO(p_hwfn,
4928 "Fix the PPFID bitmap to inculde the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
4929 native_ppfid_idx, p_dev->ppfid_bitmap);
4930 p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4931 }
4932
4933 return ECORE_SUCCESS;
4934 }
4935
4936 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
4937 struct ecore_ptt *p_ptt,
4938 bool drv_resc_alloc)
4939 {
4940 struct ecore_resc_unlock_params resc_unlock_params;
4941 struct ecore_resc_lock_params resc_lock_params;
4942 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4943 u8 res_id;
4944 enum _ecore_status_t rc;
4945 #ifndef ASIC_ONLY
4946 u32 *resc_start = p_hwfn->hw_info.resc_start;
4947 u32 *resc_num = p_hwfn->hw_info.resc_num;
4948 /* For AH, an equal share of the ILT lines between the maximal number of
4949 * PFs is not enough for RoCE. This would be solved by the future
4950 * resource allocation scheme, but isn't currently present for
4951 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
4952 * to work - the BB number of ILT lines divided by its max PFs number.
4953 */
4954 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
4955 #endif
4956
4957 /* Setting the max values of the soft resources and the following
4958 * resources allocation queries should be atomic. Since several PFs can
4959 * run in parallel - a resource lock is needed.
4960 * If either the resource lock or resource set value commands are not
4961 * supported - skip the the max values setting, release the lock if
4962 * needed, and proceed to the queries. Other failures, including a
4963 * failure to acquire the lock, will cause this function to fail.
4964 * Old drivers that don't acquire the lock can run in parallel, and
4965 * their allocation values won't be affected by the updated max values.
4966 */
4967
4968 ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
4969 ECORE_RESC_LOCK_RESC_ALLOC, false);
4970
4971 /* Changes on top of the default values to accommodate parallel attempts
4972 * of several PFs.
4973 * [10 x 10 msec by default ==> 20 x 50 msec]
4974 */
4975 resc_lock_params.retry_num *= 2;
4976 resc_lock_params.retry_interval *= 5;
4977
4978 rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
4979 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4980 return rc;
4981 } else if (rc == ECORE_NOTIMPL) {
4982 DP_INFO(p_hwfn,
4983 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
4984 } else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
4985 DP_NOTICE(p_hwfn, false,
4986 "Failed to acquire the resource lock for the resource allocation commands\n");
4987 return ECORE_BUSY;
4988 } else {
4989 rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
4990 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4991 DP_NOTICE(p_hwfn, false,
4992 "Failed to set the max values of the soft resources\n");
4993 goto unlock_and_exit;
4994 } else if (rc == ECORE_NOTIMPL) {
4995 DP_INFO(p_hwfn,
4996 "Skip the max values setting of the soft resources since it is not supported by the MFW\n");
4997 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4998 &resc_unlock_params);
4999 if (rc != ECORE_SUCCESS)
5000 DP_INFO(p_hwfn,
5001 "Failed to release the resource lock for the resource allocation commands\n");
5002 }
5003 }
5004
5005 rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
5006 if (rc != ECORE_SUCCESS)
5007 goto unlock_and_exit;
5008
5009 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
5010 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5011 &resc_unlock_params);
5012 if (rc != ECORE_SUCCESS)
5013 DP_INFO(p_hwfn,
5014 "Failed to release the resource lock for the resource allocation commands\n");
5015 }
5016
5017 /* PPFID bitmap */
5018 if (IS_LEAD_HWFN(p_hwfn)) {
5019 rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
5020 if (rc != ECORE_SUCCESS)
5021 return rc;
5022 }
5023
5024 #ifndef ASIC_ONLY
5025 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
5026 /* Reduced build contains less PQs */
5027 if (!(p_hwfn->p_dev->b_is_emul_full)) {
5028 resc_num[ECORE_PQ] = 32;
5029 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
5030 p_hwfn->enabled_func_idx;
5031 }
5032
5033 /* For AH emulation, since we have a possible maximal number of
5034 * 16 enabled PFs, in case there are not enough ILT lines -
5035 * allocate only first PF as RoCE and have all the other ETH
5036 * only with less ILT lines.
5037 */
5038 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
5039 resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
5040 resc_num[ECORE_ILT],
5041 roce_min_ilt_lines);
5042 }
5043
5044 /* Correct the common ILT calculation if PF0 has more */
5045 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
5046 p_hwfn->p_dev->b_is_emul_full &&
5047 p_hwfn->rel_pf_id &&
5048 resc_num[ECORE_ILT] < roce_min_ilt_lines)
5049 resc_start[ECORE_ILT] += roce_min_ilt_lines -
5050 resc_num[ECORE_ILT];
5051 #endif
5052
5053 /* Sanity for ILT */
5054 if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
5055 (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
5056 DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
5057 RESC_START(p_hwfn, ECORE_ILT),
5058 RESC_END(p_hwfn, ECORE_ILT) - 1);
5059 return ECORE_INVAL;
5060 }
5061
5062 /* This will also learn the number of SBs from MFW */
5063 if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
5064 return ECORE_INVAL;
5065
5066 ecore_hw_set_feat(p_hwfn);
5067
5068 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5069 "The numbers for each resource are:\n");
5070 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
5071 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
5072 ecore_hw_get_resc_name(res_id),
5073 RESC_NUM(p_hwfn, res_id),
5074 RESC_START(p_hwfn, res_id));
5075
5076 return ECORE_SUCCESS;
5077
5078 unlock_and_exit:
5079 if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
5080 ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5081 &resc_unlock_params);
5082 return rc;
5083 }
5084
5085 static enum _ecore_status_t
5086 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
5087 struct ecore_ptt *p_ptt,
5088 struct ecore_hw_prepare_params *p_params)
5089 {
5090 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
5091 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
5092 struct ecore_mcp_link_capabilities *p_caps;
5093 struct ecore_mcp_link_params *link;
5094 enum _ecore_status_t rc;
5095 u32 dcbx_mode; /* __LINUX__THROW__ */
5096
5097 /* Read global nvm_cfg address */
5098 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
5099
5100 /* Verify MCP has initialized it */
5101 if (!nvm_cfg_addr) {
5102 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
5103 if (p_params->b_relaxed_probe)
5104 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
5105 return ECORE_INVAL;
5106 }
5107
5108 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
5109 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
5110
5111 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5112 OFFSETOF(struct nvm_cfg1, glob) +
5113 OFFSETOF(struct nvm_cfg1_glob, core_cfg);
5114
5115 core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
5116
5117 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
5118 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
5119 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
5120 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
5121 break;
5122 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
5123 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
5124 break;
5125 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
5126 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
5127 break;
5128 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
5129 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
5130 break;
5131 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
5132 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
5133 break;
5134 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
5135 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
5136 break;
5137 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
5138 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
5139 break;
5140 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
5141 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
5142 break;
5143 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
5144 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
5145 break;
5146 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
5147 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
5148 break;
5149 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
5150 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
5151 break;
5152 default:
5153 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
5154 core_cfg);
5155 break;
5156 }
5157
5158 #ifndef __EXTRACT__LINUX__THROW__
5159 /* Read DCBX configuration */
5160 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5161 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5162 dcbx_mode = ecore_rd(p_hwfn, p_ptt,
5163 port_cfg_addr +
5164 OFFSETOF(struct nvm_cfg1_port, generic_cont0));
5165 dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
5166 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
5167 switch (dcbx_mode) {
5168 case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
5169 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
5170 break;
5171 case NVM_CFG1_PORT_DCBX_MODE_CEE:
5172 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
5173 break;
5174 case NVM_CFG1_PORT_DCBX_MODE_IEEE:
5175 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
5176 break;
5177 default:
5178 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
5179 }
5180 #endif
5181
5182 /* Read default link configuration */
5183 link = &p_hwfn->mcp_info->link_input;
5184 p_caps = &p_hwfn->mcp_info->link_capabilities;
5185 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5186 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5187 link_temp = ecore_rd(p_hwfn, p_ptt,
5188 port_cfg_addr +
5189 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
5190 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
5191 link->speed.advertised_speeds = link_temp;
5192 p_caps->speed_capabilities = link->speed.advertised_speeds;
5193
5194 link_temp = ecore_rd(p_hwfn, p_ptt,
5195 port_cfg_addr +
5196 OFFSETOF(struct nvm_cfg1_port, link_settings));
5197 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
5198 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
5199 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
5200 link->speed.autoneg = true;
5201 break;
5202 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
5203 link->speed.forced_speed = 1000;
5204 break;
5205 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
5206 link->speed.forced_speed = 10000;
5207 break;
5208 case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
5209 link->speed.forced_speed = 20000;
5210 break;
5211 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
5212 link->speed.forced_speed = 25000;
5213 break;
5214 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
5215 link->speed.forced_speed = 40000;
5216 break;
5217 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
5218 link->speed.forced_speed = 50000;
5219 break;
5220 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
5221 link->speed.forced_speed = 100000;
5222 break;
5223 default:
5224 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
5225 link_temp);
5226 }
5227
5228 p_caps->default_speed = link->speed.forced_speed; /* __LINUX__THROW__ */
5229 p_caps->default_speed_autoneg = link->speed.autoneg;
5230
5231 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
5232 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
5233 link->pause.autoneg = !!(link_temp &
5234 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
5235 link->pause.forced_rx = !!(link_temp &
5236 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
5237 link->pause.forced_tx = !!(link_temp &
5238 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
5239 link->loopback_mode = 0;
5240
5241 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
5242 link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
5243 OFFSETOF(struct nvm_cfg1_port, ext_phy));
5244 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
5245 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
5246 p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
5247 link->eee.enable = true;
5248 switch (link_temp) {
5249 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
5250 p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
5251 link->eee.enable = false;
5252 break;
5253 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
5254 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
5255 break;
5256 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
5257 p_caps->eee_lpi_timer =
5258 EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
5259 break;
5260 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
5261 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
5262 break;
5263 }
5264
5265 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
5266 link->eee.tx_lpi_enable = link->eee.enable;
5267 link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
5268 } else {
5269 p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
5270 }
5271
5272 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5273 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
5274 link->speed.forced_speed, link->speed.advertised_speeds,
5275 link->speed.autoneg, link->pause.autoneg,
5276 p_caps->default_eee, p_caps->eee_lpi_timer);
5277
5278 /* Read Multi-function information from shmem */
5279 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5280 OFFSETOF(struct nvm_cfg1, glob) +
5281 OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
5282
5283 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
5284
5285 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
5286 NVM_CFG1_GLOB_MF_MODE_OFFSET;
5287
5288 switch (mf_mode) {
5289 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5290 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
5291 break;
5292 case NVM_CFG1_GLOB_MF_MODE_UFP:
5293 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5294 1 << ECORE_MF_LLH_PROTO_CLSS |
5295 1 << ECORE_MF_UFP_SPECIFIC |
5296 1 << ECORE_MF_8021Q_TAGGING;
5297 break;
5298 case NVM_CFG1_GLOB_MF_MODE_BD:
5299 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5300 1 << ECORE_MF_LLH_PROTO_CLSS |
5301 1 << ECORE_MF_8021AD_TAGGING;
5302 break;
5303 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5304 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5305 1 << ECORE_MF_LLH_PROTO_CLSS |
5306 1 << ECORE_MF_LL2_NON_UNICAST |
5307 1 << ECORE_MF_INTER_PF_SWITCH |
5308 1 << ECORE_MF_DISABLE_ARFS;
5309 break;
5310 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5311 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5312 1 << ECORE_MF_LLH_PROTO_CLSS |
5313 1 << ECORE_MF_LL2_NON_UNICAST;
5314 if (ECORE_IS_BB(p_hwfn->p_dev))
5315 p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
5316 break;
5317 }
5318 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
5319 p_hwfn->p_dev->mf_bits);
5320
5321 if (ECORE_IS_CMT(p_hwfn->p_dev))
5322 p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
5323
5324 #ifndef __EXTRACT__LINUX__THROW__
5325 /* It's funny since we have another switch, but it's easier
5326 * to throw this away in linux this way. Long term, it might be
5327 * better to have have getters for needed ECORE_MF_* fields,
5328 * convert client code and eliminate this.
5329 */
5330 switch (mf_mode) {
5331 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5332 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
5333 break;
5334 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5335 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
5336 break;
5337 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5338 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
5339 break;
5340 case NVM_CFG1_GLOB_MF_MODE_UFP:
5341 p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
5342 break;
5343 }
5344 #endif
5345
5346 /* Read Multi-function information from shmem */
5347 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5348 OFFSETOF(struct nvm_cfg1, glob) +
5349 OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
5350
5351 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
5352 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
5353 OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
5354 &p_hwfn->hw_info.device_capabilities);
5355 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
5356 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
5357 &p_hwfn->hw_info.device_capabilities);
5358 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
5359 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
5360 &p_hwfn->hw_info.device_capabilities);
5361 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
5362 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
5363 &p_hwfn->hw_info.device_capabilities);
5364 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
5365 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
5366 &p_hwfn->hw_info.device_capabilities);
5367
5368 rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
5369 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5370 rc = ECORE_SUCCESS;
5371 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5372 }
5373
5374 return rc;
5375 }
5376
5377 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
5378 struct ecore_ptt *p_ptt)
5379 {
5380 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
5381 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
5382 struct ecore_dev *p_dev = p_hwfn->p_dev;
5383
5384 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
5385
5386 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
5387 * in the other bits are selected.
5388 * Bits 1-15 are for functions 1-15, respectively, and their value is
5389 * '' only for enabled functions (function 0 always exists and
5390 * enabled).
5391 * In case of CMT in BB, only the "even" functions are enabled, and thus
5392 * the number of functions for both hwfns is learnt from the same bits.
5393 */
5394 reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
5395
5396 if (reg_function_hide & 0x1) {
5397 if (ECORE_IS_BB(p_dev)) {
5398 if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
5399 num_funcs = 0;
5400 eng_mask = 0xaaaa;
5401 } else {
5402 num_funcs = 1;
5403 eng_mask = 0x5554;
5404 }
5405 } else {
5406 num_funcs = 1;
5407 eng_mask = 0xfffe;
5408 }
5409
5410 /* Get the number of the enabled functions on the engine */
5411 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
5412 while (tmp) {
5413 if (tmp & 0x1)
5414 num_funcs++;
5415 tmp >>= 0x1;
5416 }
5417
5418 /* Get the PF index within the enabled functions */
5419 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
5420 tmp = reg_function_hide & eng_mask & low_pfs_mask;
5421 while (tmp) {
5422 if (tmp & 0x1)
5423 enabled_func_idx--;
5424 tmp >>= 0x1;
5425 }
5426 }
5427
5428 p_hwfn->num_funcs_on_engine = num_funcs;
5429 p_hwfn->enabled_func_idx = enabled_func_idx;
5430
5431 #ifndef ASIC_ONLY
5432 if (CHIP_REV_IS_FPGA(p_dev)) {
5433 DP_NOTICE(p_hwfn, false,
5434 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
5435 p_hwfn->num_funcs_on_engine = 4;
5436 }
5437 #endif
5438
5439 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5440 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
5441 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
5442 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
5443 }
5444
5445 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
5446 struct ecore_ptt *p_ptt)
5447 {
5448 struct ecore_dev *p_dev = p_hwfn->p_dev;
5449 u32 port_mode;
5450
5451 #ifndef ASIC_ONLY
5452 /* Read the port mode */
5453 if (CHIP_REV_IS_FPGA(p_dev))
5454 port_mode = 4;
5455 else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev))
5456 /* In CMT on emulation, assume 1 port */
5457 port_mode = 1;
5458 else
5459 #endif
5460 port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
5461
5462 if (port_mode < 3) {
5463 p_dev->num_ports_in_engine = 1;
5464 } else if (port_mode <= 5) {
5465 p_dev->num_ports_in_engine = 2;
5466 } else {
5467 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
5468 p_dev->num_ports_in_engine);
5469
5470 /* Default num_ports_in_engine to something */
5471 p_dev->num_ports_in_engine = 1;
5472 }
5473 }
5474
5475 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
5476 struct ecore_ptt *p_ptt)
5477 {
5478 struct ecore_dev *p_dev = p_hwfn->p_dev;
5479 u32 port;
5480 int i;
5481
5482 p_dev->num_ports_in_engine = 0;
5483
5484 #ifndef ASIC_ONLY
5485 if (CHIP_REV_IS_EMUL(p_dev)) {
5486 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5487 switch ((port & 0xf000) >> 12) {
5488 case 1:
5489 p_dev->num_ports_in_engine = 1;
5490 break;
5491 case 3:
5492 p_dev->num_ports_in_engine = 2;
5493 break;
5494 case 0xf:
5495 p_dev->num_ports_in_engine = 4;
5496 break;
5497 default:
5498 DP_NOTICE(p_hwfn, false,
5499 "Unknown port mode in ECO_RESERVED %08x\n",
5500 port);
5501 }
5502 } else
5503 #endif
5504 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
5505 port = ecore_rd(p_hwfn, p_ptt,
5506 CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
5507 if (port & 1)
5508 p_dev->num_ports_in_engine++;
5509 }
5510
5511 if (!p_dev->num_ports_in_engine) {
5512 DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
5513
5514 /* Default num_ports_in_engine to something */
5515 p_dev->num_ports_in_engine = 1;
5516 }
5517 }
5518
5519 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5520 struct ecore_ptt *p_ptt)
5521 {
5522 struct ecore_dev *p_dev = p_hwfn->p_dev;
5523
5524 /* Determine the number of ports per engine */
5525 if (ECORE_IS_BB(p_dev))
5526 ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
5527 else
5528 ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
5529
5530 /* Get the total number of ports of the device */
5531 if (ECORE_IS_CMT(p_dev)) {
5532 /* In CMT there is always only one port */
5533 p_dev->num_ports = 1;
5534 #ifndef ASIC_ONLY
5535 } else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) {
5536 p_dev->num_ports = p_dev->num_ports_in_engine *
5537 ecore_device_num_engines(p_dev);
5538 #endif
5539 } else {
5540 u32 addr, global_offsize, global_addr;
5541
5542 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
5543 PUBLIC_GLOBAL);
5544 global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
5545 global_addr = SECTION_ADDR(global_offsize, 0);
5546 addr = global_addr + OFFSETOF(struct public_global, max_ports);
5547 p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
5548 }
5549 }
5550
5551 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
5552 struct ecore_ptt *p_ptt)
5553 {
5554 struct ecore_mcp_link_capabilities *p_caps;
5555 u32 eee_status;
5556
5557 p_caps = &p_hwfn->mcp_info->link_capabilities;
5558 if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
5559 return;
5560
5561 p_caps->eee_speed_caps = 0;
5562 eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
5563 OFFSETOF(struct public_port, eee_status));
5564 eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
5565 EEE_SUPPORTED_SPEED_OFFSET;
5566 if (eee_status & EEE_1G_SUPPORTED)
5567 p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
5568 if (eee_status & EEE_10G_ADV)
5569 p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
5570 }
5571
5572 static enum _ecore_status_t
5573 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
5574 enum ecore_pci_personality personality,
5575 struct ecore_hw_prepare_params *p_params)
5576 {
5577 bool drv_resc_alloc = p_params->drv_resc_alloc;
5578 enum _ecore_status_t rc;
5579
5580 /* Since all information is common, only first hwfns should do this */
5581 if (IS_LEAD_HWFN(p_hwfn)) {
5582 rc = ecore_iov_hw_info(p_hwfn);
5583 if (rc != ECORE_SUCCESS) {
5584 if (p_params->b_relaxed_probe)
5585 p_params->p_relaxed_res =
5586 ECORE_HW_PREPARE_BAD_IOV;
5587 else
5588 return rc;
5589 }
5590 }
5591
5592 if (IS_LEAD_HWFN(p_hwfn))
5593 ecore_hw_info_port_num(p_hwfn, p_ptt);
5594
5595 ecore_mcp_get_capabilities(p_hwfn, p_ptt);
5596
5597 #ifndef ASIC_ONLY
5598 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
5599 #endif
5600 rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
5601 if (rc != ECORE_SUCCESS)
5602 return rc;
5603 #ifndef ASIC_ONLY
5604 }
5605 #endif
5606
5607 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
5608 if (rc != ECORE_SUCCESS) {
5609 if (p_params->b_relaxed_probe)
5610 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
5611 else
5612 return rc;
5613 }
5614
5615 #ifndef ASIC_ONLY
5616 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
5617 #endif
5618 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
5619 p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
5620 #ifndef ASIC_ONLY
5621 } else {
5622 static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
5623
5624 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
5625 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
5626 }
5627 #endif
5628
5629 if (ecore_mcp_is_init(p_hwfn)) {
5630 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
5631 p_hwfn->hw_info.ovlan =
5632 p_hwfn->mcp_info->func_info.ovlan;
5633
5634 ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
5635
5636 ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
5637
5638 ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
5639 }
5640
5641 if (personality != ECORE_PCI_DEFAULT) {
5642 p_hwfn->hw_info.personality = personality;
5643 } else if (ecore_mcp_is_init(p_hwfn)) {
5644 enum ecore_pci_personality protocol;
5645
5646 protocol = p_hwfn->mcp_info->func_info.protocol;
5647 p_hwfn->hw_info.personality = protocol;
5648 }
5649
5650 #ifndef ASIC_ONLY
5651 /* To overcome ILT lack for emulation, until at least until we'll have
5652 * a definite answer from system about it, allow only PF0 to be RoCE.
5653 */
5654 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
5655 if (!p_hwfn->rel_pf_id)
5656 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
5657 else
5658 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
5659 }
5660 #endif
5661
5662 /* although in BB some constellations may support more than 4 tcs,
5663 * that can result in performance penalty in some cases. 4
5664 * represents a good tradeoff between performance and flexibility.
5665 */
5666 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
5667
5668 /* start out with a single active tc. This can be increased either
5669 * by dcbx negotiation or by upper layer driver
5670 */
5671 p_hwfn->hw_info.num_active_tc = 1;
5672
5673 ecore_get_num_funcs(p_hwfn, p_ptt);
5674
5675 if (ecore_mcp_is_init(p_hwfn))
5676 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
5677
5678 /* In case of forcing the driver's default resource allocation, calling
5679 * ecore_hw_get_resc() should come after initializing the personality
5680 * and after getting the number of functions, since the calculation of
5681 * the resources/features depends on them.
5682 * This order is not harmful if not forcing.
5683 */
5684 rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
5685 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5686 rc = ECORE_SUCCESS;
5687 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5688 }
5689
5690 return rc;
5691 }
5692
5693 #define ECORE_MAX_DEVICE_NAME_LEN (8)
5694
5695 void ecore_get_dev_name(struct ecore_dev *p_dev, u8 *name, u8 max_chars)
5696 {
5697 u8 n;
5698
5699 n = OSAL_MIN_T(u8, max_chars, ECORE_MAX_DEVICE_NAME_LEN);
5700 OSAL_SNPRINTF(name, n, "%s %c%d", ECORE_IS_BB(p_dev) ? "BB" : "AH",
5701 'A' + p_dev->chip_rev, (int)p_dev->chip_metal);
5702 }
5703
5704 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
5705 struct ecore_ptt *p_ptt)
5706 {
5707 struct ecore_dev *p_dev = p_hwfn->p_dev;
5708 u16 device_id_mask;
5709 u32 tmp;
5710
5711 /* Read Vendor Id / Device Id */
5712 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
5713 &p_dev->vendor_id);
5714 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
5715 &p_dev->device_id);
5716
5717 /* Determine type */
5718 device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
5719 switch (device_id_mask) {
5720 case ECORE_DEV_ID_MASK_BB:
5721 p_dev->type = ECORE_DEV_TYPE_BB;
5722 break;
5723 case ECORE_DEV_ID_MASK_AH:
5724 p_dev->type = ECORE_DEV_TYPE_AH;
5725 break;
5726 case ECORE_DEV_ID_MASK_E5:
5727 p_dev->type = ECORE_DEV_TYPE_E5;
5728 break;
5729 default:
5730 DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
5731 p_dev->device_id);
5732 return ECORE_ABORTED;
5733 }
5734
5735 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
5736 p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
5737 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
5738 p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
5739
5740 /* Learn number of HW-functions */
5741 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
5742
5743 if (tmp & (1 << p_hwfn->rel_pf_id)) {
5744 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
5745 p_dev->num_hwfns = 2;
5746 } else {
5747 p_dev->num_hwfns = 1;
5748 }
5749
5750 #ifndef ASIC_ONLY
5751 if (CHIP_REV_IS_EMUL(p_dev)) {
5752 /* For some reason we have problems with this register
5753 * in B0 emulation; Simply assume no CMT
5754 */
5755 DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
5756 p_dev->num_hwfns = 1;
5757 }
5758 #endif
5759
5760 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
5761 p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
5762 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
5763 p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
5764
5765 DP_INFO(p_dev->hwfns,
5766 "Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
5767 ECORE_IS_BB(p_dev) ? "BB" : "AH",
5768 'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
5769 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
5770 p_dev->chip_metal);
5771
5772 if (ECORE_IS_BB_A0(p_dev)) {
5773 DP_NOTICE(p_dev->hwfns, false,
5774 "The chip type/rev (BB A0) is not supported!\n");
5775 return ECORE_ABORTED;
5776 }
5777
5778 #ifndef ASIC_ONLY
5779 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
5780 ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
5781
5782 if (CHIP_REV_IS_EMUL(p_dev)) {
5783 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5784 if (tmp & (1 << 29)) {
5785 DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
5786 p_dev->b_is_emul_full = true;
5787 } else {
5788 DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
5789 }
5790 }
5791 #endif
5792
5793 return ECORE_SUCCESS;
5794 }
5795
5796 #ifndef LINUX_REMOVE
5797 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
5798 {
5799 int j;
5800
5801 if (IS_VF(p_dev))
5802 return;
5803
5804 for_each_hwfn(p_dev, j) {
5805 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5806
5807 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
5808
5809 p_hwfn->hw_init_done = false;
5810
5811 ecore_ptt_invalidate(p_hwfn);
5812 }
5813 }
5814
5815 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
5816 {
5817 int j = 0;
5818
5819 if (IS_VF(p_dev))
5820 return;
5821
5822 for_each_hwfn(p_dev, j) {
5823 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5824 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
5825
5826 ecore_hw_hwfn_prepare(p_hwfn);
5827
5828 if (!p_ptt)
5829 DP_NOTICE(p_hwfn, false, "ptt acquire failed\n");
5830 else {
5831 ecore_load_mcp_offsets(p_hwfn, p_ptt);
5832 ecore_ptt_release(p_hwfn, p_ptt);
5833 }
5834 DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
5835 }
5836 }
5837
5838 #endif
5839
5840 static enum _ecore_status_t
5841 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
5842 void OSAL_IOMEM *p_doorbells, u64 db_phys_addr,
5843 struct ecore_hw_prepare_params *p_params)
5844 {
5845 struct ecore_mdump_retain_data mdump_retain;
5846 struct ecore_dev *p_dev = p_hwfn->p_dev;
5847 struct ecore_mdump_info mdump_info;
5848 enum _ecore_status_t rc = ECORE_SUCCESS;
5849
5850 /* Split PCI bars evenly between hwfns */
5851 p_hwfn->regview = p_regview;
5852 p_hwfn->doorbells = p_doorbells;
5853 p_hwfn->db_phys_addr = db_phys_addr;
5854
5855 #ifndef LINUX_REMOVE
5856 p_hwfn->reg_offset = (u8 *)p_hwfn->regview - (u8 *)p_hwfn->p_dev->regview;
5857 p_hwfn->db_offset = (u8 *)p_hwfn->doorbells - (u8 *)p_hwfn->p_dev->doorbells;
5858 #endif
5859
5860 if (IS_VF(p_dev))
5861 return ecore_vf_hw_prepare(p_hwfn);
5862
5863 /* Validate that chip access is feasible */
5864 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
5865 DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
5866 if (p_params->b_relaxed_probe)
5867 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
5868 return ECORE_INVAL;
5869 }
5870
5871 get_function_id(p_hwfn);
5872
5873 /* Allocate PTT pool */
5874 rc = ecore_ptt_pool_alloc(p_hwfn);
5875 if (rc) {
5876 DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n");
5877 if (p_params->b_relaxed_probe)
5878 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5879 goto err0;
5880 }
5881
5882 /* Allocate the main PTT */
5883 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
5884
5885 /* First hwfn learns basic information, e.g., number of hwfns */
5886 if (!p_hwfn->my_id) {
5887 rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
5888 if (rc != ECORE_SUCCESS) {
5889 if (p_params->b_relaxed_probe)
5890 p_params->p_relaxed_res =
5891 ECORE_HW_PREPARE_FAILED_DEV;
5892 goto err1;
5893 }
5894 }
5895
5896 ecore_hw_hwfn_prepare(p_hwfn);
5897
5898 /* Initialize MCP structure */
5899 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
5900 if (rc) {
5901 DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n");
5902 if (p_params->b_relaxed_probe)
5903 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5904 goto err1;
5905 }
5906
5907 /* Read the device configuration information from the HW and SHMEM */
5908 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
5909 p_params->personality, p_params);
5910 if (rc) {
5911 DP_NOTICE(p_hwfn, false, "Failed to get HW information\n");
5912 goto err2;
5913 }
5914
5915 /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
5916 * called, since among others it sets the ports number in an engine.
5917 */
5918 if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
5919 !p_dev->recov_in_prog) {
5920 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
5921 if (rc != ECORE_SUCCESS)
5922 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
5923 }
5924
5925 /* Check if mdump logs/data are present and update the epoch value */
5926 if (IS_LEAD_HWFN(p_hwfn)) {
5927 #ifndef ASIC_ONLY
5928 if (!CHIP_REV_IS_EMUL(p_dev)) {
5929 #endif
5930 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
5931 &mdump_info);
5932 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
5933 DP_NOTICE(p_hwfn, false,
5934 "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
5935
5936 rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
5937 &mdump_retain);
5938 if (rc == ECORE_SUCCESS && mdump_retain.valid)
5939 DP_NOTICE(p_hwfn, false,
5940 "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
5941 mdump_retain.epoch, mdump_retain.pf,
5942 mdump_retain.status);
5943
5944 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
5945 p_params->epoch);
5946 #ifndef ASIC_ONLY
5947 }
5948 #endif
5949 }
5950
5951 /* Allocate the init RT array and initialize the init-ops engine */
5952 rc = ecore_init_alloc(p_hwfn);
5953 if (rc) {
5954 DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n");
5955 if (p_params->b_relaxed_probe)
5956 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5957 goto err2;
5958 }
5959
5960 #ifndef ASIC_ONLY
5961 if (CHIP_REV_IS_FPGA(p_dev)) {
5962 DP_NOTICE(p_hwfn, false,
5963 "FPGA: workaround; Prevent DMAE parities\n");
5964 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
5965 7);
5966
5967 DP_NOTICE(p_hwfn, false,
5968 "FPGA: workaround: Set VF bar0 size\n");
5969 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5970 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
5971 }
5972 #endif
5973
5974 return rc;
5975 err2:
5976 if (IS_LEAD_HWFN(p_hwfn))
5977 ecore_iov_free_hw_info(p_dev);
5978 ecore_mcp_free(p_hwfn);
5979 err1:
5980 ecore_hw_hwfn_free(p_hwfn);
5981 err0:
5982 return rc;
5983 }
5984
5985 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
5986 struct ecore_hw_prepare_params *p_params)
5987 {
5988 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5989 enum _ecore_status_t rc;
5990
5991 p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
5992 p_dev->allow_mdump = p_params->allow_mdump;
5993
5994 if (p_params->b_relaxed_probe)
5995 p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
5996
5997 /* Store the precompiled init data ptrs */
5998 if (IS_PF(p_dev))
5999 ecore_init_iro_array(p_dev);
6000
6001 /* Initialize the first hwfn - will learn number of hwfns */
6002 rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview,
6003 p_dev->doorbells, p_dev->db_phys_addr,
6004 p_params);
6005 if (rc != ECORE_SUCCESS)
6006 return rc;
6007
6008 p_params->personality = p_hwfn->hw_info.personality;
6009
6010 /* initilalize 2nd hwfn if necessary */
6011 if (ECORE_IS_CMT(p_dev)) {
6012 void OSAL_IOMEM *p_regview, *p_doorbell;
6013 u8 OSAL_IOMEM *addr;
6014 u64 db_phys_addr;
6015 u32 offset;
6016
6017 /* adjust bar offset for second engine */
6018 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6019 BAR_ID_0) / 2;
6020 addr = (u8 OSAL_IOMEM *)p_dev->regview + offset;
6021 p_regview = (void OSAL_IOMEM *)addr;
6022
6023 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6024 BAR_ID_1) / 2;
6025 addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset;
6026 p_doorbell = (void OSAL_IOMEM *)addr;
6027 db_phys_addr = p_dev->db_phys_addr + offset;
6028
6029 /* prepare second hw function */
6030 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
6031 p_doorbell, db_phys_addr,
6032 p_params);
6033
6034 /* in case of error, need to free the previously
6035 * initiliazed hwfn 0.
6036 */
6037 if (rc != ECORE_SUCCESS) {
6038 if (p_params->b_relaxed_probe)
6039 p_params->p_relaxed_res =
6040 ECORE_HW_PREPARE_FAILED_ENG2;
6041
6042 if (IS_PF(p_dev)) {
6043 ecore_init_free(p_hwfn);
6044 ecore_mcp_free(p_hwfn);
6045 ecore_hw_hwfn_free(p_hwfn);
6046 } else {
6047 DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n");
6048 }
6049 return rc;
6050 }
6051 }
6052
6053 return rc;
6054 }
6055
6056 void ecore_hw_remove(struct ecore_dev *p_dev)
6057 {
6058 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
6059 int i;
6060
6061 if (IS_PF(p_dev))
6062 ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
6063 ECORE_OV_DRIVER_STATE_NOT_LOADED);
6064
6065 for_each_hwfn(p_dev, i) {
6066 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6067
6068 if (IS_VF(p_dev)) {
6069 ecore_vf_pf_release(p_hwfn);
6070 continue;
6071 }
6072
6073 ecore_init_free(p_hwfn);
6074 ecore_hw_hwfn_free(p_hwfn);
6075 ecore_mcp_free(p_hwfn);
6076
6077 #ifdef CONFIG_ECORE_LOCK_ALLOC
6078 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
6079 #endif
6080 }
6081
6082 ecore_iov_free_hw_info(p_dev);
6083 }
6084
6085 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
6086 struct ecore_chain *p_chain)
6087 {
6088 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
6089 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
6090 struct ecore_chain_next *p_next;
6091 u32 size, i;
6092
6093 if (!p_virt)
6094 return;
6095
6096 size = p_chain->elem_size * p_chain->usable_per_page;
6097
6098 for (i = 0; i < p_chain->page_cnt; i++) {
6099 if (!p_virt)
6100 break;
6101
6102 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
6103 p_virt_next = p_next->next_virt;
6104 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
6105
6106 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
6107 ECORE_CHAIN_PAGE_SIZE);
6108
6109 p_virt = p_virt_next;
6110 p_phys = p_phys_next;
6111 }
6112 }
6113
6114 static void ecore_chain_free_single(struct ecore_dev *p_dev,
6115 struct ecore_chain *p_chain)
6116 {
6117 if (!p_chain->p_virt_addr)
6118 return;
6119
6120 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
6121 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
6122 }
6123
6124 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
6125 struct ecore_chain *p_chain)
6126 {
6127 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
6128 u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
6129 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
6130
6131 if (!pp_virt_addr_tbl)
6132 return;
6133
6134 if (!p_pbl_virt)
6135 goto out;
6136
6137 for (i = 0; i < page_cnt; i++) {
6138 if (!pp_virt_addr_tbl[i])
6139 break;
6140
6141 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
6142 *(dma_addr_t *)p_pbl_virt,
6143 ECORE_CHAIN_PAGE_SIZE);
6144
6145 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6146 }
6147
6148 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6149
6150 if (!p_chain->b_external_pbl) {
6151 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
6152 p_chain->pbl_sp.p_phys_table, pbl_size);
6153 }
6154 out:
6155 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
6156 p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
6157 }
6158
6159 void ecore_chain_free(struct ecore_dev *p_dev,
6160 struct ecore_chain *p_chain)
6161 {
6162 switch (p_chain->mode) {
6163 case ECORE_CHAIN_MODE_NEXT_PTR:
6164 ecore_chain_free_next_ptr(p_dev, p_chain);
6165 break;
6166 case ECORE_CHAIN_MODE_SINGLE:
6167 ecore_chain_free_single(p_dev, p_chain);
6168 break;
6169 case ECORE_CHAIN_MODE_PBL:
6170 ecore_chain_free_pbl(p_dev, p_chain);
6171 break;
6172 }
6173 }
6174
6175 static enum _ecore_status_t
6176 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
6177 enum ecore_chain_cnt_type cnt_type,
6178 osal_size_t elem_size, u32 page_cnt)
6179 {
6180 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
6181
6182 /* The actual chain size can be larger than the maximal possible value
6183 * after rounding up the requested elements number to pages, and after
6184 * taking into acount the unusuable elements (next-ptr elements).
6185 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
6186 * size/capacity fields are of a u32 type.
6187 */
6188 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
6189 chain_size > ((u32)ECORE_U16_MAX + 1)) ||
6190 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
6191 chain_size > ECORE_U32_MAX)) {
6192 DP_NOTICE(p_dev, true,
6193 "The actual chain size (0x%llx) is larger than the maximal possible value\n",
6194 (unsigned long long)chain_size);
6195 return ECORE_INVAL;
6196 }
6197
6198 return ECORE_SUCCESS;
6199 }
6200
6201 static enum _ecore_status_t
6202 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6203 {
6204 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
6205 dma_addr_t p_phys = 0;
6206 u32 i;
6207
6208 for (i = 0; i < p_chain->page_cnt; i++) {
6209 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6210 ECORE_CHAIN_PAGE_SIZE);
6211 if (!p_virt) {
6212 DP_NOTICE(p_dev, false,
6213 "Failed to allocate chain memory\n");
6214 return ECORE_NOMEM;
6215 }
6216
6217 if (i == 0) {
6218 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6219 ecore_chain_reset(p_chain);
6220 } else {
6221 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6222 p_virt, p_phys);
6223 }
6224
6225 p_virt_prev = p_virt;
6226 }
6227 /* Last page's next element should point to the beginning of the
6228 * chain.
6229 */
6230 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6231 p_chain->p_virt_addr,
6232 p_chain->p_phys_addr);
6233
6234 return ECORE_SUCCESS;
6235 }
6236
6237 static enum _ecore_status_t
6238 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6239 {
6240 dma_addr_t p_phys = 0;
6241 void *p_virt = OSAL_NULL;
6242
6243 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
6244 if (!p_virt) {
6245 DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n");
6246 return ECORE_NOMEM;
6247 }
6248
6249 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6250 ecore_chain_reset(p_chain);
6251
6252 return ECORE_SUCCESS;
6253 }
6254
6255 static enum _ecore_status_t
6256 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
6257 struct ecore_chain *p_chain,
6258 struct ecore_chain_ext_pbl *ext_pbl)
6259 {
6260 u32 page_cnt = p_chain->page_cnt, size, i;
6261 dma_addr_t p_phys = 0, p_pbl_phys = 0;
6262 void **pp_virt_addr_tbl = OSAL_NULL;
6263 u8 *p_pbl_virt = OSAL_NULL;
6264 void *p_virt = OSAL_NULL;
6265
6266 size = page_cnt * sizeof(*pp_virt_addr_tbl);
6267 pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
6268 if (!pp_virt_addr_tbl) {
6269 DP_NOTICE(p_dev, false,
6270 "Failed to allocate memory for the chain virtual addresses table\n");
6271 return ECORE_NOMEM;
6272 }
6273
6274 /* The allocation of the PBL table is done with its full size, since it
6275 * is expected to be successive.
6276 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
6277 * failure, since pp_virt_addr_tbl was previously allocated, and it
6278 * should be saved to allow its freeing during the error flow.
6279 */
6280 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6281
6282 if (ext_pbl == OSAL_NULL) {
6283 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
6284 } else {
6285 p_pbl_virt = ext_pbl->p_pbl_virt;
6286 p_pbl_phys = ext_pbl->p_pbl_phys;
6287 p_chain->b_external_pbl = true;
6288 }
6289
6290 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
6291 pp_virt_addr_tbl);
6292 if (!p_pbl_virt) {
6293 DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n");
6294 return ECORE_NOMEM;
6295 }
6296
6297 for (i = 0; i < page_cnt; i++) {
6298 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6299 ECORE_CHAIN_PAGE_SIZE);
6300 if (!p_virt) {
6301 DP_NOTICE(p_dev, false,
6302 "Failed to allocate chain memory\n");
6303 return ECORE_NOMEM;
6304 }
6305
6306 if (i == 0) {
6307 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6308 ecore_chain_reset(p_chain);
6309 }
6310
6311 /* Fill the PBL table with the physical address of the page */
6312 *(dma_addr_t *)p_pbl_virt = p_phys;
6313 /* Keep the virtual address of the page */
6314 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
6315
6316 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6317 }
6318
6319 return ECORE_SUCCESS;
6320 }
6321
6322 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
6323 enum ecore_chain_use_mode intended_use,
6324 enum ecore_chain_mode mode,
6325 enum ecore_chain_cnt_type cnt_type,
6326 u32 num_elems, osal_size_t elem_size,
6327 struct ecore_chain *p_chain,
6328 struct ecore_chain_ext_pbl *ext_pbl)
6329 {
6330 u32 page_cnt;
6331 enum _ecore_status_t rc = ECORE_SUCCESS;
6332
6333 if (mode == ECORE_CHAIN_MODE_SINGLE)
6334 page_cnt = 1;
6335 else
6336 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
6337
6338 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
6339 page_cnt);
6340 if (rc) {
6341 DP_NOTICE(p_dev, false,
6342 "Cannot allocate a chain with the given arguments:\n"
6343 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
6344 intended_use, mode, cnt_type, num_elems, elem_size);
6345 return rc;
6346 }
6347
6348 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
6349 mode, cnt_type, p_dev->dp_ctx);
6350
6351 switch (mode) {
6352 case ECORE_CHAIN_MODE_NEXT_PTR:
6353 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
6354 break;
6355 case ECORE_CHAIN_MODE_SINGLE:
6356 rc = ecore_chain_alloc_single(p_dev, p_chain);
6357 break;
6358 case ECORE_CHAIN_MODE_PBL:
6359 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
6360 break;
6361 }
6362 if (rc)
6363 goto nomem;
6364
6365 return ECORE_SUCCESS;
6366
6367 nomem:
6368 ecore_chain_free(p_dev, p_chain);
6369 return rc;
6370 }
6371
6372 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
6373 u16 src_id, u16 *dst_id)
6374 {
6375 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
6376 u16 min, max;
6377
6378 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
6379 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
6380 DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
6381 src_id, min, max);
6382
6383 return ECORE_INVAL;
6384 }
6385
6386 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
6387
6388 return ECORE_SUCCESS;
6389 }
6390
6391 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
6392 u8 src_id, u8 *dst_id)
6393 {
6394 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
6395 u8 min, max;
6396
6397 min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
6398 max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
6399 DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
6400 src_id, min, max);
6401
6402 return ECORE_INVAL;
6403 }
6404
6405 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
6406
6407 return ECORE_SUCCESS;
6408 }
6409
6410 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
6411 u8 src_id, u8 *dst_id)
6412 {
6413 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
6414 u8 min, max;
6415
6416 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
6417 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
6418 DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
6419 src_id, min, max);
6420
6421 return ECORE_INVAL;
6422 }
6423
6424 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
6425
6426 return ECORE_SUCCESS;
6427 }
6428
6429 enum _ecore_status_t
6430 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
6431 struct ecore_ptt *p_ptt)
6432 {
6433 if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
6434 ecore_wr(p_hwfn, p_ptt,
6435 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
6436 1 << p_hwfn->abs_pf_id / 2);
6437 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
6438 return ECORE_SUCCESS;
6439 } else {
6440 DP_NOTICE(p_hwfn, false,
6441 "This function can't be set as default\n");
6442 return ECORE_INVAL;
6443 }
6444 }
6445
6446 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
6447 struct ecore_ptt *p_ptt,
6448 u32 hw_addr, void *p_eth_qzone,
6449 osal_size_t eth_qzone_size,
6450 u8 timeset)
6451 {
6452 struct coalescing_timeset *p_coal_timeset;
6453
6454 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
6455 DP_NOTICE(p_hwfn, true,
6456 "Coalescing configuration not enabled\n");
6457 return ECORE_INVAL;
6458 }
6459
6460 p_coal_timeset = p_eth_qzone;
6461 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
6462 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
6463 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
6464 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
6465
6466 return ECORE_SUCCESS;
6467 }
6468
6469 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
6470 u16 rx_coal, u16 tx_coal,
6471 void *p_handle)
6472 {
6473 struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
6474 enum _ecore_status_t rc = ECORE_SUCCESS;
6475 struct ecore_ptt *p_ptt;
6476
6477 /* TODO - Configuring a single queue's coalescing but
6478 * claiming all queues are abiding same configuration
6479 * for PF and VF both.
6480 */
6481
6482 #ifdef CONFIG_ECORE_SRIOV
6483 if (IS_VF(p_hwfn->p_dev))
6484 return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
6485 tx_coal, p_cid);
6486 #endif /* #ifdef CONFIG_ECORE_SRIOV */
6487
6488 p_ptt = ecore_ptt_acquire(p_hwfn);
6489 if (!p_ptt)
6490 return ECORE_AGAIN;
6491
6492 if (rx_coal) {
6493 rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
6494 if (rc)
6495 goto out;
6496 p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
6497 }
6498
6499 if (tx_coal) {
6500 rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
6501 if (rc)
6502 goto out;
6503 p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
6504 }
6505 out:
6506 ecore_ptt_release(p_hwfn, p_ptt);
6507
6508 return rc;
6509 }
6510
6511 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
6512 struct ecore_ptt *p_ptt,
6513 u16 coalesce,
6514 struct ecore_queue_cid *p_cid)
6515 {
6516 struct ustorm_eth_queue_zone eth_qzone;
6517 u8 timeset, timer_res;
6518 u32 address;
6519 enum _ecore_status_t rc;
6520
6521 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6522 if (coalesce <= 0x7F)
6523 timer_res = 0;
6524 else if (coalesce <= 0xFF)
6525 timer_res = 1;
6526 else if (coalesce <= 0x1FF)
6527 timer_res = 2;
6528 else {
6529 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6530 return ECORE_INVAL;
6531 }
6532 timeset = (u8)(coalesce >> timer_res);
6533
6534 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6535 p_cid->sb_igu_id, false);
6536 if (rc != ECORE_SUCCESS)
6537 goto out;
6538
6539 address = BAR0_MAP_REG_USDM_RAM +
6540 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6541
6542 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
6543 sizeof(struct ustorm_eth_queue_zone), timeset);
6544 if (rc != ECORE_SUCCESS)
6545 goto out;
6546
6547 out:
6548 return rc;
6549 }
6550
6551 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
6552 struct ecore_ptt *p_ptt,
6553 u16 coalesce,
6554 struct ecore_queue_cid *p_cid)
6555 {
6556 struct xstorm_eth_queue_zone eth_qzone;
6557 u8 timeset, timer_res;
6558 u32 address;
6559 enum _ecore_status_t rc;
6560
6561 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6562 if (coalesce <= 0x7F)
6563 timer_res = 0;
6564 else if (coalesce <= 0xFF)
6565 timer_res = 1;
6566 else if (coalesce <= 0x1FF)
6567 timer_res = 2;
6568 else {
6569 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6570 return ECORE_INVAL;
6571 }
6572 timeset = (u8)(coalesce >> timer_res);
6573
6574 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6575 p_cid->sb_igu_id, true);
6576 if (rc != ECORE_SUCCESS)
6577 goto out;
6578
6579 address = BAR0_MAP_REG_XSDM_RAM +
6580 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6581
6582 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
6583 sizeof(struct xstorm_eth_queue_zone), timeset);
6584 out:
6585 return rc;
6586 }
6587
6588 /* Calculate final WFQ values for all vports and configure it.
6589 * After this configuration each vport must have
6590 * approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
6591 */
6592 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6593 struct ecore_ptt *p_ptt,
6594 u32 min_pf_rate)
6595 {
6596 struct init_qm_vport_params *vport_params;
6597 int i;
6598
6599 vport_params = p_hwfn->qm_info.qm_vport_params;
6600
6601 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6602 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6603
6604 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
6605 min_pf_rate;
6606 ecore_init_vport_wfq(p_hwfn, p_ptt,
6607 vport_params[i].first_tx_pq_id,
6608 vport_params[i].vport_wfq);
6609 }
6610 }
6611
6612 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
6613
6614 {
6615 int i;
6616
6617 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
6618 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
6619 }
6620
6621 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6622 struct ecore_ptt *p_ptt)
6623 {
6624 struct init_qm_vport_params *vport_params;
6625 int i;
6626
6627 vport_params = p_hwfn->qm_info.qm_vport_params;
6628
6629 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6630 ecore_init_wfq_default_param(p_hwfn);
6631 ecore_init_vport_wfq(p_hwfn, p_ptt,
6632 vport_params[i].first_tx_pq_id,
6633 vport_params[i].vport_wfq);
6634 }
6635 }
6636
6637 /* This function performs several validations for WFQ
6638 * configuration and required min rate for a given vport
6639 * 1. req_rate must be greater than one percent of min_pf_rate.
6640 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
6641 * rates to get less than one percent of min_pf_rate.
6642 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
6643 */
6644 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
6645 u16 vport_id, u32 req_rate,
6646 u32 min_pf_rate)
6647 {
6648 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
6649 int non_requested_count = 0, req_count = 0, i, num_vports;
6650
6651 num_vports = p_hwfn->qm_info.num_vports;
6652
6653 /* Accounting for the vports which are configured for WFQ explicitly */
6654 for (i = 0; i < num_vports; i++) {
6655 u32 tmp_speed;
6656
6657 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
6658 req_count++;
6659 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6660 total_req_min_rate += tmp_speed;
6661 }
6662 }
6663
6664 /* Include current vport data as well */
6665 req_count++;
6666 total_req_min_rate += req_rate;
6667 non_requested_count = num_vports - req_count;
6668
6669 /* validate possible error cases */
6670 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
6671 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6672 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6673 vport_id, req_rate, min_pf_rate);
6674 return ECORE_INVAL;
6675 }
6676
6677 /* TBD - for number of vports greater than 100 */
6678 if (num_vports > ECORE_WFQ_UNIT) {
6679 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6680 "Number of vports is greater than %d\n",
6681 ECORE_WFQ_UNIT);
6682 return ECORE_INVAL;
6683 }
6684
6685 if (total_req_min_rate > min_pf_rate) {
6686 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6687 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
6688 total_req_min_rate, min_pf_rate);
6689 return ECORE_INVAL;
6690 }
6691
6692 /* Data left for non requested vports */
6693 total_left_rate = min_pf_rate - total_req_min_rate;
6694 left_rate_per_vp = total_left_rate / non_requested_count;
6695
6696 /* validate if non requested get < 1% of min bw */
6697 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
6698 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6699 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6700 left_rate_per_vp, min_pf_rate);
6701 return ECORE_INVAL;
6702 }
6703
6704 /* now req_rate for given vport passes all scenarios.
6705 * assign final wfq rates to all vports.
6706 */
6707 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
6708 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
6709
6710 for (i = 0; i < num_vports; i++) {
6711 if (p_hwfn->qm_info.wfq_data[i].configured)
6712 continue;
6713
6714 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
6715 }
6716
6717 return ECORE_SUCCESS;
6718 }
6719
6720 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
6721 struct ecore_ptt *p_ptt,
6722 u16 vp_id, u32 rate)
6723 {
6724 struct ecore_mcp_link_state *p_link;
6725 int rc = ECORE_SUCCESS;
6726
6727 p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
6728
6729 if (!p_link->min_pf_rate) {
6730 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
6731 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
6732 return rc;
6733 }
6734
6735 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
6736
6737 if (rc == ECORE_SUCCESS)
6738 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
6739 p_link->min_pf_rate);
6740 else
6741 DP_NOTICE(p_hwfn, false,
6742 "Validation failed while configuring min rate\n");
6743
6744 return rc;
6745 }
6746
6747 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
6748 struct ecore_ptt *p_ptt,
6749 u32 min_pf_rate)
6750 {
6751 bool use_wfq = false;
6752 int rc = ECORE_SUCCESS;
6753 u16 i;
6754
6755 /* Validate all pre configured vports for wfq */
6756 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6757 u32 rate;
6758
6759 if (!p_hwfn->qm_info.wfq_data[i].configured)
6760 continue;
6761
6762 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
6763 use_wfq = true;
6764
6765 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
6766 if (rc != ECORE_SUCCESS) {
6767 DP_NOTICE(p_hwfn, false,
6768 "WFQ validation failed while configuring min rate\n");
6769 break;
6770 }
6771 }
6772
6773 if (rc == ECORE_SUCCESS && use_wfq)
6774 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
6775 else
6776 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6777
6778 return rc;
6779 }
6780
6781 /* Main API for ecore clients to configure vport min rate.
6782 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
6783 * rate - Speed in Mbps needs to be assigned to a given vport.
6784 */
6785 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
6786 {
6787 int i, rc = ECORE_INVAL;
6788
6789 /* TBD - for multiple hardware functions - that is 100 gig */
6790 if (ECORE_IS_CMT(p_dev)) {
6791 DP_NOTICE(p_dev, false,
6792 "WFQ configuration is not supported for this device\n");
6793 return rc;
6794 }
6795
6796 for_each_hwfn(p_dev, i) {
6797 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6798 struct ecore_ptt *p_ptt;
6799
6800 p_ptt = ecore_ptt_acquire(p_hwfn);
6801 if (!p_ptt)
6802 return ECORE_TIMEOUT;
6803
6804 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
6805
6806 if (rc != ECORE_SUCCESS) {
6807 ecore_ptt_release(p_hwfn, p_ptt);
6808 return rc;
6809 }
6810
6811 ecore_ptt_release(p_hwfn, p_ptt);
6812 }
6813
6814 return rc;
6815 }
6816
6817 /* API to configure WFQ from mcp link change */
6818 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
6819 struct ecore_ptt *p_ptt,
6820 u32 min_pf_rate)
6821 {
6822 int i;
6823
6824 /* TBD - for multiple hardware functions - that is 100 gig */
6825 if (ECORE_IS_CMT(p_dev)) {
6826 DP_VERBOSE(p_dev, ECORE_MSG_LINK,
6827 "WFQ configuration is not supported for this device\n");
6828 return;
6829 }
6830
6831 for_each_hwfn(p_dev, i) {
6832 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6833
6834 __ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
6835 min_pf_rate);
6836 }
6837 }
6838
6839 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
6840 struct ecore_ptt *p_ptt,
6841 struct ecore_mcp_link_state *p_link,
6842 u8 max_bw)
6843 {
6844 int rc = ECORE_SUCCESS;
6845
6846 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
6847
6848 if (!p_link->line_speed && (max_bw != 100))
6849 return rc;
6850
6851 p_link->speed = (p_link->line_speed * max_bw) / 100;
6852 p_hwfn->qm_info.pf_rl = p_link->speed;
6853
6854 /* Since the limiter also affects Tx-switched traffic, we don't want it
6855 * to limit such traffic in case there's no actual limit.
6856 * In that case, set limit to imaginary high boundary.
6857 */
6858 if (max_bw == 100)
6859 p_hwfn->qm_info.pf_rl = 100000;
6860
6861 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
6862 p_hwfn->qm_info.pf_rl);
6863
6864 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6865 "Configured MAX bandwidth to be %08x Mb/sec\n",
6866 p_link->speed);
6867
6868 return rc;
6869 }
6870
6871 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
6872 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
6873 {
6874 int i, rc = ECORE_INVAL;
6875
6876 if (max_bw < 1 || max_bw > 100) {
6877 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
6878 return rc;
6879 }
6880
6881 for_each_hwfn(p_dev, i) {
6882 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6883 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6884 struct ecore_mcp_link_state *p_link;
6885 struct ecore_ptt *p_ptt;
6886
6887 p_link = &p_lead->mcp_info->link_output;
6888
6889 p_ptt = ecore_ptt_acquire(p_hwfn);
6890 if (!p_ptt)
6891 return ECORE_TIMEOUT;
6892
6893 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
6894 p_link, max_bw);
6895
6896 ecore_ptt_release(p_hwfn, p_ptt);
6897
6898 if (rc != ECORE_SUCCESS)
6899 break;
6900 }
6901
6902 return rc;
6903 }
6904
6905 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
6906 struct ecore_ptt *p_ptt,
6907 struct ecore_mcp_link_state *p_link,
6908 u8 min_bw)
6909 {
6910 int rc = ECORE_SUCCESS;
6911
6912 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
6913 p_hwfn->qm_info.pf_wfq = min_bw;
6914
6915 if (!p_link->line_speed)
6916 return rc;
6917
6918 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
6919
6920 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
6921
6922 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6923 "Configured MIN bandwidth to be %d Mb/sec\n",
6924 p_link->min_pf_rate);
6925
6926 return rc;
6927 }
6928
6929 /* Main API to configure PF min bandwidth where bw range is [1-100] */
6930 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
6931 {
6932 int i, rc = ECORE_INVAL;
6933
6934 if (min_bw < 1 || min_bw > 100) {
6935 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
6936 return rc;
6937 }
6938
6939 for_each_hwfn(p_dev, i) {
6940 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6941 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6942 struct ecore_mcp_link_state *p_link;
6943 struct ecore_ptt *p_ptt;
6944
6945 p_link = &p_lead->mcp_info->link_output;
6946
6947 p_ptt = ecore_ptt_acquire(p_hwfn);
6948 if (!p_ptt)
6949 return ECORE_TIMEOUT;
6950
6951 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
6952 p_link, min_bw);
6953 if (rc != ECORE_SUCCESS) {
6954 ecore_ptt_release(p_hwfn, p_ptt);
6955 return rc;
6956 }
6957
6958 if (p_link->min_pf_rate) {
6959 u32 min_rate = p_link->min_pf_rate;
6960
6961 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
6962 p_ptt,
6963 min_rate);
6964 }
6965
6966 ecore_ptt_release(p_hwfn, p_ptt);
6967 }
6968
6969 return rc;
6970 }
6971
6972 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
6973 {
6974 struct ecore_mcp_link_state *p_link;
6975
6976 p_link = &p_hwfn->mcp_info->link_output;
6977
6978 if (p_link->min_pf_rate)
6979 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6980
6981 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
6982 sizeof(*p_hwfn->qm_info.wfq_data) *
6983 p_hwfn->qm_info.num_vports);
6984 }
6985
6986 int ecore_device_num_engines(struct ecore_dev *p_dev)
6987 {
6988 return ECORE_IS_BB(p_dev) ? 2 : 1;
6989 }
6990
6991 int ecore_device_num_ports(struct ecore_dev *p_dev)
6992 {
6993 return p_dev->num_ports;
6994 }
6995
6996 void ecore_set_fw_mac_addr(__le16 *fw_msb,
6997 __le16 *fw_mid,
6998 __le16 *fw_lsb,
6999 u8 *mac)
7000 {
7001 ((u8 *)fw_msb)[0] = mac[1];
7002 ((u8 *)fw_msb)[1] = mac[0];
7003 ((u8 *)fw_mid)[0] = mac[3];
7004 ((u8 *)fw_mid)[1] = mac[2];
7005 ((u8 *)fw_lsb)[0] = mac[5];
7006 ((u8 *)fw_lsb)[1] = mac[4];
7007 }
7008
7009 void ecore_set_dev_access_enable(struct ecore_dev *p_dev, bool b_enable)
7010 {
7011 if (p_dev->recov_in_prog != !b_enable) {
7012 DP_INFO(p_dev, "%s access to the device\n",
7013 b_enable ? "Enable" : "Disable");
7014 p_dev->recov_in_prog = !b_enable;
7015 }
7016 }
7017
7018 #ifdef _NTDDK_
7019 #pragma warning(pop)
7020 #endif
Cache object: ec83bcb92a5743d6b3a03e710e266a4d
|