1 /*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * File : ecore_hw.c
30 */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include "bcm_osal.h"
35 #include "ecore_hsi_common.h"
36 #include "ecore_status.h"
37 #include "ecore.h"
38 #include "ecore_hw.h"
39 #include "reg_addr.h"
40 #include "ecore_utils.h"
41 #include "ecore_iov_api.h"
42
43 #ifdef _NTDDK_
44 #pragma warning(push)
45 #pragma warning(disable : 28167)
46 #pragma warning(disable : 28123)
47 #pragma warning(disable : 28121)
48 #endif
49
50 #ifndef ASIC_ONLY
51 #define ECORE_EMUL_FACTOR 2000
52 #define ECORE_FPGA_FACTOR 200
53 #endif
54
55 #define ECORE_BAR_ACQUIRE_TIMEOUT 1000
56
57 /* Invalid values */
58 #define ECORE_BAR_INVALID_OFFSET (OSAL_CPU_TO_LE32(-1))
59
60 struct ecore_ptt {
61 osal_list_entry_t list_entry;
62 unsigned int idx;
63 struct pxp_ptt_entry pxp;
64 u8 hwfn_id;
65 };
66
67 struct ecore_ptt_pool {
68 osal_list_t free_list;
69 osal_spinlock_t lock; /* ptt synchronized access */
70 struct ecore_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
71 };
72
73 static void __ecore_ptt_pool_free(struct ecore_hwfn *p_hwfn)
74 {
75 OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_ptt_pool);
76 p_hwfn->p_ptt_pool = OSAL_NULL;
77 }
78
79 enum _ecore_status_t ecore_ptt_pool_alloc(struct ecore_hwfn *p_hwfn)
80 {
81 struct ecore_ptt_pool *p_pool = OSAL_ALLOC(p_hwfn->p_dev,
82 GFP_KERNEL,
83 sizeof(*p_pool));
84 int i;
85
86 if (!p_pool)
87 return ECORE_NOMEM;
88
89 OSAL_LIST_INIT(&p_pool->free_list);
90 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
91 p_pool->ptts[i].idx = i;
92 p_pool->ptts[i].pxp.offset = ECORE_BAR_INVALID_OFFSET;
93 p_pool->ptts[i].pxp.pretend.control = 0;
94 p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
95
96 /* There are special PTT entries that are taken only by design.
97 * The rest are added ot the list for general usage.
98 */
99 if (i >= RESERVED_PTT_MAX)
100 OSAL_LIST_PUSH_HEAD(&p_pool->ptts[i].list_entry,
101 &p_pool->free_list);
102 }
103
104 p_hwfn->p_ptt_pool = p_pool;
105 #ifdef CONFIG_ECORE_LOCK_ALLOC
106 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_pool->lock)) {
107 __ecore_ptt_pool_free(p_hwfn);
108 return ECORE_NOMEM;
109 }
110 #endif
111 OSAL_SPIN_LOCK_INIT(&p_pool->lock);
112 return ECORE_SUCCESS;
113 }
114
115 void ecore_ptt_invalidate(struct ecore_hwfn *p_hwfn)
116 {
117 struct ecore_ptt *p_ptt;
118 int i;
119
120 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
121 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
122 p_ptt->pxp.offset = ECORE_BAR_INVALID_OFFSET;
123 }
124 }
125
126 void ecore_ptt_pool_free(struct ecore_hwfn *p_hwfn)
127 {
128 #ifdef CONFIG_ECORE_LOCK_ALLOC
129 if (p_hwfn->p_ptt_pool)
130 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->p_ptt_pool->lock);
131 #endif
132 __ecore_ptt_pool_free(p_hwfn);
133 }
134
135 struct ecore_ptt *ecore_ptt_acquire(struct ecore_hwfn *p_hwfn)
136 {
137 struct ecore_ptt *p_ptt;
138 unsigned int i;
139
140 /* Take the free PTT from the list */
141 for (i = 0; i < ECORE_BAR_ACQUIRE_TIMEOUT; i++) {
142 OSAL_SPIN_LOCK(&p_hwfn->p_ptt_pool->lock);
143
144 if (!OSAL_LIST_IS_EMPTY(&p_hwfn->p_ptt_pool->free_list)) {
145 p_ptt = OSAL_LIST_FIRST_ENTRY(&p_hwfn->p_ptt_pool->free_list,
146 struct ecore_ptt, list_entry);
147 OSAL_LIST_REMOVE_ENTRY(&p_ptt->list_entry,
148 &p_hwfn->p_ptt_pool->free_list);
149
150 OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
151
152 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
153 "allocated ptt %d\n", p_ptt->idx);
154
155 return p_ptt;
156 }
157
158 OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
159 OSAL_MSLEEP(1);
160 }
161
162 DP_NOTICE(p_hwfn, true, "PTT acquire timeout - failed to allocate PTT\n");
163 return OSAL_NULL;
164 }
165
166 void ecore_ptt_release(struct ecore_hwfn *p_hwfn,
167 struct ecore_ptt *p_ptt) {
168 /* This PTT should not be set to pretend if it is being released */
169 /* TODO - add some pretend sanity checks, to make sure pretend isn't set on this ptt */
170
171 OSAL_SPIN_LOCK(&p_hwfn->p_ptt_pool->lock);
172 OSAL_LIST_PUSH_HEAD(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
173 OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
174 }
175
176 static u32 ecore_ptt_get_hw_addr(struct ecore_ptt *p_ptt)
177 {
178 /* The HW is using DWORDS and we need to translate it to Bytes */
179 return OSAL_LE32_TO_CPU(p_ptt->pxp.offset) << 2;
180 }
181
182 static u32 ecore_ptt_config_addr(struct ecore_ptt *p_ptt)
183 {
184 return PXP_PF_WINDOW_ADMIN_PER_PF_START +
185 p_ptt->idx * sizeof(struct pxp_ptt_entry);
186 }
187
188 u32 ecore_ptt_get_bar_addr(struct ecore_ptt *p_ptt)
189 {
190 return PXP_EXTERNAL_BAR_PF_WINDOW_START +
191 p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
192 }
193
194 void ecore_ptt_set_win(struct ecore_hwfn *p_hwfn,
195 struct ecore_ptt *p_ptt,
196 u32 new_hw_addr)
197 {
198 u32 prev_hw_addr;
199
200 prev_hw_addr = ecore_ptt_get_hw_addr(p_ptt);
201
202 if (new_hw_addr == prev_hw_addr)
203 return;
204
205 /* Update PTT entery in admin window */
206 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
207 "Updating PTT entry %d to offset 0x%x\n",
208 p_ptt->idx, new_hw_addr);
209
210 /* The HW is using DWORDS and the address is in Bytes */
211 p_ptt->pxp.offset = OSAL_CPU_TO_LE32(new_hw_addr >> 2);
212
213 REG_WR(p_hwfn,
214 ecore_ptt_config_addr(p_ptt) +
215 OFFSETOF(struct pxp_ptt_entry, offset),
216 OSAL_LE32_TO_CPU(p_ptt->pxp.offset));
217 }
218
219 static u32 ecore_set_ptt(struct ecore_hwfn *p_hwfn,
220 struct ecore_ptt *p_ptt,
221 u32 hw_addr)
222 {
223 u32 win_hw_addr = ecore_ptt_get_hw_addr(p_ptt);
224 u32 offset;
225
226 offset = hw_addr - win_hw_addr;
227
228 if (p_ptt->hwfn_id != p_hwfn->my_id)
229 DP_NOTICE(p_hwfn, true,
230 "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
231 p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
232
233 /* Verify the address is within the window */
234 if (hw_addr < win_hw_addr ||
235 offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
236 ecore_ptt_set_win(p_hwfn, p_ptt, hw_addr);
237 offset = 0;
238 }
239
240 return ecore_ptt_get_bar_addr(p_ptt) + offset;
241 }
242
243 struct ecore_ptt *ecore_get_reserved_ptt(struct ecore_hwfn *p_hwfn,
244 enum reserved_ptts ptt_idx)
245 {
246 if (ptt_idx >= RESERVED_PTT_MAX) {
247 DP_NOTICE(p_hwfn, true,
248 "Requested PTT %d is out of range\n", ptt_idx);
249 return OSAL_NULL;
250 }
251
252 return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
253 }
254
255 static bool ecore_is_reg_fifo_empty(struct ecore_hwfn *p_hwfn,
256 struct ecore_ptt *p_ptt)
257 {
258 bool is_empty = true;
259 u32 bar_addr;
260
261 if (!p_hwfn->p_dev->chk_reg_fifo)
262 goto out;
263
264 /* ecore_rd() cannot be used here since it calls this function */
265 bar_addr = ecore_set_ptt(p_hwfn, p_ptt, GRC_REG_TRACE_FIFO_VALID_DATA);
266 is_empty = REG_RD(p_hwfn, bar_addr) == 0;
267
268 #ifndef ASIC_ONLY
269 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
270 OSAL_UDELAY(100);
271 #endif
272
273 out:
274 return is_empty;
275 }
276
277 void ecore_wr(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 hw_addr,
278 u32 val)
279 {
280 bool prev_fifo_err;
281 u32 bar_addr;
282
283 prev_fifo_err = !ecore_is_reg_fifo_empty(p_hwfn, p_ptt);
284
285 bar_addr = ecore_set_ptt(p_hwfn, p_ptt, hw_addr);
286 REG_WR(p_hwfn, bar_addr, val);
287 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
288 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
289 bar_addr, hw_addr, val);
290
291 #ifndef ASIC_ONLY
292 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
293 OSAL_UDELAY(100);
294 #endif
295
296 OSAL_WARN(!prev_fifo_err && !ecore_is_reg_fifo_empty(p_hwfn, p_ptt),
297 "reg_fifo error was caused by a call to ecore_wr(0x%x, 0x%x)\n",
298 hw_addr, val);
299 }
300
301 u32 ecore_rd(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 hw_addr)
302 {
303 bool prev_fifo_err;
304 u32 bar_addr, val;
305
306 prev_fifo_err = !ecore_is_reg_fifo_empty(p_hwfn, p_ptt);
307
308 bar_addr = ecore_set_ptt(p_hwfn, p_ptt, hw_addr);
309 val = REG_RD(p_hwfn, bar_addr);
310
311 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
312 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
313 bar_addr, hw_addr, val);
314
315 #ifndef ASIC_ONLY
316 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
317 OSAL_UDELAY(100);
318 #endif
319
320 OSAL_WARN(!prev_fifo_err && !ecore_is_reg_fifo_empty(p_hwfn, p_ptt),
321 "reg_fifo error was caused by a call to ecore_rd(0x%x)\n",
322 hw_addr);
323
324 return val;
325 }
326
327 static void ecore_memcpy_hw(struct ecore_hwfn *p_hwfn,
328 struct ecore_ptt *p_ptt,
329 void *addr,
330 u32 hw_addr,
331 osal_size_t n,
332 bool to_device)
333 {
334 u32 dw_count, *host_addr, hw_offset;
335 osal_size_t quota, done = 0;
336 u32 OSAL_IOMEM *reg_addr;
337
338 while (done < n) {
339 quota = OSAL_MIN_T(osal_size_t, n - done,
340 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
341
342 if (IS_PF(p_hwfn->p_dev)) {
343 ecore_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
344 hw_offset = ecore_ptt_get_bar_addr(p_ptt);
345 } else {
346 hw_offset = hw_addr + done;
347 }
348
349 dw_count = quota / 4;
350 host_addr = (u32 *)((u8 *)addr + done);
351 reg_addr = (u32 OSAL_IOMEM *)OSAL_REG_ADDR(p_hwfn, hw_offset);
352
353 if (to_device)
354 while (dw_count--)
355 DIRECT_REG_WR(p_hwfn, reg_addr++, *host_addr++);
356 else
357 while (dw_count--)
358 *host_addr++ = DIRECT_REG_RD(p_hwfn,
359 reg_addr++);
360
361 done += quota;
362 }
363 }
364
365 void ecore_memcpy_from(struct ecore_hwfn *p_hwfn,
366 struct ecore_ptt *p_ptt,
367 void *dest, u32 hw_addr, osal_size_t n)
368 {
369 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
370 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
371 hw_addr, dest, hw_addr, (unsigned long) n);
372
373 ecore_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
374 }
375
376 void ecore_memcpy_to(struct ecore_hwfn *p_hwfn,
377 struct ecore_ptt *p_ptt,
378 u32 hw_addr, void *src, osal_size_t n)
379 {
380 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
381 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
382 hw_addr, hw_addr, src, (unsigned long)n);
383
384 ecore_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
385 }
386
387 void ecore_fid_pretend(struct ecore_hwfn *p_hwfn,
388 struct ecore_ptt *p_ptt, u16 fid)
389 {
390 u16 control = 0;
391
392 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
393 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
394
395 /* Every pretend undos previous pretends, including
396 * previous port pretend.
397 */
398 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
399 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
400 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
401
402 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
403 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
404
405 p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
406 p_ptt->pxp.pretend.fid.concrete_fid.fid = OSAL_CPU_TO_LE16(fid);
407
408 REG_WR(p_hwfn,
409 ecore_ptt_config_addr(p_ptt) +
410 OFFSETOF(struct pxp_ptt_entry, pretend),
411 *(u32 *)&p_ptt->pxp.pretend);
412 }
413
414 void ecore_port_pretend(struct ecore_hwfn *p_hwfn,
415 struct ecore_ptt *p_ptt, u8 port_id)
416 {
417 u16 control = 0;
418
419 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
420 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
421 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
422 p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
423
424 REG_WR(p_hwfn,
425 ecore_ptt_config_addr(p_ptt) +
426 OFFSETOF(struct pxp_ptt_entry, pretend),
427 *(u32 *)&p_ptt->pxp.pretend);
428 }
429
430 void ecore_port_unpretend(struct ecore_hwfn *p_hwfn,
431 struct ecore_ptt *p_ptt)
432 {
433 u16 control = 0;
434
435 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
436 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
437 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
438
439 p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
440
441 REG_WR(p_hwfn,
442 ecore_ptt_config_addr(p_ptt) +
443 OFFSETOF(struct pxp_ptt_entry, pretend),
444 *(u32 *)&p_ptt->pxp.pretend);
445 }
446
447 u32 ecore_vfid_to_concrete(struct ecore_hwfn *p_hwfn, u8 vfid)
448 {
449 u32 concrete_fid = 0;
450
451 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
452 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
453 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
454
455 return concrete_fid;
456 }
457
458 #if 0
459 /* Ecore HW lock
460 * =============
461 * Although the implemention is ready, today we don't have any flow that
462 * utliizes said locks - and we want to keep it this way.
463 * If this changes, this needs to be revisted.
464 */
465 #define HW_LOCK_MAX_RETRIES 1000
466 enum _ecore_status_t ecore_hw_lock(struct ecore_hwfn *p_hwfn,
467 struct ecore_ptt *p_ptt,
468 u8 resource,
469 bool block)
470 {
471 u32 cnt, lock_status, hw_lock_cntr_reg;
472 enum _ecore_status_t ecore_status;
473
474 /* Locate the proper lock register for this function.
475 * Note This code assumes all the H/W lock registers are sequential
476 * in memory.
477 */
478 hw_lock_cntr_reg = MISCS_REG_DRIVER_CONTROL_0 +
479 p_hwfn->rel_pf_id *
480 MISCS_REG_DRIVER_CONTROL_0_SIZE * sizeof(u32);
481
482 /* Validate that the resource is not already taken */
483 lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
484
485 if (lock_status & resource) {
486 DP_NOTICE(p_hwfn, true,
487 "Resource already locked: lock_status=0x%x resource=0x%x\n",
488 lock_status, resource);
489
490 return ECORE_BUSY;
491 }
492
493 /* Register for the lock */
494 ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg + sizeof(u32), resource);
495
496 /* Try for 5 seconds every 5ms */
497 for (cnt = 0; cnt < HW_LOCK_MAX_RETRIES; cnt++) {
498 lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
499
500 if (lock_status & resource)
501 return ECORE_SUCCESS;
502
503 if (!block) {
504 ecore_status = ECORE_BUSY;
505 break;
506 }
507
508 OSAL_MSLEEP(5);
509 }
510
511 if (cnt == HW_LOCK_MAX_RETRIES) {
512 DP_NOTICE(p_hwfn, true, "Lock timeout resource=0x%x\n",
513 resource);
514 ecore_status = ECORE_TIMEOUT;
515 }
516
517 /* Clear the pending request */
518 ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg, resource);
519
520 return ecore_status;
521 }
522
523 enum _ecore_status_t ecore_hw_unlock(struct ecore_hwfn *p_hwfn,
524 struct ecore_ptt *p_ptt,
525 u8 resource)
526 {
527 u32 lock_status, hw_lock_cntr_reg;
528
529 /* Locate the proper lock register for this function.
530 * Note This code assumes all the H/W lock registers are sequential
531 * in memory.
532 */
533 hw_lock_cntr_reg = MISCS_REG_DRIVER_CONTROL_0 +
534 p_hwfn->rel_pf_id *
535 MISCS_REG_DRIVER_CONTROL_0_SIZE * sizeof(u32);
536
537 /* Validate that the resource is currently taken */
538 lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
539
540 if (!(lock_status & resource)) {
541 DP_NOTICE(p_hwfn, true,
542 "resource 0x%x was not taken (lock status 0x%x)\n",
543 resource, lock_status);
544
545 return ECORE_NODEV;
546 }
547
548 /* clear lock for resource */
549 ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg, resource);
550 return ECORE_SUCCESS;
551 }
552 #endif /* HW locks logic */
553
554 /* DMAE */
555
556 #define ECORE_DMAE_FLAGS_IS_SET(params, flag) \
557 ((params) != OSAL_NULL && ((params)->flags & ECORE_DMAE_FLAG_##flag))
558
559 static void ecore_dmae_opcode(struct ecore_hwfn *p_hwfn,
560 const u8 is_src_type_grc,
561 const u8 is_dst_type_grc,
562 struct ecore_dmae_params *p_params)
563 {
564 u8 src_pfid, dst_pfid, port_id;
565 u16 opcode_b = 0;
566 u32 opcode = 0;
567
568 /* Whether the source is the PCIe or the GRC.
569 * 0- The source is the PCIe
570 * 1- The source is the GRC.
571 */
572 opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
573 : DMAE_CMD_SRC_MASK_PCIE) <<
574 DMAE_CMD_SRC_SHIFT;
575 src_pfid = ECORE_DMAE_FLAGS_IS_SET(p_params, PF_SRC) ?
576 p_params->src_pfid : p_hwfn->rel_pf_id;
577 opcode |= (src_pfid & DMAE_CMD_SRC_PF_ID_MASK) <<
578 DMAE_CMD_SRC_PF_ID_SHIFT;
579
580 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
581 opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
582 : DMAE_CMD_DST_MASK_PCIE) <<
583 DMAE_CMD_DST_SHIFT;
584 dst_pfid = ECORE_DMAE_FLAGS_IS_SET(p_params, PF_DST) ?
585 p_params->dst_pfid : p_hwfn->rel_pf_id;
586 opcode |= (dst_pfid & DMAE_CMD_DST_PF_ID_MASK) <<
587 DMAE_CMD_DST_PF_ID_SHIFT;
588
589 /* DMAE_E4_TODO need to check which value to specify here. */
590 /* opcode |= (!b_complete_to_host)<< DMAE_CMD_C_DST_SHIFT;*/
591
592 /* Whether to write a completion word to the completion destination:
593 * 0-Do not write a completion word
594 * 1-Write the completion word
595 */
596 opcode |= DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT;
597 opcode |= DMAE_CMD_SRC_ADDR_RESET_MASK <<
598 DMAE_CMD_SRC_ADDR_RESET_SHIFT;
599
600 if (ECORE_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST))
601 opcode |= 1 << DMAE_CMD_COMP_FUNC_SHIFT;
602
603 /* swapping mode 3 - big endian there should be a define ifdefed in
604 * the HSI somewhere. Since it is currently
605 */
606 opcode |= DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT;
607
608 port_id = (ECORE_DMAE_FLAGS_IS_SET(p_params, PORT)) ?
609 p_params->port_id : p_hwfn->port_id;
610 opcode |= port_id << DMAE_CMD_PORT_ID_SHIFT;
611
612 /* reset source address in next go */
613 opcode |= DMAE_CMD_SRC_ADDR_RESET_MASK <<
614 DMAE_CMD_SRC_ADDR_RESET_SHIFT;
615
616 /* reset dest address in next go */
617 opcode |= DMAE_CMD_DST_ADDR_RESET_MASK <<
618 DMAE_CMD_DST_ADDR_RESET_SHIFT;
619
620 /* SRC/DST VFID: all 1's - pf, otherwise VF id */
621 if (ECORE_DMAE_FLAGS_IS_SET(p_params, VF_SRC)) {
622 opcode |= (1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT);
623 opcode_b |= (p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT);
624 } else {
625 opcode_b |= (DMAE_CMD_SRC_VF_ID_MASK <<
626 DMAE_CMD_SRC_VF_ID_SHIFT);
627 }
628 if (ECORE_DMAE_FLAGS_IS_SET(p_params, VF_DST)) {
629 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
630 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
631 } else {
632 opcode_b |= DMAE_CMD_DST_VF_ID_MASK <<
633 DMAE_CMD_DST_VF_ID_SHIFT;
634 }
635
636 p_hwfn->dmae_info.p_dmae_cmd->opcode = OSAL_CPU_TO_LE32(opcode);
637 p_hwfn->dmae_info.p_dmae_cmd->opcode_b = OSAL_CPU_TO_LE16(opcode_b);
638 }
639
640 static u32 ecore_dmae_idx_to_go_cmd(u8 idx)
641 {
642 OSAL_BUILD_BUG_ON((DMAE_REG_GO_C31 - DMAE_REG_GO_C0) !=
643 31 * 4);
644
645 /* All the DMAE 'go' registers form an array in internal memory */
646 return DMAE_REG_GO_C0 + (idx << 2);
647 }
648
649 static enum _ecore_status_t ecore_dmae_post_command(struct ecore_hwfn *p_hwfn,
650 struct ecore_ptt *p_ptt)
651 {
652 struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
653 u8 idx_cmd = p_hwfn->dmae_info.channel, i;
654 enum _ecore_status_t ecore_status = ECORE_SUCCESS;
655
656 /* verify address is not OSAL_NULL */
657 if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
658 ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
659 DP_NOTICE(p_hwfn, true,
660 "source or destination address 0 idx_cmd=%d\n"
661 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
662 idx_cmd,
663 OSAL_LE32_TO_CPU(p_command->opcode),
664 OSAL_LE16_TO_CPU(p_command->opcode_b),
665 OSAL_LE16_TO_CPU(p_command->length_dw),
666 OSAL_LE32_TO_CPU(p_command->src_addr_hi),
667 OSAL_LE32_TO_CPU(p_command->src_addr_lo),
668 OSAL_LE32_TO_CPU(p_command->dst_addr_hi),
669 OSAL_LE32_TO_CPU(p_command->dst_addr_lo));
670
671 return ECORE_INVAL;
672 }
673
674 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
675 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
676 idx_cmd,
677 OSAL_LE32_TO_CPU(p_command->opcode),
678 OSAL_LE16_TO_CPU(p_command->opcode_b),
679 OSAL_LE16_TO_CPU(p_command->length_dw),
680 OSAL_LE32_TO_CPU(p_command->src_addr_hi),
681 OSAL_LE32_TO_CPU(p_command->src_addr_lo),
682 OSAL_LE32_TO_CPU(p_command->dst_addr_hi),
683 OSAL_LE32_TO_CPU(p_command->dst_addr_lo));
684
685 /* Copy the command to DMAE - need to do it before every call
686 * for source/dest address no reset.
687 * The number of commands have been increased to 16 (previous was 14)
688 * The first 9 DWs are the command registers, the 10 DW is the
689 * GO register, and
690 * the rest are result registers (which are read only by the client).
691 */
692 for (i = 0; i < DMAE_CMD_SIZE; i++) {
693 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
694 *(((u32 *)p_command) + i) : 0;
695
696 ecore_wr(p_hwfn, p_ptt,
697 DMAE_REG_CMD_MEM +
698 (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
699 (i * sizeof(u32)), data);
700 }
701
702 ecore_wr(p_hwfn, p_ptt,
703 ecore_dmae_idx_to_go_cmd(idx_cmd),
704 DMAE_GO_VALUE);
705
706 return ecore_status;
707 }
708
709 enum _ecore_status_t ecore_dmae_info_alloc(struct ecore_hwfn *p_hwfn)
710 {
711 dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
712 struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
713 u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
714 u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
715
716 *p_comp = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr, sizeof(u32));
717 if (*p_comp == OSAL_NULL) {
718 DP_NOTICE(p_hwfn, false,
719 "Failed to allocate `p_completion_word'\n");
720 goto err;
721 }
722
723 p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
724 *p_cmd = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr,
725 sizeof(struct dmae_cmd));
726 if (*p_cmd == OSAL_NULL) {
727 DP_NOTICE(p_hwfn, false,
728 "Failed to allocate `struct dmae_cmd'\n");
729 goto err;
730 }
731
732 p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
733 *p_buff = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr,
734 sizeof(u32) * DMAE_MAX_RW_SIZE);
735 if (*p_buff == OSAL_NULL) {
736 DP_NOTICE(p_hwfn, false,
737 "Failed to allocate `intermediate_buffer'\n");
738 goto err;
739 }
740
741 p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
742 p_hwfn->dmae_info.b_mem_ready = true;
743
744 return ECORE_SUCCESS;
745 err:
746 ecore_dmae_info_free(p_hwfn);
747 return ECORE_NOMEM;
748 }
749
750 void ecore_dmae_info_free(struct ecore_hwfn *p_hwfn)
751 {
752 dma_addr_t p_phys;
753
754 OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
755 p_hwfn->dmae_info.b_mem_ready = false;
756 OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
757
758 if (p_hwfn->dmae_info.p_completion_word != OSAL_NULL) {
759 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
760 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
761 p_hwfn->dmae_info.p_completion_word,
762 p_phys, sizeof(u32));
763 p_hwfn->dmae_info.p_completion_word = OSAL_NULL;
764 }
765
766 if (p_hwfn->dmae_info.p_dmae_cmd != OSAL_NULL) {
767 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
768 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
769 p_hwfn->dmae_info.p_dmae_cmd,
770 p_phys, sizeof(struct dmae_cmd));
771 p_hwfn->dmae_info.p_dmae_cmd = OSAL_NULL;
772 }
773
774 if (p_hwfn->dmae_info.p_intermediate_buffer != OSAL_NULL) {
775 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
776 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
777 p_hwfn->dmae_info.p_intermediate_buffer,
778 p_phys, sizeof(u32) * DMAE_MAX_RW_SIZE);
779 p_hwfn->dmae_info.p_intermediate_buffer = OSAL_NULL;
780 }
781 }
782
783 static enum _ecore_status_t
784 ecore_dmae_operation_wait(struct ecore_hwfn *p_hwfn)
785 {
786 u32 wait_cnt_limit = 10000, wait_cnt = 0;
787 enum _ecore_status_t ecore_status = ECORE_SUCCESS;
788
789 #ifndef ASIC_ONLY
790 u32 factor = (CHIP_REV_IS_EMUL(p_hwfn->p_dev) ?
791 ECORE_EMUL_FACTOR :
792 (CHIP_REV_IS_FPGA(p_hwfn->p_dev) ?
793 ECORE_FPGA_FACTOR : 1));
794
795 wait_cnt_limit *= factor;
796 #endif
797
798 /* DMAE_E4_TODO : TODO check if we have to call any other function
799 * other than BARRIER to sync the completion_word since we are not
800 * using the volatile keyword for this
801 */
802 OSAL_BARRIER(p_hwfn->p_dev);
803 while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
804 OSAL_UDELAY(DMAE_MIN_WAIT_TIME);
805 if (++wait_cnt > wait_cnt_limit) {
806 DP_NOTICE(p_hwfn->p_dev, ECORE_MSG_HW,
807 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
808 *(p_hwfn->dmae_info.p_completion_word),
809 DMAE_COMPLETION_VAL);
810 ecore_status = ECORE_TIMEOUT;
811 break;
812 }
813
814 /* to sync the completion_word since we are not
815 * using the volatile keyword for p_completion_word
816 */
817 OSAL_BARRIER(p_hwfn->p_dev);
818 }
819
820 if (ecore_status == ECORE_SUCCESS)
821 *p_hwfn->dmae_info.p_completion_word = 0;
822
823 return ecore_status;
824 }
825
826 static enum _ecore_status_t ecore_dmae_execute_sub_operation(struct ecore_hwfn *p_hwfn,
827 struct ecore_ptt *p_ptt,
828 u64 src_addr,
829 u64 dst_addr,
830 u8 src_type,
831 u8 dst_type,
832 u32 length_dw)
833 {
834 dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
835 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
836 enum _ecore_status_t ecore_status = ECORE_SUCCESS;
837
838 switch (src_type) {
839 case ECORE_DMAE_ADDRESS_GRC:
840 case ECORE_DMAE_ADDRESS_HOST_PHYS:
841 cmd->src_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(src_addr));
842 cmd->src_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(src_addr));
843 break;
844 /* for virtual source addresses we use the intermediate buffer. */
845 case ECORE_DMAE_ADDRESS_HOST_VIRT:
846 cmd->src_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
847 cmd->src_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
848 OSAL_MEMCPY(&(p_hwfn->dmae_info.p_intermediate_buffer[0]),
849 (void *)(osal_uintptr_t)src_addr,
850 length_dw * sizeof(u32));
851 break;
852 default:
853 return ECORE_INVAL;
854 }
855
856 switch (dst_type) {
857 case ECORE_DMAE_ADDRESS_GRC:
858 case ECORE_DMAE_ADDRESS_HOST_PHYS:
859 cmd->dst_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(dst_addr));
860 cmd->dst_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(dst_addr));
861 break;
862 /* for virtual destination addresses we use the intermediate buffer. */
863 case ECORE_DMAE_ADDRESS_HOST_VIRT:
864 cmd->dst_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
865 cmd->dst_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
866 break;
867 default:
868 return ECORE_INVAL;
869 }
870
871 cmd->length_dw = OSAL_CPU_TO_LE16((u16)length_dw);
872 #ifndef __EXTRACT__LINUX__
873 if (src_type == ECORE_DMAE_ADDRESS_HOST_VIRT ||
874 src_type == ECORE_DMAE_ADDRESS_HOST_PHYS)
875 OSAL_DMA_SYNC(p_hwfn->p_dev,
876 (void *)HILO_U64(cmd->src_addr_hi,
877 cmd->src_addr_lo),
878 length_dw * sizeof(u32), false);
879 #endif
880
881 ecore_dmae_post_command(p_hwfn, p_ptt);
882
883 ecore_status = ecore_dmae_operation_wait(p_hwfn);
884
885 #ifndef __EXTRACT__LINUX__
886 /* TODO - is it true ? */
887 if (src_type == ECORE_DMAE_ADDRESS_HOST_VIRT ||
888 src_type == ECORE_DMAE_ADDRESS_HOST_PHYS)
889 OSAL_DMA_SYNC(p_hwfn->p_dev,
890 (void *)HILO_U64(cmd->src_addr_hi,
891 cmd->src_addr_lo),
892 length_dw * sizeof(u32), true);
893 #endif
894
895 if (ecore_status != ECORE_SUCCESS) {
896 DP_NOTICE(p_hwfn, ECORE_MSG_HW,
897 "Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x, intermediate buffer 0x%llx.\n",
898 (unsigned long long)src_addr, (unsigned long long)dst_addr, length_dw,
899 (unsigned long long)p_hwfn->dmae_info.intermediate_buffer_phys_addr);
900 return ecore_status;
901 }
902
903 if (dst_type == ECORE_DMAE_ADDRESS_HOST_VIRT)
904 OSAL_MEMCPY((void *)(osal_uintptr_t)(dst_addr),
905 &p_hwfn->dmae_info.p_intermediate_buffer[0],
906 length_dw * sizeof(u32));
907
908 return ECORE_SUCCESS;
909 }
910
911 static enum _ecore_status_t ecore_dmae_execute_command(struct ecore_hwfn *p_hwfn,
912 struct ecore_ptt *p_ptt,
913 u64 src_addr, u64 dst_addr,
914 u8 src_type, u8 dst_type,
915 u32 size_in_dwords,
916 struct ecore_dmae_params *p_params)
917 {
918 dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
919 u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
920 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
921 u64 src_addr_split = 0, dst_addr_split = 0;
922 u16 length_limit = DMAE_MAX_RW_SIZE;
923 enum _ecore_status_t ecore_status = ECORE_SUCCESS;
924 u32 offset = 0;
925
926 if (!p_hwfn->dmae_info.b_mem_ready) {
927 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
928 "No buffers allocated. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
929 (unsigned long long)src_addr, src_type, (unsigned long long)dst_addr, dst_type,
930 size_in_dwords);
931 return ECORE_NOMEM;
932 }
933
934 if (p_hwfn->p_dev->recov_in_prog) {
935 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
936 "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
937 (unsigned long long)src_addr, src_type, (unsigned long long)dst_addr, dst_type,
938 size_in_dwords);
939 /* Return success to let the flow to be completed successfully
940 * w/o any error handling.
941 */
942 return ECORE_SUCCESS;
943 }
944
945 if (!cmd) {
946 DP_NOTICE(p_hwfn, true,
947 "ecore_dmae_execute_sub_operation failed. Invalid state. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
948 (unsigned long long)src_addr, (unsigned long long)dst_addr, length_cur);
949 return ECORE_INVAL;
950 }
951
952 ecore_dmae_opcode(p_hwfn,
953 (src_type == ECORE_DMAE_ADDRESS_GRC),
954 (dst_type == ECORE_DMAE_ADDRESS_GRC),
955 p_params);
956
957 cmd->comp_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
958 cmd->comp_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
959 cmd->comp_val = OSAL_CPU_TO_LE32(DMAE_COMPLETION_VAL);
960
961 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
962 cnt_split = size_in_dwords / length_limit;
963 length_mod = size_in_dwords % length_limit;
964
965 src_addr_split = src_addr;
966 dst_addr_split = dst_addr;
967
968 for (i = 0; i <= cnt_split; i++) {
969 offset = length_limit * i;
970
971 if (!ECORE_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) {
972 if (src_type == ECORE_DMAE_ADDRESS_GRC)
973 src_addr_split = src_addr + offset;
974 else
975 src_addr_split = src_addr + (offset*4);
976 }
977
978 if (dst_type == ECORE_DMAE_ADDRESS_GRC)
979 dst_addr_split = dst_addr + offset;
980 else
981 dst_addr_split = dst_addr + (offset*4);
982
983 length_cur = (cnt_split == i) ? length_mod : length_limit;
984
985 /* might be zero on last iteration */
986 if (!length_cur)
987 continue;
988
989 ecore_status = ecore_dmae_execute_sub_operation(p_hwfn,
990 p_ptt,
991 src_addr_split,
992 dst_addr_split,
993 src_type,
994 dst_type,
995 length_cur);
996 if (ecore_status != ECORE_SUCCESS) {
997 DP_NOTICE(p_hwfn, false,
998 "ecore_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
999 ecore_status, (unsigned long long)src_addr, (unsigned long long)dst_addr, length_cur);
1000
1001 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_DMAE_FAIL);
1002 break;
1003 }
1004 }
1005
1006 return ecore_status;
1007 }
1008
1009 enum _ecore_status_t ecore_dmae_host2grc(struct ecore_hwfn *p_hwfn,
1010 struct ecore_ptt *p_ptt,
1011 u64 source_addr,
1012 u32 grc_addr,
1013 u32 size_in_dwords,
1014 struct ecore_dmae_params *p_params)
1015 {
1016 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
1017 enum _ecore_status_t rc;
1018
1019 OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
1020
1021 rc = ecore_dmae_execute_command(p_hwfn, p_ptt, source_addr,
1022 grc_addr_in_dw,
1023 ECORE_DMAE_ADDRESS_HOST_VIRT,
1024 ECORE_DMAE_ADDRESS_GRC,
1025 size_in_dwords, p_params);
1026
1027 OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
1028
1029 return rc;
1030 }
1031
1032 enum _ecore_status_t ecore_dmae_grc2host(struct ecore_hwfn *p_hwfn,
1033 struct ecore_ptt *p_ptt,
1034 u32 grc_addr,
1035 dma_addr_t dest_addr,
1036 u32 size_in_dwords,
1037 struct ecore_dmae_params *p_params)
1038 {
1039 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
1040 enum _ecore_status_t rc;
1041
1042 OSAL_SPIN_LOCK(&(p_hwfn->dmae_info.lock));
1043
1044 rc = ecore_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
1045 dest_addr, ECORE_DMAE_ADDRESS_GRC,
1046 ECORE_DMAE_ADDRESS_HOST_VIRT,
1047 size_in_dwords, p_params);
1048
1049 OSAL_SPIN_UNLOCK(&(p_hwfn->dmae_info.lock));
1050
1051 return rc;
1052 }
1053
1054 enum _ecore_status_t ecore_dmae_host2host(struct ecore_hwfn *p_hwfn,
1055 struct ecore_ptt *p_ptt,
1056 dma_addr_t source_addr,
1057 dma_addr_t dest_addr,
1058 u32 size_in_dwords,
1059 struct ecore_dmae_params *p_params)
1060 {
1061 enum _ecore_status_t rc;
1062
1063 OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
1064
1065 rc = ecore_dmae_execute_command(p_hwfn, p_ptt, source_addr,
1066 dest_addr,
1067 ECORE_DMAE_ADDRESS_HOST_PHYS,
1068 ECORE_DMAE_ADDRESS_HOST_PHYS,
1069 size_in_dwords,
1070 p_params);
1071
1072 OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
1073
1074 return rc;
1075 }
1076
1077 void ecore_hw_err_notify(struct ecore_hwfn *p_hwfn,
1078 enum ecore_hw_err_type err_type)
1079 {
1080 /* Fan failure cannot be masked by handling of another HW error */
1081 if (p_hwfn->p_dev->recov_in_prog && err_type != ECORE_HW_ERR_FAN_FAIL) {
1082 DP_VERBOSE(p_hwfn, ECORE_MSG_DRV,
1083 "Recovery is in progress. Avoid notifying about HW error %d.\n",
1084 err_type);
1085 return;
1086 }
1087
1088 OSAL_HW_ERROR_OCCURRED(p_hwfn, err_type);
1089 }
1090
1091 enum _ecore_status_t ecore_dmae_sanity(struct ecore_hwfn *p_hwfn,
1092 struct ecore_ptt *p_ptt,
1093 const char *phase)
1094 {
1095 u32 size = OSAL_PAGE_SIZE / 2, val;
1096 enum _ecore_status_t rc = ECORE_SUCCESS;
1097 dma_addr_t p_phys;
1098 void *p_virt;
1099 u32 *p_tmp;
1100
1101 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, &p_phys, 2 * size);
1102 if (!p_virt) {
1103 DP_NOTICE(p_hwfn, false,
1104 "DMAE sanity [%s]: failed to allocate memory\n",
1105 phase);
1106 return ECORE_NOMEM;
1107 }
1108
1109 /* Fill the bottom half of the allocated memory with a known pattern */
1110 for (p_tmp = (u32 *)p_virt;
1111 p_tmp < (u32 *)((u8 *)p_virt + size);
1112 p_tmp++) {
1113 /* Save the address itself as the value */
1114 val = (u32)(osal_uintptr_t)p_tmp;
1115 *p_tmp = val;
1116 }
1117
1118 /* Zero the top half of the allocated memory */
1119 OSAL_MEM_ZERO((u8 *)p_virt + size, size);
1120
1121 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1122 "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
1123 phase, (unsigned long long)p_phys, p_virt,
1124 (unsigned long long)(p_phys + size), (u8 *)p_virt + size,
1125 size);
1126
1127 rc = ecore_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
1128 size / 4 /* size_in_dwords */,
1129 OSAL_NULL /* default parameters */);
1130 if (rc != ECORE_SUCCESS) {
1131 DP_NOTICE(p_hwfn, false,
1132 "DMAE sanity [%s]: ecore_dmae_host2host() failed. rc = %d.\n",
1133 phase, rc);
1134 goto out;
1135 }
1136
1137 /* Verify that the top half of the allocated memory has the pattern */
1138 for (p_tmp = (u32 *)((u8 *)p_virt + size);
1139 p_tmp < (u32 *)((u8 *)p_virt + (2 * size));
1140 p_tmp++) {
1141 /* The corresponding address in the bottom half */
1142 val = (u32)(osal_uintptr_t)p_tmp - size;
1143
1144 if (*p_tmp != val) {
1145 DP_NOTICE(p_hwfn, false,
1146 "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
1147 phase,
1148 (unsigned long long)(p_phys + (u32)((u8 *)p_tmp - (u8 *)p_virt)),
1149 p_tmp, *p_tmp, val);
1150 rc = ECORE_UNKNOWN_ERROR;
1151 goto out;
1152 }
1153 }
1154
1155 out:
1156 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_virt, p_phys, 2 * size);
1157 return rc;
1158 }
1159
1160 void ecore_ppfid_wr(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1161 u8 abs_ppfid, u32 hw_addr, u32 val)
1162 {
1163 u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
1164
1165 ecore_fid_pretend(p_hwfn, p_ptt,
1166 pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
1167 ecore_wr(p_hwfn, p_ptt, hw_addr, val);
1168 ecore_fid_pretend(p_hwfn, p_ptt,
1169 p_hwfn->rel_pf_id <<
1170 PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
1171 }
1172
1173 u32 ecore_ppfid_rd(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1174 u8 abs_ppfid, u32 hw_addr)
1175 {
1176 u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
1177 u32 val;
1178
1179 ecore_fid_pretend(p_hwfn, p_ptt,
1180 pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
1181 val = ecore_rd(p_hwfn, p_ptt, hw_addr);
1182 ecore_fid_pretend(p_hwfn, p_ptt,
1183 p_hwfn->rel_pf_id <<
1184 PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
1185
1186 return val;
1187 }
1188
1189 #ifdef _NTDDK_
1190 #pragma warning(pop)
1191 #endif
Cache object: 93bd639b00b1a86c8e6d7da8b70bb46c
|