1 /*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * File : ecore_init_fw_funcs.c
30 */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include "bcm_osal.h"
35 #include "ecore_hw.h"
36 #include "ecore_init_ops.h"
37 #include "reg_addr.h"
38 #include "ecore_rt_defs.h"
39 #include "ecore_hsi_common.h"
40 #include "ecore_hsi_init_func.h"
41 #include "ecore_hsi_eth.h"
42 #include "ecore_hsi_init_tool.h"
43 #include "ecore_iro.h"
44 #include "ecore_init_fw_funcs.h"
45
46 #define CDU_VALIDATION_DEFAULT_CFG 61
47
48 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
49 { 400, 336, 352, 304, 304, 384, 416, 352}, /* region 3 offsets */
50 { 528, 496, 416, 448, 448, 512, 544, 480}, /* region 4 offsets */
51 { 608, 544, 496, 512, 576, 592, 624, 560} /* region 5 offsets */
52 };
53 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
54 { 240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
55 };
56
57 /* General constants */
58 #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
59 #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : 0)
60 #define QM_INVALID_PQ_ID 0xffff
61
62 /* Feature enable */
63 #define QM_BYPASS_EN 1
64 #define QM_BYTE_CRD_EN 1
65
66 /* Other PQ constants */
67 #define QM_OTHER_PQS_PER_PF 4
68
69 /* VOQ constants */
70 #define QM_E5_NUM_EXT_VOQ (MAX_NUM_PORTS_E5 * NUM_OF_TCS)
71
72 /* WFQ constants: */
73
74 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
75 #define QM_WFQ_UPPER_BOUND 62500000
76
77 /* Bit of VOQ in WFQ VP PQ map */
78 #define QM_WFQ_VP_PQ_VOQ_SHIFT 0
79
80 /* Bit of PF in WFQ VP PQ map */
81 #define QM_WFQ_VP_PQ_PF_E4_SHIFT 5
82 #define QM_WFQ_VP_PQ_PF_E5_SHIFT 6
83
84 /* 0x9000 = 4*9*1024 */
85 #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
86
87 /* Max WFQ increment value is 0.7 * upper bound */
88 #define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10)
89
90 /* Number of VOQs in E5 QmWfqCrd register */
91 #define QM_WFQ_CRD_E5_NUM_VOQS 16
92
93 /* RL constants: */
94
95 /* Period in us */
96 #define QM_RL_PERIOD 5
97
98 /* Period in 25MHz cycles */
99 #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
100
101 /* RL increment value - rate is specified in mbps. the factor of 1.01 was
102 * added after seeing only 99% factor reached in a 25Gbps port with DPDK RFC
103 * 2544 test. In this scenario the PF RL was reducing the line rate to 99%
104 * although the credit increment value was the correct one and FW calculated
105 * correct packet sizes. The reason for the inaccuracy of the RL is unknown at
106 * this point.
107 */
108 #define QM_RL_INC_VAL(rate) OSAL_MAX_T(u32, (u32)(((rate ? rate : 100000) * QM_RL_PERIOD * 101) / (8 * 100)), 1)
109
110 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
111 #define QM_PF_RL_UPPER_BOUND 62500000
112
113 /* Max PF RL increment value is 0.7 * upper bound */
114 #define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10)
115
116 /* Vport RL Upper bound, link speed is in Mpbs */
117 #define QM_VP_RL_UPPER_BOUND(speed) ((u32)OSAL_MAX_T(u32, QM_RL_INC_VAL(speed), 9700 + 1000))
118
119 /* Max Vport RL increment value is the Vport RL upper bound */
120 #define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed)
121
122 /* Vport RL credit threshold in case of QM bypass */
123 #define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1)
124
125 /* AFullOprtnstcCrdMask constants */
126 #define QM_OPPOR_LINE_VOQ_DEF 1
127 #define QM_OPPOR_FW_STOP_DEF 0
128 #define QM_OPPOR_PQ_EMPTY_DEF 1
129
130 /* Command Queue constants: */
131
132 /* Pure LB CmdQ lines (+spare) */
133 #define PBF_CMDQ_PURE_LB_LINES 150
134
135 #define PBF_CMDQ_LINES_E5_RSVD_RATIO 8
136
137 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + ext_voq * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
138
139 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + ext_voq * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
140
141 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
142
143 /* BTB: blocks constants (block size = 256B) */
144
145 /* 256B blocks in 9700B packet */
146 #define BTB_JUMBO_PKT_BLOCKS 38
147
148 /* Headroom per-port */
149 #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
150 #define BTB_PURE_LB_FACTOR 10
151
152 /* Factored (hence really 0.7) */
153 #define BTB_PURE_LB_RATIO 7
154
155 /* QM stop command constants */
156 #define QM_STOP_PQ_MASK_WIDTH 32
157 #define QM_STOP_CMD_ADDR 2
158 #define QM_STOP_CMD_STRUCT_SIZE 2
159 #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
160 #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
161 #define QM_STOP_CMD_PAUSE_MASK_MASK -1
162 #define QM_STOP_CMD_GROUP_ID_OFFSET 1
163 #define QM_STOP_CMD_GROUP_ID_SHIFT 16
164 #define QM_STOP_CMD_GROUP_ID_MASK 15
165 #define QM_STOP_CMD_PQ_TYPE_OFFSET 1
166 #define QM_STOP_CMD_PQ_TYPE_SHIFT 24
167 #define QM_STOP_CMD_PQ_TYPE_MASK 1
168 #define QM_STOP_CMD_MAX_POLL_COUNT 100
169 #define QM_STOP_CMD_POLL_PERIOD_US 500
170
171 /* QM command macros */
172 #define QM_CMD_STRUCT_SIZE(cmd) cmd##_STRUCT_SIZE
173 #define QM_CMD_SET_FIELD(var, cmd, field, value) SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
174
175 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, ext_voq, wrr) OSAL_MEMSET(&map, 0, sizeof(map)); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_VALID, rl_valid); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, vp_pq_id); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_ID, rl_id); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VOQ, ext_voq); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, wrr); STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id, *((u32 *)&map))
176
177 #define WRITE_PQ_INFO_TO_RAM 1
178 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | ((rl_valid) << 22) | ((rl) << 24))
179 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4
180
181 /******************** INTERNAL IMPLEMENTATION *********************/
182
183 /* Returns the external VOQ number */
184 static u8 ecore_get_ext_voq(struct ecore_hwfn *p_hwfn,
185 u8 port_id,
186 u8 tc,
187 u8 max_phys_tcs_per_port)
188 {
189 if (tc == PURE_LB_TC)
190 return NUM_OF_PHYS_TCS * (ECORE_IS_E5(p_hwfn->p_dev) ? MAX_NUM_PORTS_E5 : MAX_NUM_PORTS_BB) + port_id;
191 else
192 return port_id * (ECORE_IS_E5(p_hwfn->p_dev) ? NUM_OF_PHYS_TCS : max_phys_tcs_per_port) + tc;
193 }
194
195 /* Prepare PF RL enable/disable runtime init values */
196 static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn,
197 bool pf_rl_en)
198 {
199 STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
200 if (pf_rl_en) {
201 u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
202 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
203
204 /* Enable RLs for all VOQs */
205 STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET, (u32)voq_bit_mask);
206 #ifdef QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET
207 if (num_ext_voqs >= 32)
208 STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET, (u32)(voq_bit_mask >> 32));
209 #endif
210
211 /* Write RL period */
212 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
213 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
214
215 /* Set credit threshold for QM bypass flow */
216 if (QM_BYPASS_EN)
217 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, QM_PF_RL_UPPER_BOUND);
218 }
219 }
220
221 /* Prepare PF WFQ enable/disable runtime init values */
222 static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn,
223 bool pf_wfq_en)
224 {
225 STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
226
227 /* Set credit threshold for QM bypass flow */
228 if (pf_wfq_en && QM_BYPASS_EN)
229 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
230 }
231
232 /* Prepare VPORT RL enable/disable runtime init values */
233 static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn,
234 bool vport_rl_en)
235 {
236 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, vport_rl_en ? 1 : 0);
237 if (vport_rl_en) {
238 /* Write RL period (use timer 0 only) */
239 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
240 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
241
242 /* Set credit threshold for QM bypass flow */
243 if (QM_BYPASS_EN)
244 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, QM_VP_RL_BYPASS_THRESH_SPEED);
245 }
246 }
247
248 /* Prepare VPORT WFQ enable/disable runtime init values */
249 static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn,
250 bool vport_wfq_en)
251 {
252 STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, vport_wfq_en ? 1 : 0);
253
254 /* Set credit threshold for QM bypass flow */
255 if (vport_wfq_en && QM_BYPASS_EN)
256 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
257 }
258
259 /* Prepare runtime init values to allocate PBF command queue lines for
260 * the specified VOQ.
261 */
262 static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
263 u8 ext_voq,
264 u16 cmdq_lines)
265 {
266 u32 qm_line_crd;
267
268 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
269
270 OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), (u32)cmdq_lines);
271 STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
272 STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
273 }
274
275 /* Prepare runtime init values to allocate PBF command queue lines. */
276 static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
277 u8 max_ports_per_engine,
278 u8 max_phys_tcs_per_port,
279 struct init_qm_port_params port_params[MAX_NUM_PORTS])
280 {
281 u8 tc, ext_voq, port_id, num_tcs_in_port;
282 u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
283
284 /* Clear PBF lines of all VOQs */
285 for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
286 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
287
288 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
289 u16 phys_lines, phys_lines_per_tc;
290
291 if (!port_params[port_id].active)
292 continue;
293
294 /* Find number of command queue lines to divide between the
295 * active physical TCs. In E5, 1/8 of the lines are reserved.
296 * the lines for pure LB TC are subtracted.
297 */
298 phys_lines = port_params[port_id].num_pbf_cmd_lines;
299 if (ECORE_IS_E5(p_hwfn->p_dev))
300 phys_lines -= DIV_ROUND_UP(phys_lines, PBF_CMDQ_LINES_E5_RSVD_RATIO);
301 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
302
303 /* Find #lines per active physical TC */
304 num_tcs_in_port = 0;
305 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
306 if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
307 num_tcs_in_port++;
308 phys_lines_per_tc = phys_lines / num_tcs_in_port;
309
310 /* Init registers per active TC */
311 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
312 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
313 if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
314 ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, phys_lines_per_tc);
315 }
316
317 /* Init registers for pure LB TC */
318 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
319 ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, PBF_CMDQ_PURE_LB_LINES);
320 }
321 }
322
323 /* Prepare runtime init values to allocate guaranteed BTB blocks for the
324 * specified port. The guaranteed BTB space is divided between the TCs as
325 * follows (shared space Is currently not used):
326 * 1. Parameters:
327 * B - BTB blocks for this port
328 * C - Number of physical TCs for this port
329 * 2. Calculation:
330 * a. 38 blocks (9700B jumbo frame) are allocated for global per port
331 * headroom.
332 * b. B = B - 38 (remainder after global headroom allocation).
333 * c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
334 * d. B = B – MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
335 * e. B/C blocks are allocated for each physical TC.
336 * Assumptions:
337 * - MTU is up to 9700 bytes (38 blocks)
338 * - All TCs are considered symmetrical (same rate and packet size)
339 * - No optimization for lossy TC (all are considered lossless). Shared space
340 * is not enabled and allocated for each TC.
341 */
342 static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
343 u8 max_ports_per_engine,
344 u8 max_phys_tcs_per_port,
345 struct init_qm_port_params port_params[MAX_NUM_PORTS])
346 {
347 u32 usable_blocks, pure_lb_blocks, phys_blocks;
348 u8 tc, ext_voq, port_id, num_tcs_in_port;
349
350 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
351 if (!port_params[port_id].active)
352 continue;
353
354 /* Subtract headroom blocks */
355 usable_blocks = port_params[port_id].num_btb_blocks - BTB_HEADROOM_BLOCKS;
356
357 /* Find blocks per physical TC. use factor to avoid floating
358 * arithmethic.
359 */
360 num_tcs_in_port = 0;
361 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
362 if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
363 num_tcs_in_port++;
364
365 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / (num_tcs_in_port * BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO);
366 pure_lb_blocks = OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS, pure_lb_blocks / BTB_PURE_LB_FACTOR);
367 phys_blocks = (usable_blocks - pure_lb_blocks) / num_tcs_in_port;
368
369 /* Init physical TCs */
370 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
371 if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) {
372 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
373 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), phys_blocks);
374 }
375 }
376
377 /* Init pure LB TC */
378 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
379 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), pure_lb_blocks);
380 }
381 }
382
383 /* Prepare Tx PQ mapping runtime init values for the specified PF */
384 static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
385 struct ecore_ptt *p_ptt,
386 u8 port_id,
387 u8 pf_id,
388 u8 max_phys_tcs_per_port,
389 bool is_pf_loading,
390 u32 num_pf_cids,
391 u32 num_vf_cids,
392 u16 start_pq,
393 u16 num_pf_pqs,
394 u16 num_vf_pqs,
395 u8 start_vport,
396 u32 base_mem_addr_4kb,
397 struct init_qm_pq_params *pq_params,
398 struct init_qm_vport_params *vport_params)
399 {
400 /* A bit per Tx PQ indicating if the PQ is associated with a VF */
401 u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
402 u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
403 u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
404 u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
405
406 num_pqs = num_pf_pqs + num_vf_pqs;
407
408 first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
409 last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
410
411 pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
412 vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
413 mem_addr_4kb = base_mem_addr_4kb;
414
415 /* Set mapping from PQ group to PF */
416 for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
417 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
418
419 /* Set PQ sizes */
420 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, QM_PQ_SIZE_256B(num_pf_cids));
421 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, QM_PQ_SIZE_256B(num_vf_cids));
422
423 /* Go over all Tx PQs */
424 for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
425 u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
426 u8 ext_voq, vport_id_in_pf;
427 bool is_vf_pq, rl_valid;
428 u16 first_tx_pq_id;
429
430 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
431 is_vf_pq = (i >= num_pf_pqs);
432 rl_valid = pq_params[i].rl_valid && pq_params[i].vport_id < max_qm_global_rls;
433
434 /* Update first Tx PQ of VPORT/TC */
435 vport_id_in_pf = pq_params[i].vport_id - start_vport;
436 first_tx_pq_id = vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id];
437 if (first_tx_pq_id == QM_INVALID_PQ_ID) {
438 u32 map_val = (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (pf_id << (ECORE_IS_E5(p_hwfn->p_dev) ? QM_WFQ_VP_PQ_PF_E5_SHIFT : QM_WFQ_VP_PQ_PF_E4_SHIFT));
439
440 /* Create new VP PQ */
441 vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id] = pq_id;
442 first_tx_pq_id = pq_id;
443
444 /* Map VP PQ to VOQ and PF */
445 STORE_RT_REG(p_hwfn, QM_REG_WFQVPMAP_RT_OFFSET + first_tx_pq_id, map_val);
446 }
447
448 /* Check RL ID */
449 if (pq_params[i].rl_valid && pq_params[i].vport_id >= max_qm_global_rls)
450 DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
451
452 /* Prepare PQ map entry */
453 if (ECORE_IS_E5(p_hwfn->p_dev)) {
454 struct qm_rf_pq_map_e5 tx_pq_map;
455 QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E5, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
456 }
457 else {
458 struct qm_rf_pq_map_e4 tx_pq_map;
459 QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E4, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
460 }
461
462 /* Set PQ base address */
463 STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, mem_addr_4kb);
464
465 /* Clear PQ pointer table entry (64 bit) */
466 if (is_pf_loading)
467 for (j = 0; j < 2; j++)
468 STORE_RT_REG(p_hwfn, QM_REG_PTRTBLTX_RT_OFFSET + (pq_id * 2) + j, 0);
469
470 /* Write PQ info to RAM */
471 if (WRITE_PQ_INFO_TO_RAM != 0)
472 {
473 u32 pq_info = 0;
474 pq_info = PQ_INFO_ELEMENT(first_tx_pq_id, pf_id, pq_params[i].tc_id, port_id, rl_valid ? 1 : 0, rl_valid ? pq_params[i].vport_id : 0);
475 ecore_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), pq_info);
476 }
477
478 /* If VF PQ, add indication to PQ VF mask */
479 if (is_vf_pq) {
480 tx_pq_vf_mask[pq_id / QM_PF_QUEUE_GROUP_SIZE] |= (1 << (pq_id % QM_PF_QUEUE_GROUP_SIZE));
481 mem_addr_4kb += vport_pq_mem_4kb;
482 }
483 else {
484 mem_addr_4kb += pq_mem_4kb;
485 }
486 }
487
488 /* Store Tx PQ VF mask to size select register */
489 for (i = 0; i < num_tx_pq_vf_masks; i++)
490 if (tx_pq_vf_mask[i])
491 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, tx_pq_vf_mask[i]);
492 }
493
494 /* Prepare Other PQ mapping runtime init values for the specified PF */
495 static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
496 u8 pf_id,
497 bool is_pf_loading,
498 u32 num_pf_cids,
499 u32 num_tids,
500 u32 base_mem_addr_4kb)
501 {
502 u32 pq_size, pq_mem_4kb, mem_addr_4kb;
503 u16 i, j, pq_id, pq_group;
504
505 /* A single other PQ group is used in each PF, where PQ group i is used
506 * in PF i.
507 */
508 pq_group = pf_id;
509 pq_size = num_pf_cids + num_tids;
510 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
511 mem_addr_4kb = base_mem_addr_4kb;
512
513 /* Map PQ group to PF */
514 STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
515
516 /* Set PQ sizes */
517 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, QM_PQ_SIZE_256B(pq_size));
518
519 for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
520 /* Set PQ base address */
521 STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, mem_addr_4kb);
522
523 /* Clear PQ pointer table entry */
524 if (is_pf_loading)
525 for (j = 0; j < 2; j++)
526 STORE_RT_REG(p_hwfn, QM_REG_PTRTBLOTHER_RT_OFFSET + (pq_id * 2) + j, 0);
527
528 mem_addr_4kb += pq_mem_4kb;
529 }
530 }
531
532 /* Prepare PF WFQ runtime init values for the specified PF.
533 * Return -1 on error.
534 */
535 static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
536 u8 port_id,
537 u8 pf_id,
538 u16 pf_wfq,
539 u8 max_phys_tcs_per_port,
540 u16 num_tx_pqs,
541 struct init_qm_pq_params *pq_params)
542 {
543 u32 inc_val, crd_reg_offset;
544 u8 ext_voq;
545 u16 i;
546
547 inc_val = QM_WFQ_INC_VAL(pf_wfq);
548 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
549 DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
550 return -1;
551 }
552
553 for (i = 0; i < num_tx_pqs; i++) {
554 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
555 crd_reg_offset = ECORE_IS_E5(p_hwfn->p_dev) ?
556 (ext_voq < QM_WFQ_CRD_E5_NUM_VOQS ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + (ext_voq % QM_WFQ_CRD_E5_NUM_VOQS) * MAX_NUM_PFS_E5 + pf_id :
557 (pf_id < MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + ext_voq * MAX_NUM_PFS_BB + (pf_id % MAX_NUM_PFS_BB);
558 OVERWRITE_RT_REG(p_hwfn, crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
559 }
560
561 STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + pf_id, QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
562 STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
563
564 return 0;
565 }
566
567 /* Prepare PF RL runtime init values for the specified PF.
568 * Return -1 on error.
569 */
570 static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn,
571 u8 pf_id,
572 u32 pf_rl)
573 {
574 u32 inc_val;
575
576 inc_val = QM_RL_INC_VAL(pf_rl);
577 if (inc_val > QM_PF_RL_MAX_INC_VAL) {
578 DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
579 return -1;
580 }
581
582 STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
583 STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
584 STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
585
586 return 0;
587 }
588
589 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
590 * Return -1 on error.
591 */
592 static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
593 u8 num_vports,
594 struct init_qm_vport_params *vport_params)
595 {
596 u16 vport_pq_id;
597 u32 inc_val;
598 u8 tc, i;
599
600 /* Go over all PF VPORTs */
601 for (i = 0; i < num_vports; i++) {
602 if (!vport_params[i].vport_wfq)
603 continue;
604
605 inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
606 if (inc_val > QM_WFQ_MAX_INC_VAL) {
607 DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
608 return -1;
609 }
610
611 /* Each VPORT can have several VPORT PQ IDs for various TCs */
612 for (tc = 0; tc < NUM_OF_TCS; tc++) {
613 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
614 if (vport_pq_id != QM_INVALID_PQ_ID) {
615 STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET + vport_pq_id, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
616 STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET + vport_pq_id, inc_val);
617 }
618 }
619 }
620
621 return 0;
622 }
623
624 /* Prepare VPORT RL runtime init values for the specified VPORTs.
625 * Return -1 on error.
626 */
627 static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
628 u8 start_vport,
629 u8 num_vports,
630 u32 link_speed,
631 struct init_qm_vport_params *vport_params)
632 {
633 u8 i, vport_id;
634 u32 inc_val;
635
636 if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
637 DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
638 return -1;
639 }
640
641 /* Go over all PF VPORTs */
642 for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
643 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ? vport_params[i].vport_rl : link_speed);
644 if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
645 DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
646 return -1;
647 }
648
649 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
650 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id, QM_VP_RL_UPPER_BOUND(link_speed) | (u32)QM_RL_CRD_REG_SIGN_BIT);
651 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id, inc_val);
652 }
653
654 return 0;
655 }
656
657 static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
658 struct ecore_ptt *p_ptt)
659 {
660 u32 reg_val, i;
661
662 for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; i++) {
663 OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
664 reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
665 }
666
667 /* Check if timeout while waiting for SDM command ready */
668 if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
669 DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG, "Timeout when waiting for QM SDM command ready signal\n");
670 return false;
671 }
672
673 return true;
674 }
675
676 static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
677 struct ecore_ptt *p_ptt,
678 u32 cmd_addr,
679 u32 cmd_data_lsb,
680 u32 cmd_data_msb)
681 {
682 if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
683 return false;
684
685 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
686 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
687 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
688 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
689 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
690
691 return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
692 }
693
694 /******************** INTERFACE IMPLEMENTATION *********************/
695
696 u32 ecore_qm_pf_mem_size(u32 num_pf_cids,
697 u32 num_vf_cids,
698 u32 num_tids,
699 u16 num_pf_pqs,
700 u16 num_vf_pqs)
701 {
702 return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
703 QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
704 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
705 }
706
707 int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
708 u8 max_ports_per_engine,
709 u8 max_phys_tcs_per_port,
710 bool pf_rl_en,
711 bool pf_wfq_en,
712 bool vport_rl_en,
713 bool vport_wfq_en,
714 struct init_qm_port_params port_params[MAX_NUM_PORTS])
715 {
716 u32 mask;
717
718 /* Init AFullOprtnstcCrdMask */
719 mask = (QM_OPPOR_LINE_VOQ_DEF << QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
720 (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
721 (pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
722 (vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
723 (pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
724 (vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
725 (QM_OPPOR_FW_STOP_DEF << QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
726 (QM_OPPOR_PQ_EMPTY_DEF << QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
727 STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
728
729 /* Enable/disable PF RL */
730 ecore_enable_pf_rl(p_hwfn, pf_rl_en);
731
732 /* Enable/disable PF WFQ */
733 ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
734
735 /* Enable/disable VPORT RL */
736 ecore_enable_vport_rl(p_hwfn, vport_rl_en);
737
738 /* Enable/disable VPORT WFQ */
739 ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
740
741 /* Init PBF CMDQ line credit */
742 ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
743
744 /* Init BTB blocks in PBF */
745 ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
746
747 return 0;
748 }
749
750 int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
751 struct ecore_ptt *p_ptt,
752 u8 port_id,
753 u8 pf_id,
754 u8 max_phys_tcs_per_port,
755 bool is_pf_loading,
756 u32 num_pf_cids,
757 u32 num_vf_cids,
758 u32 num_tids,
759 u16 start_pq,
760 u16 num_pf_pqs,
761 u16 num_vf_pqs,
762 u8 start_vport,
763 u8 num_vports,
764 u16 pf_wfq,
765 u32 pf_rl,
766 u32 link_speed,
767 struct init_qm_pq_params *pq_params,
768 struct init_qm_vport_params *vport_params)
769 {
770 u32 other_mem_size_4kb;
771 u8 tc, i;
772
773 other_mem_size_4kb = QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
774
775 /* Clear first Tx PQ ID array for each VPORT */
776 for(i = 0; i < num_vports; i++)
777 for(tc = 0; tc < NUM_OF_TCS; tc++)
778 vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
779
780 /* Map Other PQs (if any) */
781 #if QM_OTHER_PQS_PER_PF > 0
782 ecore_other_pq_map_rt_init(p_hwfn, pf_id, is_pf_loading, num_pf_cids, num_tids, 0);
783 #endif
784
785 /* Map Tx PQs */
786 ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, port_id, pf_id, max_phys_tcs_per_port, is_pf_loading, num_pf_cids, num_vf_cids,
787 start_pq, num_pf_pqs, num_vf_pqs, start_vport, other_mem_size_4kb, pq_params, vport_params);
788
789 /* Init PF WFQ */
790 if (pf_wfq)
791 if (ecore_pf_wfq_rt_init(p_hwfn, port_id, pf_id, pf_wfq, max_phys_tcs_per_port, num_pf_pqs + num_vf_pqs, pq_params))
792 return -1;
793
794 /* Init PF RL */
795 if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl))
796 return -1;
797
798 /* Set VPORT WFQ */
799 if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params))
800 return -1;
801
802 /* Set VPORT RL */
803 if (ecore_vport_rl_rt_init(p_hwfn, start_vport, num_vports, link_speed, vport_params))
804 return -1;
805
806 return 0;
807 }
808
809 int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
810 struct ecore_ptt *p_ptt,
811 u8 pf_id,
812 u16 pf_wfq)
813 {
814 u32 inc_val;
815
816 inc_val = QM_WFQ_INC_VAL(pf_wfq);
817 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
818 DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
819 return -1;
820 }
821
822 ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
823
824 return 0;
825 }
826
827 int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
828 struct ecore_ptt *p_ptt,
829 u8 pf_id,
830 u32 pf_rl)
831 {
832 u32 inc_val;
833
834 inc_val = QM_RL_INC_VAL(pf_rl);
835 if (inc_val > QM_PF_RL_MAX_INC_VAL) {
836 DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
837 return -1;
838 }
839
840 ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
841 ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
842
843 return 0;
844 }
845
846 int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
847 struct ecore_ptt *p_ptt,
848 u16 first_tx_pq_id[NUM_OF_TCS],
849 u16 vport_wfq)
850 {
851 u16 vport_pq_id;
852 u32 inc_val;
853 u8 tc;
854
855 inc_val = QM_WFQ_INC_VAL(vport_wfq);
856 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
857 DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
858 return -1;
859 }
860
861 for (tc = 0; tc < NUM_OF_TCS; tc++) {
862 vport_pq_id = first_tx_pq_id[tc];
863 if (vport_pq_id != QM_INVALID_PQ_ID) {
864 ecore_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
865 }
866 }
867
868 return 0;
869 }
870
871 int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
872 struct ecore_ptt *p_ptt,
873 u8 vport_id,
874 u32 vport_rl,
875 u32 link_speed)
876 {
877 u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
878
879 if (vport_id >= max_qm_global_rls) {
880 DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
881 return -1;
882 }
883
884 inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
885 if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
886 DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
887 return -1;
888 }
889
890 ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
891 ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
892
893 return 0;
894 }
895
896 bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
897 struct ecore_ptt *p_ptt,
898 bool is_release_cmd,
899 bool is_tx_pq,
900 u16 start_pq,
901 u16 num_pqs)
902 {
903 u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = {0};
904 u32 pq_mask = 0, last_pq, pq_id;
905
906 last_pq = start_pq + num_pqs - 1;
907
908 /* Set command's PQ type */
909 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
910
911 /* Go over requested PQs */
912 for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
913 /* Set PQ bit in mask (stop command only) */
914 if (!is_release_cmd)
915 pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
916
917 /* If last PQ or end of PQ mask, write command */
918 if ((pq_id == last_pq) || (pq_id % QM_STOP_PQ_MASK_WIDTH == (QM_STOP_PQ_MASK_WIDTH - 1))) {
919 QM_CMD_SET_FIELD(cmd_arr, (u32)QM_STOP_CMD, PAUSE_MASK, pq_mask);
920 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID, pq_id / QM_STOP_PQ_MASK_WIDTH);
921 if (!ecore_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0], cmd_arr[1]))
922 return false;
923 pq_mask = 0;
924 }
925 }
926
927 return true;
928 }
929
930 #ifndef UNUSED_HSI_FUNC
931
932 /* NIG: ETS configuration constants */
933 #define NIG_TX_ETS_CLIENT_OFFSET 4
934 #define NIG_LB_ETS_CLIENT_OFFSET 1
935 #define NIG_ETS_MIN_WFQ_BYTES 1600
936
937 /* NIG: ETS constants */
938 #define NIG_ETS_UP_BOUND(weight,mtu) (2 * ((weight) > (mtu) ? (weight) : (mtu)))
939
940 /* NIG: RL constants */
941
942 /* Byte base type value */
943 #define NIG_RL_BASE_TYPE 1
944
945 /* Period in us */
946 #define NIG_RL_PERIOD 1
947
948 /* Period in 25MHz cycles */
949 #define NIG_RL_PERIOD_CLK_25M (25 * NIG_RL_PERIOD)
950
951 /* Rate in mbps */
952 #define NIG_RL_INC_VAL(rate) (((rate) * NIG_RL_PERIOD) / 8)
953
954 #define NIG_RL_MAX_VAL(inc_val,mtu) (2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
955
956 /* NIG: packet prioritry configuration constants */
957 #define NIG_PRIORITY_MAP_TC_BITS 4
958
959 void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
960 struct ecore_ptt *p_ptt,
961 struct init_ets_req* req,
962 bool is_lb)
963 {
964 u32 min_weight, tc_weight_base_addr, tc_weight_addr_diff;
965 u32 tc_bound_base_addr, tc_bound_addr_diff;
966 u8 sp_tc_map = 0, wfq_tc_map = 0;
967 u8 tc, num_tc, tc_client_offset;
968
969 num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
970 tc_client_offset = is_lb ? NIG_LB_ETS_CLIENT_OFFSET : NIG_TX_ETS_CLIENT_OFFSET;
971 min_weight = 0xffffffff;
972 tc_weight_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 : NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
973 tc_weight_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 - NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
974 NIG_REG_TX_ARB_CREDIT_WEIGHT_1 - NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
975 tc_bound_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 : NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
976 tc_bound_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
977 NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
978
979 for (tc = 0; tc < num_tc; tc++) {
980 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
981
982 /* Update SP map */
983 if (tc_req->use_sp)
984 sp_tc_map |= (1 << tc);
985
986 if (!tc_req->use_wfq)
987 continue;
988
989 /* Update WFQ map */
990 wfq_tc_map |= (1 << tc);
991
992 /* Find minimal weight */
993 if (tc_req->weight < min_weight)
994 min_weight = tc_req->weight;
995 }
996
997 /* Write SP map */
998 ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT : NIG_REG_TX_ARB_CLIENT_IS_STRICT, (sp_tc_map << tc_client_offset));
999
1000 /* Write WFQ map */
1001 ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ : NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ, (wfq_tc_map << tc_client_offset));
1002
1003 /* Write WFQ weights */
1004 for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
1005 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1006 u32 byte_weight;
1007
1008 if (!tc_req->use_wfq)
1009 continue;
1010
1011 /* Translate weight to bytes */
1012 byte_weight = (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
1013
1014 /* Write WFQ weight */
1015 ecore_wr(p_hwfn, p_ptt, tc_weight_base_addr + tc_weight_addr_diff * tc_client_offset, byte_weight);
1016
1017 /* Write WFQ upper bound */
1018 ecore_wr(p_hwfn, p_ptt, tc_bound_base_addr + tc_bound_addr_diff * tc_client_offset, NIG_ETS_UP_BOUND(byte_weight, req->mtu));
1019 }
1020 }
1021
1022 void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
1023 struct ecore_ptt *p_ptt,
1024 struct init_nig_lb_rl_req* req)
1025 {
1026 u32 ctrl, inc_val, reg_offset;
1027 u8 tc;
1028
1029 /* Disable global MAC+LB RL */
1030 ctrl = NIG_RL_BASE_TYPE << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
1031 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1032
1033 /* Configure and enable global MAC+LB RL */
1034 if (req->lb_mac_rate) {
1035 /* Configure */
1036 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
1037 inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
1038 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE, inc_val);
1039 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
1040
1041 /* Enable */
1042 ctrl |= 1 << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
1043 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1044 }
1045
1046 /* Disable global LB-only RL */
1047 ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
1048 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1049
1050 /* Configure and enable global LB-only RL */
1051 if (req->lb_rate) {
1052 /* Configure */
1053 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
1054 inc_val = NIG_RL_INC_VAL(req->lb_rate);
1055 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE, inc_val);
1056 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
1057
1058 /* Enable */
1059 ctrl |= 1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
1060 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1061 }
1062
1063 /* Per-TC RLs */
1064 for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS; tc++, reg_offset += 4) {
1065 /* Disable TC RL */
1066 ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
1067 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1068
1069 /* Configure and enable TC RL */
1070 if (!req->tc_rate[tc])
1071 continue;
1072
1073 /* Configure */
1074 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 + reg_offset, NIG_RL_PERIOD_CLK_25M);
1075 inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
1076 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 + reg_offset, inc_val);
1077 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 + reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
1078
1079 /* Enable */
1080 ctrl |= 1 << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
1081 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1082 }
1083 }
1084
1085 void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
1086 struct ecore_ptt *p_ptt,
1087 struct init_nig_pri_tc_map_req* req)
1088 {
1089 u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
1090 u32 pri_tc_mask = 0;
1091 u8 pri, tc;
1092
1093 for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
1094 if (!req->pri[pri].valid)
1095 continue;
1096
1097 pri_tc_mask |= (req->pri[pri].tc_id << (pri * NIG_PRIORITY_MAP_TC_BITS));
1098 tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
1099 }
1100
1101 /* Write priority -> TC mask */
1102 ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
1103
1104 /* Write TC -> priority mask */
1105 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
1106 ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4, tc_pri_mask[tc]);
1107 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4, tc_pri_mask[tc]);
1108 }
1109 }
1110
1111 #endif /* UNUSED_HSI_FUNC */
1112
1113 #ifndef UNUSED_HSI_FUNC
1114
1115 /* PRS: ETS configuration constants */
1116 #define PRS_ETS_MIN_WFQ_BYTES 1600
1117 #define PRS_ETS_UP_BOUND(weight,mtu) (2 * ((weight) > (mtu) ? (weight) : (mtu)))
1118
1119 void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
1120 struct ecore_ptt *p_ptt,
1121 struct init_ets_req* req)
1122 {
1123 u32 tc_weight_addr_diff, tc_bound_addr_diff, min_weight = 0xffffffff;
1124 u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
1125
1126 tc_weight_addr_diff = PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 - PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
1127 tc_bound_addr_diff = PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 - PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
1128
1129 for (tc = 0; tc < NUM_OF_TCS; tc++) {
1130 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1131
1132 /* Update SP map */
1133 if (tc_req->use_sp)
1134 sp_tc_map |= (1 << tc);
1135
1136 if (!tc_req->use_wfq)
1137 continue;
1138
1139 /* Update WFQ map */
1140 wfq_tc_map |= (1 << tc);
1141
1142 /* Find minimal weight */
1143 if (tc_req->weight < min_weight)
1144 min_weight = tc_req->weight;
1145 }
1146
1147 /* Write SP map */
1148 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
1149
1150 /* Write WFQ map */
1151 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ, wfq_tc_map);
1152
1153 /* Write WFQ weights */
1154 for (tc = 0; tc < NUM_OF_TCS; tc++) {
1155 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1156 u32 byte_weight;
1157
1158 if (!tc_req->use_wfq)
1159 continue;
1160
1161 /* Translate weight to bytes */
1162 byte_weight = (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
1163
1164 /* Write WFQ weight */
1165 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 + tc * tc_weight_addr_diff, byte_weight);
1166
1167 /* Write WFQ upper bound */
1168 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 + tc * tc_bound_addr_diff, PRS_ETS_UP_BOUND(byte_weight, req->mtu));
1169 }
1170 }
1171
1172 #endif /* UNUSED_HSI_FUNC */
1173 #ifndef UNUSED_HSI_FUNC
1174
1175 /* BRB: RAM configuration constants */
1176 #define BRB_TOTAL_RAM_BLOCKS_BB 4800
1177 #define BRB_TOTAL_RAM_BLOCKS_K2 5632
1178 #define BRB_BLOCK_SIZE 128
1179 #define BRB_MIN_BLOCKS_PER_TC 9
1180 #define BRB_HYST_BYTES 10240
1181 #define BRB_HYST_BLOCKS (BRB_HYST_BYTES / BRB_BLOCK_SIZE)
1182
1183 /* Temporary big RAM allocation - should be updated */
1184 void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
1185 struct ecore_ptt *p_ptt,
1186 struct init_brb_ram_req* req)
1187 {
1188 u32 tc_headroom_blocks, min_pkt_size_blocks, total_blocks;
1189 u32 active_port_blocks, reg_offset = 0;
1190 u8 port, active_ports = 0;
1191
1192 tc_headroom_blocks = (u32)DIV_ROUND_UP(req->headroom_per_tc, BRB_BLOCK_SIZE);
1193 min_pkt_size_blocks = (u32)DIV_ROUND_UP(req->min_pkt_size, BRB_BLOCK_SIZE);
1194 total_blocks = ECORE_IS_K2(p_hwfn->p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 : BRB_TOTAL_RAM_BLOCKS_BB;
1195
1196 /* Find number of active ports */
1197 for (port = 0; port < MAX_NUM_PORTS; port++)
1198 if (req->num_active_tcs[port])
1199 active_ports++;
1200
1201 active_port_blocks = (u32)(total_blocks / active_ports);
1202
1203 for (port = 0; port < req->max_ports_per_engine; port++) {
1204 u32 port_blocks, port_shared_blocks, port_guaranteed_blocks;
1205 u32 full_xoff_th, full_xon_th, pause_xoff_th, pause_xon_th;
1206 u32 tc_guaranteed_blocks;
1207 u8 tc;
1208
1209 /* Calculate per-port sizes */
1210 tc_guaranteed_blocks = (u32)DIV_ROUND_UP(req->guranteed_per_tc, BRB_BLOCK_SIZE);
1211 port_blocks = req->num_active_tcs[port] ? active_port_blocks : 0;
1212 port_guaranteed_blocks = req->num_active_tcs[port] * tc_guaranteed_blocks;
1213 port_shared_blocks = port_blocks - port_guaranteed_blocks;
1214 full_xoff_th = req->num_active_tcs[port] * BRB_MIN_BLOCKS_PER_TC;
1215 full_xon_th = full_xoff_th + min_pkt_size_blocks;
1216 pause_xoff_th = tc_headroom_blocks;
1217 pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
1218
1219 /* Init total size per port */
1220 ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4, port_blocks);
1221
1222 /* Init shared size per port */
1223 ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4, port_shared_blocks);
1224
1225 for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
1226 /* Clear init values for non-active TCs */
1227 if (tc == req->num_active_tcs[port]) {
1228 tc_guaranteed_blocks = 0;
1229 full_xoff_th = 0;
1230 full_xon_th = 0;
1231 pause_xoff_th = 0;
1232 pause_xon_th = 0;
1233 }
1234
1235 /* Init guaranteed size per TC */
1236 ecore_wr(p_hwfn, p_ptt, BRB_REG_TC_GUARANTIED_0 + reg_offset, tc_guaranteed_blocks);
1237 ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset, BRB_HYST_BLOCKS);
1238
1239 /* Init pause/full thresholds per physical TC - for
1240 * loopback traffic.
1241 */
1242 ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
1243 ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
1244 ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
1245 ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
1246
1247 /* Init pause/full thresholds per physical TC - for
1248 * main traffic.
1249 */
1250 ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
1251 ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
1252 ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
1253 ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
1254 }
1255 }
1256 }
1257
1258 #endif /* UNUSED_HSI_FUNC */
1259 #ifndef UNUSED_HSI_FUNC
1260
1261 /* In MF, should be called once per port to set EtherType of OuterTag */
1262 void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn, u32 ethType)
1263 {
1264 /* Update DORQ register */
1265 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
1266 }
1267
1268 #endif /* UNUSED_HSI_FUNC */
1269
1270 #define SET_TUNNEL_TYPE_ENABLE_BIT(var,offset,enable) var = ((var) & ~(1 << (offset))) | ( (enable) ? (1 << (offset)) : 0)
1271 #define PRS_ETH_TUNN_OUTPUT_FORMAT -188897008
1272 #define PRS_ETH_OUTPUT_FORMAT -46832
1273
1274 void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
1275 struct ecore_ptt *p_ptt,
1276 u16 dest_port)
1277 {
1278 /* Update PRS register */
1279 ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1280
1281 /* Update NIG register */
1282 ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1283
1284 /* Update PBF register */
1285 ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1286 }
1287
1288 void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
1289 struct ecore_ptt *p_ptt,
1290 bool vxlan_enable)
1291 {
1292 u32 reg_val;
1293
1294 /* Update PRS register */
1295 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1296 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT, vxlan_enable);
1297 ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1298 if (reg_val) /* TODO: handle E5 init */
1299 {
1300 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1301
1302 /* Update output only if tunnel blocks not included. */
1303 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1304 {
1305 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1306 }
1307 }
1308
1309 /* Update NIG register */
1310 reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1311 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT, vxlan_enable);
1312 ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1313
1314 /* Update DORQ register */
1315 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1316 }
1317
1318 void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
1319 struct ecore_ptt *p_ptt,
1320 bool eth_gre_enable,
1321 bool ip_gre_enable)
1322 {
1323 u32 reg_val;
1324
1325 /* Update PRS register */
1326 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1327 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
1328 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT, ip_gre_enable);
1329 ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1330 if (reg_val) /* TODO: handle E5 init */
1331 {
1332 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1333
1334 /* Update output only if tunnel blocks not included. */
1335 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1336 {
1337 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1338 }
1339 }
1340
1341 /* Update NIG register */
1342 reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1343 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
1344 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT, ip_gre_enable);
1345 ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1346
1347 /* Update DORQ registers */
1348 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1349 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1350 }
1351
1352 void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
1353 struct ecore_ptt *p_ptt,
1354 u16 dest_port)
1355
1356 {
1357 /* Update PRS register */
1358 ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1359
1360 /* Update NIG register */
1361 ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1362
1363 /* Update PBF register */
1364 ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1365 }
1366
1367 void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
1368 struct ecore_ptt *p_ptt,
1369 bool eth_geneve_enable,
1370 bool ip_geneve_enable)
1371 {
1372 u32 reg_val;
1373
1374 /* Update PRS register */
1375 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1376 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT, eth_geneve_enable);
1377 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT, ip_geneve_enable);
1378 ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1379 if (reg_val) /* TODO: handle E5 init */
1380 {
1381 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1382
1383 /* Update output only if tunnel blocks not included. */
1384 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1385 {
1386 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1387 }
1388 }
1389
1390 /* Update NIG register */
1391 ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, eth_geneve_enable ? 1 : 0);
1392 ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1393
1394 /* EDPM with geneve tunnel not supported in BB */
1395 if (ECORE_IS_BB_B0(p_hwfn->p_dev))
1396 return;
1397
1398 /* Update DORQ registers */
1399 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, eth_geneve_enable ? 1 : 0);
1400 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, ip_geneve_enable ? 1 : 0);
1401 }
1402
1403 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 4
1404 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -927094512
1405
1406 void ecore_set_vxlan_no_l2_enable(struct ecore_hwfn *p_hwfn,
1407 struct ecore_ptt *p_ptt,
1408 bool enable)
1409 {
1410 u32 reg_val, cfg_mask;
1411
1412 /* read PRS config register */
1413 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1414
1415 /* set VXLAN_NO_L2_ENABLE mask */
1416 cfg_mask = (1 << PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1417
1418 if (enable)
1419 {
1420 /* set VXLAN_NO_L2_ENABLE flag */
1421 reg_val |= cfg_mask;
1422
1423 /* update PRS FIC register */
1424 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1425 }
1426 else
1427 {
1428 /* clear VXLAN_NO_L2_ENABLE flag */
1429 reg_val &= ~cfg_mask;
1430 }
1431
1432 /* write PRS config register */
1433 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1434 }
1435
1436 #ifndef UNUSED_HSI_FUNC
1437
1438 #define T_ETH_PACKET_ACTION_GFT_EVENTID 23
1439 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
1440 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1441 #define PARSER_ETH_CONN_CM_HDR 0
1442 #define CAM_LINE_SIZE sizeof(u32)
1443 #define RAM_LINE_SIZE sizeof(u64)
1444 #define REG_SIZE sizeof(u32)
1445
1446 void ecore_gft_disable(struct ecore_hwfn *p_hwfn,
1447 struct ecore_ptt *p_ptt,
1448 u16 pf_id)
1449 {
1450 /* disable gft search for PF */
1451 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1452
1453 /* Clean ram & cam for next gft session*/
1454
1455 /* Zero camline */
1456 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, 0);
1457
1458 /* Zero ramline */
1459 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, 0);
1460 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, 0);
1461 }
1462
1463 void ecore_set_gft_event_id_cm_hdr (struct ecore_hwfn *p_hwfn,
1464 struct ecore_ptt *p_ptt)
1465 {
1466 u32 rfs_cm_hdr_event_id;
1467
1468 /* Set RFS event ID to be awakened i Tstorm By Prs */
1469 rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1470 rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1471 rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1472 ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1473 }
1474
1475 void ecore_gft_config(struct ecore_hwfn *p_hwfn,
1476 struct ecore_ptt *p_ptt,
1477 u16 pf_id,
1478 bool tcp,
1479 bool udp,
1480 bool ipv4,
1481 bool ipv6,
1482 enum gft_profile_type profile_type)
1483 {
1484 u32 reg_val, cam_line, ram_line_lo, ram_line_hi;
1485
1486 if (!ipv6 && !ipv4)
1487 DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1488 if (!tcp && !udp)
1489 DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - udp or tcp\n");
1490 if (profile_type >= MAX_GFT_PROFILE_TYPE)
1491 DP_NOTICE(p_hwfn, true, "gft_config: unsupported gft_profile_type\n");
1492
1493 /* Set RFS event ID to be awakened i Tstorm By Prs */
1494 reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1495 reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1496 ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1497
1498 /* Do not load context only cid in PRS on match. */
1499 ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1500
1501 /* Do not use tenant ID exist bit for gft search*/
1502 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1503
1504 /* Set Cam */
1505 cam_line = 0;
1506 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1507
1508 /* Filters are per PF!! */
1509 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID_MASK, GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1510 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1511
1512 if (!(tcp && udp)) {
1513 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1514 if (tcp)
1515 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_TCP_PROTOCOL);
1516 else
1517 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_UDP_PROTOCOL);
1518 }
1519
1520 if (!(ipv4 && ipv6)) {
1521 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1522 if (ipv4)
1523 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV4);
1524 else
1525 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV6);
1526 }
1527
1528 /* Write characteristics to cam */
1529 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, cam_line);
1530 cam_line = ecore_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id);
1531
1532 /* Write line to RAM - compare to filter 4 tuple */
1533 ram_line_lo = 0;
1534 ram_line_hi = 0;
1535
1536 /* Tunnel type */
1537 SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1538 SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1539
1540 if (profile_type == GFT_PROFILE_TYPE_4_TUPLE)
1541 {
1542 SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1543 SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1544 SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1545 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1546 SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
1547 SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1548 }
1549 else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT)
1550 {
1551 SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1552 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1553 SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1554 }
1555 else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR)
1556 {
1557 SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1558 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1559 }
1560 else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR)
1561 {
1562 SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1563 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1564 }
1565 else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE)
1566 {
1567 SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1568 }
1569
1570 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, ram_line_lo);
1571 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, ram_line_hi);
1572
1573 /* Set default profile so that no filter match will happen */
1574 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
1575 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
1576
1577 /* Enable gft search */
1578 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1579 }
1580
1581 #endif /* UNUSED_HSI_FUNC */
1582
1583 /* Configure VF zone size mode*/
1584 void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u16 mode, bool runtime_init)
1585 {
1586 u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
1587 u32 msdm_vf_offset_mask;
1588
1589 if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
1590 msdm_vf_size_log += 1;
1591 else if (mode == VF_ZONE_SIZE_MODE_QUAD)
1592 msdm_vf_size_log += 2;
1593
1594 msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
1595
1596 if (runtime_init) {
1597 STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET, msdm_vf_size_log);
1598 STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET, msdm_vf_offset_mask);
1599 }
1600 else {
1601 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
1602 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
1603 }
1604 }
1605
1606 /* Get mstorm statistics for offset by VF zone size mode */
1607 u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn, u16 stat_cnt_id, u16 vf_zone_size_mode)
1608 {
1609 u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
1610
1611 if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) && (stat_cnt_id > MAX_NUM_PFS)) {
1612 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1613 offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
1614 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1615 offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
1616 }
1617
1618 return offset;
1619 }
1620
1621 /* Get mstorm VF producer offset by VF zone size mode */
1622 u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn, u8 vf_id, u8 vf_queue_id, u16 vf_zone_size_mode)
1623 {
1624 u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
1625
1626 if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
1627 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1628 offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
1629 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1630 offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
1631 }
1632
1633 return offset;
1634 }
1635
1636 #ifndef LINUX_REMOVE
1637 #define CRC8_INIT_VALUE 0xFF
1638 #endif
1639 static u8 cdu_crc8_table[CRC8_TABLE_SIZE];
1640
1641 /* Calculate and return CDU validation byte per connection type/region/cid */
1642 static u8 ecore_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1643 {
1644 const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1645
1646 static u8 crc8_table_valid; /*automatically initialized to 0*/
1647 u8 crc, validation_byte = 0;
1648 u32 validation_string = 0;
1649 u32 data_to_crc;
1650
1651 if (crc8_table_valid == 0) {
1652 OSAL_CRC8_POPULATE(cdu_crc8_table, 0x07);
1653 crc8_table_valid = 1;
1654 }
1655
1656 /* The CRC is calculated on the String-to-compress:
1657 * [31:8] = {CID[31:20],CID[11:0]}
1658 * [7:4] = Region
1659 * [3:0] = Type
1660 */
1661 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1662 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1663
1664 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1665 validation_string |= ((region & 0xF) << 4);
1666
1667 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1668 validation_string |= (conn_type & 0xF);
1669
1670 /* Convert to big-endian and calculate CRC8*/
1671 data_to_crc = OSAL_BE32_TO_CPU(validation_string);
1672
1673 crc = OSAL_CRC8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
1674
1675 /* The validation byte [7:0] is composed:
1676 * for type A validation
1677 * [7] = active configuration bit
1678 * [6:0] = crc[6:0]
1679 *
1680 * for type B validation
1681 * [7] = active configuration bit
1682 * [6:3] = connection_type[3:0]
1683 * [2:0] = crc[2:0]
1684 */
1685 validation_byte |= ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1686
1687 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1688 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1689 else
1690 validation_byte |= crc & 0x7F;
1691
1692 return validation_byte;
1693 }
1694
1695 /* Calcualte and set validation bytes for session context */
1696 void ecore_calc_session_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 cid)
1697 {
1698 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1699
1700 p_ctx = (u8* const)p_ctx_mem;
1701 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1702 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1703 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1704
1705 OSAL_MEMSET(p_ctx, 0, ctx_size);
1706
1707 *x_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 3, cid);
1708 *t_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 4, cid);
1709 *u_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 5, cid);
1710 }
1711
1712 /* Calcualte and set validation bytes for task context */
1713 void ecore_calc_task_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 tid)
1714 {
1715 u8 *p_ctx, *region1_val_ptr;
1716
1717 p_ctx = (u8* const)p_ctx_mem;
1718 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1719
1720 OSAL_MEMSET(p_ctx, 0, ctx_size);
1721
1722 *region1_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 1, tid);
1723 }
1724
1725 /* Memset session context to 0 while preserving validation bytes */
1726 void ecore_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1727 {
1728 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1729 u8 x_val, t_val, u_val;
1730
1731 p_ctx = (u8* const)p_ctx_mem;
1732 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1733 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1734 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1735
1736 x_val = *x_val_ptr;
1737 t_val = *t_val_ptr;
1738 u_val = *u_val_ptr;
1739
1740 OSAL_MEMSET(p_ctx, 0, ctx_size);
1741
1742 *x_val_ptr = x_val;
1743 *t_val_ptr = t_val;
1744 *u_val_ptr = u_val;
1745 }
1746
1747 /* Memset task context to 0 while preserving validation bytes */
1748 void ecore_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1749 {
1750 u8 *p_ctx, *region1_val_ptr;
1751 u8 region1_val;
1752
1753 p_ctx = (u8* const)p_ctx_mem;
1754 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1755
1756 region1_val = *region1_val_ptr;
1757
1758 OSAL_MEMSET(p_ctx, 0, ctx_size);
1759
1760 *region1_val_ptr = region1_val;
1761 }
1762
1763 /* Enable and configure context validation */
1764 void ecore_enable_context_validation(struct ecore_hwfn * p_hwfn, struct ecore_ptt *p_ptt)
1765 {
1766 u32 ctx_validation;
1767
1768 /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1769 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1770 ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1771
1772 /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1773 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1774 ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1775
1776 /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1777 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1778 ecore_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1779 }
1780
1781 #define RSS_IND_TABLE_BASE_ADDR 4112
1782 #define RSS_IND_TABLE_VPORT_SIZE 16
1783 #define RSS_IND_TABLE_ENTRY_PER_LINE 8
1784
1785 /* Update RSS indirection table entry. */
1786 void ecore_update_eth_rss_ind_table_entry(struct ecore_hwfn * p_hwfn,
1787 struct ecore_ptt *p_ptt,
1788 u8 rss_id,
1789 u8 ind_table_index,
1790 u16 ind_table_value)
1791 {
1792 u32 cnt, rss_addr;
1793 u32 * reg_val;
1794 u16 rss_ind_entry[RSS_IND_TABLE_ENTRY_PER_LINE];
1795 u16 rss_ind_mask [RSS_IND_TABLE_ENTRY_PER_LINE];
1796
1797 /* get entry address */
1798 rss_addr = RSS_IND_TABLE_BASE_ADDR +
1799 RSS_IND_TABLE_VPORT_SIZE * rss_id +
1800 ind_table_index/RSS_IND_TABLE_ENTRY_PER_LINE;
1801
1802 /* prepare update command */
1803 ind_table_index %= RSS_IND_TABLE_ENTRY_PER_LINE;
1804
1805 for (cnt = 0; cnt < RSS_IND_TABLE_ENTRY_PER_LINE; cnt ++)
1806 {
1807 if (cnt == ind_table_index)
1808 {
1809 rss_ind_entry[cnt] = ind_table_value;
1810 rss_ind_mask[cnt] = 0xFFFF;
1811 }
1812 else
1813 {
1814 rss_ind_entry[cnt] = 0;
1815 rss_ind_mask[cnt] = 0;
1816 }
1817 }
1818
1819 /* Update entry in HW*/
1820 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_ADDR, rss_addr);
1821
1822 reg_val = (u32*)rss_ind_mask;
1823 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK, reg_val[0]);
1824 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 4, reg_val[1]);
1825 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 8, reg_val[2]);
1826 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 12, reg_val[3]);
1827
1828 reg_val = (u32*)rss_ind_entry;
1829 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA, reg_val[0]);
1830 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 4, reg_val[1]);
1831 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 8, reg_val[2]);
1832 ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 12, reg_val[3]);
1833 }
Cache object: 26599f4fef02ffb81aea041778298a57
|