The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/qlnx/qlnxe/ecore_init_fw_funcs.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2017-2018 Cavium, Inc. 
    3  * All rights reserved.
    4  *
    5  *  Redistribution and use in source and binary forms, with or without
    6  *  modification, are permitted provided that the following conditions
    7  *  are met:
    8  *
    9  *  1. Redistributions of source code must retain the above copyright
   10  *     notice, this list of conditions and the following disclaimer.
   11  *  2. Redistributions in binary form must reproduce the above copyright
   12  *     notice, this list of conditions and the following disclaimer in the
   13  *     documentation and/or other materials provided with the distribution.
   14  *
   15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
   19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   25  *  POSSIBILITY OF SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * File : ecore_init_fw_funcs.c
   30  */
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include "bcm_osal.h"
   35 #include "ecore_hw.h"
   36 #include "ecore_init_ops.h"
   37 #include "reg_addr.h"
   38 #include "ecore_rt_defs.h"
   39 #include "ecore_hsi_common.h"
   40 #include "ecore_hsi_init_func.h"
   41 #include "ecore_hsi_eth.h"
   42 #include "ecore_hsi_init_tool.h"
   43 #include "ecore_iro.h"
   44 #include "ecore_init_fw_funcs.h"
   45 
   46 #define CDU_VALIDATION_DEFAULT_CFG 61
   47 
   48 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
   49         { 400,  336,  352,  304,  304,  384,  416,  352}, /* region 3 offsets */
   50         { 528,  496,  416,  448,  448,  512,  544,  480}, /* region 4 offsets */
   51         { 608,  544,  496,  512,  576,  592,  624,  560}  /* region 5 offsets */
   52 };
   53 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
   54         { 240,  240,  112,    0,    0,    0,    0,   96}  /* region 1 offsets */
   55 };
   56 
   57 /* General constants */
   58 #define QM_PQ_MEM_4KB(pq_size)                  (pq_size ? DIV_ROUND_UP((pq_size + 1) * QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
   59 #define QM_PQ_SIZE_256B(pq_size)                (pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : 0)
   60 #define QM_INVALID_PQ_ID                0xffff
   61 
   62 /* Feature enable */
   63 #define QM_BYPASS_EN                    1
   64 #define QM_BYTE_CRD_EN                  1
   65 
   66 /* Other PQ constants */
   67 #define QM_OTHER_PQS_PER_PF             4
   68 
   69 /* VOQ constants */
   70 #define QM_E5_NUM_EXT_VOQ               (MAX_NUM_PORTS_E5 * NUM_OF_TCS)
   71 
   72 /* WFQ constants: */
   73 
   74 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
   75 #define QM_WFQ_UPPER_BOUND              62500000 
   76 
   77 /* Bit  of VOQ in WFQ VP PQ map */
   78 #define QM_WFQ_VP_PQ_VOQ_SHIFT          0
   79 
   80 /* Bit  of PF in WFQ VP PQ map */
   81 #define QM_WFQ_VP_PQ_PF_E4_SHIFT        5
   82 #define QM_WFQ_VP_PQ_PF_E5_SHIFT        6
   83 
   84 /* 0x9000 = 4*9*1024 */
   85 #define QM_WFQ_INC_VAL(weight)          ((weight) * 0x9000) 
   86 
   87 /* Max WFQ increment value is 0.7 * upper bound */
   88 #define QM_WFQ_MAX_INC_VAL              ((QM_WFQ_UPPER_BOUND * 7) / 10)
   89 
   90 /* Number of VOQs in E5 QmWfqCrd register */
   91 #define QM_WFQ_CRD_E5_NUM_VOQS          16
   92 
   93 /* RL constants: */
   94 
   95 /* Period in us */
   96 #define QM_RL_PERIOD                    5
   97 
   98 /* Period in 25MHz cycles */
   99 #define QM_RL_PERIOD_CLK_25M            (25 * QM_RL_PERIOD) 
  100 
  101 /* RL increment value - rate is specified in mbps. the factor of 1.01 was
  102 * added after seeing only 99% factor reached in a 25Gbps port with DPDK RFC
  103 * 2544 test. In this scenario the PF RL was reducing the line rate to 99%
  104 * although the credit increment value was the correct one and FW calculated
  105 * correct packet sizes. The reason for the inaccuracy of the RL is unknown at
  106 * this point.
  107 */
  108 #define QM_RL_INC_VAL(rate)                     OSAL_MAX_T(u32, (u32)(((rate ? rate : 100000) * QM_RL_PERIOD * 101)     / (8 * 100)), 1)
  109 
  110 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
  111 #define QM_PF_RL_UPPER_BOUND            62500000
  112 
  113 /* Max PF RL increment value is 0.7 * upper bound */
  114 #define QM_PF_RL_MAX_INC_VAL            ((QM_PF_RL_UPPER_BOUND * 7) / 10)
  115 
  116 /* Vport RL Upper bound, link speed is in Mpbs */
  117 #define QM_VP_RL_UPPER_BOUND(speed)             ((u32)OSAL_MAX_T(u32, QM_RL_INC_VAL(speed), 9700 + 1000))
  118 
  119 /* Max Vport RL increment value is the Vport RL upper bound */
  120 #define QM_VP_RL_MAX_INC_VAL(speed)     QM_VP_RL_UPPER_BOUND(speed)
  121 
  122 /* Vport RL credit threshold in case of QM bypass */
  123 #define QM_VP_RL_BYPASS_THRESH_SPEED    (QM_VP_RL_UPPER_BOUND(10000) - 1)
  124 
  125 /* AFullOprtnstcCrdMask constants */
  126 #define QM_OPPOR_LINE_VOQ_DEF           1
  127 #define QM_OPPOR_FW_STOP_DEF            0
  128 #define QM_OPPOR_PQ_EMPTY_DEF           1
  129 
  130 /* Command Queue constants: */
  131 
  132 /* Pure LB CmdQ lines (+spare) */
  133 #define PBF_CMDQ_PURE_LB_LINES          150
  134 
  135 #define PBF_CMDQ_LINES_E5_RSVD_RATIO    8
  136 
  137 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq)               (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + ext_voq     * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET     - PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
  138 
  139 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq)   (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + ext_voq        * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET        - PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
  140 
  141 #define QM_VOQ_LINE_CRD(pbf_cmd_lines)          ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
  142 
  143 /* BTB: blocks constants (block size = 256B) */
  144 
  145 /* 256B blocks in 9700B packet */
  146 #define BTB_JUMBO_PKT_BLOCKS            38
  147 
  148 /* Headroom per-port */
  149 #define BTB_HEADROOM_BLOCKS             BTB_JUMBO_PKT_BLOCKS
  150 #define BTB_PURE_LB_FACTOR              10
  151 
  152 /* Factored (hence really 0.7) */
  153 #define BTB_PURE_LB_RATIO               7
  154 
  155 /* QM stop command constants */
  156 #define QM_STOP_PQ_MASK_WIDTH           32
  157 #define QM_STOP_CMD_ADDR                2
  158 #define QM_STOP_CMD_STRUCT_SIZE         2
  159 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
  160 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
  161 #define QM_STOP_CMD_PAUSE_MASK_MASK     -1
  162 #define QM_STOP_CMD_GROUP_ID_OFFSET     1
  163 #define QM_STOP_CMD_GROUP_ID_SHIFT      16
  164 #define QM_STOP_CMD_GROUP_ID_MASK       15
  165 #define QM_STOP_CMD_PQ_TYPE_OFFSET      1
  166 #define QM_STOP_CMD_PQ_TYPE_SHIFT       24
  167 #define QM_STOP_CMD_PQ_TYPE_MASK        1
  168 #define QM_STOP_CMD_MAX_POLL_COUNT      100
  169 #define QM_STOP_CMD_POLL_PERIOD_US      500
  170 
  171 /* QM command macros */
  172 #define QM_CMD_STRUCT_SIZE(cmd)           cmd##_STRUCT_SIZE
  173 #define QM_CMD_SET_FIELD(var, cmd, field, value)        SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
  174 
  175 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, ext_voq, wrr)    OSAL_MEMSET(&map, 0, sizeof(map));      SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1);  SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_VALID, rl_valid);   SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, vp_pq_id);   SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_ID, rl_id);         SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VOQ, ext_voq);         SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, wrr);        STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id, *((u32 *)&map))
  176 
  177 #define WRITE_PQ_INFO_TO_RAM                                                    1
  178 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | ((rl_valid) << 22) | ((rl) << 24))
  179 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id)                                  XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4
  180 
  181 /******************** INTERNAL IMPLEMENTATION *********************/
  182 
  183 /* Returns the external VOQ number */
  184 static u8 ecore_get_ext_voq(struct ecore_hwfn *p_hwfn,
  185                                                         u8 port_id,
  186                                                         u8 tc,
  187                                                         u8 max_phys_tcs_per_port)
  188 {
  189         if (tc == PURE_LB_TC)
  190                 return NUM_OF_PHYS_TCS * (ECORE_IS_E5(p_hwfn->p_dev) ? MAX_NUM_PORTS_E5 : MAX_NUM_PORTS_BB) + port_id;
  191         else
  192                 return port_id * (ECORE_IS_E5(p_hwfn->p_dev) ? NUM_OF_PHYS_TCS : max_phys_tcs_per_port) + tc;
  193 }
  194 
  195 /* Prepare PF RL enable/disable runtime init values */
  196 static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn,
  197                                                            bool pf_rl_en)
  198 {
  199         STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
  200         if (pf_rl_en) {
  201                 u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
  202                 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
  203 
  204                 /* Enable RLs for all VOQs */
  205                 STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET, (u32)voq_bit_mask);
  206 #ifdef QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET
  207                 if (num_ext_voqs >= 32)
  208                         STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET, (u32)(voq_bit_mask >> 32));
  209 #endif
  210 
  211                 /* Write RL period */
  212                 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
  213                 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
  214 
  215                 /* Set credit threshold for QM bypass flow */
  216                 if (QM_BYPASS_EN)
  217                         STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, QM_PF_RL_UPPER_BOUND);
  218         }
  219 }
  220 
  221 /* Prepare PF WFQ enable/disable runtime init values */
  222 static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn,
  223                                                                 bool pf_wfq_en)
  224 {
  225         STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
  226 
  227         /* Set credit threshold for QM bypass flow */
  228         if (pf_wfq_en && QM_BYPASS_EN)
  229                 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
  230 }
  231 
  232 /* Prepare VPORT RL enable/disable runtime init values */
  233 static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn,
  234                                                                   bool vport_rl_en)
  235 {
  236         STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, vport_rl_en ? 1 : 0);
  237         if (vport_rl_en) {
  238                 /* Write RL period (use timer 0 only) */
  239                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
  240                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
  241 
  242                 /* Set credit threshold for QM bypass flow */
  243                 if (QM_BYPASS_EN)
  244                         STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, QM_VP_RL_BYPASS_THRESH_SPEED);
  245         }
  246 }
  247 
  248 /* Prepare VPORT WFQ enable/disable runtime init values */
  249 static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn,
  250                                                                    bool vport_wfq_en)
  251 {
  252         STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, vport_wfq_en ? 1 : 0);
  253 
  254         /* Set credit threshold for QM bypass flow */
  255         if (vport_wfq_en && QM_BYPASS_EN)
  256                 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
  257 }
  258 
  259 /* Prepare runtime init values to allocate PBF command queue lines for
  260  * the specified VOQ.
  261  */
  262 static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
  263                                                                                  u8 ext_voq,
  264                                                                                  u16 cmdq_lines)
  265 {
  266         u32 qm_line_crd;        
  267                 
  268         qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
  269 
  270         OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), (u32)cmdq_lines);
  271         STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
  272         STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
  273 }
  274 
  275 /* Prepare runtime init values to allocate PBF command queue lines. */
  276 static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
  277                                                                          u8 max_ports_per_engine,
  278                                                                          u8 max_phys_tcs_per_port,
  279                                                                          struct init_qm_port_params port_params[MAX_NUM_PORTS])
  280 {
  281         u8 tc, ext_voq, port_id, num_tcs_in_port;
  282         u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
  283 
  284         /* Clear PBF lines of all VOQs */
  285         for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
  286                 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
  287 
  288         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
  289                 u16 phys_lines, phys_lines_per_tc;
  290 
  291                 if (!port_params[port_id].active)
  292                         continue;
  293 
  294                 /* Find number of command queue lines to divide between the
  295                  * active physical TCs. In E5, 1/8 of the lines are reserved.
  296                  * the lines for pure LB TC are subtracted.
  297                  */
  298                 phys_lines = port_params[port_id].num_pbf_cmd_lines;
  299                 if (ECORE_IS_E5(p_hwfn->p_dev))
  300                         phys_lines -= DIV_ROUND_UP(phys_lines, PBF_CMDQ_LINES_E5_RSVD_RATIO);
  301                 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
  302 
  303                 /* Find #lines per active physical TC */
  304                 num_tcs_in_port = 0;
  305                 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
  306                         if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
  307                                 num_tcs_in_port++;
  308                 phys_lines_per_tc = phys_lines / num_tcs_in_port;
  309 
  310                 /* Init registers per active TC */
  311                 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
  312                         ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
  313                         if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
  314                                 ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, phys_lines_per_tc);
  315                 }
  316 
  317                 /* Init registers for pure LB TC */
  318                 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
  319                 ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, PBF_CMDQ_PURE_LB_LINES);
  320         }
  321 }
  322 
  323 /* Prepare runtime init values to allocate guaranteed BTB blocks for the
  324  * specified port. The guaranteed BTB space is divided between the TCs as
  325  * follows (shared space Is currently not used):
  326  * 1. Parameters:
  327  *    B - BTB blocks for this port
  328  *    C - Number of physical TCs for this port
  329  * 2. Calculation:
  330  *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
  331  *       headroom.
  332  *    b. B = B - 38 (remainder after global headroom allocation).
  333  *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
  334  *    d. B = B – MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
  335  *    e. B/C blocks are allocated for each physical TC.
  336  * Assumptions:
  337  * - MTU is up to 9700 bytes (38 blocks)
  338  * - All TCs are considered symmetrical (same rate and packet size)
  339  * - No optimization for lossy TC (all are considered lossless). Shared space
  340  *   is not enabled and allocated for each TC.
  341  */
  342 static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
  343                                                                          u8 max_ports_per_engine,
  344                                                                          u8 max_phys_tcs_per_port,
  345                                                                          struct init_qm_port_params port_params[MAX_NUM_PORTS])
  346 {
  347         u32 usable_blocks, pure_lb_blocks, phys_blocks;
  348         u8 tc, ext_voq, port_id, num_tcs_in_port;
  349 
  350         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
  351                 if (!port_params[port_id].active)
  352                         continue;
  353 
  354                 /* Subtract headroom blocks */
  355                 usable_blocks = port_params[port_id].num_btb_blocks - BTB_HEADROOM_BLOCKS;
  356 
  357                 /* Find blocks per physical TC. use factor to avoid floating
  358                  * arithmethic.
  359                  */
  360                 num_tcs_in_port = 0;
  361                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
  362                         if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
  363                                 num_tcs_in_port++;
  364 
  365                 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / (num_tcs_in_port * BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO);
  366                 pure_lb_blocks = OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS, pure_lb_blocks / BTB_PURE_LB_FACTOR);
  367                 phys_blocks = (usable_blocks - pure_lb_blocks) / num_tcs_in_port;
  368 
  369                 /* Init physical TCs */
  370                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  371                         if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) {
  372                                 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
  373                                 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), phys_blocks);
  374                         }
  375                 }
  376 
  377                 /* Init pure LB TC */
  378                 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
  379                 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), pure_lb_blocks);
  380         }
  381 }
  382 
  383 /* Prepare Tx PQ mapping runtime init values for the specified PF */
  384 static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
  385                                                                         struct ecore_ptt *p_ptt,
  386                                                                         u8 port_id,
  387                                                                         u8 pf_id,
  388                                                                         u8 max_phys_tcs_per_port,
  389                                                                         bool is_pf_loading,
  390                                                                         u32 num_pf_cids,
  391                                                                         u32 num_vf_cids,
  392                                                                         u16 start_pq,
  393                                                                         u16 num_pf_pqs,
  394                                                                         u16 num_vf_pqs,
  395                                                                         u8 start_vport,
  396                                                                         u32 base_mem_addr_4kb,
  397                                                                         struct init_qm_pq_params *pq_params,
  398                                                                         struct init_qm_vport_params *vport_params)
  399 {
  400         /* A bit per Tx PQ indicating if the PQ is associated with a VF */
  401         u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
  402         u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
  403         u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
  404         u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
  405 
  406         num_pqs = num_pf_pqs + num_vf_pqs;
  407 
  408         first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
  409         last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
  410 
  411         pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
  412         vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
  413         mem_addr_4kb = base_mem_addr_4kb;
  414 
  415         /* Set mapping from PQ group to PF */
  416         for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
  417                 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
  418 
  419         /* Set PQ sizes */
  420         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, QM_PQ_SIZE_256B(num_pf_cids));
  421         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, QM_PQ_SIZE_256B(num_vf_cids));
  422 
  423         /* Go over all Tx PQs */
  424         for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
  425                 u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
  426                 u8 ext_voq, vport_id_in_pf;
  427                 bool is_vf_pq, rl_valid;
  428                 u16 first_tx_pq_id;
  429 
  430                 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
  431                 is_vf_pq = (i >= num_pf_pqs);
  432                 rl_valid = pq_params[i].rl_valid && pq_params[i].vport_id < max_qm_global_rls;
  433 
  434                 /* Update first Tx PQ of VPORT/TC */
  435                 vport_id_in_pf = pq_params[i].vport_id - start_vport;
  436                 first_tx_pq_id = vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id];
  437                 if (first_tx_pq_id == QM_INVALID_PQ_ID) {
  438                         u32 map_val = (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (pf_id << (ECORE_IS_E5(p_hwfn->p_dev) ? QM_WFQ_VP_PQ_PF_E5_SHIFT : QM_WFQ_VP_PQ_PF_E4_SHIFT));
  439 
  440                         /* Create new VP PQ */
  441                         vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id] = pq_id;
  442                         first_tx_pq_id = pq_id;
  443 
  444                         /* Map VP PQ to VOQ and PF */
  445                         STORE_RT_REG(p_hwfn, QM_REG_WFQVPMAP_RT_OFFSET + first_tx_pq_id, map_val);
  446                 }
  447 
  448                 /* Check RL ID */
  449                 if (pq_params[i].rl_valid && pq_params[i].vport_id >= max_qm_global_rls)
  450                         DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
  451 
  452                 /* Prepare PQ map entry */
  453                 if (ECORE_IS_E5(p_hwfn->p_dev)) {
  454                         struct qm_rf_pq_map_e5 tx_pq_map;
  455                         QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E5, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
  456                 }
  457                 else {
  458                         struct qm_rf_pq_map_e4 tx_pq_map;
  459                         QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E4, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
  460                 }
  461 
  462                 /* Set PQ base address */
  463                 STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, mem_addr_4kb);
  464 
  465                 /* Clear PQ pointer table entry (64 bit) */
  466                 if (is_pf_loading)
  467                         for (j = 0; j < 2; j++)
  468                                 STORE_RT_REG(p_hwfn, QM_REG_PTRTBLTX_RT_OFFSET + (pq_id * 2) + j, 0);
  469 
  470                 /* Write PQ info to RAM */
  471                 if (WRITE_PQ_INFO_TO_RAM != 0)
  472                 {
  473                         u32 pq_info = 0;
  474                         pq_info = PQ_INFO_ELEMENT(first_tx_pq_id, pf_id, pq_params[i].tc_id, port_id, rl_valid ? 1 : 0, rl_valid ? pq_params[i].vport_id : 0);
  475                         ecore_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), pq_info);
  476                 }
  477 
  478                 /* If VF PQ, add indication to PQ VF mask */
  479                 if (is_vf_pq) {
  480                         tx_pq_vf_mask[pq_id / QM_PF_QUEUE_GROUP_SIZE] |= (1 << (pq_id % QM_PF_QUEUE_GROUP_SIZE));
  481                         mem_addr_4kb += vport_pq_mem_4kb;
  482                 }
  483                 else {
  484                         mem_addr_4kb += pq_mem_4kb;
  485                 }
  486         }
  487 
  488         /* Store Tx PQ VF mask to size select register */
  489         for (i = 0; i < num_tx_pq_vf_masks; i++)
  490                 if (tx_pq_vf_mask[i])
  491                         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, tx_pq_vf_mask[i]);
  492 }
  493 
  494 /* Prepare Other PQ mapping runtime init values for the specified PF */
  495 static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
  496                                                                            u8 pf_id,
  497                                                                            bool is_pf_loading,
  498                                                                            u32 num_pf_cids,
  499                                                                            u32 num_tids,
  500                                                                            u32 base_mem_addr_4kb)
  501 {
  502         u32 pq_size, pq_mem_4kb, mem_addr_4kb;
  503         u16 i, j, pq_id, pq_group;
  504 
  505         /* A single other PQ group is used in each PF, where PQ group i is used
  506          * in PF i.
  507          */
  508         pq_group = pf_id;
  509         pq_size = num_pf_cids + num_tids;
  510         pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
  511         mem_addr_4kb = base_mem_addr_4kb;
  512 
  513         /* Map PQ group to PF */
  514         STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
  515 
  516         /* Set PQ sizes */       
  517         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, QM_PQ_SIZE_256B(pq_size));
  518 
  519         for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
  520                 /* Set PQ base address */
  521                 STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, mem_addr_4kb);
  522 
  523                 /* Clear PQ pointer table entry */
  524                 if (is_pf_loading)
  525                         for (j = 0; j < 2; j++)
  526                                 STORE_RT_REG(p_hwfn, QM_REG_PTRTBLOTHER_RT_OFFSET + (pq_id * 2) + j, 0);
  527 
  528                 mem_addr_4kb += pq_mem_4kb;
  529         }
  530 }
  531 
  532 /* Prepare PF WFQ runtime init values for the specified PF.
  533  * Return -1 on error.
  534  */
  535 static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
  536                                                                 u8 port_id,
  537                                                                 u8 pf_id,
  538                                                                 u16 pf_wfq,
  539                                                                 u8 max_phys_tcs_per_port,
  540                                                                 u16 num_tx_pqs,
  541                                                                 struct init_qm_pq_params *pq_params)
  542 {
  543         u32 inc_val, crd_reg_offset;
  544         u8 ext_voq;
  545         u16 i;
  546 
  547         inc_val = QM_WFQ_INC_VAL(pf_wfq);
  548         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  549                 DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
  550                 return -1;
  551         }
  552 
  553         for (i = 0; i < num_tx_pqs; i++) {
  554                 ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
  555                 crd_reg_offset = ECORE_IS_E5(p_hwfn->p_dev) ?
  556                         (ext_voq < QM_WFQ_CRD_E5_NUM_VOQS ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + (ext_voq % QM_WFQ_CRD_E5_NUM_VOQS) * MAX_NUM_PFS_E5 + pf_id :
  557                         (pf_id < MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + ext_voq * MAX_NUM_PFS_BB + (pf_id % MAX_NUM_PFS_BB);
  558                 OVERWRITE_RT_REG(p_hwfn, crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
  559         }
  560 
  561         STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + pf_id, QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
  562         STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
  563 
  564         return 0;
  565 }
  566 
  567 /* Prepare PF RL runtime init values for the specified PF.
  568  * Return -1 on error.
  569  */
  570 static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn,
  571                                                           u8 pf_id,
  572                                                           u32 pf_rl)
  573 {
  574         u32 inc_val;
  575 
  576         inc_val = QM_RL_INC_VAL(pf_rl);
  577         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
  578                 DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
  579                 return -1;
  580         }
  581 
  582         STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
  583         STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
  584         STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
  585 
  586         return 0;
  587 }
  588 
  589 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
  590  * Return -1 on error.
  591  */
  592 static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
  593                                                                 u8 num_vports,
  594                                                                 struct init_qm_vport_params *vport_params)
  595 {
  596         u16 vport_pq_id;
  597         u32 inc_val;
  598         u8 tc, i;
  599 
  600         /* Go over all PF VPORTs */
  601         for (i = 0; i < num_vports; i++) {
  602                 if (!vport_params[i].vport_wfq)
  603                         continue;
  604 
  605                 inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
  606                 if (inc_val > QM_WFQ_MAX_INC_VAL) {
  607                         DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
  608                         return -1;
  609                 }
  610 
  611                 /* Each VPORT can have several VPORT PQ IDs for various TCs */
  612                 for (tc = 0; tc < NUM_OF_TCS; tc++) {
  613                         vport_pq_id = vport_params[i].first_tx_pq_id[tc];
  614                         if (vport_pq_id != QM_INVALID_PQ_ID) {
  615                                 STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET + vport_pq_id, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
  616                                 STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET + vport_pq_id, inc_val);
  617                         }
  618                 }
  619         }
  620 
  621         return 0;
  622 }
  623 
  624 /* Prepare VPORT RL runtime init values for the specified VPORTs.
  625  * Return -1 on error.
  626  */
  627 static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
  628                                                                   u8 start_vport,
  629                                                                   u8 num_vports,
  630                                                                   u32 link_speed,
  631                                                                   struct init_qm_vport_params *vport_params)
  632 {
  633         u8 i, vport_id;
  634         u32 inc_val;
  635 
  636         if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
  637                 DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
  638                 return -1;
  639         }
  640 
  641         /* Go over all PF VPORTs */
  642         for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
  643                 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ? vport_params[i].vport_rl : link_speed);
  644                 if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
  645                         DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
  646                         return -1;
  647                 }
  648 
  649                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
  650                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id, QM_VP_RL_UPPER_BOUND(link_speed) | (u32)QM_RL_CRD_REG_SIGN_BIT);
  651                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id, inc_val);
  652         }
  653 
  654         return 0;
  655 }
  656 
  657 static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
  658                                                                            struct ecore_ptt *p_ptt)
  659 {
  660         u32 reg_val, i;
  661 
  662         for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; i++) {
  663                 OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
  664                 reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
  665         }
  666 
  667         /* Check if timeout while waiting for SDM command ready */
  668         if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
  669                 DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG, "Timeout when waiting for QM SDM command ready signal\n");
  670                 return false;
  671         }
  672 
  673         return true;
  674 }
  675 
  676 static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
  677                                                           struct ecore_ptt *p_ptt,
  678                                                           u32 cmd_addr,
  679                                                           u32 cmd_data_lsb,
  680                                                           u32 cmd_data_msb)
  681 {
  682         if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
  683                 return false;
  684 
  685         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
  686         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
  687         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
  688         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
  689         ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
  690 
  691         return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
  692 }
  693 
  694 /******************** INTERFACE IMPLEMENTATION *********************/
  695 
  696 u32 ecore_qm_pf_mem_size(u32 num_pf_cids,
  697                                                  u32 num_vf_cids,
  698                                                  u32 num_tids,
  699                                                  u16 num_pf_pqs,
  700                                                  u16 num_vf_pqs)
  701 {
  702         return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
  703                    QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
  704                    QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
  705 }
  706 
  707 int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
  708                                                         u8 max_ports_per_engine,
  709                                                         u8 max_phys_tcs_per_port,
  710                                                         bool pf_rl_en,
  711                                                         bool pf_wfq_en,
  712                                                         bool vport_rl_en,
  713                                                         bool vport_wfq_en,
  714                                                         struct init_qm_port_params port_params[MAX_NUM_PORTS])
  715 {
  716         u32 mask;
  717 
  718         /* Init AFullOprtnstcCrdMask */
  719         mask = (QM_OPPOR_LINE_VOQ_DEF << QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
  720                 (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
  721                 (pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
  722                 (vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
  723                 (pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
  724                 (vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
  725                 (QM_OPPOR_FW_STOP_DEF << QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
  726                 (QM_OPPOR_PQ_EMPTY_DEF << QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
  727         STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
  728 
  729         /* Enable/disable PF RL */
  730         ecore_enable_pf_rl(p_hwfn, pf_rl_en);
  731 
  732         /* Enable/disable PF WFQ */
  733         ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
  734 
  735         /* Enable/disable VPORT RL */
  736         ecore_enable_vport_rl(p_hwfn, vport_rl_en);
  737 
  738         /* Enable/disable VPORT WFQ */
  739         ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
  740 
  741         /* Init PBF CMDQ line credit */
  742         ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
  743 
  744         /* Init BTB blocks in PBF */
  745         ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
  746 
  747         return 0;
  748 }
  749 
  750 int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
  751                                                 struct ecore_ptt *p_ptt,
  752                                                 u8 port_id,
  753                                                 u8 pf_id,
  754                                                 u8 max_phys_tcs_per_port,
  755                                                 bool is_pf_loading,
  756                                                 u32 num_pf_cids,
  757                                                 u32 num_vf_cids,
  758                                                 u32 num_tids,
  759                                                 u16 start_pq,
  760                                                 u16 num_pf_pqs,
  761                                                 u16 num_vf_pqs,
  762                                                 u8 start_vport,
  763                                                 u8 num_vports,
  764                                                 u16 pf_wfq,
  765                                                 u32 pf_rl,
  766                                                 u32 link_speed,
  767                                                 struct init_qm_pq_params *pq_params,
  768                                                 struct init_qm_vport_params *vport_params)
  769 {
  770         u32 other_mem_size_4kb;
  771         u8 tc, i;
  772 
  773         other_mem_size_4kb = QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
  774 
  775         /* Clear first Tx PQ ID array for each VPORT */
  776         for(i = 0; i < num_vports; i++)
  777                 for(tc = 0; tc < NUM_OF_TCS; tc++)
  778                         vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
  779 
  780         /* Map Other PQs (if any) */
  781 #if QM_OTHER_PQS_PER_PF > 0
  782         ecore_other_pq_map_rt_init(p_hwfn, pf_id, is_pf_loading, num_pf_cids, num_tids, 0);
  783 #endif
  784 
  785         /* Map Tx PQs */
  786         ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, port_id, pf_id, max_phys_tcs_per_port, is_pf_loading, num_pf_cids, num_vf_cids,
  787                                                         start_pq, num_pf_pqs, num_vf_pqs, start_vport, other_mem_size_4kb, pq_params, vport_params);
  788 
  789         /* Init PF WFQ */
  790         if (pf_wfq)
  791                 if (ecore_pf_wfq_rt_init(p_hwfn, port_id, pf_id, pf_wfq, max_phys_tcs_per_port, num_pf_pqs + num_vf_pqs, pq_params))
  792                 return -1;
  793 
  794         /* Init PF RL */
  795         if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl))
  796                 return -1;
  797 
  798         /* Set VPORT WFQ */
  799         if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params))
  800                 return -1;
  801 
  802         /* Set VPORT RL */
  803         if (ecore_vport_rl_rt_init(p_hwfn, start_vport, num_vports, link_speed, vport_params))
  804                 return -1;
  805 
  806         return 0;
  807 }
  808 
  809 int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
  810                                           struct ecore_ptt *p_ptt,
  811                                           u8 pf_id,
  812                                           u16 pf_wfq)
  813 {
  814         u32 inc_val;
  815 
  816         inc_val = QM_WFQ_INC_VAL(pf_wfq);
  817         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  818                 DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
  819                 return -1;
  820         }
  821 
  822         ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
  823 
  824         return 0;
  825 }
  826 
  827 int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
  828                                          struct ecore_ptt *p_ptt,
  829                                          u8 pf_id,
  830                                          u32 pf_rl)
  831 {
  832         u32 inc_val;
  833 
  834         inc_val = QM_RL_INC_VAL(pf_rl);
  835         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
  836                 DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
  837                 return -1;
  838         }
  839 
  840         ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
  841         ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
  842 
  843         return 0;
  844 }
  845 
  846 int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
  847                                                  struct ecore_ptt *p_ptt,
  848                                                  u16 first_tx_pq_id[NUM_OF_TCS],
  849                                                  u16 vport_wfq)
  850 {
  851         u16 vport_pq_id;
  852         u32 inc_val;
  853         u8 tc;
  854 
  855         inc_val = QM_WFQ_INC_VAL(vport_wfq);
  856         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  857                 DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
  858                 return -1;
  859         }
  860 
  861         for (tc = 0; tc < NUM_OF_TCS; tc++) {
  862                 vport_pq_id = first_tx_pq_id[tc];
  863                 if (vport_pq_id != QM_INVALID_PQ_ID) {
  864                         ecore_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
  865                 }
  866         }
  867 
  868         return 0;
  869 }
  870 
  871 int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
  872                                                 struct ecore_ptt *p_ptt,
  873                                                 u8 vport_id,
  874                                                 u32 vport_rl,
  875                                                 u32 link_speed)
  876 {
  877         u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
  878 
  879         if (vport_id >= max_qm_global_rls) {
  880                 DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
  881                 return -1;
  882         }
  883 
  884         inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
  885         if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
  886                 DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
  887                 return -1;
  888         }
  889 
  890         ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
  891         ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
  892 
  893         return 0;
  894 }
  895 
  896 bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
  897                                                         struct ecore_ptt *p_ptt,
  898                                                         bool is_release_cmd,
  899                                                         bool is_tx_pq,
  900                                                         u16 start_pq,
  901                                                         u16 num_pqs)
  902 {
  903         u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = {0};
  904         u32 pq_mask = 0, last_pq, pq_id;
  905 
  906         last_pq = start_pq + num_pqs - 1;
  907 
  908         /* Set command's PQ type */
  909         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
  910 
  911         /* Go over requested PQs */
  912         for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
  913                 /* Set PQ bit in mask (stop command only) */
  914                 if (!is_release_cmd)
  915                         pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
  916 
  917                 /* If last PQ or end of PQ mask, write command */
  918                 if ((pq_id == last_pq) || (pq_id % QM_STOP_PQ_MASK_WIDTH == (QM_STOP_PQ_MASK_WIDTH - 1))) {
  919                         QM_CMD_SET_FIELD(cmd_arr, (u32)QM_STOP_CMD, PAUSE_MASK, pq_mask);
  920                         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID, pq_id / QM_STOP_PQ_MASK_WIDTH);
  921                         if (!ecore_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0], cmd_arr[1]))
  922                                 return false;
  923                         pq_mask = 0;
  924                 }
  925         }
  926 
  927         return true;
  928 }
  929 
  930 #ifndef UNUSED_HSI_FUNC
  931 
  932 /* NIG: ETS configuration constants */
  933 #define NIG_TX_ETS_CLIENT_OFFSET        4
  934 #define NIG_LB_ETS_CLIENT_OFFSET        1
  935 #define NIG_ETS_MIN_WFQ_BYTES           1600
  936 
  937 /* NIG: ETS constants */
  938 #define NIG_ETS_UP_BOUND(weight,mtu)            (2 * ((weight) > (mtu) ? (weight) : (mtu)))
  939 
  940 /* NIG: RL constants */
  941 
  942 /* Byte base type value */
  943 #define NIG_RL_BASE_TYPE                1
  944 
  945 /* Period in us */
  946 #define NIG_RL_PERIOD                   1
  947 
  948 /* Period in 25MHz cycles */
  949 #define NIG_RL_PERIOD_CLK_25M           (25 * NIG_RL_PERIOD) 
  950 
  951 /* Rate in mbps */
  952 #define NIG_RL_INC_VAL(rate)            (((rate) * NIG_RL_PERIOD) / 8)
  953 
  954 #define NIG_RL_MAX_VAL(inc_val,mtu)             (2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
  955 
  956 /* NIG: packet prioritry configuration constants */
  957 #define NIG_PRIORITY_MAP_TC_BITS        4
  958 
  959 void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
  960                                                 struct ecore_ptt *p_ptt,
  961                                                 struct init_ets_req* req,
  962                                                 bool is_lb)
  963 {
  964         u32 min_weight, tc_weight_base_addr, tc_weight_addr_diff;
  965         u32 tc_bound_base_addr, tc_bound_addr_diff;
  966         u8 sp_tc_map = 0, wfq_tc_map = 0;
  967         u8 tc, num_tc, tc_client_offset;
  968 
  969         num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
  970         tc_client_offset = is_lb ? NIG_LB_ETS_CLIENT_OFFSET : NIG_TX_ETS_CLIENT_OFFSET;
  971         min_weight = 0xffffffff;
  972         tc_weight_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 : NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
  973         tc_weight_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 - NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
  974                                                                   NIG_REG_TX_ARB_CREDIT_WEIGHT_1 - NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
  975         tc_bound_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 : NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
  976         tc_bound_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
  977                                                                  NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
  978 
  979         for (tc = 0; tc < num_tc; tc++) {
  980                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
  981 
  982                 /* Update SP map */
  983                 if (tc_req->use_sp)
  984                         sp_tc_map |= (1 << tc);
  985 
  986                 if (!tc_req->use_wfq)
  987                         continue;
  988 
  989                 /* Update WFQ map */
  990                 wfq_tc_map |= (1 << tc);
  991                                 
  992                 /* Find minimal weight */
  993                 if (tc_req->weight < min_weight)
  994                         min_weight = tc_req->weight;
  995         }
  996 
  997         /* Write SP map */
  998         ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT : NIG_REG_TX_ARB_CLIENT_IS_STRICT, (sp_tc_map << tc_client_offset));
  999 
 1000         /* Write WFQ map */
 1001         ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ : NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ, (wfq_tc_map << tc_client_offset));
 1002 
 1003         /* Write WFQ weights */
 1004         for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
 1005                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
 1006                 u32 byte_weight;
 1007 
 1008                 if (!tc_req->use_wfq)
 1009                         continue;
 1010 
 1011                 /* Translate weight to bytes */
 1012                 byte_weight = (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
 1013 
 1014                 /* Write WFQ weight */
 1015                 ecore_wr(p_hwfn, p_ptt, tc_weight_base_addr + tc_weight_addr_diff * tc_client_offset, byte_weight);
 1016 
 1017                 /* Write WFQ upper bound */
 1018                 ecore_wr(p_hwfn, p_ptt, tc_bound_base_addr + tc_bound_addr_diff * tc_client_offset, NIG_ETS_UP_BOUND(byte_weight, req->mtu));
 1019         }
 1020 }
 1021 
 1022 void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
 1023                                                   struct ecore_ptt *p_ptt,
 1024                                                   struct init_nig_lb_rl_req* req)
 1025 {
 1026         u32 ctrl, inc_val, reg_offset;
 1027         u8 tc;
 1028 
 1029         /* Disable global MAC+LB RL */
 1030         ctrl = NIG_RL_BASE_TYPE << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
 1031         ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
 1032 
 1033         /* Configure and enable global MAC+LB RL */
 1034         if (req->lb_mac_rate) {
 1035                 /* Configure  */
 1036                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
 1037                 inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
 1038                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE, inc_val);
 1039                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
 1040 
 1041                 /* Enable */
 1042                 ctrl |= 1 << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
 1043                 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
 1044         }
 1045 
 1046         /* Disable global LB-only RL */
 1047         ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
 1048         ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
 1049 
 1050         /* Configure and enable global LB-only RL */
 1051         if (req->lb_rate) {
 1052                 /* Configure  */
 1053                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
 1054                 inc_val = NIG_RL_INC_VAL(req->lb_rate);
 1055                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE, inc_val);
 1056                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
 1057 
 1058                 /* Enable */
 1059                 ctrl |= 1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
 1060                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
 1061         }
 1062 
 1063         /* Per-TC RLs */
 1064         for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS; tc++, reg_offset += 4) {
 1065                 /* Disable TC RL */
 1066                 ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
 1067                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
 1068 
 1069                 /* Configure and enable TC RL */
 1070                 if (!req->tc_rate[tc])
 1071                         continue;
 1072 
 1073                 /* Configure */
 1074                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 + reg_offset, NIG_RL_PERIOD_CLK_25M);
 1075                 inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
 1076                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 + reg_offset, inc_val);
 1077                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 + reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
 1078 
 1079                 /* Enable */
 1080                 ctrl |= 1 << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
 1081                 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
 1082         }
 1083 }
 1084 
 1085 void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
 1086                                                            struct ecore_ptt *p_ptt,
 1087                                                            struct init_nig_pri_tc_map_req* req)
 1088 {
 1089         u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
 1090         u32 pri_tc_mask = 0;
 1091         u8 pri, tc;
 1092 
 1093         for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
 1094                 if (!req->pri[pri].valid)
 1095                         continue;
 1096 
 1097                 pri_tc_mask |= (req->pri[pri].tc_id << (pri * NIG_PRIORITY_MAP_TC_BITS));
 1098                 tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
 1099         }
 1100 
 1101         /* Write priority -> TC mask */
 1102         ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
 1103 
 1104         /* Write TC -> priority mask */
 1105         for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
 1106                 ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4, tc_pri_mask[tc]);
 1107                 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4, tc_pri_mask[tc]);
 1108         }
 1109 }
 1110 
 1111 #endif /* UNUSED_HSI_FUNC */
 1112 
 1113 #ifndef UNUSED_HSI_FUNC
 1114 
 1115 /* PRS: ETS configuration constants */
 1116 #define PRS_ETS_MIN_WFQ_BYTES           1600
 1117 #define PRS_ETS_UP_BOUND(weight,mtu)            (2 * ((weight) > (mtu) ? (weight) : (mtu)))
 1118 
 1119 void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
 1120                                                 struct ecore_ptt *p_ptt,
 1121                                                 struct init_ets_req* req)
 1122 {
 1123         u32 tc_weight_addr_diff, tc_bound_addr_diff, min_weight = 0xffffffff;
 1124         u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
 1125 
 1126         tc_weight_addr_diff = PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 - PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
 1127         tc_bound_addr_diff = PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 - PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
 1128 
 1129         for (tc = 0; tc < NUM_OF_TCS; tc++) {
 1130                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
 1131 
 1132                 /* Update SP map */
 1133                 if (tc_req->use_sp)
 1134                         sp_tc_map |= (1 << tc);
 1135 
 1136                 if (!tc_req->use_wfq)
 1137                         continue;
 1138 
 1139                 /* Update WFQ map */
 1140                 wfq_tc_map |= (1 << tc);
 1141                                 
 1142                 /* Find minimal weight */
 1143                 if (tc_req->weight < min_weight)
 1144                         min_weight = tc_req->weight;
 1145         }
 1146 
 1147         /* Write SP map */
 1148         ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
 1149 
 1150         /* Write WFQ map */
 1151         ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ, wfq_tc_map);
 1152 
 1153         /* Write WFQ weights */
 1154         for (tc = 0; tc < NUM_OF_TCS; tc++) {
 1155                 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
 1156                 u32 byte_weight;
 1157 
 1158                 if (!tc_req->use_wfq)
 1159                         continue;
 1160 
 1161                 /* Translate weight to bytes */
 1162                 byte_weight = (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
 1163 
 1164                 /* Write WFQ weight */
 1165                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 + tc * tc_weight_addr_diff, byte_weight);
 1166 
 1167                 /* Write WFQ upper bound */
 1168                 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 + tc * tc_bound_addr_diff, PRS_ETS_UP_BOUND(byte_weight, req->mtu));
 1169         }
 1170 }
 1171 
 1172 #endif /* UNUSED_HSI_FUNC */
 1173 #ifndef UNUSED_HSI_FUNC
 1174 
 1175 /* BRB: RAM configuration constants */
 1176 #define BRB_TOTAL_RAM_BLOCKS_BB 4800
 1177 #define BRB_TOTAL_RAM_BLOCKS_K2 5632
 1178 #define BRB_BLOCK_SIZE          128 
 1179 #define BRB_MIN_BLOCKS_PER_TC   9
 1180 #define BRB_HYST_BYTES          10240
 1181 #define BRB_HYST_BLOCKS         (BRB_HYST_BYTES / BRB_BLOCK_SIZE)
 1182 
 1183 /* Temporary big RAM allocation - should be updated */
 1184 void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
 1185                                                 struct ecore_ptt *p_ptt,
 1186                                                 struct init_brb_ram_req* req)
 1187 {
 1188         u32 tc_headroom_blocks, min_pkt_size_blocks, total_blocks;
 1189         u32 active_port_blocks, reg_offset = 0;
 1190         u8 port, active_ports = 0;
 1191 
 1192         tc_headroom_blocks = (u32)DIV_ROUND_UP(req->headroom_per_tc, BRB_BLOCK_SIZE);
 1193         min_pkt_size_blocks = (u32)DIV_ROUND_UP(req->min_pkt_size, BRB_BLOCK_SIZE);
 1194         total_blocks = ECORE_IS_K2(p_hwfn->p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 : BRB_TOTAL_RAM_BLOCKS_BB;
 1195 
 1196         /* Find number of active ports */
 1197         for (port = 0; port < MAX_NUM_PORTS; port++)
 1198                 if (req->num_active_tcs[port])
 1199                         active_ports++;
 1200 
 1201         active_port_blocks = (u32)(total_blocks / active_ports);
 1202 
 1203         for (port = 0; port < req->max_ports_per_engine; port++) {
 1204                 u32 port_blocks, port_shared_blocks, port_guaranteed_blocks;
 1205                 u32 full_xoff_th, full_xon_th, pause_xoff_th, pause_xon_th;
 1206                 u32 tc_guaranteed_blocks;
 1207                 u8 tc;
 1208 
 1209                 /* Calculate per-port sizes */
 1210                 tc_guaranteed_blocks = (u32)DIV_ROUND_UP(req->guranteed_per_tc, BRB_BLOCK_SIZE);
 1211                 port_blocks = req->num_active_tcs[port] ? active_port_blocks : 0;
 1212                 port_guaranteed_blocks = req->num_active_tcs[port] * tc_guaranteed_blocks;
 1213                 port_shared_blocks = port_blocks - port_guaranteed_blocks;
 1214                 full_xoff_th = req->num_active_tcs[port] * BRB_MIN_BLOCKS_PER_TC;
 1215                 full_xon_th = full_xoff_th + min_pkt_size_blocks;
 1216                 pause_xoff_th = tc_headroom_blocks;
 1217                 pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
 1218 
 1219                 /* Init total size per port */
 1220                 ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4, port_blocks);
 1221 
 1222                 /* Init shared size per port */
 1223                 ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4, port_shared_blocks);
 1224 
 1225                 for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
 1226                         /* Clear init values for non-active TCs */
 1227                         if (tc == req->num_active_tcs[port]) {
 1228                                 tc_guaranteed_blocks = 0;
 1229                                 full_xoff_th = 0;
 1230                                 full_xon_th = 0;
 1231                                 pause_xoff_th = 0;
 1232                                 pause_xon_th = 0;
 1233                         }
 1234 
 1235                         /* Init guaranteed size per TC */
 1236                         ecore_wr(p_hwfn, p_ptt, BRB_REG_TC_GUARANTIED_0 + reg_offset, tc_guaranteed_blocks);
 1237                         ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset, BRB_HYST_BLOCKS);
 1238 
 1239                         /* Init pause/full thresholds per physical TC - for
 1240                          * loopback traffic.
 1241                          */
 1242                         ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
 1243                         ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
 1244                         ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
 1245                         ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
 1246 
 1247                         /* Init pause/full thresholds per physical TC - for
 1248                          * main traffic.
 1249                          */
 1250                         ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
 1251                         ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
 1252                         ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
 1253                         ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
 1254                 }
 1255         }
 1256 }
 1257 
 1258 #endif /* UNUSED_HSI_FUNC */
 1259 #ifndef UNUSED_HSI_FUNC
 1260 
 1261 /* In MF, should be called once per port to set EtherType of OuterTag */
 1262 void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn, u32 ethType)
 1263 {
 1264         /* Update DORQ register */
 1265         STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
 1266 }
 1267 
 1268 #endif /* UNUSED_HSI_FUNC */
 1269 
 1270 #define SET_TUNNEL_TYPE_ENABLE_BIT(var,offset,enable) var = ((var) & ~(1 << (offset))) | ( (enable) ? (1 << (offset)) : 0)
 1271 #define PRS_ETH_TUNN_OUTPUT_FORMAT        -188897008
 1272 #define PRS_ETH_OUTPUT_FORMAT             -46832
 1273 
 1274 void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
 1275         struct ecore_ptt *p_ptt,
 1276         u16 dest_port)
 1277 {
 1278         /* Update PRS register */
 1279         ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
 1280 
 1281         /* Update NIG register */
 1282         ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
 1283 
 1284         /* Update PBF register */
 1285         ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
 1286 }
 1287 
 1288 void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
 1289         struct ecore_ptt *p_ptt,
 1290         bool vxlan_enable)
 1291 {
 1292         u32 reg_val;
 1293 
 1294         /* Update PRS register */
 1295         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
 1296         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT, vxlan_enable);
 1297         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
 1298     if (reg_val) /* TODO: handle E5 init */
 1299     {
 1300         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
 1301 
 1302         /* Update output  only if tunnel blocks not included. */
 1303         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
 1304         {
 1305             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
 1306         }
 1307     }
 1308 
 1309         /* Update NIG register */
 1310         reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
 1311         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT, vxlan_enable);
 1312         ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
 1313 
 1314         /* Update DORQ register */
 1315         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
 1316 }
 1317 
 1318 void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
 1319         struct ecore_ptt *p_ptt,
 1320         bool eth_gre_enable,
 1321         bool ip_gre_enable)
 1322 {
 1323         u32 reg_val;
 1324 
 1325         /* Update PRS register */
 1326         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
 1327         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
 1328         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT,  ip_gre_enable);
 1329         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
 1330     if (reg_val) /* TODO: handle E5 init */
 1331     {
 1332         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
 1333 
 1334         /* Update output  only if tunnel blocks not included. */
 1335         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
 1336         {
 1337             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
 1338         }
 1339     }
 1340 
 1341         /* Update NIG register */
 1342         reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
 1343         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
 1344         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT,  ip_gre_enable);
 1345         ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
 1346 
 1347         /* Update DORQ registers */
 1348         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
 1349         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
 1350 }
 1351 
 1352 void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
 1353         struct ecore_ptt *p_ptt,
 1354         u16 dest_port)
 1355 
 1356 {
 1357         /* Update PRS register */
 1358         ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
 1359 
 1360         /* Update NIG register */
 1361         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
 1362 
 1363         /* Update PBF register */
 1364         ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
 1365 }
 1366 
 1367 void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
 1368                              struct ecore_ptt *p_ptt,
 1369                              bool eth_geneve_enable,
 1370                              bool ip_geneve_enable)
 1371 {
 1372         u32 reg_val;
 1373 
 1374         /* Update PRS register */
 1375         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
 1376         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT, eth_geneve_enable);   
 1377         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT, ip_geneve_enable);
 1378         ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
 1379     if (reg_val) /* TODO: handle E5 init */
 1380     {
 1381         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
 1382 
 1383         /* Update output  only if tunnel blocks not included. */
 1384         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
 1385         {
 1386             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
 1387         }
 1388     }
 1389 
 1390         /* Update NIG register */
 1391         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, eth_geneve_enable ? 1 : 0);
 1392         ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
 1393     
 1394         /* EDPM with geneve tunnel not supported in BB */
 1395         if (ECORE_IS_BB_B0(p_hwfn->p_dev))
 1396                 return;
 1397 
 1398         /* Update DORQ registers */
 1399         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, eth_geneve_enable ? 1 : 0);
 1400         ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, ip_geneve_enable ? 1 : 0);
 1401 }
 1402 
 1403 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET   4
 1404 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT      -927094512
 1405 
 1406 void ecore_set_vxlan_no_l2_enable(struct ecore_hwfn *p_hwfn,
 1407                                 struct ecore_ptt *p_ptt,
 1408                                 bool enable)
 1409 {
 1410     u32 reg_val, cfg_mask;
 1411 
 1412     /* read PRS config register */
 1413     reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
 1414 
 1415     /* set VXLAN_NO_L2_ENABLE mask */
 1416     cfg_mask = (1 << PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
 1417 
 1418     if (enable)
 1419     {
 1420         /* set VXLAN_NO_L2_ENABLE flag */
 1421         reg_val |= cfg_mask;
 1422 
 1423         /* update PRS FIC  register */
 1424         ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
 1425     }
 1426     else 
 1427     {
 1428         /* clear VXLAN_NO_L2_ENABLE flag */
 1429         reg_val &= ~cfg_mask;
 1430     }
 1431 
 1432     /* write PRS config register */
 1433     ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
 1434 }
 1435 
 1436 #ifndef UNUSED_HSI_FUNC
 1437 
 1438 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
 1439 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
 1440 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
 1441 #define PARSER_ETH_CONN_CM_HDR 0
 1442 #define CAM_LINE_SIZE sizeof(u32)
 1443 #define RAM_LINE_SIZE sizeof(u64) 
 1444 #define REG_SIZE sizeof(u32)
 1445 
 1446 void ecore_gft_disable(struct ecore_hwfn *p_hwfn,
 1447     struct ecore_ptt *p_ptt,
 1448     u16 pf_id)
 1449 {
 1450     /* disable gft search for PF */
 1451     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
 1452 
 1453     /* Clean ram & cam for next gft session*/
 1454 
 1455     /* Zero camline */
 1456     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, 0);
 1457 
 1458     /* Zero ramline */
 1459     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, 0);
 1460     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, 0);
 1461 }
 1462 
 1463 void ecore_set_gft_event_id_cm_hdr (struct ecore_hwfn *p_hwfn,
 1464         struct ecore_ptt *p_ptt)
 1465 {
 1466         u32 rfs_cm_hdr_event_id;
 1467 
 1468     /* Set RFS event ID to be awakened i Tstorm By Prs */
 1469     rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
 1470     rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
 1471     rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
 1472     ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
 1473 }
 1474 
 1475 void ecore_gft_config(struct ecore_hwfn *p_hwfn,
 1476     struct ecore_ptt *p_ptt,
 1477     u16 pf_id,
 1478     bool tcp,
 1479     bool udp,
 1480     bool ipv4,
 1481     bool ipv6,
 1482     enum gft_profile_type profile_type)
 1483 {
 1484     u32 reg_val, cam_line, ram_line_lo, ram_line_hi;
 1485 
 1486     if (!ipv6 && !ipv4)
 1487         DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - ipv4 or ipv6'\n");
 1488     if (!tcp && !udp)
 1489         DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - udp or tcp\n");
 1490     if (profile_type >= MAX_GFT_PROFILE_TYPE)
 1491         DP_NOTICE(p_hwfn, true, "gft_config: unsupported gft_profile_type\n");
 1492 
 1493     /* Set RFS event ID to be awakened i Tstorm By Prs */
 1494     reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
 1495     reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
 1496     ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
 1497 
 1498     /* Do not load context only cid in PRS on match. */
 1499     ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
 1500 
 1501     /* Do not use tenant ID exist bit for gft search*/
 1502     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
 1503 
 1504     /* Set Cam */
 1505     cam_line = 0;
 1506     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
 1507 
 1508     /* Filters are per PF!! */
 1509     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID_MASK, GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
 1510     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
 1511 
 1512     if (!(tcp && udp)) {
 1513         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
 1514         if (tcp)
 1515             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_TCP_PROTOCOL);
 1516         else
 1517             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_UDP_PROTOCOL);
 1518     }
 1519 
 1520     if (!(ipv4 && ipv6)) {
 1521         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
 1522         if (ipv4)
 1523             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV4);
 1524         else
 1525             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV6);
 1526     }
 1527 
 1528     /* Write characteristics to cam */
 1529     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, cam_line);
 1530     cam_line = ecore_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id);
 1531 
 1532     /* Write line to RAM - compare to filter 4 tuple */
 1533     ram_line_lo = 0;
 1534     ram_line_hi = 0;
 1535 
 1536     /* Tunnel type */
 1537     SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
 1538     SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
 1539 
 1540     if (profile_type == GFT_PROFILE_TYPE_4_TUPLE)
 1541     {
 1542         SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
 1543         SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
 1544         SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
 1545         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
 1546         SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
 1547         SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
 1548     }
 1549     else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT)
 1550     {
 1551         SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
 1552         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
 1553         SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
 1554     }
 1555     else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR)
 1556     {
 1557         SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
 1558         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
 1559     }
 1560     else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR)
 1561     {
 1562         SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
 1563         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
 1564     }
 1565     else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE)
 1566     {
 1567         SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
 1568     }
 1569 
 1570     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, ram_line_lo);
 1571     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, ram_line_hi);
 1572 
 1573     /* Set default profile so that no filter match will happen */
 1574     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
 1575     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
 1576 
 1577     /* Enable gft search */
 1578     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
 1579 }
 1580 
 1581 #endif /* UNUSED_HSI_FUNC */
 1582 
 1583 /* Configure VF zone size mode*/
 1584 void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u16 mode, bool runtime_init)
 1585 {
 1586         u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
 1587         u32 msdm_vf_offset_mask; 
 1588 
 1589         if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
 1590                 msdm_vf_size_log += 1; 
 1591         else if (mode == VF_ZONE_SIZE_MODE_QUAD)
 1592                 msdm_vf_size_log += 2; 
 1593 
 1594         msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
 1595 
 1596         if (runtime_init) {
 1597                 STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET, msdm_vf_size_log);
 1598                 STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET, msdm_vf_offset_mask);
 1599         }
 1600         else {
 1601                 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
 1602                 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
 1603         }
 1604 }
 1605 
 1606 /* Get mstorm statistics for offset by VF zone size mode */
 1607 u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn, u16 stat_cnt_id, u16 vf_zone_size_mode)
 1608 {
 1609         u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
 1610 
 1611         if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) && (stat_cnt_id > MAX_NUM_PFS)) {
 1612                 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
 1613                         offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
 1614                 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
 1615                         offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
 1616         }
 1617 
 1618         return offset;
 1619 }
 1620 
 1621 /* Get mstorm VF producer offset by VF zone size mode */
 1622 u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn, u8 vf_id, u8 vf_queue_id, u16 vf_zone_size_mode)
 1623 {
 1624         u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
 1625 
 1626         if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
 1627                 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
 1628                         offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
 1629                 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
 1630                         offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
 1631         }
 1632 
 1633         return offset;
 1634 }
 1635 
 1636 #ifndef LINUX_REMOVE
 1637 #define CRC8_INIT_VALUE 0xFF
 1638 #endif
 1639 static u8 cdu_crc8_table[CRC8_TABLE_SIZE];
 1640 
 1641 /* Calculate and return CDU validation byte per connection type/region/cid */
 1642 static u8 ecore_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
 1643 {
 1644         const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
 1645 
 1646         static u8 crc8_table_valid;     /*automatically initialized to 0*/
 1647         u8 crc, validation_byte = 0;
 1648         u32 validation_string = 0;
 1649         u32 data_to_crc;
 1650 
 1651         if (crc8_table_valid == 0) {
 1652                 OSAL_CRC8_POPULATE(cdu_crc8_table, 0x07);
 1653                 crc8_table_valid = 1;
 1654         }
 1655 
 1656         /* The CRC is calculated on the String-to-compress:
 1657          * [31:8]  = {CID[31:20],CID[11:0]}
 1658          * [7:4]   = Region
 1659          * [3:0]   = Type
 1660          */
 1661         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
 1662                 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
 1663 
 1664         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
 1665                 validation_string |= ((region & 0xF) << 4);
 1666 
 1667         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
 1668                 validation_string |= (conn_type & 0xF);
 1669 
 1670         /* Convert to big-endian and calculate CRC8*/
 1671         data_to_crc = OSAL_BE32_TO_CPU(validation_string);
 1672 
 1673         crc = OSAL_CRC8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
 1674 
 1675         /* The validation byte [7:0] is composed:
 1676          * for type A validation
 1677          * [7]          = active configuration bit
 1678          * [6:0]        = crc[6:0]
 1679          *
 1680          * for type B validation
 1681          * [7]          = active configuration bit
 1682          * [6:3]        = connection_type[3:0]
 1683          * [2:0]        = crc[2:0]
 1684          */
 1685         validation_byte |= ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
 1686 
 1687         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
 1688                 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
 1689         else
 1690                 validation_byte |= crc & 0x7F;
 1691 
 1692         return validation_byte;
 1693 }
 1694 
 1695 /* Calcualte and set validation bytes for session context */
 1696 void ecore_calc_session_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 cid)
 1697 {
 1698         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
 1699 
 1700         p_ctx = (u8* const)p_ctx_mem;
 1701         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
 1702         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
 1703         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
 1704 
 1705         OSAL_MEMSET(p_ctx, 0, ctx_size);
 1706 
 1707         *x_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 3, cid);
 1708         *t_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 4, cid);
 1709         *u_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 5, cid);
 1710 }
 1711 
 1712 /* Calcualte and set validation bytes for task context */
 1713 void ecore_calc_task_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 tid)
 1714 {
 1715         u8 *p_ctx, *region1_val_ptr;
 1716 
 1717         p_ctx = (u8* const)p_ctx_mem;
 1718         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
 1719 
 1720         OSAL_MEMSET(p_ctx, 0, ctx_size);
 1721 
 1722         *region1_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 1, tid);
 1723 }
 1724 
 1725 /* Memset session context to 0 while preserving validation bytes */
 1726 void ecore_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
 1727 {
 1728         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
 1729         u8 x_val, t_val, u_val;
 1730 
 1731         p_ctx = (u8* const)p_ctx_mem;
 1732         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
 1733         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
 1734         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
 1735 
 1736         x_val = *x_val_ptr;
 1737         t_val = *t_val_ptr;
 1738         u_val = *u_val_ptr;
 1739 
 1740         OSAL_MEMSET(p_ctx, 0, ctx_size);
 1741 
 1742         *x_val_ptr = x_val;
 1743         *t_val_ptr = t_val;
 1744         *u_val_ptr = u_val;
 1745 }
 1746 
 1747 /* Memset task context to 0 while preserving validation bytes */
 1748 void ecore_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
 1749 {
 1750         u8 *p_ctx, *region1_val_ptr;
 1751         u8 region1_val;
 1752 
 1753         p_ctx = (u8* const)p_ctx_mem;
 1754         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
 1755 
 1756         region1_val = *region1_val_ptr;
 1757 
 1758         OSAL_MEMSET(p_ctx, 0, ctx_size);
 1759 
 1760         *region1_val_ptr = region1_val;
 1761 }
 1762 
 1763 /* Enable and configure context validation */
 1764 void ecore_enable_context_validation(struct ecore_hwfn * p_hwfn, struct ecore_ptt *p_ptt)
 1765 {
 1766         u32 ctx_validation;
 1767 
 1768         /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
 1769         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
 1770         ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
 1771 
 1772         /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
 1773         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
 1774         ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
 1775 
 1776         /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
 1777         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
 1778         ecore_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
 1779 }
 1780 
 1781 #define RSS_IND_TABLE_BASE_ADDR       4112
 1782 #define RSS_IND_TABLE_VPORT_SIZE      16
 1783 #define RSS_IND_TABLE_ENTRY_PER_LINE  8
 1784 
 1785 /* Update RSS indirection table entry. */
 1786 void ecore_update_eth_rss_ind_table_entry(struct ecore_hwfn * p_hwfn,
 1787     struct ecore_ptt *p_ptt,
 1788     u8 rss_id,
 1789     u8 ind_table_index,
 1790     u16 ind_table_value)
 1791 {
 1792     u32 cnt, rss_addr;
 1793     u32 * reg_val;
 1794     u16 rss_ind_entry[RSS_IND_TABLE_ENTRY_PER_LINE];
 1795     u16 rss_ind_mask [RSS_IND_TABLE_ENTRY_PER_LINE];
 1796 
 1797     /* get entry address */
 1798     rss_addr =  RSS_IND_TABLE_BASE_ADDR +
 1799                 RSS_IND_TABLE_VPORT_SIZE * rss_id +
 1800                 ind_table_index/RSS_IND_TABLE_ENTRY_PER_LINE;
 1801 
 1802     /* prepare update command */
 1803     ind_table_index %= RSS_IND_TABLE_ENTRY_PER_LINE;
 1804 
 1805     for (cnt = 0; cnt < RSS_IND_TABLE_ENTRY_PER_LINE; cnt ++)
 1806     {
 1807         if (cnt == ind_table_index)
 1808         {
 1809             rss_ind_entry[cnt] = ind_table_value;
 1810             rss_ind_mask[cnt]  = 0xFFFF;
 1811         }
 1812         else
 1813         {
 1814             rss_ind_entry[cnt] = 0;
 1815             rss_ind_mask[cnt]  = 0;
 1816         }
 1817     }
 1818 
 1819     /* Update entry in HW*/
 1820     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_ADDR, rss_addr);
 1821 
 1822     reg_val = (u32*)rss_ind_mask;
 1823     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK, reg_val[0]);
 1824     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 4, reg_val[1]);
 1825     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 8, reg_val[2]);
 1826     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 12, reg_val[3]);
 1827 
 1828     reg_val = (u32*)rss_ind_entry;
 1829     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA, reg_val[0]);
 1830     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 4, reg_val[1]);
 1831     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 8, reg_val[2]);
 1832     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 12, reg_val[3]);
 1833 }

Cache object: 26599f4fef02ffb81aea041778298a57


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.