The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/qlnx/qlnxe/ecore_int.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2017-2018 Cavium, Inc. 
    3  * All rights reserved.
    4  *
    5  *  Redistribution and use in source and binary forms, with or without
    6  *  modification, are permitted provided that the following conditions
    7  *  are met:
    8  *
    9  *  1. Redistributions of source code must retain the above copyright
   10  *     notice, this list of conditions and the following disclaimer.
   11  *  2. Redistributions in binary form must reproduce the above copyright
   12  *     notice, this list of conditions and the following disclaimer in the
   13  *     documentation and/or other materials provided with the distribution.
   14  *
   15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
   19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   25  *  POSSIBILITY OF SUCH DAMAGE.
   26  */
   27 /*
   28  * File : ecore_int.c
   29  */
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "bcm_osal.h"
   34 #include "ecore.h"
   35 #include "ecore_spq.h"
   36 #include "reg_addr.h"
   37 #include "ecore_gtt_reg_addr.h"
   38 #include "ecore_init_ops.h"
   39 #include "ecore_rt_defs.h"
   40 #include "ecore_int.h"
   41 #include "reg_addr.h"
   42 #include "ecore_hw.h"
   43 #include "ecore_sriov.h"
   44 #include "ecore_vf.h"
   45 #include "ecore_hw_defs.h"
   46 #include "ecore_hsi_common.h"
   47 #include "ecore_mcp.h"
   48 #include "ecore_dbg_fw_funcs.h"
   49 
   50 #ifdef DIAG
   51 /* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
   52  * and so the functions are lacking ecore prefix.
   53  * If there would be other clients needing this [or if the content that isn't
   54  * really optional there would increase], we'll need to re-think this.
   55  */
   56 enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
   57                                                           struct ecore_ptt *ptt,
   58                                                           enum block_id block,
   59                                                           enum dbg_attn_type attn_type,
   60                                                           bool clear_status,
   61                                                           struct dbg_attn_block_result *results);
   62 
   63 enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
   64                                                            struct dbg_attn_block_result *results);
   65 
   66 const char* dbg_get_status_str(enum dbg_status status);
   67 
   68 #define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
   69         dbg_read_attn(hwfn, ptt, id, type, clear, results)
   70 #define ecore_dbg_parse_attn(hwfn, results) \
   71         dbg_parse_attn(hwfn, results)
   72 #define ecore_dbg_get_status_str(status) \
   73         dbg_get_status_str(status)
   74 #endif
   75 
   76 struct ecore_pi_info {
   77         ecore_int_comp_cb_t comp_cb;
   78         void *cookie; /* Will be sent to the completion callback function */
   79 };
   80 
   81 struct ecore_sb_sp_info {
   82         struct ecore_sb_info sb_info;
   83         /* per protocol index data */
   84         struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
   85 };
   86 
   87 enum ecore_attention_type {
   88         ECORE_ATTN_TYPE_ATTN,
   89         ECORE_ATTN_TYPE_PARITY,
   90 };
   91 
   92 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
   93         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
   94 
   95 struct aeu_invert_reg_bit {
   96         char bit_name[30];
   97 
   98 #define ATTENTION_PARITY                (1 << 0)
   99 
  100 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
  101 #define ATTENTION_LENGTH_SHIFT          (4)
  102 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
  103                                          ATTENTION_LENGTH_SHIFT)
  104 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
  105 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
  106 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
  107                                          ATTENTION_PARITY)
  108 
  109 /* Multiple bits start with this offset */
  110 #define ATTENTION_OFFSET_MASK           (0x000ff000)
  111 #define ATTENTION_OFFSET_SHIFT          (12)
  112 
  113 #define ATTENTION_BB_MASK               (0x00700000)
  114 #define ATTENTION_BB_SHIFT              (20)
  115 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
  116 #define ATTENTION_BB_DIFFERENT          (1 << 23)
  117 
  118 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
  119         unsigned int flags;
  120 
  121         /* Callback to call if attention will be triggered */
  122         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
  123 
  124         enum block_id block_index;
  125 };
  126 
  127 struct aeu_invert_reg {
  128         struct aeu_invert_reg_bit bits[32];
  129 };
  130 
  131 #define MAX_ATTN_GRPS           (8)
  132 #define NUM_ATTN_REGS           (9)
  133 
  134 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
  135 {
  136         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
  137 
  138         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
  139                 tmp);
  140         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
  141                  0xffffffff);
  142 
  143         return ECORE_SUCCESS;
  144 }
  145 
  146 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
  147 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
  148 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
  149 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
  150 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
  151 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
  152 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
  153 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
  154 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
  155 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
  156 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
  157 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
  158 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
  159 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
  160 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
  161 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
  162 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
  163 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
  164 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
  165 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
  166 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
  167 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
  168 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
  169 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
  170 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
  171 {
  172         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
  173 
  174         /* Disabled VF access */
  175         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
  176                 u32 addr, data;
  177 
  178                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  179                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
  180                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  181                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
  182                 DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
  183                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
  184                              ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
  185                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
  186                              ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
  187                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
  188                              ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
  189                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
  190                              ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
  191                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
  192                              ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
  193                         addr);
  194         }
  195 
  196         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  197                        PSWHST_REG_INCORRECT_ACCESS_VALID);
  198         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
  199                 u32 addr, data, length;
  200 
  201                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  202                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
  203                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  204                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
  205                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  206                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
  207 
  208                 DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
  209                         addr, length,
  210                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
  211                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
  212                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
  213                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
  214                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
  215                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
  216                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
  217                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
  218                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
  219                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
  220                         (u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
  221                              ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
  222                         data);
  223         }
  224 
  225         /* TODO - We know 'some' of these are legal due to virtualization,
  226          * but is it true for all of them?
  227          */
  228         return ECORE_SUCCESS;
  229 }
  230 
  231 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
  232 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
  233 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
  234 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
  235 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
  236 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
  237 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
  238 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
  239 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
  240 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
  241 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
  242 static const char* grc_timeout_attn_master_to_str(u8 master)
  243 {
  244         switch(master) {
  245         case 1: return "PXP";
  246         case 2: return "MCP";
  247         case 3: return "MSDM";
  248         case 4: return "PSDM";
  249         case 5: return "YSDM";
  250         case 6: return "USDM";
  251         case 7: return "TSDM";
  252         case 8: return "XSDM";
  253         case 9: return "DBU";
  254         case 10: return "DMAE";
  255         default:
  256                 return "Unkown";
  257         }
  258 }
  259 
  260 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
  261 {
  262         u32 tmp, tmp2;
  263 
  264         /* We've already cleared the timeout interrupt register, so we learn
  265          * of interrupts via the validity register
  266          */
  267         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  268                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
  269         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
  270                 goto out;
  271 
  272         /* Read the GRC timeout information */
  273         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  274                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
  275         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  276                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
  277 
  278         DP_NOTICE(p_hwfn->p_dev, false,
  279                   "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
  280                   tmp2, tmp,
  281                   (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
  282                                                        : "Read from",
  283                   (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
  284                   grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
  285                                                  ECORE_GRC_ATTENTION_MASTER_SHIFT),
  286                   (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
  287                   (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
  288                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
  289                   ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
  290                   (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
  291                   ECORE_GRC_ATTENTION_VF_SHIFT);
  292 
  293 out:
  294         /* Regardles of anything else, clean the validity bit */
  295         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
  296                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
  297         return ECORE_SUCCESS;
  298 }
  299 
  300 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
  301 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
  302 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
  303 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
  304 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
  305 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
  306 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
  307 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
  308 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
  309 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
  310 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
  311 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
  312 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
  313 
  314 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
  315                                                    struct ecore_ptt *p_ptt)
  316 {
  317         u32 tmp;
  318 
  319         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
  320         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
  321                 u32 addr_lo, addr_hi, details;
  322 
  323                 addr_lo = ecore_rd(p_hwfn, p_ptt,
  324                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
  325                 addr_hi = ecore_rd(p_hwfn, p_ptt,
  326                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
  327                 details = ecore_rd(p_hwfn, p_ptt,
  328                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
  329 
  330                 DP_NOTICE(p_hwfn, false,
  331                           "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
  332                           addr_hi, addr_lo, details,
  333                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
  334                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
  335                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
  336                           tmp,
  337                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
  338                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
  339                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
  340         }
  341 
  342         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
  343         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
  344                 u32 addr_lo, addr_hi, details;
  345 
  346                 addr_lo = ecore_rd(p_hwfn, p_ptt,
  347                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
  348                 addr_hi = ecore_rd(p_hwfn, p_ptt,
  349                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
  350                 details = ecore_rd(p_hwfn, p_ptt,
  351                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
  352 
  353                 DP_NOTICE(p_hwfn, false,
  354                           "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
  355                           addr_hi, addr_lo, details,
  356                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
  357                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
  358                           (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
  359                           tmp,
  360                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
  361                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
  362                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
  363         }
  364 
  365         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
  366         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
  367                 DP_NOTICE(p_hwfn, false, "ICPL error - %08x\n", tmp);
  368 
  369         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
  370         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
  371                 u32 addr_hi, addr_lo;
  372 
  373                 addr_lo = ecore_rd(p_hwfn, p_ptt,
  374                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
  375                 addr_hi = ecore_rd(p_hwfn, p_ptt,
  376                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
  377 
  378                 DP_NOTICE(p_hwfn, false,
  379                           "ICPL error - %08x [Address %08x:%08x]\n",
  380                           tmp, addr_hi, addr_lo);
  381         }
  382 
  383         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
  384         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
  385                 u32 addr_hi, addr_lo, details;
  386 
  387                 addr_lo = ecore_rd(p_hwfn, p_ptt,
  388                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
  389                 addr_hi = ecore_rd(p_hwfn, p_ptt,
  390                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
  391                 details = ecore_rd(p_hwfn, p_ptt,
  392                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
  393 
  394                 DP_NOTICE(p_hwfn, false,
  395                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
  396                           details, tmp, addr_hi, addr_lo);
  397         }
  398 
  399         /* Clear the indications */
  400         ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
  401 
  402         return ECORE_SUCCESS;
  403 }
  404 
  405 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
  406 {
  407         return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
  408 }
  409 
  410 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
  411 {
  412         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
  413 
  414         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
  415 
  416         return ECORE_INVAL;
  417 }
  418 
  419 static enum _ecore_status_t
  420 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
  421 {
  422         DP_INFO(p_hwfn, "General attention 35!\n");
  423 
  424         return ECORE_SUCCESS;
  425 }
  426 
  427 #define ECORE_DORQ_ATTENTION_REASON_MASK        (0xfffff)
  428 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK        (0xffff)
  429 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT       (0x0)
  430 #define ECORE_DORQ_ATTENTION_SIZE_MASK          (0x7f)
  431 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT         (16)
  432 
  433 #define ECORE_DB_REC_COUNT                      10
  434 #define ECORE_DB_REC_INTERVAL                   100
  435 
  436 /* assumes sticky overflow indication was set for this PF */
  437 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
  438                                               struct ecore_ptt *p_ptt)
  439 {
  440         u8 count = ECORE_DB_REC_COUNT;
  441         u32 usage = 1;
  442 
  443         /* wait for usage to zero or count to run out. This is necessary since
  444          * EDPM doorbell transactions can take multiple 64b cycles, and as such
  445          * can "split" over the pci. Possibly, the doorbell drop can happen with
  446          * half an EDPM in the queue and other half dropped. Another EDPM
  447          * doorbell to the same address (from doorbell recovery mechanism or
  448          * from the doorbelling entity) could have first half dropped and second
  449          * half interperted as continuation of the first. To prevent such
  450          * malformed doorbells from reaching the device, flush the queue before
  451          * releaseing the overflow sticky indication.
  452          */
  453         while (count-- && usage) {
  454                 usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
  455                 OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
  456         }
  457 
  458         /* should have been depleted by now */
  459         if (usage) {
  460                 DP_NOTICE(p_hwfn->p_dev, false,
  461                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
  462                           ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
  463                 return ECORE_TIMEOUT;
  464         }
  465 
  466         /* flush any pending (e)dpm as they may never arrive */
  467         ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
  468 
  469         /* release overflow sticky indication (stop silently dropping everything) */
  470         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
  471 
  472         /* repeat all last doorbells (doorbell drop recovery) */
  473         ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
  474 
  475         return ECORE_SUCCESS;
  476 }
  477 
  478 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
  479 {
  480         u32 int_sts, first_drop_reason, details, address, overflow,
  481                 all_drops_reason;
  482         struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
  483         enum _ecore_status_t rc;
  484 
  485         int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
  486         DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
  487                   int_sts);
  488 
  489         /* int_sts may be zero since all PFs were interrupted for doorbell
  490          * overflow but another one already handled it. Can abort here. If
  491          * This PF also requires overflow recovery we will be interrupted again.
  492          * The masked almost full indication may also be set. Ignoring.
  493          */
  494         if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
  495                 return ECORE_SUCCESS;
  496 
  497         /* check if db_drop or overflow happened */
  498         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
  499                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
  500                 /* obtain data about db drop/overflow */
  501                 first_drop_reason = ecore_rd(p_hwfn, p_ptt,
  502                                   DORQ_REG_DB_DROP_REASON) &
  503                                   ECORE_DORQ_ATTENTION_REASON_MASK;
  504                 details = ecore_rd(p_hwfn, p_ptt,
  505                                    DORQ_REG_DB_DROP_DETAILS);
  506                 address = ecore_rd(p_hwfn, p_ptt,
  507                                    DORQ_REG_DB_DROP_DETAILS_ADDRESS);
  508                 overflow = ecore_rd(p_hwfn, p_ptt,
  509                                     DORQ_REG_PF_OVFL_STICKY);
  510                 all_drops_reason = ecore_rd(p_hwfn, p_ptt,
  511                                             DORQ_REG_DB_DROP_DETAILS_REASON);
  512 
  513                 /* log info */
  514                 DP_NOTICE(p_hwfn->p_dev, false,
  515                           "Doorbell drop occurred\n"
  516                           "Address\t\t0x%08x\t(second BAR address)\n"
  517                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
  518                           "Size\t\t0x%04x\t\t(in bytes)\n"
  519                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
  520                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
  521                           "Overflow\t0x%x\t\t(a per PF indication)\n",
  522                           address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
  523                           GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
  524                           first_drop_reason, all_drops_reason, overflow);
  525 
  526                 /* if this PF caused overflow, initiate recovery */
  527                 if (overflow) {
  528                         rc = ecore_db_rec_attn(p_hwfn, p_ptt);
  529                         if (rc != ECORE_SUCCESS)
  530                                 return rc;
  531                 }
  532 
  533                 /* clear the doorbell drop details and prepare for next drop */
  534                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
  535 
  536                 /* mark interrupt as handeld (note: even if drop was due to a diffrent
  537                  * reason than overflow we mark as handled)
  538                  */
  539                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
  540                          DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
  541 
  542                 /* if there are no indications otherthan drop indications, success */
  543                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
  544                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
  545                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
  546                         return ECORE_SUCCESS;
  547         }
  548 
  549         /* some other indication was present - non recoverable */
  550         DP_INFO(p_hwfn, "DORQ fatal attention\n");
  551 
  552         return ECORE_INVAL;
  553 }
  554 
  555 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
  556 {
  557 #ifndef ASIC_ONLY
  558         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
  559                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  560                                    TM_REG_INT_STS_1);
  561 
  562                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
  563                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
  564                         return ECORE_INVAL;
  565 
  566                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
  567                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
  568                         DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
  569                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
  570                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
  571                        TM_REG_INT_MASK_1_PEND_TASK_SCAN;
  572                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
  573 
  574                 return ECORE_SUCCESS;
  575         }
  576 #endif
  577 
  578         return ECORE_INVAL;
  579 }
  580 
  581 /* Instead of major changes to the data-structure, we have a some 'special'
  582  * identifiers for sources that changed meaning between adapters.
  583  */
  584 enum aeu_invert_reg_special_type {
  585         AEU_INVERT_REG_SPECIAL_CNIG_0,
  586         AEU_INVERT_REG_SPECIAL_CNIG_1,
  587         AEU_INVERT_REG_SPECIAL_CNIG_2,
  588         AEU_INVERT_REG_SPECIAL_CNIG_3,
  589         AEU_INVERT_REG_SPECIAL_MAX,
  590 };
  591 
  592 static struct aeu_invert_reg_bit
  593 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
  594         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
  595         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
  596         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
  597         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
  598 };
  599 
  600 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
  601 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
  602 {
  603         {
  604                 {       /* After Invert 1 */
  605                         {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
  606                 }
  607         },
  608 
  609         {
  610                 {       /* After Invert 2 */
  611                         {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  612                         {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  613                         {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
  614                         {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  615                         {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  616                         {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  617                         {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  618                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
  619                         {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
  620                 }
  621         },
  622 
  623         {
  624                 {       /* After Invert 3 */
  625                         {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
  626                 }
  627         },
  628 
  629         {
  630                 {       /* After Invert 4 */
  631                         {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
  632                         {"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
  633                         {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
  634                         {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
  635                                        ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
  636                         {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
  637                                           ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
  638                         {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
  639                                        ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
  640                         {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
  641                                           ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
  642                         {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
  643                         {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  644                         {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  645                         {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  646                         {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
  647                         {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
  648                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
  649                         {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
  650                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
  651                         {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
  652                         {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
  653                         {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
  654                 }
  655         },
  656 
  657         {
  658                 {       /* After Invert 5 */
  659                         {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
  660                         {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
  661                         {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
  662                         {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
  663                         {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
  664                         {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
  665                         {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
  666                         {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
  667                         {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
  668                         {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
  669                         {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
  670                         {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
  671                         {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
  672                         {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
  673                         {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
  674                         {"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
  675                 }
  676         },
  677 
  678         {
  679                 {       /* After Invert 6 */
  680                         {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
  681                         {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
  682                         {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
  683                         {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
  684                         {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
  685                         {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
  686                         {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
  687                         {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
  688                         {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
  689                         {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
  690                         {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
  691                         {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
  692                         {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
  693                         {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
  694                         {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
  695                         {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
  696                 }
  697         },
  698 
  699         {
  700                 {       /* After Invert 7 */
  701                         {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
  702                         {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
  703                         {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
  704                         {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
  705                         {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
  706                         {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
  707                         {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
  708                         {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
  709                         {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
  710                         {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
  711                         {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
  712                         {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
  713                         {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
  714                         {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
  715                         {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
  716                         {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
  717                         {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
  718                 }
  719         },
  720 
  721         {
  722                 {       /* After Invert 8 */
  723                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
  724                         {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
  725                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
  726                         {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
  727                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
  728                         {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
  729                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
  730                         {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
  731                         {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
  732                         {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
  733                         {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  734                         {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  735                         {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  736                         {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  737                         {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  738                         {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  739                         {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
  740                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
  741                         {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  742                         {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  743                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
  744                 }
  745         },
  746 
  747         {
  748                 {       /* After Invert 9 */
  749                         {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  750                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
  751                         {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  752                         {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
  753                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
  754                 }
  755         },
  756 
  757 };
  758 
  759 static struct aeu_invert_reg_bit *
  760 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
  761                         struct aeu_invert_reg_bit *p_bit)
  762 {
  763         if (!ECORE_IS_BB(p_hwfn->p_dev))
  764                 return p_bit;
  765 
  766         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
  767                 return p_bit;
  768 
  769         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
  770                                   ATTENTION_BB_SHIFT];
  771 }
  772 
  773 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
  774                                      struct aeu_invert_reg_bit *p_bit)
  775 {
  776         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
  777                   ATTENTION_PARITY);
  778 }
  779 
  780 #define ATTN_STATE_BITS         (0xfff)
  781 #define ATTN_BITS_MASKABLE      (0x3ff)
  782 struct ecore_sb_attn_info {
  783         /* Virtual & Physical address of the SB */
  784         struct atten_status_block       *sb_attn;
  785         dma_addr_t                      sb_phys;
  786 
  787         /* Last seen running index */
  788         u16                             index;
  789 
  790         /* A mask of the AEU bits resulting in a parity error */
  791         u32                             parity_mask[NUM_ATTN_REGS];
  792 
  793         /* A pointer to the attention description structure */
  794         struct aeu_invert_reg           *p_aeu_desc;
  795 
  796         /* Previously asserted attentions, which are still unasserted */
  797         u16                             known_attn;
  798 
  799         /* Cleanup address for the link's general hw attention */
  800         u32                             mfw_attn_addr;
  801 };
  802 
  803 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
  804                                  struct ecore_sb_attn_info *p_sb_desc)
  805 {
  806         u16 rc = 0, index;
  807 
  808         OSAL_MMIOWB(p_hwfn->p_dev);
  809 
  810         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
  811         if (p_sb_desc->index != index) {
  812                 p_sb_desc->index = index;
  813                 rc = ECORE_SB_ATT_IDX;
  814         }
  815 
  816         OSAL_MMIOWB(p_hwfn->p_dev);
  817 
  818         return rc;
  819 }
  820 
  821 /**
  822  * @brief ecore_int_assertion - handles asserted attention bits
  823  *
  824  * @param p_hwfn
  825  * @param asserted_bits newly asserted bits
  826  * @return enum _ecore_status_t
  827  */
  828 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
  829                                                 u16 asserted_bits)
  830 {
  831         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
  832         u32 igu_mask;
  833 
  834         /* Mask the source of the attention in the IGU */
  835         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
  836                             IGU_REG_ATTENTION_ENABLE);
  837         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
  838                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
  839         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
  840         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
  841 
  842         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
  843                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
  844                    sb_attn_sw->known_attn,
  845                    sb_attn_sw->known_attn | asserted_bits);
  846         sb_attn_sw->known_attn |= asserted_bits;
  847 
  848         /* Handle MCP events */
  849         if (asserted_bits & 0x100) {
  850                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
  851                 /* Clean the MCP attention */
  852                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
  853                          sb_attn_sw->mfw_attn_addr, 0);
  854         }
  855 
  856         /* FIXME - this will change once we'll have GOOD gtt definitions */
  857         DIRECT_REG_WR(p_hwfn,
  858                       (u8 OSAL_IOMEM*)p_hwfn->regview +
  859                       GTT_BAR0_MAP_REG_IGU_CMD +
  860                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
  861                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
  862 
  863         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
  864                    asserted_bits);
  865 
  866         return ECORE_SUCCESS;
  867 }
  868 
  869 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
  870                                  enum block_id id, enum dbg_attn_type type,
  871                                  bool b_clear)
  872 {
  873         struct dbg_attn_block_result attn_results;
  874         enum dbg_status status;
  875 
  876         OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
  877 
  878         status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
  879                                      b_clear, &attn_results);
  880 #ifdef ATTN_DESC
  881         if (status != DBG_STATUS_OK)
  882                 DP_NOTICE(p_hwfn, true,
  883                           "Failed to parse attention information [status: %s]\n",
  884                           ecore_dbg_get_status_str(status));
  885         else
  886                 ecore_dbg_parse_attn(p_hwfn, &attn_results);
  887 #else
  888         if (status != DBG_STATUS_OK)
  889                 DP_NOTICE(p_hwfn, true,
  890                           "Failed to parse attention information [status: %d]\n",
  891                           status);
  892         else
  893                 ecore_dbg_print_attn(p_hwfn, &attn_results);
  894 #endif
  895 }
  896 
  897 /**
  898  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
  899  * cause of the attention
  900  *
  901  * @param p_hwfn
  902  * @param p_aeu - descriptor of an AEU bit which caused the attention
  903  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
  904  *  this bit to this group.
  905  * @param bit_index - index of this bit in the aeu_en_reg
  906  *
  907  * @return enum _ecore_status_t
  908  */
  909 static enum _ecore_status_t
  910 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
  911                               struct aeu_invert_reg_bit *p_aeu,
  912                               u32 aeu_en_reg,
  913                               const char *p_bit_name,
  914                               u32 bitmask)
  915 {
  916         enum _ecore_status_t rc = ECORE_INVAL;
  917         bool b_fatal = false;
  918 
  919         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
  920                 p_bit_name, bitmask);
  921 
  922         /* Call callback before clearing the interrupt status */
  923         if (p_aeu->cb) {
  924                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
  925                         p_bit_name);
  926                 rc = p_aeu->cb(p_hwfn);
  927         }
  928 
  929         if (rc != ECORE_SUCCESS)
  930                 b_fatal = true;
  931 
  932         /* Print HW block interrupt registers */
  933         if (p_aeu->block_index != MAX_BLOCK_ID)
  934                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
  935                                      ATTN_TYPE_INTERRUPT, !b_fatal);
  936 
  937         /* Reach assertion if attention is fatal */
  938         if (b_fatal) {
  939                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
  940                           p_bit_name);
  941 
  942                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
  943         }
  944 
  945         /* Prevent this Attention from being asserted in the future */
  946         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
  947             p_hwfn->p_dev->attn_clr_en) {
  948                 u32 val;
  949                 u32 mask = ~bitmask;
  950                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
  951                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
  952                 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
  953                         p_bit_name);
  954         }
  955 
  956         return rc;
  957 }
  958 
  959 /**
  960  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
  961  *
  962  * @param p_hwfn
  963  * @param p_aeu - descriptor of an AEU bit which caused the parity
  964  * @param aeu_en_reg - address of the AEU enable register
  965  * @param bit_index
  966  */
  967 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
  968                                          struct aeu_invert_reg_bit *p_aeu,
  969                                          u32 aeu_en_reg, u8 bit_index)
  970 {
  971         u32 block_id = p_aeu->block_index, mask, val;
  972 
  973         DP_NOTICE(p_hwfn->p_dev, false,
  974                   "%s parity attention is set [address 0x%08x, bit %d]\n",
  975                   p_aeu->bit_name, aeu_en_reg, bit_index);
  976 
  977         if (block_id != MAX_BLOCK_ID) {
  978                 ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
  979 
  980                 /* In A0, there's a single parity bit for several blocks */
  981                 if (block_id == BLOCK_BTB) {
  982                         ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
  983                                              ATTN_TYPE_PARITY, false);
  984                         ecore_int_attn_print(p_hwfn, BLOCK_MCP,
  985                                              ATTN_TYPE_PARITY, false);
  986                 }
  987         }
  988 
  989         /* Prevent this parity error from being re-asserted */
  990         mask = ~(0x1 << bit_index);
  991         val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
  992         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
  993         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
  994                 p_aeu->bit_name);
  995 }
  996 
  997 /**
  998  * @brief - handles deassertion of previously asserted attentions.
  999  *
 1000  * @param p_hwfn
 1001  * @param deasserted_bits - newly deasserted bits
 1002  * @return enum _ecore_status_t
 1003  *
 1004  */
 1005 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
 1006                                                   u16 deasserted_bits)
 1007 {
 1008         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
 1009         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
 1010         u8 i, j, k, bit_idx;
 1011         enum _ecore_status_t rc = ECORE_SUCCESS;
 1012 
 1013         /* Read the attention registers in the AEU */
 1014         for (i = 0; i < NUM_ATTN_REGS; i++) {
 1015                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 1016                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
 1017                                           i * 0x4);
 1018                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 1019                            "Deasserted bits [%d]: %08x\n",
 1020                            i, aeu_inv_arr[i]);
 1021         }
 1022 
 1023         /* Handle parity attentions first */
 1024         for (i = 0; i < NUM_ATTN_REGS; i++)
 1025         {
 1026                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
 1027                 u32 parities;
 1028 
 1029                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
 1030                 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
 1031                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
 1032 
 1033                 /* Skip register in which no parity bit is currently set */
 1034                 if (!parities)
 1035                         continue;
 1036 
 1037                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
 1038                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
 1039 
 1040                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
 1041                             !!(parities & (1 << bit_idx)))
 1042                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
 1043                                                              aeu_en, bit_idx);
 1044 
 1045                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
 1046                 }
 1047         }
 1048 
 1049         /* Find non-parity cause for attention and act */
 1050         for (k = 0; k < MAX_ATTN_GRPS; k++) {
 1051                 struct aeu_invert_reg_bit *p_aeu;
 1052 
 1053                 /* Handle only groups whose attention is currently deasserted */
 1054                 if (!(deasserted_bits & (1 << k)))
 1055                         continue;
 1056 
 1057                 for (i = 0; i < NUM_ATTN_REGS; i++) {
 1058                         u32 bits;
 1059 
 1060                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
 1061                                  i * sizeof(u32) +
 1062                                  k * sizeof(u32) * NUM_ATTN_REGS;
 1063                         en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
 1064                         bits = aeu_inv_arr[i] & en;
 1065 
 1066                         /* Skip if no bit from this group is currently set */
 1067                         if (!bits)
 1068                                 continue;
 1069 
 1070                         /* Find all set bits from current register which belong
 1071                          * to current group, making them responsible for the
 1072                          * previous assertion.
 1073                          */
 1074                         for (j = 0, bit_idx = 0; bit_idx < 32; j++)
 1075                         {
 1076                                 long unsigned int bitmask;
 1077                                 u8 bit, bit_len;
 1078 
 1079                                 /* Need to account bits with changed meaning */
 1080                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
 1081                                 p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
 1082 
 1083                                 bit = bit_idx;
 1084                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
 1085                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
 1086                                         /* Skip Parity */
 1087                                         bit++;
 1088                                         bit_len--;
 1089                                 }
 1090 
 1091                                 /* Find the bits relating to HW-block, then
 1092                                  * shift so they'll become LSB.
 1093                                  */
 1094                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
 1095                                 bitmask >>= bit;
 1096 
 1097                                 if (bitmask) {
 1098                                         u32 flags = p_aeu->flags;
 1099                                         char bit_name[30];
 1100                                         u8 num;
 1101 
 1102                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
 1103                                                                 bit_len);
 1104 
 1105                                         /* Some bits represent more than a
 1106                                          * a single interrupt. Correctly print
 1107                                          * their name.
 1108                                          */
 1109                                         if (ATTENTION_LENGTH(flags) > 2 ||
 1110                                             ((flags & ATTENTION_PAR_INT) &&
 1111                                             ATTENTION_LENGTH(flags) > 1))
 1112                                                 OSAL_SNPRINTF(bit_name, 30,
 1113                                                               p_aeu->bit_name,
 1114                                                               num);
 1115                                         else
 1116                                                 OSAL_STRNCPY(bit_name,
 1117                                                              p_aeu->bit_name,
 1118                                                              30);
 1119 
 1120                                         /* We now need to pass bitmask in its
 1121                                          * correct position.
 1122                                          */
 1123                                         bitmask <<= bit;
 1124 
 1125                                         /* Handle source of the attention */
 1126                                         ecore_int_deassertion_aeu_bit(p_hwfn,
 1127                                                                       p_aeu,
 1128                                                                       aeu_en,
 1129                                                                       bit_name,
 1130                                                                       bitmask);
 1131                                 }
 1132 
 1133                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
 1134                         }
 1135                 }
 1136         }
 1137 
 1138         /* Clear IGU indication for the deasserted bits */
 1139         /* FIXME - this will change once we'll have GOOD gtt definitions */
 1140         DIRECT_REG_WR(p_hwfn,
 1141                       (u8 OSAL_IOMEM*)p_hwfn->regview +
 1142                                       GTT_BAR0_MAP_REG_IGU_CMD +
 1143                                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
 1144                                         IGU_CMD_INT_ACK_BASE) << 3),
 1145                       ~((u32)deasserted_bits));
 1146 
 1147         /* Unmask deasserted attentions in IGU */
 1148         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 1149                             IGU_REG_ATTENTION_ENABLE);
 1150         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
 1151         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
 1152 
 1153         /* Clear deassertion from inner state */
 1154         sb_attn_sw->known_attn &= ~deasserted_bits;
 1155 
 1156         return rc;
 1157 }
 1158 
 1159 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
 1160 {
 1161         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
 1162         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
 1163         u16 index = 0, asserted_bits, deasserted_bits;
 1164         u32 attn_bits = 0, attn_acks = 0;
 1165         enum _ecore_status_t rc = ECORE_SUCCESS;
 1166 
 1167         /* Read current attention bits/acks - safeguard against attentions
 1168          * by guaranting work on a synchronized timeframe
 1169          */
 1170         do {
 1171                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
 1172                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
 1173                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
 1174         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
 1175         p_sb_attn->sb_index = index;
 1176 
 1177         /* Attention / Deassertion are meaningful (and in correct state)
 1178          * only when they differ and consistent with known state - deassertion
 1179          * when previous attention & current ack, and assertion when current
 1180          * attention with no previous attention
 1181          */
 1182         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
 1183                         ~p_sb_attn_sw->known_attn;
 1184         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
 1185                           p_sb_attn_sw->known_attn;
 1186 
 1187         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
 1188                 DP_INFO(p_hwfn,
 1189                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
 1190                         index, attn_bits, attn_acks, asserted_bits,
 1191                         deasserted_bits, p_sb_attn_sw->known_attn);
 1192         else if (asserted_bits == 0x100)
 1193                 DP_INFO(p_hwfn,
 1194                         "MFW indication via attention\n");
 1195         else
 1196                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 1197                            "MFW indication [deassertion]\n");
 1198 
 1199         if (asserted_bits) {
 1200                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
 1201                 if (rc)
 1202                         return rc;
 1203         }
 1204 
 1205         if (deasserted_bits)
 1206                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
 1207 
 1208         return rc;
 1209 }
 1210 
 1211 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
 1212                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
 1213 {
 1214         struct igu_prod_cons_update igu_ack = { 0 };
 1215 
 1216         igu_ack.sb_id_and_flags =
 1217                 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
 1218                  (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
 1219                  (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
 1220                  (IGU_SEG_ACCESS_ATTN <<
 1221                   IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
 1222 
 1223         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
 1224 
 1225         /* Both segments (interrupts & acks) are written to same place address;
 1226          * Need to guarantee all commands will be received (in-order) by HW.
 1227          */
 1228         OSAL_MMIOWB(p_hwfn->p_dev);
 1229         OSAL_BARRIER(p_hwfn->p_dev);
 1230 }
 1231 
 1232 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
 1233 {
 1234         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
 1235         struct ecore_pi_info *pi_info = OSAL_NULL;
 1236         struct ecore_sb_attn_info *sb_attn;
 1237         struct ecore_sb_info *sb_info;
 1238         int arr_size;
 1239         u16 rc = 0;
 1240 
 1241         if (!p_hwfn)
 1242                 return;
 1243 
 1244         if (!p_hwfn->p_sp_sb) {
 1245                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
 1246                 return;
 1247         }
 1248 
 1249         sb_info = &p_hwfn->p_sp_sb->sb_info;
 1250         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
 1251         if (!sb_info) {
 1252                 DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
 1253                 return;
 1254         }
 1255 
 1256         if (!p_hwfn->p_sb_attn) {
 1257                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
 1258                 return;
 1259         }
 1260         sb_attn =  p_hwfn->p_sb_attn;
 1261 
 1262         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
 1263                    p_hwfn, p_hwfn->my_id);
 1264 
 1265         /* Disable ack for def status block. Required both for msix +
 1266          * inta in non-mask mode, in inta does no harm.
 1267          */
 1268         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
 1269 
 1270         /* Gather Interrupts/Attentions information */
 1271         if (!sb_info->sb_virt) {
 1272                 DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
 1273         } else {
 1274                 u32 tmp_index = sb_info->sb_ack;
 1275                 rc = ecore_sb_update_sb_idx(sb_info);
 1276                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
 1277                            "Interrupt indices: 0x%08x --> 0x%08x\n",
 1278                            tmp_index, sb_info->sb_ack);
 1279         }
 1280 
 1281         if (!sb_attn || !sb_attn->sb_attn) {
 1282                 DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
 1283         } else {
 1284                 u16 tmp_index = sb_attn->index;
 1285 
 1286                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
 1287                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
 1288                            "Attention indices: 0x%08x --> 0x%08x\n",
 1289                            tmp_index, sb_attn->index);
 1290         }
 1291 
 1292         /* Check if we expect interrupts at this time. if not just ack them */
 1293         if (!(rc & ECORE_SB_EVENT_MASK)) {
 1294                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
 1295                 return;
 1296         }
 1297 
 1298         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
 1299         if (!p_hwfn->p_dpc_ptt) {
 1300                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
 1301                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
 1302                 return;
 1303         }
 1304 
 1305         if (rc & ECORE_SB_ATT_IDX)
 1306                 ecore_int_attentions(p_hwfn);
 1307 
 1308         if (rc & ECORE_SB_IDX) {
 1309                 int pi;
 1310 
 1311                 /* Since we only looked at the SB index, it's possible more
 1312                  * than a single protocol-index on the SB incremented.
 1313                  * Iterate over all configured protocol indices and check
 1314                  * whether something happened for each.
 1315                  */
 1316                 for (pi = 0; pi < arr_size; pi++) {
 1317                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
 1318                         if (pi_info->comp_cb != OSAL_NULL)
 1319                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
 1320                 }
 1321         }
 1322 
 1323         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
 1324                 /* This should be done before the interrupts are enabled,
 1325                  * since otherwise a new attention will be generated.
 1326                  */
 1327                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
 1328         }
 1329 
 1330         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
 1331 }
 1332 
 1333 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
 1334 {
 1335         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
 1336 
 1337         if (!p_sb)
 1338                 return;
 1339 
 1340         if (p_sb->sb_attn) {
 1341                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
 1342                                        p_sb->sb_phys,
 1343                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
 1344         }
 1345 
 1346         OSAL_FREE(p_hwfn->p_dev, p_sb);
 1347         p_hwfn->p_sb_attn = OSAL_NULL;
 1348 }
 1349 
 1350 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
 1351                                     struct ecore_ptt *p_ptt)
 1352 {
 1353         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
 1354 
 1355         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
 1356 
 1357         sb_info->index = 0;
 1358         sb_info->known_attn = 0;
 1359 
 1360         /* Configure Attention Status Block in IGU */
 1361         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
 1362                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
 1363         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
 1364                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
 1365 }
 1366 
 1367 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
 1368                                    struct ecore_ptt *p_ptt,
 1369                                    void *sb_virt_addr,
 1370                                    dma_addr_t sb_phy_addr)
 1371 {
 1372         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
 1373         int i, j, k;
 1374 
 1375         sb_info->sb_attn = sb_virt_addr;
 1376         sb_info->sb_phys = sb_phy_addr;
 1377 
 1378         /* Set the pointer to the AEU descriptors */
 1379         sb_info->p_aeu_desc = aeu_descs;
 1380 
 1381         /* Calculate Parity Masks */
 1382         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
 1383         for (i = 0; i < NUM_ATTN_REGS; i++) {
 1384                 /* j is array index, k is bit index */
 1385                 for (j = 0, k = 0; k < 32; j++) {
 1386                         struct aeu_invert_reg_bit *p_aeu;
 1387 
 1388                         p_aeu = &aeu_descs[i].bits[j];
 1389                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
 1390                                 sb_info->parity_mask[i] |= 1 << k;
 1391 
 1392                         k += ATTENTION_LENGTH(p_aeu->flags);
 1393                 }
 1394                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 1395                            "Attn Mask [Reg %d]: 0x%08x\n",
 1396                            i, sb_info->parity_mask[i]);
 1397         }
 1398 
 1399         /* Set the address of cleanup for the mcp attention */
 1400         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
 1401                                  MISC_REG_AEU_GENERAL_ATTN_0;
 1402 
 1403         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
 1404 }
 1405 
 1406 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
 1407                                                     struct ecore_ptt *p_ptt)
 1408 {
 1409         struct ecore_dev *p_dev = p_hwfn->p_dev;
 1410         struct ecore_sb_attn_info *p_sb;
 1411         dma_addr_t p_phys = 0;
 1412         void *p_virt;
 1413 
 1414         /* SB struct */
 1415         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
 1416         if (!p_sb) {
 1417                 DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
 1418                 return ECORE_NOMEM;
 1419         }
 1420 
 1421         /* SB ring  */
 1422         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
 1423                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
 1424         if (!p_virt) {
 1425                 DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
 1426                 OSAL_FREE(p_dev, p_sb);
 1427                 return ECORE_NOMEM;
 1428         }
 1429 
 1430         /* Attention setup */
 1431         p_hwfn->p_sb_attn = p_sb;
 1432         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
 1433 
 1434         return ECORE_SUCCESS;
 1435 }
 1436 
 1437 /* coalescing timeout = timeset << (timer_res + 1) */
 1438 #define ECORE_CAU_DEF_RX_USECS 24
 1439 #define ECORE_CAU_DEF_TX_USECS 48
 1440 
 1441 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
 1442                              struct cau_sb_entry *p_sb_entry,
 1443                              u8 pf_id, u16 vf_number, u8 vf_valid)
 1444 {
 1445         struct ecore_dev *p_dev = p_hwfn->p_dev;
 1446         u32 cau_state;
 1447         u8 timer_res;
 1448 
 1449         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
 1450 
 1451         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
 1452         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
 1453         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
 1454         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
 1455         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
 1456 
 1457         cau_state = CAU_HC_DISABLE_STATE;
 1458 
 1459         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
 1460                 cau_state = CAU_HC_ENABLE_STATE;
 1461                 if (!p_dev->rx_coalesce_usecs)
 1462                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
 1463                 if (!p_dev->tx_coalesce_usecs)
 1464                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
 1465         }
 1466 
 1467         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
 1468         if (p_dev->rx_coalesce_usecs <= 0x7F)
 1469                 timer_res = 0;
 1470         else if (p_dev->rx_coalesce_usecs <= 0xFF)
 1471                 timer_res = 1;
 1472         else
 1473                 timer_res = 2;
 1474         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
 1475 
 1476         if (p_dev->tx_coalesce_usecs <= 0x7F)
 1477                 timer_res = 0;
 1478         else if (p_dev->tx_coalesce_usecs <= 0xFF)
 1479                 timer_res = 1;
 1480         else
 1481                 timer_res = 2;
 1482         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
 1483 
 1484         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
 1485         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
 1486 }
 1487 
 1488 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
 1489                                    struct ecore_ptt *p_ptt,
 1490                                    u16 igu_sb_id, u32 pi_index,
 1491                                    enum ecore_coalescing_fsm coalescing_fsm,
 1492                                    u8 timeset)
 1493 {
 1494         struct cau_pi_entry pi_entry;
 1495         u32 sb_offset, pi_offset;
 1496 
 1497         if (IS_VF(p_hwfn->p_dev))
 1498                 return;/* @@@TBD MichalK- VF CAU... */
 1499 
 1500         sb_offset = igu_sb_id * PIS_PER_SB_E4;
 1501         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
 1502 
 1503         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
 1504         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
 1505                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
 1506         else
 1507                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
 1508 
 1509         pi_offset = sb_offset + pi_index;
 1510         if (p_hwfn->hw_init_done) {
 1511                 ecore_wr(p_hwfn, p_ptt,
 1512                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
 1513                          *((u32 *)&(pi_entry)));
 1514         } else {
 1515                 STORE_RT_REG(p_hwfn,
 1516                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
 1517                              *((u32 *)&(pi_entry)));
 1518         }
 1519 }
 1520 
 1521 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
 1522                            struct ecore_ptt *p_ptt,
 1523                            struct ecore_sb_info *p_sb, u32 pi_index,
 1524                            enum ecore_coalescing_fsm coalescing_fsm,
 1525                            u8 timeset)
 1526 {
 1527         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
 1528                                pi_index, coalescing_fsm, timeset);
 1529 }
 1530 
 1531 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
 1532                            struct ecore_ptt *p_ptt,
 1533                            dma_addr_t sb_phys, u16 igu_sb_id,
 1534                            u16 vf_number, u8 vf_valid)
 1535 {
 1536         struct cau_sb_entry sb_entry;
 1537 
 1538         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
 1539                                 vf_number, vf_valid);
 1540 
 1541         if (p_hwfn->hw_init_done) {
 1542                 /* Wide-bus, initialize via DMAE */
 1543                 u64 phys_addr = (u64)sb_phys;
 1544 
 1545                 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
 1546                                     CAU_REG_SB_ADDR_MEMORY +
 1547                                     igu_sb_id * sizeof(u64), 2,
 1548                                     OSAL_NULL /* default parameters */);
 1549                 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
 1550                                     CAU_REG_SB_VAR_MEMORY +
 1551                                     igu_sb_id * sizeof(u64), 2,
 1552                                     OSAL_NULL /* default parameters */);
 1553         } else {
 1554                 /* Initialize Status Block Address */
 1555                 STORE_RT_REG_AGG(p_hwfn,
 1556                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
 1557                                  sb_phys);
 1558 
 1559                 STORE_RT_REG_AGG(p_hwfn,
 1560                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
 1561                                  sb_entry);
 1562         }
 1563 
 1564         /* Configure pi coalescing if set */
 1565         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
 1566                 /* eth will open queues for all tcs, so configure all of them
 1567                  * properly, rather than just the active ones
 1568                  */
 1569                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
 1570 
 1571                 u8 timeset, timer_res;
 1572                 u8 i;
 1573 
 1574                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
 1575                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
 1576                         timer_res = 0;
 1577                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
 1578                         timer_res = 1;
 1579                 else
 1580                         timer_res = 2;
 1581                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
 1582                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
 1583                                        ECORE_COAL_RX_STATE_MACHINE,
 1584                                        timeset);
 1585 
 1586                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
 1587                         timer_res = 0;
 1588                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
 1589                         timer_res = 1;
 1590                 else
 1591                         timer_res = 2;
 1592                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
 1593                 for (i = 0; i < num_tc; i++) {
 1594                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
 1595                                                igu_sb_id, TX_PI(i),
 1596                                                ECORE_COAL_TX_STATE_MACHINE,
 1597                                                timeset);
 1598                 }
 1599         }
 1600 }
 1601 
 1602 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
 1603                                struct ecore_ptt *p_ptt,
 1604                                struct ecore_sb_info *sb_info)
 1605 {
 1606         /* zero status block and ack counter */
 1607         sb_info->sb_ack = 0;
 1608         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
 1609 
 1610         if (IS_PF(p_hwfn->p_dev))
 1611                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
 1612                                       sb_info->igu_sb_id, 0, 0);
 1613 }
 1614 
 1615 struct ecore_igu_block *
 1616 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
 1617 {
 1618         struct ecore_igu_block *p_block;
 1619         u16 igu_id;
 1620 
 1621         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
 1622              igu_id++) {
 1623                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
 1624 
 1625                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
 1626                     !(p_block->status & ECORE_IGU_STATUS_FREE))
 1627                         continue;
 1628 
 1629                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
 1630                     b_is_pf)
 1631                         return p_block;
 1632         }
 1633 
 1634         return OSAL_NULL;
 1635 }
 1636 
 1637 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
 1638                                   u16 vector_id)
 1639 {
 1640         struct ecore_igu_block *p_block;
 1641         u16 igu_id;
 1642 
 1643         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
 1644              igu_id++) {
 1645                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
 1646 
 1647                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
 1648                     !p_block->is_pf ||
 1649                     p_block->vector_number != vector_id)
 1650                         continue;
 1651 
 1652                 return igu_id;
 1653         }
 1654 
 1655         return ECORE_SB_INVALID_IDX;
 1656 }
 1657 
 1658 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
 1659 {
 1660         u16 igu_sb_id;
 1661 
 1662         /* Assuming continuous set of IGU SBs dedicated for given PF */
 1663         if (sb_id == ECORE_SP_SB_ID)
 1664                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
 1665         else if (IS_PF(p_hwfn->p_dev))
 1666                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
 1667         else
 1668                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
 1669 
 1670         if (igu_sb_id == ECORE_SB_INVALID_IDX)
 1671                 DP_NOTICE(p_hwfn, true,
 1672                           "Slowpath SB vector %04x doesn't exist\n",
 1673                           sb_id);
 1674         else if (sb_id == ECORE_SP_SB_ID)
 1675                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 1676                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
 1677         else
 1678                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 1679                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
 1680 
 1681         return igu_sb_id;
 1682 }
 1683 
 1684 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
 1685                                        struct ecore_ptt *p_ptt,
 1686                                        struct ecore_sb_info *sb_info,
 1687                                        void *sb_virt_addr,
 1688                                        dma_addr_t sb_phy_addr,
 1689                                        u16 sb_id)
 1690 {
 1691         sb_info->sb_virt = sb_virt_addr;
 1692         sb_info->sb_phys = sb_phy_addr;
 1693 
 1694         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
 1695 
 1696         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
 1697                 return ECORE_INVAL;
 1698 
 1699         /* Let the igu info reference the client's SB info */
 1700         if (sb_id != ECORE_SP_SB_ID) {
 1701                 if (IS_PF(p_hwfn->p_dev)) {
 1702                         struct ecore_igu_info *p_info;
 1703                         struct ecore_igu_block *p_block;
 1704 
 1705                         p_info = p_hwfn->hw_info.p_igu_info;
 1706                         p_block = &p_info->entry[sb_info->igu_sb_id];
 1707 
 1708                         p_block->sb_info = sb_info;
 1709                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
 1710                         p_info->usage.free_cnt--;
 1711                 } else {
 1712                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
 1713                 }
 1714         }
 1715 
 1716 #ifdef ECORE_CONFIG_DIRECT_HWFN
 1717         sb_info->p_hwfn = p_hwfn;
 1718 #endif
 1719         sb_info->p_dev = p_hwfn->p_dev;
 1720 
 1721         /* The igu address will hold the absolute address that needs to be
 1722          * written to for a specific status block
 1723          */
 1724         if (IS_PF(p_hwfn->p_dev)) {
 1725                 sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
 1726                                     GTT_BAR0_MAP_REG_IGU_CMD +
 1727                                     (sb_info->igu_sb_id << 3);
 1728 
 1729         } else {
 1730                 sb_info->igu_addr =
 1731                         (u8 OSAL_IOMEM*)p_hwfn->regview +
 1732                         PXP_VF_BAR0_START_IGU +
 1733                         ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
 1734         }
 1735 
 1736         sb_info->flags |= ECORE_SB_INFO_INIT;
 1737 
 1738         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
 1739 
 1740         return ECORE_SUCCESS;
 1741 }
 1742 
 1743 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
 1744                                           struct ecore_sb_info *sb_info,
 1745                                           u16 sb_id)
 1746 {
 1747         struct ecore_igu_info *p_info;
 1748         struct ecore_igu_block *p_block;
 1749 
 1750         if (sb_info == OSAL_NULL)
 1751                 return ECORE_SUCCESS;
 1752 
 1753         /* zero status block and ack counter */
 1754         sb_info->sb_ack = 0;
 1755         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
 1756 
 1757         if (IS_VF(p_hwfn->p_dev)) {
 1758                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
 1759                 return ECORE_SUCCESS;
 1760         }
 1761 
 1762         p_info = p_hwfn->hw_info.p_igu_info;
 1763         p_block = &p_info->entry[sb_info->igu_sb_id];
 1764 
 1765         /* Vector 0 is reserved to Default SB */
 1766         if (p_block->vector_number == 0) {
 1767                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
 1768                 return ECORE_INVAL;
 1769         }
 1770 
 1771         /* Lose reference to client's SB info, and fix counters */
 1772         p_block->sb_info = OSAL_NULL;
 1773         p_block->status |= ECORE_IGU_STATUS_FREE;
 1774         p_info->usage.free_cnt++;
 1775 
 1776         return ECORE_SUCCESS;
 1777 }
 1778 
 1779 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
 1780 {
 1781         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
 1782 
 1783         if (!p_sb)
 1784                 return;
 1785 
 1786         if (p_sb->sb_info.sb_virt) {
 1787                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
 1788                                        p_sb->sb_info.sb_virt,
 1789                                        p_sb->sb_info.sb_phys,
 1790                                        SB_ALIGNED_SIZE(p_hwfn));
 1791         }
 1792 
 1793         OSAL_FREE(p_hwfn->p_dev, p_sb);
 1794         p_hwfn->p_sp_sb = OSAL_NULL;
 1795 }
 1796 
 1797 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
 1798                                                   struct ecore_ptt *p_ptt)
 1799 {
 1800         struct ecore_sb_sp_info *p_sb;
 1801         dma_addr_t p_phys = 0;
 1802         void *p_virt;
 1803 
 1804         /* SB struct */
 1805         p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
 1806         if (!p_sb) {
 1807                 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
 1808                 return ECORE_NOMEM;
 1809         }
 1810 
 1811         /* SB ring  */
 1812         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
 1813                                          &p_phys,
 1814                                          SB_ALIGNED_SIZE(p_hwfn));
 1815         if (!p_virt) {
 1816                 DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
 1817                 OSAL_FREE(p_hwfn->p_dev, p_sb);
 1818                 return ECORE_NOMEM;
 1819         }
 1820 
 1821         /* Status Block setup */
 1822         p_hwfn->p_sp_sb = p_sb;
 1823         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
 1824                           p_virt, p_phys, ECORE_SP_SB_ID);
 1825 
 1826         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
 1827 
 1828         return ECORE_SUCCESS;
 1829 }
 1830 
 1831 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
 1832                                            ecore_int_comp_cb_t comp_cb,
 1833                                            void *cookie,
 1834                                            u8 *sb_idx,
 1835                                            __le16 **p_fw_cons)
 1836 {
 1837         struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
 1838         enum _ecore_status_t rc = ECORE_NOMEM;
 1839         u8 pi;
 1840 
 1841         /* Look for a free index */
 1842         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
 1843                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
 1844                         continue;
 1845 
 1846                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
 1847                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
 1848                 *sb_idx = pi;
 1849                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
 1850                 rc = ECORE_SUCCESS;
 1851                 break;
 1852         }
 1853 
 1854         return rc;
 1855 }
 1856 
 1857 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
 1858                                              u8 pi)
 1859 {
 1860         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
 1861 
 1862         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
 1863                 return ECORE_NOMEM;
 1864 
 1865         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
 1866         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
 1867 
 1868         return ECORE_SUCCESS;
 1869 }
 1870 
 1871 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
 1872 {
 1873         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
 1874 }
 1875 
 1876 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
 1877                               struct ecore_ptt  *p_ptt,
 1878                               enum ecore_int_mode int_mode)
 1879 {
 1880         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
 1881 
 1882 #ifndef ASIC_ONLY
 1883         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
 1884                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
 1885                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
 1886         }
 1887 #endif
 1888 
 1889         p_hwfn->p_dev->int_mode = int_mode;
 1890         switch (p_hwfn->p_dev->int_mode) {
 1891         case ECORE_INT_MODE_INTA:
 1892                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
 1893                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
 1894                 break;
 1895 
 1896         case ECORE_INT_MODE_MSI:
 1897                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
 1898                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
 1899                 break;
 1900 
 1901         case ECORE_INT_MODE_MSIX:
 1902                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
 1903                 break;
 1904         case ECORE_INT_MODE_POLL:
 1905                 break;
 1906         }
 1907 
 1908         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
 1909 }
 1910 
 1911 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
 1912                                       struct ecore_ptt *p_ptt)
 1913 {
 1914 #ifndef ASIC_ONLY
 1915         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
 1916                 DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
 1917                 return;
 1918         }
 1919 #endif
 1920 
 1921         /* Configure AEU signal change to produce attentions */
 1922         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
 1923         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
 1924         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
 1925         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
 1926 
 1927         /* Flush the writes to IGU */
 1928         OSAL_MMIOWB(p_hwfn->p_dev);
 1929 
 1930         /* Unmask AEU signals toward IGU */
 1931         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
 1932 }
 1933 
 1934 enum _ecore_status_t
 1935 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
 1936                           enum ecore_int_mode int_mode)
 1937 {
 1938         enum _ecore_status_t rc = ECORE_SUCCESS;
 1939 
 1940         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
 1941 
 1942         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
 1943                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
 1944                 if (rc != ECORE_SUCCESS) {
 1945                         DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
 1946                         return ECORE_NORESOURCES;
 1947                 }
 1948                 p_hwfn->b_int_requested = true;
 1949         }
 1950 
 1951         /* Enable interrupt Generation */
 1952         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
 1953 
 1954         p_hwfn->b_int_enabled = 1;
 1955 
 1956         return rc;
 1957 }
 1958 
 1959 void ecore_int_igu_disable_int(struct ecore_hwfn        *p_hwfn,
 1960                                struct ecore_ptt         *p_ptt)
 1961 {
 1962         p_hwfn->b_int_enabled = 0;
 1963 
 1964         if (IS_VF(p_hwfn->p_dev))
 1965                 return;
 1966 
 1967         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
 1968 }
 1969 
 1970 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
 1971 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
 1972                                      struct ecore_ptt *p_ptt,
 1973                                      u16 igu_sb_id,
 1974                                      bool cleanup_set,
 1975                                      u16 opaque_fid)
 1976 {
 1977         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
 1978         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
 1979         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
 1980         u8  type = 0; /* FIXME MichalS type??? */
 1981 
 1982         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
 1983                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
 1984 
 1985         /* USE Control Command Register to perform cleanup. There is an
 1986          * option to do this using IGU bar, but then it can't be used for VFs.
 1987          */
 1988 
 1989         /* Set the data field */
 1990         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
 1991         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
 1992         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
 1993 
 1994         /* Set the control register */
 1995         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
 1996         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
 1997         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
 1998 
 1999         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
 2000 
 2001         OSAL_BARRIER(p_hwfn->p_dev);
 2002 
 2003         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
 2004 
 2005         /* Flush the write to IGU */
 2006         OSAL_MMIOWB(p_hwfn->p_dev);
 2007 
 2008         /* calculate where to read the status bit from */
 2009         sb_bit = 1 << (igu_sb_id % 32);
 2010         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
 2011 
 2012         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
 2013 
 2014         /* Now wait for the command to complete */
 2015         while (--sleep_cnt) {
 2016                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
 2017                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
 2018                         break;
 2019                 OSAL_MSLEEP(5);
 2020         }
 2021 
 2022         if (!sleep_cnt)
 2023                 DP_NOTICE(p_hwfn, true,
 2024                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
 2025                           val, igu_sb_id);
 2026 }
 2027 
 2028 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
 2029                                        struct ecore_ptt *p_ptt,
 2030                                        u16 igu_sb_id, u16 opaque, bool b_set)
 2031 {
 2032         struct ecore_igu_block *p_block;
 2033         int pi, i;
 2034 
 2035         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
 2036         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 2037                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
 2038                    igu_sb_id, p_block->function_id, p_block->is_pf,
 2039                    p_block->vector_number);
 2040 
 2041         /* Set */
 2042         if (b_set)
 2043                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
 2044 
 2045         /* Clear */
 2046         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
 2047 
 2048         /* Wait for the IGU SB to cleanup */
 2049         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
 2050                 u32 val;
 2051 
 2052                 val = ecore_rd(p_hwfn, p_ptt,
 2053                                IGU_REG_WRITE_DONE_PENDING +
 2054                                ((igu_sb_id / 32) * 4));
 2055                 if (val & (1 << (igu_sb_id % 32)))
 2056                         OSAL_UDELAY(10);
 2057                 else
 2058                         break;
 2059         }
 2060         if (i == IGU_CLEANUP_SLEEP_LENGTH)
 2061                 DP_NOTICE(p_hwfn, true,
 2062                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
 2063                           igu_sb_id);
 2064 
 2065         /* Clear the CAU for the SB */
 2066         for (pi = 0; pi < 12; pi++)
 2067                 ecore_wr(p_hwfn, p_ptt,
 2068                          CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
 2069 }
 2070 
 2071 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
 2072                                  struct ecore_ptt *p_ptt,
 2073                                  bool b_set,
 2074                                  bool b_slowpath)
 2075 {
 2076         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
 2077         struct ecore_igu_block *p_block;
 2078         u16 igu_sb_id = 0;
 2079         u32 val = 0;
 2080 
 2081         /* @@@TBD MichalK temporary... should be moved to init-tool... */
 2082         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
 2083         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
 2084         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
 2085         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
 2086         /* end temporary */
 2087 
 2088         for (igu_sb_id = 0;
 2089              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
 2090              igu_sb_id++) {
 2091                 p_block = &p_info->entry[igu_sb_id];
 2092 
 2093                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
 2094                     !p_block->is_pf ||
 2095                     (p_block->status & ECORE_IGU_STATUS_DSB))
 2096                         continue;
 2097 
 2098                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
 2099                                                   p_hwfn->hw_info.opaque_fid,
 2100                                                   b_set);
 2101         }
 2102 
 2103         if (b_slowpath)
 2104                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
 2105                                                   p_info->igu_dsb_id,
 2106                                                   p_hwfn->hw_info.opaque_fid,
 2107                                                   b_set);
 2108 }
 2109 
 2110 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
 2111                             struct ecore_ptt *p_ptt)
 2112 {
 2113         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
 2114         struct ecore_igu_block *p_block;
 2115         int pf_sbs, vf_sbs;
 2116         u16 igu_sb_id;
 2117         u32 val, rval;
 2118 
 2119         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
 2120                 /* We're using an old MFW - have to prevent any switching
 2121                  * of SBs between PF and VFs as later driver wouldn't be
 2122                  * able to tell which belongs to which.
 2123                  */
 2124                 p_info->b_allow_pf_vf_change = false;
 2125         } else {
 2126                 /* Use the numbers the MFW have provided -
 2127                  * don't forget MFW accounts for the default SB as well.
 2128                  */
 2129                 p_info->b_allow_pf_vf_change = true;
 2130 
 2131                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
 2132                         DP_INFO(p_hwfn,
 2133                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
 2134                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
 2135                                 p_info->usage.cnt);
 2136                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
 2137                 }
 2138 
 2139                 /* TODO - how do we learn about VF SBs from MFW? */
 2140                 if (IS_PF_SRIOV(p_hwfn)) {
 2141                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
 2142 
 2143                         if (vfs != p_info->usage.iov_cnt)
 2144                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 2145                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
 2146                                            p_info->usage.iov_cnt, vfs);
 2147 
 2148                         /* At this point we know how many SBs we have totally
 2149                          * in IGU + number of PF SBs. So we can validate that
 2150                          * we'd have sufficient for VF.
 2151                          */
 2152                         if (vfs > p_info->usage.free_cnt +
 2153                                   p_info->usage.free_cnt_iov -
 2154                                   p_info->usage.cnt) {
 2155                                 DP_NOTICE(p_hwfn, true,
 2156                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
 2157                                           p_info->usage.free_cnt +
 2158                                           p_info->usage.free_cnt_iov,
 2159                                           p_info->usage.cnt, vfs);
 2160                                 return ECORE_INVAL;
 2161                         }
 2162                 }
 2163         }
 2164 
 2165         /* Cap the number of VFs SBs by the number of VFs */
 2166         if (IS_PF_SRIOV(p_hwfn))
 2167                 p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
 2168 
 2169         /* Mark all SBs as free, now in the right PF/VFs division */
 2170         p_info->usage.free_cnt = p_info->usage.cnt;
 2171         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
 2172         p_info->usage.orig = p_info->usage.cnt;
 2173         p_info->usage.iov_orig = p_info->usage.iov_cnt;
 2174 
 2175         /* We now proceed to re-configure the IGU cam to reflect the initial
 2176          * configuration. We can start with the Default SB.
 2177          */
 2178         pf_sbs = p_info->usage.cnt;
 2179         vf_sbs = p_info->usage.iov_cnt;
 2180 
 2181         for (igu_sb_id = p_info->igu_dsb_id;
 2182              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
 2183              igu_sb_id++) {
 2184                 p_block = &p_info->entry[igu_sb_id];
 2185                 val = 0;
 2186 
 2187                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
 2188                         continue;
 2189 
 2190                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
 2191                         p_block->function_id = p_hwfn->rel_pf_id;
 2192                         p_block->is_pf = 1;
 2193                         p_block->vector_number = 0;
 2194                         p_block->status = ECORE_IGU_STATUS_VALID |
 2195                                           ECORE_IGU_STATUS_PF |
 2196                                           ECORE_IGU_STATUS_DSB;
 2197                 } else if (pf_sbs) {
 2198                         pf_sbs--;
 2199                         p_block->function_id = p_hwfn->rel_pf_id;
 2200                         p_block->is_pf = 1;
 2201                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
 2202                         p_block->status = ECORE_IGU_STATUS_VALID |
 2203                                           ECORE_IGU_STATUS_PF |
 2204                                           ECORE_IGU_STATUS_FREE;
 2205                 } else if (vf_sbs) {
 2206                         p_block->function_id =
 2207                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
 2208                                 p_info->usage.iov_cnt - vf_sbs;
 2209                         p_block->is_pf = 0;
 2210                         p_block->vector_number = 0;
 2211                         p_block->status = ECORE_IGU_STATUS_VALID |
 2212                                           ECORE_IGU_STATUS_FREE;
 2213                         vf_sbs--;
 2214                 } else {
 2215                         p_block->function_id = 0;
 2216                         p_block->is_pf = 0;
 2217                         p_block->vector_number = 0;
 2218                 }
 2219 
 2220                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
 2221                           p_block->function_id);
 2222                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
 2223                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
 2224                           p_block->vector_number);
 2225 
 2226                 /* VF entries would be enabled when VF is initializaed */
 2227                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
 2228 
 2229                 rval = ecore_rd(p_hwfn, p_ptt,
 2230                                 IGU_REG_MAPPING_MEMORY +
 2231                                 sizeof(u32) * igu_sb_id);
 2232 
 2233                 if (rval != val) {
 2234                         ecore_wr(p_hwfn, p_ptt,
 2235                                  IGU_REG_MAPPING_MEMORY +
 2236                                  sizeof(u32) * igu_sb_id,
 2237                                  val);
 2238 
 2239                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 2240                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
 2241                                    igu_sb_id, p_block->function_id,
 2242                                    p_block->is_pf, p_block->vector_number,
 2243                                    rval, val);
 2244                 }
 2245         }
 2246 
 2247         return 0;
 2248 }
 2249 
 2250 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
 2251                                     struct ecore_ptt *p_ptt)
 2252 {
 2253         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
 2254 
 2255         /* Return all the usage indications to default prior to the reset;
 2256          * The reset expects the !orig to reflect the initial status of the
 2257          * SBs, and would re-calculate the originals based on those.
 2258          */
 2259         p_cnt->cnt = p_cnt->orig;
 2260         p_cnt->free_cnt = p_cnt->orig;
 2261         p_cnt->iov_cnt = p_cnt->iov_orig;
 2262         p_cnt->free_cnt_iov = p_cnt->iov_orig;
 2263         p_cnt->orig = 0;
 2264         p_cnt->iov_orig = 0;
 2265 
 2266         /* TODO - we probably need to re-configure the CAU as well... */
 2267         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
 2268 }
 2269 
 2270 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
 2271                                          struct ecore_ptt *p_ptt,
 2272                                          u16 igu_sb_id)
 2273 {
 2274         u32 val = ecore_rd(p_hwfn, p_ptt,
 2275                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
 2276         struct ecore_igu_block *p_block;
 2277 
 2278         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
 2279 
 2280         /* Fill the block information */
 2281         p_block->function_id = GET_FIELD(val,
 2282                                          IGU_MAPPING_LINE_FUNCTION_NUMBER);
 2283         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
 2284         p_block->vector_number = GET_FIELD(val,
 2285                                            IGU_MAPPING_LINE_VECTOR_NUMBER);
 2286         p_block->igu_sb_id = igu_sb_id;
 2287 }
 2288 
 2289 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
 2290                                             struct ecore_ptt *p_ptt)
 2291 {
 2292         struct ecore_igu_info *p_igu_info;
 2293         struct ecore_igu_block *p_block;
 2294         u32 min_vf = 0, max_vf = 0;
 2295         u16 igu_sb_id;
 2296 
 2297         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
 2298                                                  GFP_KERNEL,
 2299                                                  sizeof(*p_igu_info));
 2300         if (!p_hwfn->hw_info.p_igu_info)
 2301                 return ECORE_NOMEM;
 2302         p_igu_info = p_hwfn->hw_info.p_igu_info;
 2303 
 2304         /* Distinguish between existent and onn-existent default SB */
 2305         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
 2306 
 2307         /* Find the range of VF ids whose SB belong to this PF */
 2308         if (p_hwfn->p_dev->p_iov_info) {
 2309                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
 2310 
 2311                 min_vf = p_iov->first_vf_in_pf;
 2312                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
 2313         }
 2314 
 2315         for (igu_sb_id = 0;
 2316              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
 2317              igu_sb_id++) {
 2318                 /* Read current entry; Notice it might not belong to this PF */
 2319                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
 2320                 p_block = &p_igu_info->entry[igu_sb_id];
 2321 
 2322                 if ((p_block->is_pf) &&
 2323                     (p_block->function_id == p_hwfn->rel_pf_id)) {
 2324                         p_block->status = ECORE_IGU_STATUS_PF |
 2325                                           ECORE_IGU_STATUS_VALID |
 2326                                           ECORE_IGU_STATUS_FREE;
 2327 
 2328                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
 2329                                 p_igu_info->usage.cnt++;
 2330                 } else if (!(p_block->is_pf) &&
 2331                            (p_block->function_id >= min_vf) &&
 2332                            (p_block->function_id < max_vf)) {
 2333                         /* Available for VFs of this PF */
 2334                         p_block->status = ECORE_IGU_STATUS_VALID |
 2335                                           ECORE_IGU_STATUS_FREE;
 2336 
 2337                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
 2338                                 p_igu_info->usage.iov_cnt++;
 2339                 }
 2340 
 2341                 /* Mark the First entry belonging to the PF or its VFs
 2342                  * as the default SB [we'll reset IGU prior to first usage].
 2343                  */
 2344                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
 2345                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
 2346                         p_igu_info->igu_dsb_id = igu_sb_id;
 2347                         p_block->status |= ECORE_IGU_STATUS_DSB;
 2348                 }
 2349 
 2350                 /* While this isn't suitable for all clients, limit number
 2351                  * of prints by having each PF print only its entries with the
 2352                  * exception of PF0 which would print everything.
 2353                  */
 2354                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
 2355                     (p_hwfn->abs_pf_id == 0))
 2356                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 2357                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
 2358                                    igu_sb_id, p_block->function_id,
 2359                                    p_block->is_pf, p_block->vector_number);
 2360         }
 2361 
 2362         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
 2363                 DP_NOTICE(p_hwfn, true,
 2364                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
 2365                           p_igu_info->igu_dsb_id);
 2366                 return ECORE_INVAL;
 2367         }
 2368 
 2369         /* All non default SB are considered free at this point */
 2370         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
 2371         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
 2372 
 2373         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 2374                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
 2375                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
 2376                    p_igu_info->usage.iov_cnt);
 2377 
 2378         return ECORE_SUCCESS;
 2379 }
 2380 
 2381 enum _ecore_status_t
 2382 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
 2383                           u16 sb_id, bool b_to_vf)
 2384 {
 2385         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
 2386         struct ecore_igu_block *p_block = OSAL_NULL;
 2387         u16 igu_sb_id = 0, vf_num = 0;
 2388         u32 val = 0;
 2389 
 2390         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
 2391                 return ECORE_INVAL;
 2392 
 2393         if (sb_id == ECORE_SP_SB_ID)
 2394                 return ECORE_INVAL;
 2395 
 2396         if (!p_info->b_allow_pf_vf_change) {
 2397                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
 2398                 return ECORE_INVAL;
 2399         }
 2400 
 2401         /* If we're moving a SB from PF to VF, the client had to specify
 2402          * which vector it wants to move.
 2403          */
 2404         if (b_to_vf) {
 2405                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
 2406                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
 2407                         return ECORE_INVAL;
 2408         }
 2409 
 2410         /* If we're moving a SB from VF to PF, need to validate there isn't
 2411          * already a line configured for that vector.
 2412          */
 2413         if (!b_to_vf) {
 2414                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
 2415                     ECORE_SB_INVALID_IDX)
 2416                         return ECORE_INVAL;
 2417         }
 2418 
 2419         /* We need to validate that the SB can actually be relocated.
 2420          * This would also handle the previous case where we've explicitly
 2421          * stated which IGU SB needs to move.
 2422          */
 2423         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
 2424              igu_sb_id++) {
 2425                 p_block = &p_info->entry[igu_sb_id];
 2426 
 2427                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
 2428                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
 2429                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
 2430                         if (b_to_vf)
 2431                                 return ECORE_INVAL;
 2432                         else
 2433                                 continue;
 2434                 }
 2435 
 2436                 break;
 2437         }
 2438 
 2439         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
 2440                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
 2441                            "Failed to find a free SB to move\n");
 2442                 return ECORE_INVAL;
 2443         }
 2444 
 2445         if (p_block == OSAL_NULL) {
 2446                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
 2447                            "SB address (p_block) is NULL\n");
 2448                 return ECORE_INVAL;
 2449         }
 2450 
 2451         /* At this point, p_block points to the SB we want to relocate */
 2452         if (b_to_vf) {
 2453                 p_block->status &= ~ECORE_IGU_STATUS_PF;
 2454 
 2455                 /* It doesn't matter which VF number we choose, since we're
 2456                  * going to disable the line; But let's keep it in range.
 2457                  */
 2458                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
 2459 
 2460                 p_block->function_id = (u8)vf_num;
 2461                 p_block->is_pf = 0;
 2462                 p_block->vector_number = 0;
 2463 
 2464                 p_info->usage.cnt--;
 2465                 p_info->usage.free_cnt--;
 2466                 p_info->usage.iov_cnt++;
 2467                 p_info->usage.free_cnt_iov++;
 2468 
 2469                 /* TODO - if SBs aren't really the limiting factor,
 2470                  * then it might not be accurate [in the since that
 2471                  * we might not need decrement the feature].
 2472                  */
 2473                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
 2474                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
 2475         } else {
 2476                 p_block->status |= ECORE_IGU_STATUS_PF;
 2477                 p_block->function_id = p_hwfn->rel_pf_id;
 2478                 p_block->is_pf = 1;
 2479                 p_block->vector_number = sb_id + 1;
 2480 
 2481                 p_info->usage.cnt++;
 2482                 p_info->usage.free_cnt++;
 2483                 p_info->usage.iov_cnt--;
 2484                 p_info->usage.free_cnt_iov--;
 2485 
 2486                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
 2487                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
 2488         }
 2489 
 2490         /* Update the IGU and CAU with the new configuration */
 2491         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
 2492                   p_block->function_id);
 2493         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
 2494         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
 2495         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
 2496                   p_block->vector_number);
 2497 
 2498         ecore_wr(p_hwfn, p_ptt,
 2499                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
 2500                  val);
 2501 
 2502         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
 2503                               igu_sb_id, vf_num,
 2504                               p_block->is_pf ? 0 : 1);
 2505 
 2506         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
 2507                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
 2508                    igu_sb_id, p_block->function_id,
 2509                    p_block->is_pf, p_block->vector_number);
 2510 
 2511         return ECORE_SUCCESS;
 2512 }
 2513 
 2514 /**
 2515  * @brief Initialize igu runtime registers
 2516  *
 2517  * @param p_hwfn
 2518  */
 2519 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
 2520 {
 2521         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
 2522 
 2523         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
 2524 }
 2525 
 2526 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
 2527                           IGU_CMD_INT_ACK_BASE)
 2528 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
 2529                           IGU_CMD_INT_ACK_BASE)
 2530 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
 2531 {
 2532         u32 intr_status_hi = 0, intr_status_lo = 0;
 2533         u64 intr_status = 0;
 2534 
 2535         intr_status_lo = REG_RD(p_hwfn,
 2536                                 GTT_BAR0_MAP_REG_IGU_CMD +
 2537                                 LSB_IGU_CMD_ADDR * 8);
 2538         intr_status_hi = REG_RD(p_hwfn,
 2539                                 GTT_BAR0_MAP_REG_IGU_CMD +
 2540                                 MSB_IGU_CMD_ADDR * 8);
 2541         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
 2542 
 2543         return intr_status;
 2544 }
 2545 
 2546 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
 2547 {
 2548         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
 2549         p_hwfn->b_sp_dpc_enabled = true;
 2550 }
 2551 
 2552 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
 2553 {
 2554         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
 2555         if (!p_hwfn->sp_dpc)
 2556                 return ECORE_NOMEM;
 2557 
 2558         return ECORE_SUCCESS;
 2559 }
 2560 
 2561 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
 2562 {
 2563         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
 2564         p_hwfn->sp_dpc = OSAL_NULL;
 2565 }
 2566 
 2567 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
 2568                                      struct ecore_ptt *p_ptt)
 2569 {
 2570         enum _ecore_status_t rc = ECORE_SUCCESS;
 2571 
 2572         rc = ecore_int_sp_dpc_alloc(p_hwfn);
 2573         if (rc != ECORE_SUCCESS) {
 2574                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
 2575                 return rc;
 2576         }
 2577 
 2578         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
 2579         if (rc != ECORE_SUCCESS) {
 2580                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
 2581                 return rc;
 2582         }
 2583 
 2584         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
 2585         if (rc != ECORE_SUCCESS)
 2586                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
 2587 
 2588         return rc;
 2589 }
 2590 
 2591 void ecore_int_free(struct ecore_hwfn *p_hwfn)
 2592 {
 2593         ecore_int_sp_sb_free(p_hwfn);
 2594         ecore_int_sb_attn_free(p_hwfn);
 2595         ecore_int_sp_dpc_free(p_hwfn);
 2596 }
 2597 
 2598 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
 2599 {
 2600         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
 2601                 return;
 2602 
 2603         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
 2604         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
 2605         ecore_int_sp_dpc_setup(p_hwfn);
 2606 }
 2607 
 2608 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
 2609                            struct ecore_sb_cnt_info *p_sb_cnt_info)
 2610 {
 2611         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
 2612 
 2613         if (!p_igu_info || !p_sb_cnt_info)
 2614                 return;
 2615 
 2616         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
 2617                     sizeof(*p_sb_cnt_info));
 2618 }
 2619 
 2620 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
 2621 {
 2622         int i;
 2623 
 2624         for_each_hwfn(p_dev, i)
 2625                 p_dev->hwfns[i].b_int_requested = false;
 2626 }
 2627 
 2628 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
 2629 {
 2630         p_dev->attn_clr_en = clr_enable;
 2631 }
 2632 
 2633 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
 2634                                              struct ecore_ptt *p_ptt,
 2635                                              u8 timer_res, u16 sb_id, bool tx)
 2636 {
 2637         struct cau_sb_entry sb_entry;
 2638         enum _ecore_status_t rc;
 2639 
 2640         if (!p_hwfn->hw_init_done) {
 2641                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
 2642                 return ECORE_INVAL;
 2643         }
 2644 
 2645         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
 2646                                  sb_id * sizeof(u64),
 2647                                  (u64)(osal_uintptr_t)&sb_entry, 2,
 2648                                  OSAL_NULL /* default parameters */);
 2649         if (rc != ECORE_SUCCESS) {
 2650                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
 2651                 return rc;
 2652         }
 2653 
 2654         if (tx)
 2655                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
 2656         else
 2657                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
 2658 
 2659         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
 2660                                  (u64)(osal_uintptr_t)&sb_entry,
 2661                                  CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
 2662                                  OSAL_NULL /* default parameters */);
 2663         if (rc != ECORE_SUCCESS) {
 2664                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
 2665                 return rc;
 2666         }
 2667 
 2668         return rc;
 2669 }
 2670 
 2671 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
 2672                                           struct ecore_ptt *p_ptt,
 2673                                           struct ecore_sb_info *p_sb,
 2674                                           struct ecore_sb_info_dbg *p_info)
 2675 {
 2676         u16 sbid = p_sb->igu_sb_id;
 2677         int i;
 2678 
 2679         if (IS_VF(p_hwfn->p_dev))
 2680                 return ECORE_INVAL;
 2681 
 2682         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
 2683                 return ECORE_INVAL;
 2684 
 2685         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
 2686                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
 2687         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
 2688                                     IGU_REG_CONSUMER_MEM + sbid * 4);
 2689 
 2690         for (i = 0; i < PIS_PER_SB_E4; i++)
 2691                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
 2692                                               CAU_REG_PI_MEMORY +
 2693                                               sbid * 4 * PIS_PER_SB_E4 + i * 4);
 2694 
 2695         return ECORE_SUCCESS;
 2696 }

Cache object: ca2e320cdda79e06267a3bfc5c3bca4b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.