FreeBSD/Linux Kernel Cross Reference
sys/dev/qlxge/qls_os.c
1 /*
2 * Copyright (c) 2013-2014 Qlogic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * File: qls_os.c
30 * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36
37 #include "qls_os.h"
38 #include "qls_hw.h"
39 #include "qls_def.h"
40 #include "qls_inline.h"
41 #include "qls_ver.h"
42 #include "qls_glbl.h"
43 #include "qls_dbg.h"
44 #include <sys/smp.h>
45
46 /*
47 * Some PCI Configuration Space Related Defines
48 */
49
50 #ifndef PCI_VENDOR_QLOGIC
51 #define PCI_VENDOR_QLOGIC 0x1077
52 #endif
53
54 #ifndef PCI_DEVICE_QLOGIC_8000
55 #define PCI_DEVICE_QLOGIC_8000 0x8000
56 #endif
57
58 #define PCI_QLOGIC_DEV8000 \
59 ((PCI_DEVICE_QLOGIC_8000 << 16) | PCI_VENDOR_QLOGIC)
60
61 /*
62 * static functions
63 */
64 static int qls_alloc_parent_dma_tag(qla_host_t *ha);
65 static void qls_free_parent_dma_tag(qla_host_t *ha);
66
67 static void qls_flush_xmt_bufs(qla_host_t *ha);
68
69 static int qls_alloc_rcv_bufs(qla_host_t *ha);
70 static void qls_free_rcv_bufs(qla_host_t *ha);
71
72 static void qls_init_ifnet(device_t dev, qla_host_t *ha);
73 static void qls_release(qla_host_t *ha);
74 static void qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
75 int error);
76 static void qls_stop(qla_host_t *ha);
77 static int qls_send(qla_host_t *ha, struct mbuf **m_headp);
78 static void qls_tx_done(void *context, int pending);
79
80 static int qls_config_lro(qla_host_t *ha);
81 static void qls_free_lro(qla_host_t *ha);
82
83 static void qls_error_recovery(void *context, int pending);
84
85 /*
86 * Hooks to the Operating Systems
87 */
88 static int qls_pci_probe (device_t);
89 static int qls_pci_attach (device_t);
90 static int qls_pci_detach (device_t);
91
92 static void qls_start(struct ifnet *ifp);
93 static void qls_init(void *arg);
94 static int qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
95 static int qls_media_change(struct ifnet *ifp);
96 static void qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
97
98 static device_method_t qla_pci_methods[] = {
99 /* Device interface */
100 DEVMETHOD(device_probe, qls_pci_probe),
101 DEVMETHOD(device_attach, qls_pci_attach),
102 DEVMETHOD(device_detach, qls_pci_detach),
103 { 0, 0 }
104 };
105
106 static driver_t qla_pci_driver = {
107 "ql", qla_pci_methods, sizeof (qla_host_t),
108 };
109
110 static devclass_t qla8000_devclass;
111
112 DRIVER_MODULE(qla8000, pci, qla_pci_driver, qla8000_devclass, 0, 0);
113
114 MODULE_DEPEND(qla8000, pci, 1, 1, 1);
115 MODULE_DEPEND(qla8000, ether, 1, 1, 1);
116
117 MALLOC_DEFINE(M_QLA8000BUF, "qla8000buf", "Buffers for qla8000 driver");
118
119 static char dev_str[64];
120 static char ver_str[64];
121
122 /*
123 * Name: qls_pci_probe
124 * Function: Validate the PCI device to be a QLA80XX device
125 */
126 static int
127 qls_pci_probe(device_t dev)
128 {
129 switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
130 case PCI_QLOGIC_DEV8000:
131 snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
132 "Qlogic ISP 8000 PCI CNA Adapter-Ethernet Function",
133 QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
134 QLA_VERSION_BUILD);
135 snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
136 QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
137 QLA_VERSION_BUILD);
138 device_set_desc(dev, dev_str);
139 break;
140 default:
141 return (ENXIO);
142 }
143
144 if (bootverbose)
145 printf("%s: %s\n ", __func__, dev_str);
146
147 return (BUS_PROBE_DEFAULT);
148 }
149
150 static int
151 qls_sysctl_get_drvr_stats(SYSCTL_HANDLER_ARGS)
152 {
153 int err = 0, ret;
154 qla_host_t *ha;
155 uint32_t i;
156
157 err = sysctl_handle_int(oidp, &ret, 0, req);
158
159 if (err || !req->newptr)
160 return (err);
161
162 if (ret == 1) {
163
164 ha = (qla_host_t *)arg1;
165
166 for (i = 0; i < ha->num_tx_rings; i++) {
167
168 device_printf(ha->pci_dev,
169 "%s: tx_ring[%d].tx_frames= %p\n",
170 __func__, i,
171 (void *)ha->tx_ring[i].tx_frames);
172
173 device_printf(ha->pci_dev,
174 "%s: tx_ring[%d].tx_tso_frames= %p\n",
175 __func__, i,
176 (void *)ha->tx_ring[i].tx_tso_frames);
177
178 device_printf(ha->pci_dev,
179 "%s: tx_ring[%d].tx_vlan_frames= %p\n",
180 __func__, i,
181 (void *)ha->tx_ring[i].tx_vlan_frames);
182
183 device_printf(ha->pci_dev,
184 "%s: tx_ring[%d].txr_free= 0x%08x\n",
185 __func__, i,
186 ha->tx_ring[i].txr_free);
187
188 device_printf(ha->pci_dev,
189 "%s: tx_ring[%d].txr_next= 0x%08x\n",
190 __func__, i,
191 ha->tx_ring[i].txr_next);
192
193 device_printf(ha->pci_dev,
194 "%s: tx_ring[%d].txr_done= 0x%08x\n",
195 __func__, i,
196 ha->tx_ring[i].txr_done);
197
198 device_printf(ha->pci_dev,
199 "%s: tx_ring[%d].txr_cons_idx= 0x%08x\n",
200 __func__, i,
201 *(ha->tx_ring[i].txr_cons_vaddr));
202 }
203
204 for (i = 0; i < ha->num_rx_rings; i++) {
205
206 device_printf(ha->pci_dev,
207 "%s: rx_ring[%d].rx_int= %p\n",
208 __func__, i,
209 (void *)ha->rx_ring[i].rx_int);
210
211 device_printf(ha->pci_dev,
212 "%s: rx_ring[%d].rss_int= %p\n",
213 __func__, i,
214 (void *)ha->rx_ring[i].rss_int);
215
216 device_printf(ha->pci_dev,
217 "%s: rx_ring[%d].lbq_next= 0x%08x\n",
218 __func__, i,
219 ha->rx_ring[i].lbq_next);
220
221 device_printf(ha->pci_dev,
222 "%s: rx_ring[%d].lbq_free= 0x%08x\n",
223 __func__, i,
224 ha->rx_ring[i].lbq_free);
225
226 device_printf(ha->pci_dev,
227 "%s: rx_ring[%d].lbq_in= 0x%08x\n",
228 __func__, i,
229 ha->rx_ring[i].lbq_in);
230
231 device_printf(ha->pci_dev,
232 "%s: rx_ring[%d].sbq_next= 0x%08x\n",
233 __func__, i,
234 ha->rx_ring[i].sbq_next);
235
236 device_printf(ha->pci_dev,
237 "%s: rx_ring[%d].sbq_free= 0x%08x\n",
238 __func__, i,
239 ha->rx_ring[i].sbq_free);
240
241 device_printf(ha->pci_dev,
242 "%s: rx_ring[%d].sbq_in= 0x%08x\n",
243 __func__, i,
244 ha->rx_ring[i].sbq_in);
245 }
246
247 device_printf(ha->pci_dev, "%s: err_m_getcl = 0x%08x\n",
248 __func__, ha->err_m_getcl);
249 device_printf(ha->pci_dev, "%s: err_m_getjcl = 0x%08x\n",
250 __func__, ha->err_m_getjcl);
251 device_printf(ha->pci_dev,
252 "%s: err_tx_dmamap_create = 0x%08x\n",
253 __func__, ha->err_tx_dmamap_create);
254 device_printf(ha->pci_dev,
255 "%s: err_tx_dmamap_load = 0x%08x\n",
256 __func__, ha->err_tx_dmamap_load);
257 device_printf(ha->pci_dev,
258 "%s: err_tx_defrag = 0x%08x\n",
259 __func__, ha->err_tx_defrag);
260 }
261 return (err);
262 }
263
264 static void
265 qls_add_sysctls(qla_host_t *ha)
266 {
267 device_t dev = ha->pci_dev;
268
269 SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
270 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
271 OID_AUTO, "version", CTLFLAG_RD,
272 ver_str, 0, "Driver Version");
273
274 qls_dbg_level = 0;
275 SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
276 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
277 OID_AUTO, "debug", CTLFLAG_RW,
278 &qls_dbg_level, qls_dbg_level, "Debug Level");
279
280 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
281 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
282 OID_AUTO, "drvr_stats", CTLTYPE_INT | CTLFLAG_RW,
283 (void *)ha, 0,
284 qls_sysctl_get_drvr_stats, "I", "Driver Maintained Statistics");
285
286 return;
287 }
288
289 static void
290 qls_watchdog(void *arg)
291 {
292 qla_host_t *ha = arg;
293 struct ifnet *ifp;
294
295 ifp = ha->ifp;
296
297 if (ha->flags.qla_watchdog_exit) {
298 ha->qla_watchdog_exited = 1;
299 return;
300 }
301 ha->qla_watchdog_exited = 0;
302
303 if (!ha->flags.qla_watchdog_pause) {
304
305 if (ha->qla_initiate_recovery) {
306
307 ha->qla_watchdog_paused = 1;
308 ha->qla_initiate_recovery = 0;
309 ha->err_inject = 0;
310 taskqueue_enqueue(ha->err_tq, &ha->err_task);
311
312 } else if ((ifp->if_snd.ifq_head != NULL) && QL_RUNNING(ifp)) {
313
314 taskqueue_enqueue(ha->tx_tq, &ha->tx_task);
315 }
316
317 ha->qla_watchdog_paused = 0;
318 } else {
319 ha->qla_watchdog_paused = 1;
320 }
321
322 ha->watchdog_ticks = ha->watchdog_ticks++ % 1000;
323 callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
324 qls_watchdog, ha);
325
326 return;
327 }
328
329 /*
330 * Name: qls_pci_attach
331 * Function: attaches the device to the operating system
332 */
333 static int
334 qls_pci_attach(device_t dev)
335 {
336 qla_host_t *ha = NULL;
337 int i;
338
339 QL_DPRINT2((dev, "%s: enter\n", __func__));
340
341 if ((ha = device_get_softc(dev)) == NULL) {
342 device_printf(dev, "cannot get softc\n");
343 return (ENOMEM);
344 }
345
346 memset(ha, 0, sizeof (qla_host_t));
347
348 if (pci_get_device(dev) != PCI_DEVICE_QLOGIC_8000) {
349 device_printf(dev, "device is not QLE8000\n");
350 return (ENXIO);
351 }
352
353 ha->pci_func = pci_get_function(dev);
354
355 ha->pci_dev = dev;
356
357 pci_enable_busmaster(dev);
358
359 ha->reg_rid = PCIR_BAR(1);
360 ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
361 RF_ACTIVE);
362
363 if (ha->pci_reg == NULL) {
364 device_printf(dev, "unable to map any ports\n");
365 goto qls_pci_attach_err;
366 }
367
368 ha->reg_rid1 = PCIR_BAR(3);
369 ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
370 &ha->reg_rid1, RF_ACTIVE);
371
372 if (ha->pci_reg1 == NULL) {
373 device_printf(dev, "unable to map any ports\n");
374 goto qls_pci_attach_err;
375 }
376
377 mtx_init(&ha->hw_lock, "qla80xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
378 mtx_init(&ha->tx_lock, "qla80xx_tx_lock", MTX_NETWORK_LOCK, MTX_DEF);
379
380 qls_add_sysctls(ha);
381 qls_hw_add_sysctls(ha);
382
383 ha->flags.lock_init = 1;
384
385 ha->msix_count = pci_msix_count(dev);
386
387 if (ha->msix_count < qls_get_msix_count(ha)) {
388 device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
389 ha->msix_count);
390 goto qls_pci_attach_err;
391 }
392
393 ha->msix_count = qls_get_msix_count(ha);
394
395 device_printf(dev, "\n%s: ha %p pci_func 0x%x msix_count 0x%x"
396 " pci_reg %p pci_reg1 %p\n", __func__, ha,
397 ha->pci_func, ha->msix_count, ha->pci_reg, ha->pci_reg1);
398
399 if (pci_alloc_msix(dev, &ha->msix_count)) {
400 device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
401 ha->msix_count);
402 ha->msix_count = 0;
403 goto qls_pci_attach_err;
404 }
405
406 for (i = 0; i < ha->num_rx_rings; i++) {
407 ha->irq_vec[i].cq_idx = i;
408 ha->irq_vec[i].ha = ha;
409 ha->irq_vec[i].irq_rid = 1 + i;
410
411 ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
412 &ha->irq_vec[i].irq_rid,
413 (RF_ACTIVE | RF_SHAREABLE));
414
415 if (ha->irq_vec[i].irq == NULL) {
416 device_printf(dev, "could not allocate interrupt\n");
417 goto qls_pci_attach_err;
418 }
419
420 if (bus_setup_intr(dev, ha->irq_vec[i].irq,
421 (INTR_TYPE_NET | INTR_MPSAFE), NULL, qls_isr,
422 &ha->irq_vec[i], &ha->irq_vec[i].handle)) {
423 device_printf(dev,
424 "could not setup interrupt\n");
425 goto qls_pci_attach_err;
426 }
427 }
428
429 qls_rd_nic_params(ha);
430
431 /* allocate parent dma tag */
432 if (qls_alloc_parent_dma_tag(ha)) {
433 device_printf(dev, "%s: qls_alloc_parent_dma_tag failed\n",
434 __func__);
435 goto qls_pci_attach_err;
436 }
437
438 /* alloc all dma buffers */
439 if (qls_alloc_dma(ha)) {
440 device_printf(dev, "%s: qls_alloc_dma failed\n", __func__);
441 goto qls_pci_attach_err;
442 }
443
444 /* create the o.s ethernet interface */
445 qls_init_ifnet(dev, ha);
446
447 ha->flags.qla_watchdog_active = 1;
448 ha->flags.qla_watchdog_pause = 1;
449
450 TASK_INIT(&ha->tx_task, 0, qls_tx_done, ha);
451 ha->tx_tq = taskqueue_create_fast("qla_txq", M_NOWAIT,
452 taskqueue_thread_enqueue, &ha->tx_tq);
453 taskqueue_start_threads(&ha->tx_tq, 1, PI_NET, "%s txq",
454 device_get_nameunit(ha->pci_dev));
455
456 callout_init(&ha->tx_callout, 1);
457 ha->flags.qla_callout_init = 1;
458
459 /* create ioctl device interface */
460 if (qls_make_cdev(ha)) {
461 device_printf(dev, "%s: qls_make_cdev failed\n", __func__);
462 goto qls_pci_attach_err;
463 }
464
465 callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
466 qls_watchdog, ha);
467
468 TASK_INIT(&ha->err_task, 0, qls_error_recovery, ha);
469 ha->err_tq = taskqueue_create_fast("qla_errq", M_NOWAIT,
470 taskqueue_thread_enqueue, &ha->err_tq);
471 taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
472 device_get_nameunit(ha->pci_dev));
473
474 QL_DPRINT2((dev, "%s: exit 0\n", __func__));
475 return (0);
476
477 qls_pci_attach_err:
478
479 qls_release(ha);
480
481 QL_DPRINT2((dev, "%s: exit ENXIO\n", __func__));
482 return (ENXIO);
483 }
484
485 /*
486 * Name: qls_pci_detach
487 * Function: Unhooks the device from the operating system
488 */
489 static int
490 qls_pci_detach(device_t dev)
491 {
492 qla_host_t *ha = NULL;
493 struct ifnet *ifp;
494
495 QL_DPRINT2((dev, "%s: enter\n", __func__));
496
497 if ((ha = device_get_softc(dev)) == NULL) {
498 device_printf(dev, "cannot get softc\n");
499 return (ENOMEM);
500 }
501
502 ifp = ha->ifp;
503
504 (void)QLA_LOCK(ha, __func__, 0);
505 qls_stop(ha);
506 QLA_UNLOCK(ha, __func__);
507
508 qls_release(ha);
509
510 QL_DPRINT2((dev, "%s: exit\n", __func__));
511
512 return (0);
513 }
514
515 /*
516 * Name: qls_release
517 * Function: Releases the resources allocated for the device
518 */
519 static void
520 qls_release(qla_host_t *ha)
521 {
522 device_t dev;
523 int i;
524
525 dev = ha->pci_dev;
526
527 if (ha->err_tq) {
528 taskqueue_drain(ha->err_tq, &ha->err_task);
529 taskqueue_free(ha->err_tq);
530 }
531
532 if (ha->tx_tq) {
533 taskqueue_drain(ha->tx_tq, &ha->tx_task);
534 taskqueue_free(ha->tx_tq);
535 }
536
537 qls_del_cdev(ha);
538
539 if (ha->flags.qla_watchdog_active) {
540 ha->flags.qla_watchdog_exit = 1;
541
542 while (ha->qla_watchdog_exited == 0)
543 qls_mdelay(__func__, 1);
544 }
545
546 if (ha->flags.qla_callout_init)
547 callout_stop(&ha->tx_callout);
548
549 if (ha->ifp != NULL)
550 ether_ifdetach(ha->ifp);
551
552 qls_free_dma(ha);
553 qls_free_parent_dma_tag(ha);
554
555 for (i = 0; i < ha->num_rx_rings; i++) {
556
557 if (ha->irq_vec[i].handle) {
558 (void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
559 ha->irq_vec[i].handle);
560 }
561
562 if (ha->irq_vec[i].irq) {
563 (void)bus_release_resource(dev, SYS_RES_IRQ,
564 ha->irq_vec[i].irq_rid,
565 ha->irq_vec[i].irq);
566 }
567 }
568
569 if (ha->msix_count)
570 pci_release_msi(dev);
571
572 if (ha->flags.lock_init) {
573 mtx_destroy(&ha->tx_lock);
574 mtx_destroy(&ha->hw_lock);
575 }
576
577 if (ha->pci_reg)
578 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
579 ha->pci_reg);
580
581 if (ha->pci_reg1)
582 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
583 ha->pci_reg1);
584 }
585
586 /*
587 * DMA Related Functions
588 */
589
590 static void
591 qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
592 {
593 *((bus_addr_t *)arg) = 0;
594
595 if (error) {
596 printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
597 return;
598 }
599
600 *((bus_addr_t *)arg) = segs[0].ds_addr;
601
602 return;
603 }
604
605 int
606 qls_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
607 {
608 int ret = 0;
609 device_t dev;
610 bus_addr_t b_addr;
611
612 dev = ha->pci_dev;
613
614 QL_DPRINT2((dev, "%s: enter\n", __func__));
615
616 ret = bus_dma_tag_create(
617 ha->parent_tag,/* parent */
618 dma_buf->alignment,
619 ((bus_size_t)(1ULL << 32)),/* boundary */
620 BUS_SPACE_MAXADDR, /* lowaddr */
621 BUS_SPACE_MAXADDR, /* highaddr */
622 NULL, NULL, /* filter, filterarg */
623 dma_buf->size, /* maxsize */
624 1, /* nsegments */
625 dma_buf->size, /* maxsegsize */
626 0, /* flags */
627 NULL, NULL, /* lockfunc, lockarg */
628 &dma_buf->dma_tag);
629
630 if (ret) {
631 device_printf(dev, "%s: could not create dma tag\n", __func__);
632 goto qls_alloc_dmabuf_exit;
633 }
634 ret = bus_dmamem_alloc(dma_buf->dma_tag,
635 (void **)&dma_buf->dma_b,
636 (BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
637 &dma_buf->dma_map);
638 if (ret) {
639 bus_dma_tag_destroy(dma_buf->dma_tag);
640 device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
641 goto qls_alloc_dmabuf_exit;
642 }
643
644 ret = bus_dmamap_load(dma_buf->dma_tag,
645 dma_buf->dma_map,
646 dma_buf->dma_b,
647 dma_buf->size,
648 qls_dmamap_callback,
649 &b_addr, BUS_DMA_NOWAIT);
650
651 if (ret || !b_addr) {
652 bus_dma_tag_destroy(dma_buf->dma_tag);
653 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
654 dma_buf->dma_map);
655 ret = -1;
656 goto qls_alloc_dmabuf_exit;
657 }
658
659 dma_buf->dma_addr = b_addr;
660
661 qls_alloc_dmabuf_exit:
662 QL_DPRINT2((dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
663 __func__, ret, (void *)dma_buf->dma_tag,
664 (void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
665 dma_buf->size));
666
667 return ret;
668 }
669
670 void
671 qls_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
672 {
673 bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
674 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
675 bus_dma_tag_destroy(dma_buf->dma_tag);
676 }
677
678 static int
679 qls_alloc_parent_dma_tag(qla_host_t *ha)
680 {
681 int ret;
682 device_t dev;
683
684 dev = ha->pci_dev;
685
686 /*
687 * Allocate parent DMA Tag
688 */
689 ret = bus_dma_tag_create(
690 bus_get_dma_tag(dev), /* parent */
691 1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
692 BUS_SPACE_MAXADDR, /* lowaddr */
693 BUS_SPACE_MAXADDR, /* highaddr */
694 NULL, NULL, /* filter, filterarg */
695 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
696 0, /* nsegments */
697 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
698 0, /* flags */
699 NULL, NULL, /* lockfunc, lockarg */
700 &ha->parent_tag);
701
702 if (ret) {
703 device_printf(dev, "%s: could not create parent dma tag\n",
704 __func__);
705 return (-1);
706 }
707
708 ha->flags.parent_tag = 1;
709
710 return (0);
711 }
712
713 static void
714 qls_free_parent_dma_tag(qla_host_t *ha)
715 {
716 if (ha->flags.parent_tag) {
717 bus_dma_tag_destroy(ha->parent_tag);
718 ha->flags.parent_tag = 0;
719 }
720 }
721
722 /*
723 * Name: qls_init_ifnet
724 * Function: Creates the Network Device Interface and Registers it with the O.S
725 */
726
727 static void
728 qls_init_ifnet(device_t dev, qla_host_t *ha)
729 {
730 struct ifnet *ifp;
731
732 QL_DPRINT2((dev, "%s: enter\n", __func__));
733
734 ifp = ha->ifp = if_alloc(IFT_ETHER);
735
736 if (ifp == NULL)
737 panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
738
739 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
740 ifp->if_baudrate = IF_Gbps(10);
741 ifp->if_init = qls_init;
742 ifp->if_softc = ha;
743 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
744 ifp->if_ioctl = qls_ioctl;
745 ifp->if_start = qls_start;
746
747 IFQ_SET_MAXLEN(&ifp->if_snd, qls_get_ifq_snd_maxlen(ha));
748 ifp->if_snd.ifq_drv_maxlen = qls_get_ifq_snd_maxlen(ha);
749 IFQ_SET_READY(&ifp->if_snd);
750
751 ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
752 if (ha->max_frame_size <= MCLBYTES) {
753 ha->msize = MCLBYTES;
754 } else if (ha->max_frame_size <= MJUMPAGESIZE) {
755 ha->msize = MJUMPAGESIZE;
756 } else
757 ha->msize = MJUM9BYTES;
758
759 ether_ifattach(ifp, qls_get_mac_addr(ha));
760
761 ifp->if_capabilities = IFCAP_JUMBO_MTU;
762
763 ifp->if_capabilities |= IFCAP_HWCSUM;
764 ifp->if_capabilities |= IFCAP_VLAN_MTU;
765
766 ifp->if_capabilities |= IFCAP_TSO4;
767 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
768 ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
769 ifp->if_capabilities |= IFCAP_LINKSTATE;
770
771 ifp->if_capenable = ifp->if_capabilities;
772
773 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
774
775 ifmedia_init(&ha->media, IFM_IMASK, qls_media_change, qls_media_status);
776
777 ifmedia_add(&ha->media, (IFM_ETHER | qls_get_optics(ha) | IFM_FDX), 0,
778 NULL);
779 ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
780
781 ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
782
783 QL_DPRINT2((dev, "%s: exit\n", __func__));
784
785 return;
786 }
787
788 static void
789 qls_init_locked(qla_host_t *ha)
790 {
791 struct ifnet *ifp = ha->ifp;
792
793 qls_stop(ha);
794
795 qls_flush_xmt_bufs(ha);
796
797 if (qls_alloc_rcv_bufs(ha) != 0)
798 return;
799
800 if (qls_config_lro(ha))
801 return;
802
803 bcopy(IF_LLADDR(ha->ifp), ha->mac_addr, ETHER_ADDR_LEN);
804
805 ifp->if_hwassist = CSUM_IP;
806 ifp->if_hwassist |= CSUM_TCP;
807 ifp->if_hwassist |= CSUM_UDP;
808 ifp->if_hwassist |= CSUM_TSO;
809
810 if (qls_init_hw_if(ha) == 0) {
811 ifp = ha->ifp;
812 ifp->if_drv_flags |= IFF_DRV_RUNNING;
813 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
814 ha->flags.qla_watchdog_pause = 0;
815 }
816
817 return;
818 }
819
820 static void
821 qls_init(void *arg)
822 {
823 qla_host_t *ha;
824
825 ha = (qla_host_t *)arg;
826
827 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
828
829 (void)QLA_LOCK(ha, __func__, 0);
830 qls_init_locked(ha);
831 QLA_UNLOCK(ha, __func__);
832
833 QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
834 }
835
836 static void
837 qls_set_multi(qla_host_t *ha, uint32_t add_multi)
838 {
839 uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
840 struct ifmultiaddr *ifma;
841 int mcnt = 0;
842 struct ifnet *ifp = ha->ifp;
843
844 if_maddr_rlock(ifp);
845
846 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
847
848 if (ifma->ifma_addr->sa_family != AF_LINK)
849 continue;
850
851 if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
852 break;
853
854 bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
855 &mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
856
857 mcnt++;
858 }
859
860 if_maddr_runlock(ifp);
861
862 if (QLA_LOCK(ha, __func__, 1) == 0) {
863 qls_hw_set_multi(ha, mta, mcnt, add_multi);
864 QLA_UNLOCK(ha, __func__);
865 }
866
867 return;
868 }
869
870 static int
871 qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
872 {
873 int ret = 0;
874 struct ifreq *ifr = (struct ifreq *)data;
875 struct ifaddr *ifa = (struct ifaddr *)data;
876 qla_host_t *ha;
877
878 ha = (qla_host_t *)ifp->if_softc;
879
880 switch (cmd) {
881 case SIOCSIFADDR:
882 QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
883 __func__, cmd));
884
885 if (ifa->ifa_addr->sa_family == AF_INET) {
886 ifp->if_flags |= IFF_UP;
887 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
888 (void)QLA_LOCK(ha, __func__, 0);
889 qls_init_locked(ha);
890 QLA_UNLOCK(ha, __func__);
891 }
892 QL_DPRINT4((ha->pci_dev,
893 "%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
894 __func__, cmd,
895 ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
896
897 arp_ifinit(ifp, ifa);
898 } else {
899 ether_ioctl(ifp, cmd, data);
900 }
901 break;
902
903 case SIOCSIFMTU:
904 QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
905 __func__, cmd));
906
907 if (ifr->ifr_mtu > QLA_MAX_MTU) {
908 ret = EINVAL;
909 } else {
910 (void) QLA_LOCK(ha, __func__, 0);
911
912 ifp->if_mtu = ifr->ifr_mtu;
913 ha->max_frame_size =
914 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
915
916 QLA_UNLOCK(ha, __func__);
917
918 if (ret)
919 ret = EINVAL;
920 }
921
922 break;
923
924 case SIOCSIFFLAGS:
925 QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
926 __func__, cmd));
927
928 (void)QLA_LOCK(ha, __func__, 0);
929
930 if (ifp->if_flags & IFF_UP) {
931 if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
932 if ((ifp->if_flags ^ ha->if_flags) &
933 IFF_PROMISC) {
934 ret = qls_set_promisc(ha);
935 } else if ((ifp->if_flags ^ ha->if_flags) &
936 IFF_ALLMULTI) {
937 ret = qls_set_allmulti(ha);
938 }
939 } else {
940 ha->max_frame_size = ifp->if_mtu +
941 ETHER_HDR_LEN + ETHER_CRC_LEN;
942 qls_init_locked(ha);
943 }
944 } else {
945 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
946 qls_stop(ha);
947 ha->if_flags = ifp->if_flags;
948 }
949
950 QLA_UNLOCK(ha, __func__);
951 break;
952
953 case SIOCADDMULTI:
954 QL_DPRINT4((ha->pci_dev,
955 "%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
956
957 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
958 qls_set_multi(ha, 1);
959 }
960 break;
961
962 case SIOCDELMULTI:
963 QL_DPRINT4((ha->pci_dev,
964 "%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
965
966 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
967 qls_set_multi(ha, 0);
968 }
969 break;
970
971 case SIOCSIFMEDIA:
972 case SIOCGIFMEDIA:
973 QL_DPRINT4((ha->pci_dev,
974 "%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
975 __func__, cmd));
976 ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
977 break;
978
979 case SIOCSIFCAP:
980 {
981 int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
982
983 QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
984 __func__, cmd));
985
986 if (mask & IFCAP_HWCSUM)
987 ifp->if_capenable ^= IFCAP_HWCSUM;
988 if (mask & IFCAP_TSO4)
989 ifp->if_capenable ^= IFCAP_TSO4;
990 if (mask & IFCAP_VLAN_HWTAGGING)
991 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
992 if (mask & IFCAP_VLAN_HWTSO)
993 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
994
995 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
996 qls_init(ha);
997
998 VLAN_CAPABILITIES(ifp);
999 break;
1000 }
1001
1002 default:
1003 QL_DPRINT4((ha->pci_dev, "%s: default (0x%lx)\n",
1004 __func__, cmd));
1005 ret = ether_ioctl(ifp, cmd, data);
1006 break;
1007 }
1008
1009 return (ret);
1010 }
1011
1012 static int
1013 qls_media_change(struct ifnet *ifp)
1014 {
1015 qla_host_t *ha;
1016 struct ifmedia *ifm;
1017 int ret = 0;
1018
1019 ha = (qla_host_t *)ifp->if_softc;
1020
1021 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1022
1023 ifm = &ha->media;
1024
1025 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1026 ret = EINVAL;
1027
1028 QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
1029
1030 return (ret);
1031 }
1032
1033 static void
1034 qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1035 {
1036 qla_host_t *ha;
1037
1038 ha = (qla_host_t *)ifp->if_softc;
1039
1040 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1041
1042 ifmr->ifm_status = IFM_AVALID;
1043 ifmr->ifm_active = IFM_ETHER;
1044
1045 qls_update_link_state(ha);
1046 if (ha->link_up) {
1047 ifmr->ifm_status |= IFM_ACTIVE;
1048 ifmr->ifm_active |= (IFM_FDX | qls_get_optics(ha));
1049 }
1050
1051 QL_DPRINT2((ha->pci_dev, "%s: exit (%s)\n", __func__,\
1052 (ha->link_up ? "link_up" : "link_down")));
1053
1054 return;
1055 }
1056
1057 static void
1058 qls_start(struct ifnet *ifp)
1059 {
1060 int i, ret = 0;
1061 struct mbuf *m_head;
1062 qla_host_t *ha = (qla_host_t *)ifp->if_softc;
1063
1064 QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
1065
1066 if (!mtx_trylock(&ha->tx_lock)) {
1067 QL_DPRINT8((ha->pci_dev,
1068 "%s: mtx_trylock(&ha->tx_lock) failed\n", __func__));
1069 return;
1070 }
1071
1072 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) ==
1073 IFF_DRV_RUNNING) {
1074
1075 for (i = 0; i < ha->num_tx_rings; i++) {
1076 ret |= qls_hw_tx_done(ha, i);
1077 }
1078
1079 if (ret == 0)
1080 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1081 }
1082
1083 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1084 IFF_DRV_RUNNING) {
1085 QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
1086 QLA_TX_UNLOCK(ha);
1087 return;
1088 }
1089
1090 if (!ha->link_up) {
1091 qls_update_link_state(ha);
1092 if (!ha->link_up) {
1093 QL_DPRINT8((ha->pci_dev, "%s: link down\n", __func__));
1094 QLA_TX_UNLOCK(ha);
1095 return;
1096 }
1097 }
1098
1099 while (ifp->if_snd.ifq_head != NULL) {
1100
1101 IF_DEQUEUE(&ifp->if_snd, m_head);
1102
1103 if (m_head == NULL) {
1104 QL_DPRINT8((ha->pci_dev, "%s: m_head == NULL\n",
1105 __func__));
1106 break;
1107 }
1108
1109 if (qls_send(ha, &m_head)) {
1110 if (m_head == NULL)
1111 break;
1112 QL_DPRINT8((ha->pci_dev, "%s: PREPEND\n", __func__));
1113 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1114 IF_PREPEND(&ifp->if_snd, m_head);
1115 break;
1116 }
1117 /* Send a copy of the frame to the BPF listener */
1118 ETHER_BPF_MTAP(ifp, m_head);
1119 }
1120
1121 QLA_TX_UNLOCK(ha);
1122 QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
1123 return;
1124 }
1125
1126 static int
1127 qls_send(qla_host_t *ha, struct mbuf **m_headp)
1128 {
1129 bus_dma_segment_t segs[QLA_MAX_SEGMENTS];
1130 bus_dmamap_t map;
1131 int nsegs;
1132 int ret = -1;
1133 uint32_t tx_idx;
1134 struct mbuf *m_head = *m_headp;
1135 uint32_t txr_idx = 0;
1136
1137 QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
1138
1139 /* check if flowid is set */
1140 if (M_HASHTYPE_GET(m_head) != M_HASHTYPE_NONE)
1141 txr_idx = m_head->m_pkthdr.flowid & (ha->num_tx_rings - 1);
1142
1143 tx_idx = ha->tx_ring[txr_idx].txr_next;
1144
1145 map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
1146
1147 ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
1148 BUS_DMA_NOWAIT);
1149
1150 if (ret == EFBIG) {
1151
1152 struct mbuf *m;
1153
1154 QL_DPRINT8((ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
1155 m_head->m_pkthdr.len));
1156
1157 m = m_defrag(m_head, M_NOWAIT);
1158 if (m == NULL) {
1159 ha->err_tx_defrag++;
1160 m_freem(m_head);
1161 *m_headp = NULL;
1162 device_printf(ha->pci_dev,
1163 "%s: m_defrag() = NULL [%d]\n",
1164 __func__, ret);
1165 return (ENOBUFS);
1166 }
1167 m_head = m;
1168 *m_headp = m_head;
1169
1170 if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
1171 segs, &nsegs, BUS_DMA_NOWAIT))) {
1172
1173 ha->err_tx_dmamap_load++;
1174
1175 device_printf(ha->pci_dev,
1176 "%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
1177 __func__, ret, m_head->m_pkthdr.len);
1178
1179 if (ret != ENOMEM) {
1180 m_freem(m_head);
1181 *m_headp = NULL;
1182 }
1183 return (ret);
1184 }
1185
1186 } else if (ret) {
1187
1188 ha->err_tx_dmamap_load++;
1189
1190 device_printf(ha->pci_dev,
1191 "%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
1192 __func__, ret, m_head->m_pkthdr.len);
1193
1194 if (ret != ENOMEM) {
1195 m_freem(m_head);
1196 *m_headp = NULL;
1197 }
1198 return (ret);
1199 }
1200
1201 QL_ASSERT(ha, (nsegs != 0), ("qls_send: empty packet"));
1202
1203 bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
1204
1205 if (!(ret = qls_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx))) {
1206
1207 ha->tx_ring[txr_idx].count++;
1208 ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
1209 ha->tx_ring[txr_idx].tx_buf[tx_idx].map = map;
1210 } else {
1211 if (ret == EINVAL) {
1212 if (m_head)
1213 m_freem(m_head);
1214 *m_headp = NULL;
1215 }
1216 }
1217
1218 QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
1219 return (ret);
1220 }
1221
1222 static void
1223 qls_stop(qla_host_t *ha)
1224 {
1225 struct ifnet *ifp = ha->ifp;
1226 device_t dev;
1227
1228 dev = ha->pci_dev;
1229
1230 ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1231
1232 ha->flags.qla_watchdog_pause = 1;
1233
1234 while (!ha->qla_watchdog_paused)
1235 qls_mdelay(__func__, 1);
1236
1237 qls_del_hw_if(ha);
1238
1239 qls_free_lro(ha);
1240
1241 qls_flush_xmt_bufs(ha);
1242 qls_free_rcv_bufs(ha);
1243
1244 return;
1245 }
1246
1247 /*
1248 * Buffer Management Functions for Transmit and Receive Rings
1249 */
1250 /*
1251 * Release mbuf after it sent on the wire
1252 */
1253 static void
1254 qls_flush_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
1255 {
1256 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1257
1258 if (txb->m_head) {
1259
1260 bus_dmamap_unload(ha->tx_tag, txb->map);
1261
1262 m_freem(txb->m_head);
1263 txb->m_head = NULL;
1264 }
1265
1266 QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
1267 }
1268
1269 static void
1270 qls_flush_xmt_bufs(qla_host_t *ha)
1271 {
1272 int i, j;
1273
1274 for (j = 0; j < ha->num_tx_rings; j++) {
1275 for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
1276 qls_flush_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
1277 }
1278
1279 return;
1280 }
1281
1282
1283 static int
1284 qls_alloc_rcv_mbufs(qla_host_t *ha, int r)
1285 {
1286 int i, j, ret = 0;
1287 qla_rx_buf_t *rxb;
1288 qla_rx_ring_t *rx_ring;
1289 volatile q81_bq_addr_e_t *sbq_e;
1290
1291
1292 rx_ring = &ha->rx_ring[r];
1293
1294 for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1295
1296 rxb = &rx_ring->rx_buf[i];
1297
1298 ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map);
1299
1300 if (ret) {
1301 device_printf(ha->pci_dev,
1302 "%s: dmamap[%d, %d] failed\n", __func__, r, i);
1303
1304 for (j = 0; j < i; j++) {
1305 rxb = &rx_ring->rx_buf[j];
1306 bus_dmamap_destroy(ha->rx_tag, rxb->map);
1307 }
1308 goto qls_alloc_rcv_mbufs_err;
1309 }
1310 }
1311
1312 rx_ring = &ha->rx_ring[r];
1313
1314 sbq_e = rx_ring->sbq_vaddr;
1315
1316 rxb = &rx_ring->rx_buf[0];
1317
1318 for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1319
1320 if (!(ret = qls_get_mbuf(ha, rxb, NULL))) {
1321
1322 /*
1323 * set the physical address in the
1324 * corresponding descriptor entry in the
1325 * receive ring/queue for the hba
1326 */
1327
1328 sbq_e->addr_lo = rxb->paddr & 0xFFFFFFFF;
1329 sbq_e->addr_hi = (rxb->paddr >> 32) & 0xFFFFFFFF;
1330
1331 } else {
1332 device_printf(ha->pci_dev,
1333 "%s: qls_get_mbuf [%d, %d] failed\n",
1334 __func__, r, i);
1335 bus_dmamap_destroy(ha->rx_tag, rxb->map);
1336 goto qls_alloc_rcv_mbufs_err;
1337 }
1338
1339 rxb++;
1340 sbq_e++;
1341 }
1342 return 0;
1343
1344 qls_alloc_rcv_mbufs_err:
1345 return (-1);
1346 }
1347
1348 static void
1349 qls_free_rcv_bufs(qla_host_t *ha)
1350 {
1351 int i, r;
1352 qla_rx_buf_t *rxb;
1353 qla_rx_ring_t *rxr;
1354
1355 for (r = 0; r < ha->num_rx_rings; r++) {
1356
1357 rxr = &ha->rx_ring[r];
1358
1359 for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1360
1361 rxb = &rxr->rx_buf[i];
1362
1363 if (rxb->m_head != NULL) {
1364 bus_dmamap_unload(ha->rx_tag, rxb->map);
1365 bus_dmamap_destroy(ha->rx_tag, rxb->map);
1366 m_freem(rxb->m_head);
1367 }
1368 }
1369 bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
1370 }
1371 return;
1372 }
1373
1374 static int
1375 qls_alloc_rcv_bufs(qla_host_t *ha)
1376 {
1377 int r, ret = 0;
1378 qla_rx_ring_t *rxr;
1379
1380 for (r = 0; r < ha->num_rx_rings; r++) {
1381 rxr = &ha->rx_ring[r];
1382 bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
1383 }
1384
1385 for (r = 0; r < ha->num_rx_rings; r++) {
1386
1387 ret = qls_alloc_rcv_mbufs(ha, r);
1388
1389 if (ret)
1390 qls_free_rcv_bufs(ha);
1391 }
1392
1393 return (ret);
1394 }
1395
1396 int
1397 qls_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
1398 {
1399 struct mbuf *mp = nmp;
1400 struct ifnet *ifp;
1401 int ret = 0;
1402 uint32_t offset;
1403 bus_dma_segment_t segs[1];
1404 int nsegs;
1405
1406 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1407
1408 ifp = ha->ifp;
1409
1410 if (mp == NULL) {
1411
1412 mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, ha->msize);
1413
1414 if (mp == NULL) {
1415
1416 if (ha->msize == MCLBYTES)
1417 ha->err_m_getcl++;
1418 else
1419 ha->err_m_getjcl++;
1420
1421 ret = ENOBUFS;
1422 device_printf(ha->pci_dev,
1423 "%s: m_getcl failed\n", __func__);
1424 goto exit_qls_get_mbuf;
1425 }
1426 mp->m_len = mp->m_pkthdr.len = ha->msize;
1427 } else {
1428 mp->m_len = mp->m_pkthdr.len = ha->msize;
1429 mp->m_data = mp->m_ext.ext_buf;
1430 mp->m_next = NULL;
1431 }
1432
1433 /* align the receive buffers to 8 byte boundary */
1434 offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
1435 if (offset) {
1436 offset = 8 - offset;
1437 m_adj(mp, offset);
1438 }
1439
1440 /*
1441 * Using memory from the mbuf cluster pool, invoke the bus_dma
1442 * machinery to arrange the memory mapping.
1443 */
1444 ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
1445 mp, segs, &nsegs, BUS_DMA_NOWAIT);
1446 rxb->paddr = segs[0].ds_addr;
1447
1448 if (ret || !rxb->paddr || (nsegs != 1)) {
1449 m_freem(mp);
1450 rxb->m_head = NULL;
1451 device_printf(ha->pci_dev,
1452 "%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
1453 __func__, ret, (long long unsigned int)rxb->paddr,
1454 nsegs);
1455 ret = -1;
1456 goto exit_qls_get_mbuf;
1457 }
1458 rxb->m_head = mp;
1459 bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
1460
1461 exit_qls_get_mbuf:
1462 QL_DPRINT2((ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
1463 return (ret);
1464 }
1465
1466 static void
1467 qls_tx_done(void *context, int pending)
1468 {
1469 qla_host_t *ha = context;
1470 struct ifnet *ifp;
1471
1472 ifp = ha->ifp;
1473
1474 if (!ifp)
1475 return;
1476
1477 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1478 QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
1479 return;
1480 }
1481
1482 qls_start(ha->ifp);
1483 return;
1484 }
1485
1486 static int
1487 qls_config_lro(qla_host_t *ha)
1488 {
1489 int i;
1490 struct lro_ctrl *lro;
1491
1492 for (i = 0; i < ha->num_rx_rings; i++) {
1493 lro = &ha->rx_ring[i].lro;
1494 if (tcp_lro_init(lro)) {
1495 device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1496 __func__);
1497 return (-1);
1498 }
1499 lro->ifp = ha->ifp;
1500 }
1501 ha->flags.lro_init = 1;
1502
1503 QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1504 return (0);
1505 }
1506
1507 static void
1508 qls_free_lro(qla_host_t *ha)
1509 {
1510 int i;
1511 struct lro_ctrl *lro;
1512
1513 if (!ha->flags.lro_init)
1514 return;
1515
1516 for (i = 0; i < ha->num_rx_rings; i++) {
1517 lro = &ha->rx_ring[i].lro;
1518 tcp_lro_free(lro);
1519 }
1520 ha->flags.lro_init = 0;
1521 }
1522
1523 static void
1524 qls_error_recovery(void *context, int pending)
1525 {
1526 qla_host_t *ha = context;
1527
1528 qls_init(ha);
1529
1530 return;
1531 }
1532
Cache object: 67ab98a2cc9fdd854f245c026b2ecc7c
|