FreeBSD/Linux Kernel Cross Reference
sys/dev/qlxge/qls_os.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013-2014 Qlogic Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 /*
31 * File: qls_os.c
32 * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include "qls_os.h"
39 #include "qls_hw.h"
40 #include "qls_def.h"
41 #include "qls_inline.h"
42 #include "qls_ver.h"
43 #include "qls_glbl.h"
44 #include "qls_dbg.h"
45 #include <sys/smp.h>
46
47 /*
48 * Some PCI Configuration Space Related Defines
49 */
50
51 #ifndef PCI_VENDOR_QLOGIC
52 #define PCI_VENDOR_QLOGIC 0x1077
53 #endif
54
55 #ifndef PCI_DEVICE_QLOGIC_8000
56 #define PCI_DEVICE_QLOGIC_8000 0x8000
57 #endif
58
59 #define PCI_QLOGIC_DEV8000 \
60 ((PCI_DEVICE_QLOGIC_8000 << 16) | PCI_VENDOR_QLOGIC)
61
62 /*
63 * static functions
64 */
65 static int qls_alloc_parent_dma_tag(qla_host_t *ha);
66 static void qls_free_parent_dma_tag(qla_host_t *ha);
67
68 static void qls_flush_xmt_bufs(qla_host_t *ha);
69
70 static int qls_alloc_rcv_bufs(qla_host_t *ha);
71 static void qls_free_rcv_bufs(qla_host_t *ha);
72
73 static void qls_init_ifnet(device_t dev, qla_host_t *ha);
74 static void qls_release(qla_host_t *ha);
75 static void qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
76 int error);
77 static void qls_stop(qla_host_t *ha);
78 static int qls_send(qla_host_t *ha, struct mbuf **m_headp);
79 static void qls_tx_done(void *context, int pending);
80
81 static int qls_config_lro(qla_host_t *ha);
82 static void qls_free_lro(qla_host_t *ha);
83
84 static void qls_error_recovery(void *context, int pending);
85
86 /*
87 * Hooks to the Operating Systems
88 */
89 static int qls_pci_probe (device_t);
90 static int qls_pci_attach (device_t);
91 static int qls_pci_detach (device_t);
92
93 static void qls_start(struct ifnet *ifp);
94 static void qls_init(void *arg);
95 static int qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
96 static int qls_media_change(struct ifnet *ifp);
97 static void qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
98
99 static device_method_t qla_pci_methods[] = {
100 /* Device interface */
101 DEVMETHOD(device_probe, qls_pci_probe),
102 DEVMETHOD(device_attach, qls_pci_attach),
103 DEVMETHOD(device_detach, qls_pci_detach),
104 { 0, 0 }
105 };
106
107 static driver_t qla_pci_driver = {
108 "ql", qla_pci_methods, sizeof (qla_host_t),
109 };
110
111 static devclass_t qla8000_devclass;
112
113 DRIVER_MODULE(qla8000, pci, qla_pci_driver, qla8000_devclass, 0, 0);
114
115 MODULE_DEPEND(qla8000, pci, 1, 1, 1);
116 MODULE_DEPEND(qla8000, ether, 1, 1, 1);
117
118 MALLOC_DEFINE(M_QLA8000BUF, "qla8000buf", "Buffers for qla8000 driver");
119
120 static char dev_str[64];
121 static char ver_str[64];
122
123 /*
124 * Name: qls_pci_probe
125 * Function: Validate the PCI device to be a QLA80XX device
126 */
127 static int
128 qls_pci_probe(device_t dev)
129 {
130 switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
131 case PCI_QLOGIC_DEV8000:
132 snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
133 "Qlogic ISP 8000 PCI CNA Adapter-Ethernet Function",
134 QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
135 QLA_VERSION_BUILD);
136 snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
137 QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
138 QLA_VERSION_BUILD);
139 device_set_desc(dev, dev_str);
140 break;
141 default:
142 return (ENXIO);
143 }
144
145 if (bootverbose)
146 printf("%s: %s\n ", __func__, dev_str);
147
148 return (BUS_PROBE_DEFAULT);
149 }
150
151 static int
152 qls_sysctl_get_drvr_stats(SYSCTL_HANDLER_ARGS)
153 {
154 int err = 0, ret;
155 qla_host_t *ha;
156 uint32_t i;
157
158 err = sysctl_handle_int(oidp, &ret, 0, req);
159
160 if (err || !req->newptr)
161 return (err);
162
163 if (ret == 1) {
164 ha = (qla_host_t *)arg1;
165
166 for (i = 0; i < ha->num_tx_rings; i++) {
167 device_printf(ha->pci_dev,
168 "%s: tx_ring[%d].tx_frames= %p\n",
169 __func__, i,
170 (void *)ha->tx_ring[i].tx_frames);
171
172 device_printf(ha->pci_dev,
173 "%s: tx_ring[%d].tx_tso_frames= %p\n",
174 __func__, i,
175 (void *)ha->tx_ring[i].tx_tso_frames);
176
177 device_printf(ha->pci_dev,
178 "%s: tx_ring[%d].tx_vlan_frames= %p\n",
179 __func__, i,
180 (void *)ha->tx_ring[i].tx_vlan_frames);
181
182 device_printf(ha->pci_dev,
183 "%s: tx_ring[%d].txr_free= 0x%08x\n",
184 __func__, i,
185 ha->tx_ring[i].txr_free);
186
187 device_printf(ha->pci_dev,
188 "%s: tx_ring[%d].txr_next= 0x%08x\n",
189 __func__, i,
190 ha->tx_ring[i].txr_next);
191
192 device_printf(ha->pci_dev,
193 "%s: tx_ring[%d].txr_done= 0x%08x\n",
194 __func__, i,
195 ha->tx_ring[i].txr_done);
196
197 device_printf(ha->pci_dev,
198 "%s: tx_ring[%d].txr_cons_idx= 0x%08x\n",
199 __func__, i,
200 *(ha->tx_ring[i].txr_cons_vaddr));
201 }
202
203 for (i = 0; i < ha->num_rx_rings; i++) {
204 device_printf(ha->pci_dev,
205 "%s: rx_ring[%d].rx_int= %p\n",
206 __func__, i,
207 (void *)ha->rx_ring[i].rx_int);
208
209 device_printf(ha->pci_dev,
210 "%s: rx_ring[%d].rss_int= %p\n",
211 __func__, i,
212 (void *)ha->rx_ring[i].rss_int);
213
214 device_printf(ha->pci_dev,
215 "%s: rx_ring[%d].lbq_next= 0x%08x\n",
216 __func__, i,
217 ha->rx_ring[i].lbq_next);
218
219 device_printf(ha->pci_dev,
220 "%s: rx_ring[%d].lbq_free= 0x%08x\n",
221 __func__, i,
222 ha->rx_ring[i].lbq_free);
223
224 device_printf(ha->pci_dev,
225 "%s: rx_ring[%d].lbq_in= 0x%08x\n",
226 __func__, i,
227 ha->rx_ring[i].lbq_in);
228
229 device_printf(ha->pci_dev,
230 "%s: rx_ring[%d].sbq_next= 0x%08x\n",
231 __func__, i,
232 ha->rx_ring[i].sbq_next);
233
234 device_printf(ha->pci_dev,
235 "%s: rx_ring[%d].sbq_free= 0x%08x\n",
236 __func__, i,
237 ha->rx_ring[i].sbq_free);
238
239 device_printf(ha->pci_dev,
240 "%s: rx_ring[%d].sbq_in= 0x%08x\n",
241 __func__, i,
242 ha->rx_ring[i].sbq_in);
243 }
244
245 device_printf(ha->pci_dev, "%s: err_m_getcl = 0x%08x\n",
246 __func__, ha->err_m_getcl);
247 device_printf(ha->pci_dev, "%s: err_m_getjcl = 0x%08x\n",
248 __func__, ha->err_m_getjcl);
249 device_printf(ha->pci_dev,
250 "%s: err_tx_dmamap_create = 0x%08x\n",
251 __func__, ha->err_tx_dmamap_create);
252 device_printf(ha->pci_dev,
253 "%s: err_tx_dmamap_load = 0x%08x\n",
254 __func__, ha->err_tx_dmamap_load);
255 device_printf(ha->pci_dev,
256 "%s: err_tx_defrag = 0x%08x\n",
257 __func__, ha->err_tx_defrag);
258 }
259 return (err);
260 }
261
262 static void
263 qls_add_sysctls(qla_host_t *ha)
264 {
265 device_t dev = ha->pci_dev;
266
267 SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
268 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
269 OID_AUTO, "version", CTLFLAG_RD,
270 ver_str, 0, "Driver Version");
271
272 qls_dbg_level = 0;
273 SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
274 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
275 OID_AUTO, "debug", CTLFLAG_RW,
276 &qls_dbg_level, qls_dbg_level, "Debug Level");
277
278 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
279 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
280 OID_AUTO, "drvr_stats",
281 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)ha, 0,
282 qls_sysctl_get_drvr_stats, "I", "Driver Maintained Statistics");
283
284 return;
285 }
286
287 static void
288 qls_watchdog(void *arg)
289 {
290 qla_host_t *ha = arg;
291 struct ifnet *ifp;
292
293 ifp = ha->ifp;
294
295 if (ha->flags.qla_watchdog_exit) {
296 ha->qla_watchdog_exited = 1;
297 return;
298 }
299 ha->qla_watchdog_exited = 0;
300
301 if (!ha->flags.qla_watchdog_pause) {
302 if (ha->qla_initiate_recovery) {
303 ha->qla_watchdog_paused = 1;
304 ha->qla_initiate_recovery = 0;
305 ha->err_inject = 0;
306 taskqueue_enqueue(ha->err_tq, &ha->err_task);
307
308 } else if ((ifp->if_snd.ifq_head != NULL) && QL_RUNNING(ifp)) {
309 taskqueue_enqueue(ha->tx_tq, &ha->tx_task);
310 }
311
312 ha->qla_watchdog_paused = 0;
313 } else {
314 ha->qla_watchdog_paused = 1;
315 }
316
317 ha->watchdog_ticks = (ha->watchdog_ticks + 1) % 1000;
318 callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
319 qls_watchdog, ha);
320
321 return;
322 }
323
324 /*
325 * Name: qls_pci_attach
326 * Function: attaches the device to the operating system
327 */
328 static int
329 qls_pci_attach(device_t dev)
330 {
331 qla_host_t *ha = NULL;
332 int i;
333
334 QL_DPRINT2((dev, "%s: enter\n", __func__));
335
336 if ((ha = device_get_softc(dev)) == NULL) {
337 device_printf(dev, "cannot get softc\n");
338 return (ENOMEM);
339 }
340
341 memset(ha, 0, sizeof (qla_host_t));
342
343 if (pci_get_device(dev) != PCI_DEVICE_QLOGIC_8000) {
344 device_printf(dev, "device is not QLE8000\n");
345 return (ENXIO);
346 }
347
348 ha->pci_func = pci_get_function(dev);
349
350 ha->pci_dev = dev;
351
352 pci_enable_busmaster(dev);
353
354 ha->reg_rid = PCIR_BAR(1);
355 ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
356 RF_ACTIVE);
357
358 if (ha->pci_reg == NULL) {
359 device_printf(dev, "unable to map any ports\n");
360 goto qls_pci_attach_err;
361 }
362
363 ha->reg_rid1 = PCIR_BAR(3);
364 ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
365 &ha->reg_rid1, RF_ACTIVE);
366
367 if (ha->pci_reg1 == NULL) {
368 device_printf(dev, "unable to map any ports\n");
369 goto qls_pci_attach_err;
370 }
371
372 mtx_init(&ha->hw_lock, "qla80xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
373 mtx_init(&ha->tx_lock, "qla80xx_tx_lock", MTX_NETWORK_LOCK, MTX_DEF);
374
375 qls_add_sysctls(ha);
376 qls_hw_add_sysctls(ha);
377
378 ha->flags.lock_init = 1;
379
380 ha->msix_count = pci_msix_count(dev);
381
382 if (ha->msix_count < qls_get_msix_count(ha)) {
383 device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
384 ha->msix_count);
385 goto qls_pci_attach_err;
386 }
387
388 ha->msix_count = qls_get_msix_count(ha);
389
390 device_printf(dev, "\n%s: ha %p pci_func 0x%x msix_count 0x%x"
391 " pci_reg %p pci_reg1 %p\n", __func__, ha,
392 ha->pci_func, ha->msix_count, ha->pci_reg, ha->pci_reg1);
393
394 if (pci_alloc_msix(dev, &ha->msix_count)) {
395 device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
396 ha->msix_count);
397 ha->msix_count = 0;
398 goto qls_pci_attach_err;
399 }
400
401 for (i = 0; i < ha->num_rx_rings; i++) {
402 ha->irq_vec[i].cq_idx = i;
403 ha->irq_vec[i].ha = ha;
404 ha->irq_vec[i].irq_rid = 1 + i;
405
406 ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
407 &ha->irq_vec[i].irq_rid,
408 (RF_ACTIVE | RF_SHAREABLE));
409
410 if (ha->irq_vec[i].irq == NULL) {
411 device_printf(dev, "could not allocate interrupt\n");
412 goto qls_pci_attach_err;
413 }
414
415 if (bus_setup_intr(dev, ha->irq_vec[i].irq,
416 (INTR_TYPE_NET | INTR_MPSAFE), NULL, qls_isr,
417 &ha->irq_vec[i], &ha->irq_vec[i].handle)) {
418 device_printf(dev,
419 "could not setup interrupt\n");
420 goto qls_pci_attach_err;
421 }
422 }
423
424 qls_rd_nic_params(ha);
425
426 /* allocate parent dma tag */
427 if (qls_alloc_parent_dma_tag(ha)) {
428 device_printf(dev, "%s: qls_alloc_parent_dma_tag failed\n",
429 __func__);
430 goto qls_pci_attach_err;
431 }
432
433 /* alloc all dma buffers */
434 if (qls_alloc_dma(ha)) {
435 device_printf(dev, "%s: qls_alloc_dma failed\n", __func__);
436 goto qls_pci_attach_err;
437 }
438
439 /* create the o.s ethernet interface */
440 qls_init_ifnet(dev, ha);
441
442 ha->flags.qla_watchdog_active = 1;
443 ha->flags.qla_watchdog_pause = 1;
444
445 TASK_INIT(&ha->tx_task, 0, qls_tx_done, ha);
446 ha->tx_tq = taskqueue_create_fast("qla_txq", M_NOWAIT,
447 taskqueue_thread_enqueue, &ha->tx_tq);
448 taskqueue_start_threads(&ha->tx_tq, 1, PI_NET, "%s txq",
449 device_get_nameunit(ha->pci_dev));
450
451 callout_init(&ha->tx_callout, 1);
452 ha->flags.qla_callout_init = 1;
453
454 /* create ioctl device interface */
455 if (qls_make_cdev(ha)) {
456 device_printf(dev, "%s: qls_make_cdev failed\n", __func__);
457 goto qls_pci_attach_err;
458 }
459
460 callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
461 qls_watchdog, ha);
462
463 TASK_INIT(&ha->err_task, 0, qls_error_recovery, ha);
464 ha->err_tq = taskqueue_create_fast("qla_errq", M_NOWAIT,
465 taskqueue_thread_enqueue, &ha->err_tq);
466 taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
467 device_get_nameunit(ha->pci_dev));
468
469 QL_DPRINT2((dev, "%s: exit 0\n", __func__));
470 return (0);
471
472 qls_pci_attach_err:
473
474 qls_release(ha);
475
476 QL_DPRINT2((dev, "%s: exit ENXIO\n", __func__));
477 return (ENXIO);
478 }
479
480 /*
481 * Name: qls_pci_detach
482 * Function: Unhooks the device from the operating system
483 */
484 static int
485 qls_pci_detach(device_t dev)
486 {
487 qla_host_t *ha = NULL;
488 struct ifnet *ifp;
489
490 QL_DPRINT2((dev, "%s: enter\n", __func__));
491
492 if ((ha = device_get_softc(dev)) == NULL) {
493 device_printf(dev, "cannot get softc\n");
494 return (ENOMEM);
495 }
496
497 ifp = ha->ifp;
498
499 (void)QLA_LOCK(ha, __func__, 0);
500 qls_stop(ha);
501 QLA_UNLOCK(ha, __func__);
502
503 qls_release(ha);
504
505 QL_DPRINT2((dev, "%s: exit\n", __func__));
506
507 return (0);
508 }
509
510 /*
511 * Name: qls_release
512 * Function: Releases the resources allocated for the device
513 */
514 static void
515 qls_release(qla_host_t *ha)
516 {
517 device_t dev;
518 int i;
519
520 dev = ha->pci_dev;
521
522 if (ha->err_tq) {
523 taskqueue_drain(ha->err_tq, &ha->err_task);
524 taskqueue_free(ha->err_tq);
525 }
526
527 if (ha->tx_tq) {
528 taskqueue_drain(ha->tx_tq, &ha->tx_task);
529 taskqueue_free(ha->tx_tq);
530 }
531
532 qls_del_cdev(ha);
533
534 if (ha->flags.qla_watchdog_active) {
535 ha->flags.qla_watchdog_exit = 1;
536
537 while (ha->qla_watchdog_exited == 0)
538 qls_mdelay(__func__, 1);
539 }
540
541 if (ha->flags.qla_callout_init)
542 callout_stop(&ha->tx_callout);
543
544 if (ha->ifp != NULL)
545 ether_ifdetach(ha->ifp);
546
547 qls_free_dma(ha);
548 qls_free_parent_dma_tag(ha);
549
550 for (i = 0; i < ha->num_rx_rings; i++) {
551 if (ha->irq_vec[i].handle) {
552 (void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
553 ha->irq_vec[i].handle);
554 }
555
556 if (ha->irq_vec[i].irq) {
557 (void)bus_release_resource(dev, SYS_RES_IRQ,
558 ha->irq_vec[i].irq_rid,
559 ha->irq_vec[i].irq);
560 }
561 }
562
563 if (ha->msix_count)
564 pci_release_msi(dev);
565
566 if (ha->flags.lock_init) {
567 mtx_destroy(&ha->tx_lock);
568 mtx_destroy(&ha->hw_lock);
569 }
570
571 if (ha->pci_reg)
572 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
573 ha->pci_reg);
574
575 if (ha->pci_reg1)
576 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
577 ha->pci_reg1);
578 }
579
580 /*
581 * DMA Related Functions
582 */
583
584 static void
585 qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
586 {
587 *((bus_addr_t *)arg) = 0;
588
589 if (error) {
590 printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
591 return;
592 }
593
594 *((bus_addr_t *)arg) = segs[0].ds_addr;
595
596 return;
597 }
598
599 int
600 qls_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
601 {
602 int ret = 0;
603 device_t dev;
604 bus_addr_t b_addr;
605
606 dev = ha->pci_dev;
607
608 QL_DPRINT2((dev, "%s: enter\n", __func__));
609
610 ret = bus_dma_tag_create(
611 ha->parent_tag,/* parent */
612 dma_buf->alignment,
613 ((bus_size_t)(1ULL << 32)),/* boundary */
614 BUS_SPACE_MAXADDR, /* lowaddr */
615 BUS_SPACE_MAXADDR, /* highaddr */
616 NULL, NULL, /* filter, filterarg */
617 dma_buf->size, /* maxsize */
618 1, /* nsegments */
619 dma_buf->size, /* maxsegsize */
620 0, /* flags */
621 NULL, NULL, /* lockfunc, lockarg */
622 &dma_buf->dma_tag);
623
624 if (ret) {
625 device_printf(dev, "%s: could not create dma tag\n", __func__);
626 goto qls_alloc_dmabuf_exit;
627 }
628 ret = bus_dmamem_alloc(dma_buf->dma_tag,
629 (void **)&dma_buf->dma_b,
630 (BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
631 &dma_buf->dma_map);
632 if (ret) {
633 bus_dma_tag_destroy(dma_buf->dma_tag);
634 device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
635 goto qls_alloc_dmabuf_exit;
636 }
637
638 ret = bus_dmamap_load(dma_buf->dma_tag,
639 dma_buf->dma_map,
640 dma_buf->dma_b,
641 dma_buf->size,
642 qls_dmamap_callback,
643 &b_addr, BUS_DMA_NOWAIT);
644
645 if (ret || !b_addr) {
646 bus_dma_tag_destroy(dma_buf->dma_tag);
647 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
648 dma_buf->dma_map);
649 ret = -1;
650 goto qls_alloc_dmabuf_exit;
651 }
652
653 dma_buf->dma_addr = b_addr;
654
655 qls_alloc_dmabuf_exit:
656 QL_DPRINT2((dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
657 __func__, ret, (void *)dma_buf->dma_tag,
658 (void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
659 dma_buf->size));
660
661 return ret;
662 }
663
664 void
665 qls_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
666 {
667 bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
668 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
669 bus_dma_tag_destroy(dma_buf->dma_tag);
670 }
671
672 static int
673 qls_alloc_parent_dma_tag(qla_host_t *ha)
674 {
675 int ret;
676 device_t dev;
677
678 dev = ha->pci_dev;
679
680 /*
681 * Allocate parent DMA Tag
682 */
683 ret = bus_dma_tag_create(
684 bus_get_dma_tag(dev), /* parent */
685 1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
686 BUS_SPACE_MAXADDR, /* lowaddr */
687 BUS_SPACE_MAXADDR, /* highaddr */
688 NULL, NULL, /* filter, filterarg */
689 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
690 0, /* nsegments */
691 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
692 0, /* flags */
693 NULL, NULL, /* lockfunc, lockarg */
694 &ha->parent_tag);
695
696 if (ret) {
697 device_printf(dev, "%s: could not create parent dma tag\n",
698 __func__);
699 return (-1);
700 }
701
702 ha->flags.parent_tag = 1;
703
704 return (0);
705 }
706
707 static void
708 qls_free_parent_dma_tag(qla_host_t *ha)
709 {
710 if (ha->flags.parent_tag) {
711 bus_dma_tag_destroy(ha->parent_tag);
712 ha->flags.parent_tag = 0;
713 }
714 }
715
716 /*
717 * Name: qls_init_ifnet
718 * Function: Creates the Network Device Interface and Registers it with the O.S
719 */
720
721 static void
722 qls_init_ifnet(device_t dev, qla_host_t *ha)
723 {
724 struct ifnet *ifp;
725
726 QL_DPRINT2((dev, "%s: enter\n", __func__));
727
728 ifp = ha->ifp = if_alloc(IFT_ETHER);
729
730 if (ifp == NULL)
731 panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
732
733 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
734 ifp->if_baudrate = IF_Gbps(10);
735 ifp->if_init = qls_init;
736 ifp->if_softc = ha;
737 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
738 ifp->if_ioctl = qls_ioctl;
739 ifp->if_start = qls_start;
740
741 IFQ_SET_MAXLEN(&ifp->if_snd, qls_get_ifq_snd_maxlen(ha));
742 ifp->if_snd.ifq_drv_maxlen = qls_get_ifq_snd_maxlen(ha);
743 IFQ_SET_READY(&ifp->if_snd);
744
745 ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
746 if (ha->max_frame_size <= MCLBYTES) {
747 ha->msize = MCLBYTES;
748 } else if (ha->max_frame_size <= MJUMPAGESIZE) {
749 ha->msize = MJUMPAGESIZE;
750 } else
751 ha->msize = MJUM9BYTES;
752
753 ether_ifattach(ifp, qls_get_mac_addr(ha));
754
755 ifp->if_capabilities = IFCAP_JUMBO_MTU;
756
757 ifp->if_capabilities |= IFCAP_HWCSUM;
758 ifp->if_capabilities |= IFCAP_VLAN_MTU;
759
760 ifp->if_capabilities |= IFCAP_TSO4;
761 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
762 ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
763 ifp->if_capabilities |= IFCAP_LINKSTATE;
764
765 ifp->if_capenable = ifp->if_capabilities;
766
767 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
768
769 ifmedia_init(&ha->media, IFM_IMASK, qls_media_change, qls_media_status);
770
771 ifmedia_add(&ha->media, (IFM_ETHER | qls_get_optics(ha) | IFM_FDX), 0,
772 NULL);
773 ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
774
775 ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
776
777 QL_DPRINT2((dev, "%s: exit\n", __func__));
778
779 return;
780 }
781
782 static void
783 qls_init_locked(qla_host_t *ha)
784 {
785 struct ifnet *ifp = ha->ifp;
786
787 qls_stop(ha);
788
789 qls_flush_xmt_bufs(ha);
790
791 if (qls_alloc_rcv_bufs(ha) != 0)
792 return;
793
794 if (qls_config_lro(ha))
795 return;
796
797 bcopy(IF_LLADDR(ha->ifp), ha->mac_addr, ETHER_ADDR_LEN);
798
799 ifp->if_hwassist = CSUM_IP;
800 ifp->if_hwassist |= CSUM_TCP;
801 ifp->if_hwassist |= CSUM_UDP;
802 ifp->if_hwassist |= CSUM_TSO;
803
804 if (qls_init_hw_if(ha) == 0) {
805 ifp = ha->ifp;
806 ifp->if_drv_flags |= IFF_DRV_RUNNING;
807 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
808 ha->flags.qla_watchdog_pause = 0;
809 }
810
811 return;
812 }
813
814 static void
815 qls_init(void *arg)
816 {
817 qla_host_t *ha;
818
819 ha = (qla_host_t *)arg;
820
821 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
822
823 (void)QLA_LOCK(ha, __func__, 0);
824 qls_init_locked(ha);
825 QLA_UNLOCK(ha, __func__);
826
827 QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
828 }
829
830 static u_int
831 qls_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
832 {
833 uint8_t *mta = arg;
834
835 if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
836 return (0);
837
838 bcopy(LLADDR(sdl), &mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
839
840 return (1);
841 }
842
843 static void
844 qls_set_multi(qla_host_t *ha, uint32_t add_multi)
845 {
846 uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
847 struct ifnet *ifp = ha->ifp;
848 int mcnt;
849
850 mcnt = if_foreach_llmaddr(ifp, qls_copy_maddr, mta);
851
852 if (QLA_LOCK(ha, __func__, 1) == 0) {
853 qls_hw_set_multi(ha, mta, mcnt, add_multi);
854 QLA_UNLOCK(ha, __func__);
855 }
856
857 return;
858 }
859
860 static int
861 qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
862 {
863 int ret = 0;
864 struct ifreq *ifr = (struct ifreq *)data;
865 struct ifaddr *ifa = (struct ifaddr *)data;
866 qla_host_t *ha;
867
868 ha = (qla_host_t *)ifp->if_softc;
869
870 switch (cmd) {
871 case SIOCSIFADDR:
872 QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
873 __func__, cmd));
874
875 if (ifa->ifa_addr->sa_family == AF_INET) {
876 ifp->if_flags |= IFF_UP;
877 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
878 (void)QLA_LOCK(ha, __func__, 0);
879 qls_init_locked(ha);
880 QLA_UNLOCK(ha, __func__);
881 }
882 QL_DPRINT4((ha->pci_dev,
883 "%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
884 __func__, cmd,
885 ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
886
887 arp_ifinit(ifp, ifa);
888 } else {
889 ether_ioctl(ifp, cmd, data);
890 }
891 break;
892
893 case SIOCSIFMTU:
894 QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
895 __func__, cmd));
896
897 if (ifr->ifr_mtu > QLA_MAX_MTU) {
898 ret = EINVAL;
899 } else {
900 (void) QLA_LOCK(ha, __func__, 0);
901
902 ifp->if_mtu = ifr->ifr_mtu;
903 ha->max_frame_size =
904 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
905
906 QLA_UNLOCK(ha, __func__);
907
908 if (ret)
909 ret = EINVAL;
910 }
911
912 break;
913
914 case SIOCSIFFLAGS:
915 QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
916 __func__, cmd));
917
918 (void)QLA_LOCK(ha, __func__, 0);
919
920 if (ifp->if_flags & IFF_UP) {
921 if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
922 if ((ifp->if_flags ^ ha->if_flags) &
923 IFF_PROMISC) {
924 ret = qls_set_promisc(ha);
925 } else if ((ifp->if_flags ^ ha->if_flags) &
926 IFF_ALLMULTI) {
927 ret = qls_set_allmulti(ha);
928 }
929 } else {
930 ha->max_frame_size = ifp->if_mtu +
931 ETHER_HDR_LEN + ETHER_CRC_LEN;
932 qls_init_locked(ha);
933 }
934 } else {
935 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
936 qls_stop(ha);
937 ha->if_flags = ifp->if_flags;
938 }
939
940 QLA_UNLOCK(ha, __func__);
941 break;
942
943 case SIOCADDMULTI:
944 QL_DPRINT4((ha->pci_dev,
945 "%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
946
947 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
948 qls_set_multi(ha, 1);
949 }
950 break;
951
952 case SIOCDELMULTI:
953 QL_DPRINT4((ha->pci_dev,
954 "%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
955
956 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
957 qls_set_multi(ha, 0);
958 }
959 break;
960
961 case SIOCSIFMEDIA:
962 case SIOCGIFMEDIA:
963 QL_DPRINT4((ha->pci_dev,
964 "%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
965 __func__, cmd));
966 ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
967 break;
968
969 case SIOCSIFCAP:
970 {
971 int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
972
973 QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
974 __func__, cmd));
975
976 if (mask & IFCAP_HWCSUM)
977 ifp->if_capenable ^= IFCAP_HWCSUM;
978 if (mask & IFCAP_TSO4)
979 ifp->if_capenable ^= IFCAP_TSO4;
980 if (mask & IFCAP_VLAN_HWTAGGING)
981 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
982 if (mask & IFCAP_VLAN_HWTSO)
983 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
984
985 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
986 qls_init(ha);
987
988 VLAN_CAPABILITIES(ifp);
989 break;
990 }
991
992 default:
993 QL_DPRINT4((ha->pci_dev, "%s: default (0x%lx)\n",
994 __func__, cmd));
995 ret = ether_ioctl(ifp, cmd, data);
996 break;
997 }
998
999 return (ret);
1000 }
1001
1002 static int
1003 qls_media_change(struct ifnet *ifp)
1004 {
1005 qla_host_t *ha;
1006 struct ifmedia *ifm;
1007 int ret = 0;
1008
1009 ha = (qla_host_t *)ifp->if_softc;
1010
1011 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1012
1013 ifm = &ha->media;
1014
1015 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1016 ret = EINVAL;
1017
1018 QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
1019
1020 return (ret);
1021 }
1022
1023 static void
1024 qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1025 {
1026 qla_host_t *ha;
1027
1028 ha = (qla_host_t *)ifp->if_softc;
1029
1030 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1031
1032 ifmr->ifm_status = IFM_AVALID;
1033 ifmr->ifm_active = IFM_ETHER;
1034
1035 qls_update_link_state(ha);
1036 if (ha->link_up) {
1037 ifmr->ifm_status |= IFM_ACTIVE;
1038 ifmr->ifm_active |= (IFM_FDX | qls_get_optics(ha));
1039 }
1040
1041 QL_DPRINT2((ha->pci_dev, "%s: exit (%s)\n", __func__,\
1042 (ha->link_up ? "link_up" : "link_down")));
1043
1044 return;
1045 }
1046
1047 static void
1048 qls_start(struct ifnet *ifp)
1049 {
1050 int i, ret = 0;
1051 struct mbuf *m_head;
1052 qla_host_t *ha = (qla_host_t *)ifp->if_softc;
1053
1054 QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
1055
1056 if (!mtx_trylock(&ha->tx_lock)) {
1057 QL_DPRINT8((ha->pci_dev,
1058 "%s: mtx_trylock(&ha->tx_lock) failed\n", __func__));
1059 return;
1060 }
1061
1062 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) ==
1063 IFF_DRV_RUNNING) {
1064 for (i = 0; i < ha->num_tx_rings; i++) {
1065 ret |= qls_hw_tx_done(ha, i);
1066 }
1067
1068 if (ret == 0)
1069 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1070 }
1071
1072 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1073 IFF_DRV_RUNNING) {
1074 QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
1075 QLA_TX_UNLOCK(ha);
1076 return;
1077 }
1078
1079 if (!ha->link_up) {
1080 qls_update_link_state(ha);
1081 if (!ha->link_up) {
1082 QL_DPRINT8((ha->pci_dev, "%s: link down\n", __func__));
1083 QLA_TX_UNLOCK(ha);
1084 return;
1085 }
1086 }
1087
1088 while (ifp->if_snd.ifq_head != NULL) {
1089 IF_DEQUEUE(&ifp->if_snd, m_head);
1090
1091 if (m_head == NULL) {
1092 QL_DPRINT8((ha->pci_dev, "%s: m_head == NULL\n",
1093 __func__));
1094 break;
1095 }
1096
1097 if (qls_send(ha, &m_head)) {
1098 if (m_head == NULL)
1099 break;
1100 QL_DPRINT8((ha->pci_dev, "%s: PREPEND\n", __func__));
1101 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1102 IF_PREPEND(&ifp->if_snd, m_head);
1103 break;
1104 }
1105 /* Send a copy of the frame to the BPF listener */
1106 ETHER_BPF_MTAP(ifp, m_head);
1107 }
1108
1109 QLA_TX_UNLOCK(ha);
1110 QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
1111 return;
1112 }
1113
1114 static int
1115 qls_send(qla_host_t *ha, struct mbuf **m_headp)
1116 {
1117 bus_dma_segment_t segs[QLA_MAX_SEGMENTS];
1118 bus_dmamap_t map;
1119 int nsegs;
1120 int ret = -1;
1121 uint32_t tx_idx;
1122 struct mbuf *m_head = *m_headp;
1123 uint32_t txr_idx = 0;
1124
1125 QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
1126
1127 /* check if flowid is set */
1128 if (M_HASHTYPE_GET(m_head) != M_HASHTYPE_NONE)
1129 txr_idx = m_head->m_pkthdr.flowid & (ha->num_tx_rings - 1);
1130
1131 tx_idx = ha->tx_ring[txr_idx].txr_next;
1132
1133 map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
1134
1135 ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
1136 BUS_DMA_NOWAIT);
1137
1138 if (ret == EFBIG) {
1139 struct mbuf *m;
1140
1141 QL_DPRINT8((ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
1142 m_head->m_pkthdr.len));
1143
1144 m = m_defrag(m_head, M_NOWAIT);
1145 if (m == NULL) {
1146 ha->err_tx_defrag++;
1147 m_freem(m_head);
1148 *m_headp = NULL;
1149 device_printf(ha->pci_dev,
1150 "%s: m_defrag() = NULL [%d]\n",
1151 __func__, ret);
1152 return (ENOBUFS);
1153 }
1154 m_head = m;
1155 *m_headp = m_head;
1156
1157 if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
1158 segs, &nsegs, BUS_DMA_NOWAIT))) {
1159 ha->err_tx_dmamap_load++;
1160
1161 device_printf(ha->pci_dev,
1162 "%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
1163 __func__, ret, m_head->m_pkthdr.len);
1164
1165 if (ret != ENOMEM) {
1166 m_freem(m_head);
1167 *m_headp = NULL;
1168 }
1169 return (ret);
1170 }
1171
1172 } else if (ret) {
1173 ha->err_tx_dmamap_load++;
1174
1175 device_printf(ha->pci_dev,
1176 "%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
1177 __func__, ret, m_head->m_pkthdr.len);
1178
1179 if (ret != ENOMEM) {
1180 m_freem(m_head);
1181 *m_headp = NULL;
1182 }
1183 return (ret);
1184 }
1185
1186 QL_ASSERT(ha, (nsegs != 0), ("qls_send: empty packet"));
1187
1188 bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
1189
1190 if (!(ret = qls_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx))) {
1191 ha->tx_ring[txr_idx].count++;
1192 ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
1193 ha->tx_ring[txr_idx].tx_buf[tx_idx].map = map;
1194 } else {
1195 if (ret == EINVAL) {
1196 if (m_head)
1197 m_freem(m_head);
1198 *m_headp = NULL;
1199 }
1200 }
1201
1202 QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
1203 return (ret);
1204 }
1205
1206 static void
1207 qls_stop(qla_host_t *ha)
1208 {
1209 struct ifnet *ifp = ha->ifp;
1210 device_t dev;
1211
1212 dev = ha->pci_dev;
1213
1214 ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1215
1216 ha->flags.qla_watchdog_pause = 1;
1217
1218 while (!ha->qla_watchdog_paused)
1219 qls_mdelay(__func__, 1);
1220
1221 qls_del_hw_if(ha);
1222
1223 qls_free_lro(ha);
1224
1225 qls_flush_xmt_bufs(ha);
1226 qls_free_rcv_bufs(ha);
1227
1228 return;
1229 }
1230
1231 /*
1232 * Buffer Management Functions for Transmit and Receive Rings
1233 */
1234 /*
1235 * Release mbuf after it sent on the wire
1236 */
1237 static void
1238 qls_flush_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
1239 {
1240 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1241
1242 if (txb->m_head) {
1243 bus_dmamap_unload(ha->tx_tag, txb->map);
1244
1245 m_freem(txb->m_head);
1246 txb->m_head = NULL;
1247 }
1248
1249 QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
1250 }
1251
1252 static void
1253 qls_flush_xmt_bufs(qla_host_t *ha)
1254 {
1255 int i, j;
1256
1257 for (j = 0; j < ha->num_tx_rings; j++) {
1258 for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
1259 qls_flush_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
1260 }
1261
1262 return;
1263 }
1264
1265 static int
1266 qls_alloc_rcv_mbufs(qla_host_t *ha, int r)
1267 {
1268 int i, j, ret = 0;
1269 qla_rx_buf_t *rxb;
1270 qla_rx_ring_t *rx_ring;
1271 volatile q81_bq_addr_e_t *sbq_e;
1272
1273 rx_ring = &ha->rx_ring[r];
1274
1275 for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1276 rxb = &rx_ring->rx_buf[i];
1277
1278 ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map);
1279
1280 if (ret) {
1281 device_printf(ha->pci_dev,
1282 "%s: dmamap[%d, %d] failed\n", __func__, r, i);
1283
1284 for (j = 0; j < i; j++) {
1285 rxb = &rx_ring->rx_buf[j];
1286 bus_dmamap_destroy(ha->rx_tag, rxb->map);
1287 }
1288 goto qls_alloc_rcv_mbufs_err;
1289 }
1290 }
1291
1292 rx_ring = &ha->rx_ring[r];
1293
1294 sbq_e = rx_ring->sbq_vaddr;
1295
1296 rxb = &rx_ring->rx_buf[0];
1297
1298 for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1299 if (!(ret = qls_get_mbuf(ha, rxb, NULL))) {
1300 /*
1301 * set the physical address in the
1302 * corresponding descriptor entry in the
1303 * receive ring/queue for the hba
1304 */
1305
1306 sbq_e->addr_lo = rxb->paddr & 0xFFFFFFFF;
1307 sbq_e->addr_hi = (rxb->paddr >> 32) & 0xFFFFFFFF;
1308
1309 } else {
1310 device_printf(ha->pci_dev,
1311 "%s: qls_get_mbuf [%d, %d] failed\n",
1312 __func__, r, i);
1313 bus_dmamap_destroy(ha->rx_tag, rxb->map);
1314 goto qls_alloc_rcv_mbufs_err;
1315 }
1316
1317 rxb++;
1318 sbq_e++;
1319 }
1320 return 0;
1321
1322 qls_alloc_rcv_mbufs_err:
1323 return (-1);
1324 }
1325
1326 static void
1327 qls_free_rcv_bufs(qla_host_t *ha)
1328 {
1329 int i, r;
1330 qla_rx_buf_t *rxb;
1331 qla_rx_ring_t *rxr;
1332
1333 for (r = 0; r < ha->num_rx_rings; r++) {
1334 rxr = &ha->rx_ring[r];
1335
1336 for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1337 rxb = &rxr->rx_buf[i];
1338
1339 if (rxb->m_head != NULL) {
1340 bus_dmamap_unload(ha->rx_tag, rxb->map);
1341 bus_dmamap_destroy(ha->rx_tag, rxb->map);
1342 m_freem(rxb->m_head);
1343 }
1344 }
1345 bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
1346 }
1347 return;
1348 }
1349
1350 static int
1351 qls_alloc_rcv_bufs(qla_host_t *ha)
1352 {
1353 int r, ret = 0;
1354 qla_rx_ring_t *rxr;
1355
1356 for (r = 0; r < ha->num_rx_rings; r++) {
1357 rxr = &ha->rx_ring[r];
1358 bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
1359 }
1360
1361 for (r = 0; r < ha->num_rx_rings; r++) {
1362 ret = qls_alloc_rcv_mbufs(ha, r);
1363
1364 if (ret)
1365 qls_free_rcv_bufs(ha);
1366 }
1367
1368 return (ret);
1369 }
1370
1371 int
1372 qls_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
1373 {
1374 struct mbuf *mp = nmp;
1375 struct ifnet *ifp;
1376 int ret = 0;
1377 uint32_t offset;
1378 bus_dma_segment_t segs[1];
1379 int nsegs;
1380
1381 QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1382
1383 ifp = ha->ifp;
1384
1385 if (mp == NULL) {
1386 mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, ha->msize);
1387
1388 if (mp == NULL) {
1389 if (ha->msize == MCLBYTES)
1390 ha->err_m_getcl++;
1391 else
1392 ha->err_m_getjcl++;
1393
1394 ret = ENOBUFS;
1395 device_printf(ha->pci_dev,
1396 "%s: m_getcl failed\n", __func__);
1397 goto exit_qls_get_mbuf;
1398 }
1399 mp->m_len = mp->m_pkthdr.len = ha->msize;
1400 } else {
1401 mp->m_len = mp->m_pkthdr.len = ha->msize;
1402 mp->m_data = mp->m_ext.ext_buf;
1403 mp->m_next = NULL;
1404 }
1405
1406 /* align the receive buffers to 8 byte boundary */
1407 offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
1408 if (offset) {
1409 offset = 8 - offset;
1410 m_adj(mp, offset);
1411 }
1412
1413 /*
1414 * Using memory from the mbuf cluster pool, invoke the bus_dma
1415 * machinery to arrange the memory mapping.
1416 */
1417 ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
1418 mp, segs, &nsegs, BUS_DMA_NOWAIT);
1419 rxb->paddr = segs[0].ds_addr;
1420
1421 if (ret || !rxb->paddr || (nsegs != 1)) {
1422 m_freem(mp);
1423 rxb->m_head = NULL;
1424 device_printf(ha->pci_dev,
1425 "%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
1426 __func__, ret, (long long unsigned int)rxb->paddr,
1427 nsegs);
1428 ret = -1;
1429 goto exit_qls_get_mbuf;
1430 }
1431 rxb->m_head = mp;
1432 bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
1433
1434 exit_qls_get_mbuf:
1435 QL_DPRINT2((ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
1436 return (ret);
1437 }
1438
1439 static void
1440 qls_tx_done(void *context, int pending)
1441 {
1442 qla_host_t *ha = context;
1443 struct ifnet *ifp;
1444
1445 ifp = ha->ifp;
1446
1447 if (!ifp)
1448 return;
1449
1450 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1451 QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
1452 return;
1453 }
1454
1455 qls_start(ha->ifp);
1456 return;
1457 }
1458
1459 static int
1460 qls_config_lro(qla_host_t *ha)
1461 {
1462 int i;
1463 struct lro_ctrl *lro;
1464
1465 for (i = 0; i < ha->num_rx_rings; i++) {
1466 lro = &ha->rx_ring[i].lro;
1467 if (tcp_lro_init(lro)) {
1468 device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1469 __func__);
1470 return (-1);
1471 }
1472 lro->ifp = ha->ifp;
1473 }
1474 ha->flags.lro_init = 1;
1475
1476 QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1477 return (0);
1478 }
1479
1480 static void
1481 qls_free_lro(qla_host_t *ha)
1482 {
1483 int i;
1484 struct lro_ctrl *lro;
1485
1486 if (!ha->flags.lro_init)
1487 return;
1488
1489 for (i = 0; i < ha->num_rx_rings; i++) {
1490 lro = &ha->rx_ring[i].lro;
1491 tcp_lro_free(lro);
1492 }
1493 ha->flags.lro_init = 0;
1494 }
1495
1496 static void
1497 qls_error_recovery(void *context, int pending)
1498 {
1499 qla_host_t *ha = context;
1500
1501 qls_init(ha);
1502
1503 return;
1504 }
Cache object: cdb45391c2d39e7e9b2d8dc6747f3bd7
|