The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/raid/mly/mly.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000, 2001 Michael Smith
    3  * Copyright (c) 2000 BSDi
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  *      $FreeBSD: src/sys/dev/mly/mly.c,v 1.50 2010/01/28 08:41:30 mav Exp $
   28  */
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/malloc.h>
   33 #include <sys/kernel.h>
   34 #include <sys/bus.h>
   35 #include <sys/conf.h>
   36 #include <sys/device.h>
   37 #include <sys/ctype.h>
   38 #include <sys/stat.h>
   39 #include <sys/rman.h>
   40 #include <sys/thread2.h>
   41 
   42 #include <bus/cam/cam.h>
   43 #include <bus/cam/cam_ccb.h>
   44 #include <bus/cam/cam_periph.h>
   45 #include <bus/cam/cam_sim.h>
   46 #include <bus/cam/cam_xpt_periph.h>
   47 #include <bus/cam/cam_xpt_sim.h>
   48 #include <bus/cam/scsi/scsi_all.h>
   49 #include <bus/cam/scsi/scsi_message.h>
   50 
   51 #include <bus/pci/pcireg.h>
   52 #include <bus/pci/pcivar.h>
   53 
   54 #include <dev/raid/mly/mlyreg.h>
   55 #include <dev/raid/mly/mlyio.h>
   56 #include <dev/raid/mly/mlyvar.h>
   57 #include <dev/raid/mly/mly_tables.h>
   58 
   59 static int      mly_probe(device_t dev);
   60 static int      mly_attach(device_t dev);
   61 static int      mly_pci_attach(struct mly_softc *sc);
   62 static int      mly_detach(device_t dev);
   63 static int      mly_shutdown(device_t dev);
   64 static void     mly_intr(void *arg);
   65 
   66 static int      mly_sg_map(struct mly_softc *sc);
   67 static void     mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
   68 static int      mly_mmbox_map(struct mly_softc *sc);
   69 static void     mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
   70 static void     mly_free(struct mly_softc *sc);
   71 
   72 static int      mly_get_controllerinfo(struct mly_softc *sc);
   73 static void     mly_scan_devices(struct mly_softc *sc);
   74 static void     mly_rescan_btl(struct mly_softc *sc, int bus, int target);
   75 static void     mly_complete_rescan(struct mly_command *mc);
   76 static int      mly_get_eventstatus(struct mly_softc *sc);
   77 static int      mly_enable_mmbox(struct mly_softc *sc);
   78 static int      mly_flush(struct mly_softc *sc);
   79 static int      mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, 
   80                           size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
   81 static void     mly_check_event(struct mly_softc *sc);
   82 static void     mly_fetch_event(struct mly_softc *sc);
   83 static void     mly_complete_event(struct mly_command *mc);
   84 static void     mly_process_event(struct mly_softc *sc, struct mly_event *me);
   85 static void     mly_periodic(void *data);
   86 
   87 static int      mly_immediate_command(struct mly_command *mc);
   88 static int      mly_start(struct mly_command *mc);
   89 static void     mly_done(struct mly_softc *sc);
   90 static void     mly_complete(void *context, int pending);
   91 
   92 static int      mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
   93 static void     mly_release_command(struct mly_command *mc);
   94 static void     mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
   95 static int      mly_alloc_commands(struct mly_softc *sc);
   96 static void     mly_release_commands(struct mly_softc *sc);
   97 static void     mly_map_command(struct mly_command *mc);
   98 static void     mly_unmap_command(struct mly_command *mc);
   99 
  100 static int      mly_cam_attach(struct mly_softc *sc);
  101 static void     mly_cam_detach(struct mly_softc *sc);
  102 static void     mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
  103 static void     mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
  104 static void     mly_cam_action(struct cam_sim *sim, union ccb *ccb);
  105 static int      mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
  106 static void     mly_cam_poll(struct cam_sim *sim);
  107 static void     mly_cam_complete(struct mly_command *mc);
  108 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
  109 static int      mly_name_device(struct mly_softc *sc, int bus, int target);
  110 
  111 static int      mly_fwhandshake(struct mly_softc *sc);
  112 
  113 static void     mly_describe_controller(struct mly_softc *sc);
  114 #ifdef MLY_DEBUG
  115 static void     mly_printstate(struct mly_softc *sc);
  116 static void     mly_print_command(struct mly_command *mc);
  117 static void     mly_print_packet(struct mly_command *mc);
  118 static void     mly_panic(struct mly_softc *sc, char *reason);
  119 static int      mly_timeout(struct mly_softc *sc);
  120 #endif
  121 void            mly_print_controller(int controller);
  122 
  123 
  124 static d_open_t         mly_user_open;
  125 static d_close_t        mly_user_close;
  126 static d_ioctl_t        mly_user_ioctl;
  127 static int      mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
  128 static int      mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
  129 
  130 #define MLY_CMD_TIMEOUT         20
  131 
  132 static device_method_t mly_methods[] = {
  133     /* Device interface */
  134     DEVMETHOD(device_probe,     mly_probe),
  135     DEVMETHOD(device_attach,    mly_attach),
  136     DEVMETHOD(device_detach,    mly_detach),
  137     DEVMETHOD(device_shutdown,  mly_shutdown),
  138     DEVMETHOD_END
  139 };
  140 
  141 static driver_t mly_pci_driver = {
  142         "mly",
  143         mly_methods,
  144         sizeof(struct mly_softc)
  145 };
  146 
  147 static devclass_t       mly_devclass;
  148 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, NULL, NULL);
  149 MODULE_DEPEND(mly, pci, 1, 1, 1);
  150 MODULE_DEPEND(mly, cam, 1, 1, 1);
  151 
  152 static struct dev_ops mly_ops = {
  153     { "mly", 0, 0 },
  154     .d_open =   mly_user_open,
  155     .d_close =  mly_user_close,
  156     .d_ioctl =  mly_user_ioctl,
  157 };
  158 
  159 /********************************************************************************
  160  ********************************************************************************
  161                                                                  Device Interface
  162  ********************************************************************************
  163  ********************************************************************************/
  164 
  165 static struct mly_ident
  166 {
  167     u_int16_t           vendor;
  168     u_int16_t           device;
  169     u_int16_t           subvendor;
  170     u_int16_t           subdevice;
  171     int                 hwif;
  172     char                *desc;
  173 } mly_identifiers[] = {
  174     {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
  175     {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
  176     {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
  177     {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
  178     {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
  179     {0, 0, 0, 0, 0, 0}
  180 };
  181 
  182 /********************************************************************************
  183  * Compare the provided PCI device with the list we support.
  184  */
  185 static int
  186 mly_probe(device_t dev)
  187 {
  188     struct mly_ident    *m;
  189 
  190     debug_called(1);
  191 
  192     for (m = mly_identifiers; m->vendor != 0; m++) {
  193         if ((m->vendor == pci_get_vendor(dev)) &&
  194             (m->device == pci_get_device(dev)) &&
  195             ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
  196                                      (m->subdevice == pci_get_subdevice(dev))))) {
  197             
  198             device_set_desc(dev, m->desc);
  199             return(BUS_PROBE_DEFAULT);  /* allow room to be overridden */
  200         }
  201     }
  202     return(ENXIO);
  203 }
  204 
  205 /********************************************************************************
  206  * Initialise the controller and softc
  207  */
  208 static int
  209 mly_attach(device_t dev)
  210 {
  211     struct mly_softc    *sc = device_get_softc(dev);
  212     int                 error;
  213 
  214     debug_called(1);
  215 
  216     sc->mly_dev = dev;
  217 
  218 #ifdef MLY_DEBUG
  219     if (device_get_unit(sc->mly_dev) == 0)
  220         mly_softc0 = sc;
  221 #endif    
  222 
  223     /*
  224      * Do PCI-specific initialisation.
  225      */
  226     if ((error = mly_pci_attach(sc)) != 0)
  227         goto out;
  228 
  229     callout_init(&sc->mly_periodic);
  230     callout_init(&sc->mly_timeout);
  231 
  232     /*
  233      * Initialise per-controller queues.
  234      */
  235     mly_initq_free(sc);
  236     mly_initq_busy(sc);
  237     mly_initq_complete(sc);
  238 
  239     /*
  240      * Initialise command-completion task.
  241      */
  242     TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
  243 
  244     /* disable interrupts before we start talking to the controller */
  245     MLY_MASK_INTERRUPTS(sc);
  246 
  247     /* 
  248      * Wait for the controller to come ready, handshake with the firmware if required.
  249      * This is typically only necessary on platforms where the controller BIOS does not
  250      * run.
  251      */
  252     if ((error = mly_fwhandshake(sc)))
  253         goto out;
  254 
  255     /*
  256      * Allocate initial command buffers.
  257      */
  258     if ((error = mly_alloc_commands(sc)))
  259         goto out;
  260 
  261     /* 
  262      * Obtain controller feature information
  263      */
  264     if ((error = mly_get_controllerinfo(sc)))
  265         goto out;
  266 
  267     /*
  268      * Reallocate command buffers now we know how many we want.
  269      */
  270     mly_release_commands(sc);
  271     if ((error = mly_alloc_commands(sc)))
  272         goto out;
  273 
  274     /*
  275      * Get the current event counter for health purposes, populate the initial
  276      * health status buffer.
  277      */
  278     if ((error = mly_get_eventstatus(sc)))
  279         goto out;
  280 
  281     /*
  282      * Enable memory-mailbox mode.
  283      */
  284     if ((error = mly_enable_mmbox(sc)))
  285         goto out;
  286 
  287     /*
  288      * Attach to CAM.
  289      */
  290     if ((error = mly_cam_attach(sc)))
  291         goto out;
  292 
  293     /* 
  294      * Print a little information about the controller 
  295      */
  296     mly_describe_controller(sc);
  297 
  298     /*
  299      * Mark all attached devices for rescan.
  300      */
  301     mly_scan_devices(sc);
  302 
  303     /*
  304      * Instigate the first status poll immediately.  Rescan completions won't
  305      * happen until interrupts are enabled, which should still be before
  306      * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
  307      */
  308     mly_periodic(sc);
  309 
  310     /*
  311      * Create the control device.
  312      */
  313     sc->mly_dev_t = make_dev(&mly_ops, device_get_unit(sc->mly_dev),
  314                              UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
  315                              "mly%d", device_get_unit(sc->mly_dev));
  316     sc->mly_dev_t->si_drv1 = sc;
  317 
  318     /* enable interrupts now */
  319     MLY_UNMASK_INTERRUPTS(sc);
  320 
  321 #ifdef MLY_DEBUG
  322     callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
  323                   (timeout_t *)mly_timeout, sc);
  324 #endif
  325 
  326  out:
  327     if (error != 0)
  328         mly_free(sc);
  329     return(error);
  330 }
  331 
  332 /********************************************************************************
  333  * Perform PCI-specific initialisation.
  334  */
  335 static int
  336 mly_pci_attach(struct mly_softc *sc)
  337 {
  338     int                 i, error;
  339     u_int32_t           command;
  340 
  341     debug_called(1);
  342 
  343     /* assume failure is 'not configured' */
  344     error = ENXIO;
  345 
  346     /* 
  347      * Verify that the adapter is correctly set up in PCI space.
  348      * 
  349      * XXX we shouldn't do this; the PCI code should.
  350      */
  351     command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
  352     command |= PCIM_CMD_BUSMASTEREN;
  353     pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
  354     command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
  355     if (!(command & PCIM_CMD_BUSMASTEREN)) {
  356         mly_printf(sc, "can't enable busmaster feature\n");
  357         goto fail;
  358     }
  359     if ((command & PCIM_CMD_MEMEN) == 0) {
  360         mly_printf(sc, "memory window not available\n");
  361         goto fail;
  362     }
  363 
  364     /*
  365      * Allocate the PCI register window.
  366      */
  367     sc->mly_regs_rid = PCIR_BAR(0);     /* first base address register */
  368     if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev, 
  369             SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
  370         mly_printf(sc, "can't allocate register window\n");
  371         goto fail;
  372     }
  373     sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
  374     sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
  375 
  376     /* 
  377      * Allocate and connect our interrupt.
  378      */
  379     sc->mly_irq_rid = 0;
  380     if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ, 
  381                     &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
  382         mly_printf(sc, "can't allocate interrupt\n");
  383         goto fail;
  384     }
  385     error = bus_setup_intr(sc->mly_dev, sc->mly_irq, 0,
  386                            mly_intr, sc, &sc->mly_intr, NULL);
  387     if (error) {
  388         mly_printf(sc, "can't set up interrupt\n");
  389         goto fail;
  390     }
  391 
  392     /* assume failure is 'out of memory' */
  393     error = ENOMEM;
  394 
  395     /*
  396      * Allocate the parent bus DMA tag appropriate for our PCI interface.
  397      * 
  398      * Note that all of these controllers are 64-bit capable.
  399      */
  400     if (bus_dma_tag_create(NULL,                        /* parent */
  401                            1, 0,                        /* alignment, boundary */
  402                            BUS_SPACE_MAXADDR_32BIT,     /* lowaddr */
  403                            BUS_SPACE_MAXADDR,           /* highaddr */
  404                            NULL, NULL,                  /* filter, filterarg */
  405                            MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
  406                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
  407                            BUS_DMA_ALLOCNOW,            /* flags */
  408                            &sc->mly_parent_dmat)) {
  409         mly_printf(sc, "can't allocate parent DMA tag\n");
  410         goto fail;
  411     }
  412 
  413     /*
  414      * Create DMA tag for mapping buffers into controller-addressable space.
  415      */
  416     if (bus_dma_tag_create(sc->mly_parent_dmat,         /* parent */
  417                            1, 0,                        /* alignment, boundary */
  418                            BUS_SPACE_MAXADDR,           /* lowaddr */
  419                            BUS_SPACE_MAXADDR,           /* highaddr */
  420                            NULL, NULL,                  /* filter, filterarg */
  421                            MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
  422                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
  423                            0,                           /* flags */
  424                            &sc->mly_buffer_dmat)) {
  425         mly_printf(sc, "can't allocate buffer DMA tag\n");
  426         goto fail;
  427     }
  428 
  429     /*
  430      * Initialise the DMA tag for command packets.
  431      */
  432     if (bus_dma_tag_create(sc->mly_parent_dmat,         /* parent */
  433                            1, 0,                        /* alignment, boundary */
  434                            BUS_SPACE_MAXADDR,           /* lowaddr */
  435                            BUS_SPACE_MAXADDR,           /* highaddr */
  436                            NULL, NULL,                  /* filter, filterarg */
  437                            sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,      /* maxsize, nsegments */
  438                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
  439                            BUS_DMA_ALLOCNOW,            /* flags */
  440                            &sc->mly_packet_dmat)) {
  441         mly_printf(sc, "can't allocate command packet DMA tag\n");
  442         goto fail;
  443     }
  444 
  445     /* 
  446      * Detect the hardware interface version 
  447      */
  448     for (i = 0; mly_identifiers[i].vendor != 0; i++) {
  449         if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
  450             (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
  451             sc->mly_hwif = mly_identifiers[i].hwif;
  452             switch(sc->mly_hwif) {
  453             case MLY_HWIF_I960RX:
  454                 debug(1, "set hardware up for i960RX");
  455                 sc->mly_doorbell_true = 0x00;
  456                 sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
  457                 sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
  458                 sc->mly_idbr =             MLY_I960RX_IDBR;
  459                 sc->mly_odbr =             MLY_I960RX_ODBR;
  460                 sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
  461                 sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
  462                 sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
  463                 break;
  464             case MLY_HWIF_STRONGARM:
  465                 debug(1, "set hardware up for StrongARM");
  466                 sc->mly_doorbell_true = 0xff;           /* doorbell 'true' is 0 */
  467                 sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
  468                 sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
  469                 sc->mly_idbr =             MLY_STRONGARM_IDBR;
  470                 sc->mly_odbr =             MLY_STRONGARM_ODBR;
  471                 sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
  472                 sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
  473                 sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
  474                 break;
  475             }
  476             break;
  477         }
  478     }
  479 
  480     /*
  481      * Create the scatter/gather mappings.
  482      */
  483     if ((error = mly_sg_map(sc)))
  484         goto fail;
  485 
  486     /*
  487      * Allocate and map the memory mailbox
  488      */
  489     if ((error = mly_mmbox_map(sc)))
  490         goto fail;
  491 
  492     error = 0;
  493             
  494 fail:
  495     return(error);
  496 }
  497 
  498 /********************************************************************************
  499  * Shut the controller down and detach all our resources.
  500  */
  501 static int
  502 mly_detach(device_t dev)
  503 {
  504     int                 error;
  505 
  506     if ((error = mly_shutdown(dev)) != 0)
  507         return(error);
  508     
  509     mly_free(device_get_softc(dev));
  510     return(0);
  511 }
  512 
  513 /********************************************************************************
  514  * Bring the controller to a state where it can be safely left alone.
  515  *
  516  * Note that it should not be necessary to wait for any outstanding commands,
  517  * as they should be completed prior to calling here.
  518  *
  519  * XXX this applies for I/O, but not status polls; we should beware of
  520  *     the case where a status command is running while we detach.
  521  */
  522 static int
  523 mly_shutdown(device_t dev)
  524 {
  525     struct mly_softc    *sc = device_get_softc(dev);
  526 
  527     debug_called(1);
  528     
  529     if (sc->mly_state & MLY_STATE_OPEN)
  530         return(EBUSY);
  531 
  532     /* kill the periodic event */
  533     callout_stop(&sc->mly_periodic);
  534 
  535     /* flush controller */
  536     mly_printf(sc, "flushing cache...");
  537     kprintf("%s\n", mly_flush(sc) ? "failed" : "done");
  538 
  539     MLY_MASK_INTERRUPTS(sc);
  540 
  541     return(0);
  542 }
  543 
  544 /*******************************************************************************
  545  * Take an interrupt, or be poked by other code to look for interrupt-worthy
  546  * status.
  547  */
  548 static void
  549 mly_intr(void *arg)
  550 {
  551     struct mly_softc    *sc = (struct mly_softc *)arg;
  552 
  553     debug_called(2);
  554 
  555     mly_done(sc);
  556 };
  557 
  558 /********************************************************************************
  559  ********************************************************************************
  560                                                 Bus-dependant Resource Management
  561  ********************************************************************************
  562  ********************************************************************************/
  563 
  564 /********************************************************************************
  565  * Allocate memory for the scatter/gather tables
  566  */
  567 static int
  568 mly_sg_map(struct mly_softc *sc)
  569 {
  570     size_t      segsize;
  571 
  572     debug_called(1);
  573 
  574     /*
  575      * Create a single tag describing a region large enough to hold all of
  576      * the s/g lists we will need.
  577      */
  578     segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
  579     if (bus_dma_tag_create(sc->mly_parent_dmat,         /* parent */
  580                            1, 0,                        /* alignment,boundary */
  581                            BUS_SPACE_MAXADDR,           /* lowaddr */
  582                            BUS_SPACE_MAXADDR,           /* highaddr */
  583                            NULL, NULL,                  /* filter, filterarg */
  584                            segsize, 1,                  /* maxsize, nsegments */
  585                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
  586                            BUS_DMA_ALLOCNOW,            /* flags */
  587                            &sc->mly_sg_dmat)) {
  588         mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
  589         return(ENOMEM);
  590     }
  591 
  592     /*
  593      * Allocate enough s/g maps for all commands and permanently map them into
  594      * controller-visible space.
  595      *  
  596      * XXX this assumes we can get enough space for all the s/g maps in one 
  597      * contiguous slab.
  598      */
  599     if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
  600                          BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
  601         mly_printf(sc, "can't allocate s/g table\n");
  602         return(ENOMEM);
  603     }
  604     if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
  605                         segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
  606         return (ENOMEM);
  607     return(0);
  608 }
  609 
  610 /********************************************************************************
  611  * Save the physical address of the base of the s/g table.
  612  */
  613 static void
  614 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  615 {
  616     struct mly_softc    *sc = (struct mly_softc *)arg;
  617 
  618     debug_called(1);
  619 
  620     /* save base of s/g table's address in bus space */
  621     sc->mly_sg_busaddr = segs->ds_addr;
  622 }
  623 
  624 /********************************************************************************
  625  * Allocate memory for the memory-mailbox interface
  626  */
  627 static int
  628 mly_mmbox_map(struct mly_softc *sc)
  629 {
  630 
  631     /*
  632      * Create a DMA tag for a single contiguous region large enough for the
  633      * memory mailbox structure.
  634      */
  635     if (bus_dma_tag_create(sc->mly_parent_dmat,         /* parent */
  636                            1, 0,                        /* alignment,boundary */
  637                            BUS_SPACE_MAXADDR,           /* lowaddr */
  638                            BUS_SPACE_MAXADDR,           /* highaddr */
  639                            NULL, NULL,                  /* filter, filterarg */
  640                            sizeof(struct mly_mmbox), 1, /* maxsize, nsegments */
  641                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
  642                            BUS_DMA_ALLOCNOW,            /* flags */
  643                            &sc->mly_mmbox_dmat)) {
  644         mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
  645         return(ENOMEM);
  646     }
  647 
  648     /*
  649      * Allocate the buffer
  650      */
  651     if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
  652         mly_printf(sc, "can't allocate memory mailbox\n");
  653         return(ENOMEM);
  654     }
  655     if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
  656                         sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc, 
  657                         BUS_DMA_NOWAIT) != 0)
  658         return (ENOMEM);
  659     bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
  660     return(0);
  661 
  662 }
  663 
  664 /********************************************************************************
  665  * Save the physical address of the memory mailbox 
  666  */
  667 static void
  668 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  669 {
  670     struct mly_softc    *sc = (struct mly_softc *)arg;
  671 
  672     debug_called(1);
  673 
  674     sc->mly_mmbox_busaddr = segs->ds_addr;
  675 }
  676 
  677 /********************************************************************************
  678  * Free all of the resources associated with (sc)
  679  *
  680  * Should not be called if the controller is active.
  681  */
  682 static void
  683 mly_free(struct mly_softc *sc)
  684 {
  685     
  686     debug_called(1);
  687 
  688     /* Remove the management device */
  689     destroy_dev(sc->mly_dev_t);
  690 
  691     /* detach from CAM */
  692     mly_cam_detach(sc);
  693 
  694     /* release command memory */
  695     mly_release_commands(sc);
  696     
  697     /* throw away the controllerinfo structure */
  698     if (sc->mly_controllerinfo != NULL)
  699         kfree(sc->mly_controllerinfo, M_DEVBUF);
  700 
  701     /* throw away the controllerparam structure */
  702     if (sc->mly_controllerparam != NULL)
  703         kfree(sc->mly_controllerparam, M_DEVBUF);
  704 
  705     /* destroy data-transfer DMA tag */
  706     if (sc->mly_buffer_dmat)
  707         bus_dma_tag_destroy(sc->mly_buffer_dmat);
  708 
  709     /* free and destroy DMA memory and tag for s/g lists */
  710     if (sc->mly_sg_table) {
  711         bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
  712         bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
  713     }
  714     if (sc->mly_sg_dmat)
  715         bus_dma_tag_destroy(sc->mly_sg_dmat);
  716 
  717     /* free and destroy DMA memory and tag for memory mailbox */
  718     if (sc->mly_mmbox) {
  719         bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
  720         bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
  721     }
  722     if (sc->mly_mmbox_dmat)
  723         bus_dma_tag_destroy(sc->mly_mmbox_dmat);
  724 
  725     /* disconnect the interrupt handler */
  726     if (sc->mly_intr)
  727         bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
  728     if (sc->mly_irq != NULL)
  729         bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
  730 
  731     /* destroy the parent DMA tag */
  732     if (sc->mly_parent_dmat)
  733         bus_dma_tag_destroy(sc->mly_parent_dmat);
  734 
  735     /* release the register window mapping */
  736     if (sc->mly_regs_resource != NULL)
  737         bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
  738 }
  739 
  740 /********************************************************************************
  741  ********************************************************************************
  742                                                                  Command Wrappers
  743  ********************************************************************************
  744  ********************************************************************************/
  745 
  746 /********************************************************************************
  747  * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
  748  */
  749 static int
  750 mly_get_controllerinfo(struct mly_softc *sc)
  751 {
  752     struct mly_command_ioctl    mci;
  753     u_int8_t                    status;
  754     int                         error;
  755 
  756     debug_called(1);
  757 
  758     if (sc->mly_controllerinfo != NULL)
  759         kfree(sc->mly_controllerinfo, M_DEVBUF);
  760 
  761     /* build the getcontrollerinfo ioctl and send it */
  762     bzero(&mci, sizeof(mci));
  763     sc->mly_controllerinfo = NULL;
  764     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
  765     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
  766                            &status, NULL, NULL)))
  767         return(error);
  768     if (status != 0)
  769         return(EIO);
  770 
  771     if (sc->mly_controllerparam != NULL)
  772         kfree(sc->mly_controllerparam, M_DEVBUF);
  773 
  774     /* build the getcontrollerparameter ioctl and send it */
  775     bzero(&mci, sizeof(mci));
  776     sc->mly_controllerparam = NULL;
  777     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
  778     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
  779                            &status, NULL, NULL)))
  780         return(error);
  781     if (status != 0)
  782         return(EIO);
  783 
  784     return(0);
  785 }
  786 
  787 /********************************************************************************
  788  * Schedule all possible devices for a rescan.
  789  *
  790  */
  791 static void
  792 mly_scan_devices(struct mly_softc *sc)
  793 {
  794     int         bus, target;
  795 
  796     debug_called(1);
  797 
  798     /*
  799      * Clear any previous BTL information.
  800      */
  801     bzero(&sc->mly_btl, sizeof(sc->mly_btl));
  802 
  803     /*
  804      * Mark all devices as requiring a rescan, and let the next
  805      * periodic scan collect them. 
  806      */
  807     for (bus = 0; bus < sc->mly_cam_channels; bus++)
  808         if (MLY_BUS_IS_VALID(sc, bus)) 
  809             for (target = 0; target < MLY_MAX_TARGETS; target++)
  810                 sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
  811 
  812 }
  813 
  814 /********************************************************************************
  815  * Rescan a device, possibly as a consequence of getting an event which suggests
  816  * that it may have changed.
  817  *
  818  * If we suffer resource starvation, we can abandon the rescan as we'll be
  819  * retried.
  820  */
  821 static void
  822 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
  823 {
  824     struct mly_command          *mc;
  825     struct mly_command_ioctl    *mci;
  826 
  827     debug_called(1);
  828 
  829     /* check that this bus is valid */
  830     if (!MLY_BUS_IS_VALID(sc, bus))
  831         return;
  832 
  833     /* get a command */
  834     if (mly_alloc_command(sc, &mc))
  835         return;
  836 
  837     /* set up the data buffer */
  838     mc->mc_data = kmalloc(sizeof(union mly_devinfo), M_DEVBUF, M_INTWAIT | M_ZERO);
  839     mc->mc_flags |= MLY_CMD_DATAIN;
  840     mc->mc_complete = mly_complete_rescan;
  841 
  842     /* 
  843      * Build the ioctl.
  844      */
  845     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
  846     mci->opcode = MDACMD_IOCTL;
  847     mci->addr.phys.controller = 0;
  848     mci->timeout.value = 30;
  849     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
  850     if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
  851         mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
  852         mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
  853         mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
  854         debug(1, "logical device %d", mci->addr.log.logdev);
  855     } else {
  856         mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
  857         mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
  858         mci->addr.phys.lun = 0;
  859         mci->addr.phys.target = target;
  860         mci->addr.phys.channel = bus;
  861         debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
  862     }
  863     
  864     /*
  865      * Dispatch the command.  If we successfully send the command, clear the rescan
  866      * bit.
  867      */
  868     if (mly_start(mc) != 0) {
  869         mly_release_command(mc);
  870     } else {
  871         sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;   /* success */   
  872     }
  873 }
  874 
  875 /********************************************************************************
  876  * Handle the completion of a rescan operation
  877  */
  878 static void
  879 mly_complete_rescan(struct mly_command *mc)
  880 {
  881     struct mly_softc                            *sc = mc->mc_sc;
  882     struct mly_ioctl_getlogdevinfovalid         *ldi;
  883     struct mly_ioctl_getphysdevinfovalid        *pdi;
  884     struct mly_command_ioctl                    *mci;
  885     struct mly_btl                              btl, *btlp;
  886     int                                         bus, target, rescan;
  887 
  888     debug_called(1);
  889 
  890     /*
  891      * Recover the bus and target from the command.  We need these even in
  892      * the case where we don't have a useful response.
  893      */
  894     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
  895     if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
  896         bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
  897         target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
  898     } else {
  899         bus = mci->addr.phys.channel;
  900         target = mci->addr.phys.target;
  901     }
  902     /* XXX validate bus/target? */
  903     
  904     /* the default result is 'no device' */
  905     bzero(&btl, sizeof(btl));
  906 
  907     /* if the rescan completed OK, we have possibly-new BTL data */
  908     if (mc->mc_status == 0) {
  909         if (mc->mc_length == sizeof(*ldi)) {
  910             ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
  911             if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
  912                 (MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
  913                 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
  914                            bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
  915                            MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
  916                 /* XXX what can we do about this? */
  917             }
  918             btl.mb_flags = MLY_BTL_LOGICAL;
  919             btl.mb_type = ldi->raid_level;
  920             btl.mb_state = ldi->state;
  921             debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number, 
  922                   mly_describe_code(mly_table_device_type, ldi->raid_level),
  923                   mly_describe_code(mly_table_device_state, ldi->state));
  924         } else if (mc->mc_length == sizeof(*pdi)) {
  925             pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
  926             if ((pdi->channel != bus) || (pdi->target != target)) {
  927                 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
  928                            bus, target, pdi->channel, pdi->target);
  929                 /* XXX what can we do about this? */
  930             }
  931             btl.mb_flags = MLY_BTL_PHYSICAL;
  932             btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
  933             btl.mb_state = pdi->state;
  934             btl.mb_speed = pdi->speed;
  935             btl.mb_width = pdi->width;
  936             if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
  937                 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
  938             debug(1, "BTL rescan for %d:%d returns %s", bus, target, 
  939                   mly_describe_code(mly_table_device_state, pdi->state));
  940         } else {
  941             mly_printf(sc, "BTL rescan result invalid\n");
  942         }
  943     }
  944 
  945     kfree(mc->mc_data, M_DEVBUF);
  946     mly_release_command(mc);
  947 
  948     /*
  949      * Decide whether we need to rescan the device.
  950      */
  951     rescan = 0;
  952 
  953     /* device type changes (usually between 'nothing' and 'something') */
  954     btlp = &sc->mly_btl[bus][target];
  955     if (btl.mb_flags != btlp->mb_flags) {
  956         debug(1, "flags changed, rescanning");
  957         rescan = 1;
  958     }
  959     
  960     /* XXX other reasons? */
  961 
  962     /*
  963      * Update BTL information.
  964      */
  965     *btlp = btl;
  966 
  967     /*
  968      * Perform CAM rescan if required.
  969      */
  970     if (rescan)
  971         mly_cam_rescan_btl(sc, bus, target);
  972 }
  973 
  974 /********************************************************************************
  975  * Get the current health status and set the 'next event' counter to suit.
  976  */
  977 static int
  978 mly_get_eventstatus(struct mly_softc *sc)
  979 {
  980     struct mly_command_ioctl    mci;
  981     struct mly_health_status    *mh;
  982     u_int8_t                    status;
  983     int                         error;
  984 
  985     /* build the gethealthstatus ioctl and send it */
  986     bzero(&mci, sizeof(mci));
  987     mh = NULL;
  988     mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
  989 
  990     if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
  991         return(error);
  992     if (status != 0)
  993         return(EIO);
  994 
  995     /* get the event counter */
  996     sc->mly_event_change = mh->change_counter;
  997     sc->mly_event_waiting = mh->next_event;
  998     sc->mly_event_counter = mh->next_event;
  999 
 1000     /* save the health status into the memory mailbox */
 1001     bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
 1002 
 1003     debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
 1004     
 1005     kfree(mh, M_DEVBUF);
 1006     return(0);
 1007 }
 1008 
 1009 /********************************************************************************
 1010  * Enable the memory mailbox mode.
 1011  */
 1012 static int
 1013 mly_enable_mmbox(struct mly_softc *sc)
 1014 {
 1015     struct mly_command_ioctl    mci;
 1016     u_int8_t                    *sp, status;
 1017     int                         error;
 1018 
 1019     debug_called(1);
 1020 
 1021     /* build the ioctl and send it */
 1022     bzero(&mci, sizeof(mci));
 1023     mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
 1024     /* set buffer addresses */
 1025     mci.param.setmemorymailbox.command_mailbox_physaddr = 
 1026         sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
 1027     mci.param.setmemorymailbox.status_mailbox_physaddr = 
 1028         sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
 1029     mci.param.setmemorymailbox.health_buffer_physaddr = 
 1030         sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
 1031 
 1032     /* set buffer sizes - abuse of data_size field is revolting */
 1033     sp = (u_int8_t *)&mci.data_size;
 1034     sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
 1035     sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
 1036     mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
 1037 
 1038     debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
 1039           mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
 1040           mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
 1041           mci.param.setmemorymailbox.health_buffer_physaddr, 
 1042           mci.param.setmemorymailbox.health_buffer_size);
 1043 
 1044     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
 1045         return(error);
 1046     if (status != 0)
 1047         return(EIO);
 1048     sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
 1049     debug(1, "memory mailbox active");
 1050     return(0);
 1051 }
 1052 
 1053 /********************************************************************************
 1054  * Flush all pending I/O from the controller.
 1055  */
 1056 static int
 1057 mly_flush(struct mly_softc *sc)
 1058 {
 1059     struct mly_command_ioctl    mci;
 1060     u_int8_t                    status;
 1061     int                         error;
 1062 
 1063     debug_called(1);
 1064 
 1065     /* build the ioctl */
 1066     bzero(&mci, sizeof(mci));
 1067     mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
 1068     mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
 1069 
 1070     /* pass it off to the controller */
 1071     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
 1072         return(error);
 1073 
 1074     return((status == 0) ? 0 : EIO);
 1075 }
 1076 
 1077 /********************************************************************************
 1078  * Perform an ioctl command.
 1079  *
 1080  * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
 1081  * the command requires data transfer from the controller, and we will allocate
 1082  * a buffer for it.  If (*data) is not NULL, the command requires data transfer
 1083  * to the controller.
 1084  *
 1085  * XXX passing in the whole ioctl structure is ugly.  Better ideas?
 1086  *
 1087  * XXX we don't even try to handle the case where datasize > 4k.  We should.
 1088  */
 1089 static int
 1090 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize, 
 1091           u_int8_t *status, void *sense_buffer, size_t *sense_length)
 1092 {
 1093     struct mly_command          *mc;
 1094     struct mly_command_ioctl    *mci;
 1095     int                         error;
 1096 
 1097     debug_called(1);
 1098 
 1099     mc = NULL;
 1100     if (mly_alloc_command(sc, &mc)) {
 1101         error = ENOMEM;
 1102         goto out;
 1103     }
 1104 
 1105     /* copy the ioctl structure, but save some important fields and then fixup */
 1106     mci = &mc->mc_packet->ioctl;
 1107     ioctl->sense_buffer_address = mci->sense_buffer_address;
 1108     ioctl->maximum_sense_size = mci->maximum_sense_size;
 1109     *mci = *ioctl;
 1110     mci->opcode = MDACMD_IOCTL;
 1111     mci->timeout.value = 30;
 1112     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
 1113     
 1114     /* handle the data buffer */
 1115     if (data != NULL) {
 1116         if (*data == NULL) {
 1117             /* allocate data buffer */
 1118             mc->mc_data = kmalloc(datasize, M_DEVBUF, M_INTWAIT);
 1119             mc->mc_flags |= MLY_CMD_DATAIN;
 1120         } else {
 1121             mc->mc_data = *data;
 1122             mc->mc_flags |= MLY_CMD_DATAOUT;
 1123         }
 1124         mc->mc_length = datasize;
 1125         mc->mc_packet->generic.data_size = datasize;
 1126     }
 1127     
 1128     /* run the command */
 1129     if ((error = mly_immediate_command(mc)))
 1130         goto out;
 1131     
 1132     /* clean up and return any data */
 1133     *status = mc->mc_status;
 1134     if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
 1135         bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
 1136         *sense_length = mc->mc_sense;
 1137         goto out;
 1138     }
 1139 
 1140     /* should we return a data pointer? */
 1141     if ((data != NULL) && (*data == NULL))
 1142         *data = mc->mc_data;
 1143 
 1144     /* command completed OK */
 1145     error = 0;
 1146 
 1147 out:
 1148     if (mc != NULL) {
 1149         /* do we need to free a data buffer we allocated? */
 1150         if (error && (mc->mc_data != NULL) && (*data == NULL))
 1151             kfree(mc->mc_data, M_DEVBUF);
 1152         mly_release_command(mc);
 1153     }
 1154     return(error);
 1155 }
 1156 
 1157 /********************************************************************************
 1158  * Check for event(s) outstanding in the controller.
 1159  */
 1160 static void
 1161 mly_check_event(struct mly_softc *sc)
 1162 {
 1163     
 1164     /*
 1165      * The controller may have updated the health status information,
 1166      * so check for it here.  Note that the counters are all in host memory,
 1167      * so this check is very cheap.  Also note that we depend on checking on
 1168      * completion 
 1169      */
 1170     if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
 1171         sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
 1172         debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
 1173               sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
 1174         sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
 1175 
 1176         /* wake up anyone that might be interested in this */
 1177         wakeup(&sc->mly_event_change);
 1178     }
 1179     if (sc->mly_event_counter != sc->mly_event_waiting)
 1180     mly_fetch_event(sc);
 1181 }
 1182 
 1183 /********************************************************************************
 1184  * Fetch one event from the controller.
 1185  *
 1186  * If we fail due to resource starvation, we'll be retried the next time a 
 1187  * command completes.
 1188  */
 1189 static void
 1190 mly_fetch_event(struct mly_softc *sc)
 1191 {
 1192     struct mly_command          *mc;
 1193     struct mly_command_ioctl    *mci;
 1194     u_int32_t                   event;
 1195 
 1196     debug_called(1);
 1197 
 1198     /* get a command */
 1199     if (mly_alloc_command(sc, &mc))
 1200         return;
 1201 
 1202     /* set up the data buffer */
 1203     mc->mc_data = kmalloc(sizeof(struct mly_event), M_DEVBUF, M_INTWAIT|M_ZERO);
 1204     mc->mc_length = sizeof(struct mly_event);
 1205     mc->mc_flags |= MLY_CMD_DATAIN;
 1206     mc->mc_complete = mly_complete_event;
 1207 
 1208     /*
 1209      * Get an event number to fetch.  It's possible that we've raced with another
 1210      * context for the last event, in which case there will be no more events.
 1211      */
 1212     crit_enter();
 1213     if (sc->mly_event_counter == sc->mly_event_waiting) {
 1214         mly_release_command(mc);
 1215         crit_exit();
 1216         return;
 1217     }
 1218     event = sc->mly_event_counter++;
 1219     crit_exit();
 1220 
 1221     /* 
 1222      * Build the ioctl.
 1223      *
 1224      * At this point we are committed to sending this request, as it
 1225      * will be the only one constructed for this particular event number.
 1226      */
 1227     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
 1228     mci->opcode = MDACMD_IOCTL;
 1229     mci->data_size = sizeof(struct mly_event);
 1230     mci->addr.phys.lun = (event >> 16) & 0xff;
 1231     mci->addr.phys.target = (event >> 24) & 0xff;
 1232     mci->addr.phys.channel = 0;
 1233     mci->addr.phys.controller = 0;
 1234     mci->timeout.value = 30;
 1235     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
 1236     mci->sub_ioctl = MDACIOCTL_GETEVENT;
 1237     mci->param.getevent.sequence_number_low = event & 0xffff;
 1238 
 1239     debug(1, "fetch event %u", event);
 1240 
 1241     /*
 1242      * Submit the command.
 1243      *
 1244      * Note that failure of mly_start() will result in this event never being
 1245      * fetched.
 1246      */
 1247     if (mly_start(mc) != 0) {
 1248         mly_printf(sc, "couldn't fetch event %u\n", event);
 1249         mly_release_command(mc);
 1250     }
 1251 }
 1252 
 1253 /********************************************************************************
 1254  * Handle the completion of an event poll.
 1255  */
 1256 static void
 1257 mly_complete_event(struct mly_command *mc)
 1258 {
 1259     struct mly_softc    *sc = mc->mc_sc;
 1260     struct mly_event    *me = (struct mly_event *)mc->mc_data;
 1261 
 1262     debug_called(1);
 1263 
 1264     /* 
 1265      * If the event was successfully fetched, process it.
 1266      */
 1267     if (mc->mc_status == SCSI_STATUS_OK) {
 1268         mly_process_event(sc, me);
 1269         kfree(me, M_DEVBUF);
 1270     }
 1271     mly_release_command(mc);
 1272 
 1273     /*
 1274      * Check for another event.
 1275      */
 1276     mly_check_event(sc);
 1277 }
 1278 
 1279 /********************************************************************************
 1280  * Process a controller event.
 1281  */
 1282 static void
 1283 mly_process_event(struct mly_softc *sc, struct mly_event *me)
 1284 {
 1285     struct scsi_sense_data      *ssd = (struct scsi_sense_data *)&me->sense[0];
 1286     char                        *fp, *tp;
 1287     int                         bus, target, event, class, action;
 1288     char                        hexstr[2][12];
 1289     /* 
 1290      * Errors can be reported using vendor-unique sense data.  In this case, the
 1291      * event code will be 0x1c (Request sense data present), the sense key will
 1292      * be 0x09 (vendor specific), the MSB of the ASC will be set, and the 
 1293      * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
 1294      * and low seven bits of the ASC (low seven bits of the high byte).
 1295      */
 1296     if ((me->code == 0x1c) && 
 1297         ((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
 1298         (ssd->add_sense_code & 0x80)) {
 1299         event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
 1300     } else {
 1301         event = me->code;
 1302     }
 1303 
 1304     /* look up event, get codes */
 1305     fp = mly_describe_code(mly_table_event, event);
 1306 
 1307     debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
 1308 
 1309     /* quiet event? */
 1310     class = fp[0];
 1311     if (isupper(class) && bootverbose)
 1312         class = tolower(class);
 1313 
 1314     /* get action code, text string */
 1315     action = fp[1];
 1316     tp = &fp[2];
 1317 
 1318     /*
 1319      * Print some information about the event.
 1320      *
 1321      * This code uses a table derived from the corresponding portion of the Linux
 1322      * driver, and thus the parser is very similar.
 1323      */
 1324     switch(class) {
 1325     case 'p':           /* error on physical device */
 1326         mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
 1327         if (action == 'r')
 1328             sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
 1329         break;
 1330     case 'l':           /* error on logical unit */
 1331     case 'm':           /* message about logical unit */
 1332         bus = MLY_LOGDEV_BUS(sc, me->lun);
 1333         target = MLY_LOGDEV_TARGET(sc, me->lun);
 1334         mly_name_device(sc, bus, target);
 1335         mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
 1336         if (action == 'r')
 1337             sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
 1338         break;
 1339     case 's':           /* report of sense data */
 1340         if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
 1341             (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) && 
 1342              (ssd->add_sense_code == 0x04) && 
 1343              ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
 1344             break;      /* ignore NO_SENSE or NOT_READY in one case */
 1345 
 1346         mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
 1347         mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n", 
 1348                       ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
 1349         mly_printf(sc, "  info %s csi %s\n", hexncpy(ssd->info, 4, hexstr[0], 12, NULL),
 1350             hexncpy(ssd->cmd_spec_info, 4, hexstr[1], 12, NULL));
 1351         if (action == 'r')
 1352             sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
 1353         break;
 1354     case 'e':
 1355         mly_printf(sc, tp, me->target, me->lun);
 1356         kprintf("\n");
 1357         break;
 1358     case 'c':
 1359         mly_printf(sc, "controller %s\n", tp);
 1360         break;
 1361     case '?':
 1362         mly_printf(sc, "%s - %d\n", tp, me->code);
 1363         break;
 1364     default:    /* probably a 'noisy' event being ignored */
 1365         break;
 1366     }
 1367 }
 1368 
 1369 /********************************************************************************
 1370  * Perform periodic activities.
 1371  */
 1372 static void
 1373 mly_periodic(void *data)
 1374 {
 1375     struct mly_softc    *sc = (struct mly_softc *)data;
 1376     int                 bus, target;
 1377 
 1378     debug_called(2);
 1379 
 1380     /*
 1381      * Scan devices.
 1382      */
 1383     for (bus = 0; bus < sc->mly_cam_channels; bus++) {
 1384         if (MLY_BUS_IS_VALID(sc, bus)) {
 1385             for (target = 0; target < MLY_MAX_TARGETS; target++) {
 1386 
 1387                 /* ignore the controller in this scan */
 1388                 if (target == sc->mly_controllerparam->initiator_id)
 1389                     continue;
 1390 
 1391                 /* perform device rescan? */
 1392                 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
 1393                     mly_rescan_btl(sc, bus, target);
 1394             }
 1395         }
 1396     }
 1397     
 1398     /* check for controller events */
 1399     mly_check_event(sc);
 1400 
 1401     /* reschedule ourselves */
 1402     callout_reset(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz, mly_periodic, sc);
 1403 }
 1404 
 1405 /********************************************************************************
 1406  ********************************************************************************
 1407                                                                Command Processing
 1408  ********************************************************************************
 1409  ********************************************************************************/
 1410 
 1411 /********************************************************************************
 1412  * Run a command and wait for it to complete.
 1413  *
 1414  */
 1415 static int
 1416 mly_immediate_command(struct mly_command *mc)
 1417 {
 1418     struct mly_softc    *sc = mc->mc_sc;
 1419     int                 error;
 1420 
 1421     debug_called(1);
 1422 
 1423     /* spinning at splcam is ugly, but we're only used during controller init */
 1424     crit_enter();
 1425     if ((error = mly_start(mc))) {
 1426         crit_exit();
 1427         return(error);
 1428     }
 1429 
 1430     if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
 1431         /* sleep on the command */
 1432         while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
 1433             tsleep(mc, 0, "mlywait", 0);
 1434         }
 1435     } else {
 1436         /* spin and collect status while we do */
 1437         while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
 1438             mly_done(mc->mc_sc);
 1439         }
 1440     }
 1441     crit_exit();
 1442     return(0);
 1443 }
 1444 
 1445 /********************************************************************************
 1446  * Deliver a command to the controller.
 1447  *
 1448  * XXX it would be good to just queue commands that we can't submit immediately
 1449  *     and send them later, but we probably want a wrapper for that so that
 1450  *     we don't hang on a failed submission for an immediate command.
 1451  */
 1452 static int
 1453 mly_start(struct mly_command *mc)
 1454 {
 1455     struct mly_softc            *sc = mc->mc_sc;
 1456     union mly_command_packet    *pkt;
 1457 
 1458     debug_called(2);
 1459 
 1460     /* 
 1461      * Set the command up for delivery to the controller. 
 1462      */
 1463     mly_map_command(mc);
 1464     mc->mc_packet->generic.command_id = mc->mc_slot;
 1465 
 1466 #ifdef MLY_DEBUG
 1467     mc->mc_timestamp = time_uptime;
 1468 #endif
 1469 
 1470     crit_enter();
 1471 
 1472     /*
 1473      * Do we have to use the hardware mailbox?
 1474      */
 1475     if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
 1476         /*
 1477          * Check to see if the controller is ready for us.
 1478          */
 1479         if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
 1480             crit_exit();
 1481             return(EBUSY);
 1482         }
 1483         mc->mc_flags |= MLY_CMD_BUSY;
 1484         
 1485         /*
 1486          * It's ready, send the command.
 1487          */
 1488         MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
 1489         MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
 1490 
 1491     } else {    /* use memory-mailbox mode */
 1492 
 1493         pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
 1494 
 1495         /* check to see if the next index is free yet */
 1496         if (pkt->mmbox.flag != 0) {
 1497             crit_exit();
 1498             return(EBUSY);
 1499         }
 1500         mc->mc_flags |= MLY_CMD_BUSY;
 1501         
 1502         /* copy in new command */
 1503         bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
 1504         /* barrier to ensure completion of previous write before we write the flag */
 1505         bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
 1506             BUS_SPACE_BARRIER_WRITE);
 1507         /* copy flag last */
 1508         pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
 1509         /* barrier to ensure completion of previous write before we notify the controller */
 1510         bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
 1511             BUS_SPACE_BARRIER_WRITE);
 1512 
 1513         /* signal controller, update index */
 1514         MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
 1515         sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
 1516     }
 1517 
 1518     mly_enqueue_busy(mc);
 1519     crit_exit();
 1520     return(0);
 1521 }
 1522 
 1523 /********************************************************************************
 1524  * Pick up command status from the controller, schedule a completion event
 1525  */
 1526 static void
 1527 mly_done(struct mly_softc *sc) 
 1528 {
 1529     struct mly_command          *mc;
 1530     union mly_status_packet     *sp;
 1531     u_int16_t                   slot;
 1532     int                         worked;
 1533 
 1534     crit_enter();
 1535     worked = 0;
 1536 
 1537     /* pick up hardware-mailbox commands */
 1538     if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
 1539         slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
 1540         if (slot < MLY_SLOT_MAX) {
 1541             mc = &sc->mly_command[slot - MLY_SLOT_START];
 1542             mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
 1543             mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
 1544             mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
 1545             mly_remove_busy(mc);
 1546             mc->mc_flags &= ~MLY_CMD_BUSY;
 1547             mly_enqueue_complete(mc);
 1548             worked = 1;
 1549         } else {
 1550             /* slot 0xffff may mean "extremely bogus command" */
 1551             mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
 1552         }
 1553         /* unconditionally acknowledge status */
 1554         MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
 1555         MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
 1556     }
 1557 
 1558     /* pick up memory-mailbox commands */
 1559     if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
 1560         for (;;) {
 1561             sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
 1562 
 1563             /* check for more status */
 1564             if (sp->mmbox.flag == 0)
 1565                 break;
 1566 
 1567             /* get slot number */
 1568             slot = sp->status.command_id;
 1569             if (slot < MLY_SLOT_MAX) {
 1570                 mc = &sc->mly_command[slot - MLY_SLOT_START];
 1571                 mc->mc_status = sp->status.status;
 1572                 mc->mc_sense = sp->status.sense_length;
 1573                 mc->mc_resid = sp->status.residue;
 1574                 mly_remove_busy(mc);
 1575                 mc->mc_flags &= ~MLY_CMD_BUSY;
 1576                 mly_enqueue_complete(mc);
 1577                 worked = 1;
 1578             } else {
 1579                 /* slot 0xffff may mean "extremely bogus command" */
 1580                 mly_printf(sc, "got AM completion for illegal slot %u at %d\n", 
 1581                            slot, sc->mly_mmbox_status_index);
 1582             }
 1583 
 1584             /* clear and move to next index */
 1585             sp->mmbox.flag = 0;
 1586             sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
 1587         }
 1588         /* acknowledge that we have collected status value(s) */
 1589         MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
 1590     }
 1591 
 1592     crit_exit();
 1593     if (worked) {
 1594         if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
 1595             taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
 1596         else
 1597             mly_complete(sc, 0);
 1598     }
 1599 }
 1600 
 1601 /********************************************************************************
 1602  * Process completed commands
 1603  */
 1604 static void
 1605 mly_complete(void *context, int pending)
 1606 {
 1607     struct mly_softc    *sc = (struct mly_softc *)context;
 1608     struct mly_command  *mc;
 1609     void                (* mc_complete)(struct mly_command *mc);
 1610 
 1611 
 1612     debug_called(2);
 1613 
 1614     /* 
 1615      * Spin pulling commands off the completed queue and processing them.
 1616      */
 1617     while ((mc = mly_dequeue_complete(sc)) != NULL) {
 1618 
 1619         /*
 1620          * Free controller resources, mark command complete.
 1621          *
 1622          * Note that as soon as we mark the command complete, it may be freed
 1623          * out from under us, so we need to save the mc_complete field in
 1624          * order to later avoid dereferencing mc.  (We would not expect to
 1625          * have a polling/sleeping consumer with mc_complete != NULL).
 1626          */
 1627         mly_unmap_command(mc);
 1628         mc_complete = mc->mc_complete;
 1629         mc->mc_flags |= MLY_CMD_COMPLETE;
 1630 
 1631         /* 
 1632          * Call completion handler or wake up sleeping consumer.
 1633          */
 1634         if (mc_complete != NULL) {
 1635             mc_complete(mc);
 1636         } else {
 1637             wakeup(mc);
 1638         }
 1639     }
 1640     
 1641     /*
 1642      * XXX if we are deferring commands due to controller-busy status, we should
 1643      *     retry submitting them here.
 1644      */
 1645 }
 1646 
 1647 /********************************************************************************
 1648  ********************************************************************************
 1649                                                         Command Buffer Management
 1650  ********************************************************************************
 1651  ********************************************************************************/
 1652 
 1653 /********************************************************************************
 1654  * Allocate a command.
 1655  */
 1656 static int
 1657 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
 1658 {
 1659     struct mly_command  *mc;
 1660 
 1661     debug_called(3);
 1662 
 1663     if ((mc = mly_dequeue_free(sc)) == NULL)
 1664         return(ENOMEM);
 1665 
 1666     *mcp = mc;
 1667     return(0);
 1668 }
 1669 
 1670 /********************************************************************************
 1671  * Release a command back to the freelist.
 1672  */
 1673 static void
 1674 mly_release_command(struct mly_command *mc)
 1675 {
 1676     debug_called(3);
 1677 
 1678     /*
 1679      * Fill in parts of the command that may cause confusion if
 1680      * a consumer doesn't when we are later allocated.
 1681      */
 1682     mc->mc_data = NULL;
 1683     mc->mc_flags = 0;
 1684     mc->mc_complete = NULL;
 1685     mc->mc_private = NULL;
 1686 
 1687     /*
 1688      * By default, we set up to overwrite the command packet with
 1689      * sense information.
 1690      */
 1691     mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
 1692     mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
 1693 
 1694     mly_enqueue_free(mc);
 1695 }
 1696 
 1697 /********************************************************************************
 1698  * Map helper for command allocation.
 1699  */
 1700 static void
 1701 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1702 {
 1703     struct mly_softc    *sc = (struct mly_softc *)arg;
 1704 
 1705     debug_called(1);
 1706 
 1707     sc->mly_packetphys = segs[0].ds_addr;
 1708 }
 1709 
 1710 /********************************************************************************
 1711  * Allocate and initialise command and packet structures.
 1712  *
 1713  * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
 1714  * allocation to that number.  If we don't yet know how many commands the
 1715  * controller supports, allocate a very small set (suitable for initialisation
 1716  * purposes only).
 1717  */
 1718 static int
 1719 mly_alloc_commands(struct mly_softc *sc)
 1720 {
 1721     struct mly_command          *mc;
 1722     int                         i, ncmd;
 1723  
 1724     if (sc->mly_controllerinfo == NULL) {
 1725         ncmd = 4;
 1726     } else {
 1727         ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
 1728     }
 1729 
 1730     /*
 1731      * Allocate enough space for all the command packets in one chunk and
 1732      * map them permanently into controller-visible space.
 1733      */
 1734     if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet, 
 1735                          BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
 1736         return(ENOMEM);
 1737     }
 1738     if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet, 
 1739                         ncmd * sizeof(union mly_command_packet), 
 1740                         mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
 1741         return (ENOMEM);
 1742 
 1743     for (i = 0; i < ncmd; i++) {
 1744         mc = &sc->mly_command[i];
 1745         bzero(mc, sizeof(*mc));
 1746         mc->mc_sc = sc;
 1747         mc->mc_slot = MLY_SLOT_START + i;
 1748         mc->mc_packet = sc->mly_packet + i;
 1749         mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
 1750         if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
 1751             mly_release_command(mc);
 1752     }
 1753     return(0);
 1754 }
 1755 
 1756 /********************************************************************************
 1757  * Free all the storage held by commands.
 1758  *
 1759  * Must be called with all commands on the free list.
 1760  */
 1761 static void
 1762 mly_release_commands(struct mly_softc *sc)
 1763 {
 1764     struct mly_command  *mc;
 1765 
 1766     /* throw away command buffer DMA maps */
 1767     while (mly_alloc_command(sc, &mc) == 0)
 1768         bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
 1769 
 1770     /* release the packet storage */
 1771     if (sc->mly_packet != NULL) {
 1772         bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
 1773         bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
 1774         sc->mly_packet = NULL;
 1775     }
 1776 }
 1777 
 1778 
 1779 /********************************************************************************
 1780  * Command-mapping helper function - populate this command's s/g table
 1781  * with the s/g entries for its data.
 1782  */
 1783 static void
 1784 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1785 {
 1786     struct mly_command          *mc = (struct mly_command *)arg;
 1787     struct mly_softc            *sc = mc->mc_sc;
 1788     struct mly_command_generic  *gen = &(mc->mc_packet->generic);
 1789     struct mly_sg_entry         *sg;
 1790     int                         i, tabofs;
 1791 
 1792     debug_called(2);
 1793 
 1794     /* can we use the transfer structure directly? */
 1795     if (nseg <= 2) {
 1796         sg = &gen->transfer.direct.sg[0];
 1797         gen->command_control.extended_sg_table = 0;
 1798     } else {
 1799         tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
 1800         sg = sc->mly_sg_table + tabofs;
 1801         gen->transfer.indirect.entries[0] = nseg;
 1802         gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
 1803         gen->command_control.extended_sg_table = 1;
 1804     }
 1805 
 1806     /* copy the s/g table */
 1807     for (i = 0; i < nseg; i++) {
 1808         sg[i].physaddr = segs[i].ds_addr;
 1809         sg[i].length = segs[i].ds_len;
 1810     }
 1811 
 1812 }
 1813 
 1814 #if 0
 1815 /********************************************************************************
 1816  * Command-mapping helper function - save the cdb's physical address.
 1817  *
 1818  * We don't support 'large' SCSI commands at this time, so this is unused.
 1819  */
 1820 static void
 1821 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1822 {
 1823     struct mly_command                  *mc = (struct mly_command *)arg;
 1824 
 1825     debug_called(2);
 1826 
 1827     /* XXX can we safely assume that a CDB will never cross a page boundary? */
 1828     if ((segs[0].ds_addr % PAGE_SIZE) > 
 1829         ((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
 1830         panic("cdb crosses page boundary");
 1831 
 1832     /* fix up fields in the command packet */
 1833     mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
 1834 }
 1835 #endif
 1836 
 1837 /********************************************************************************
 1838  * Map a command into controller-visible space
 1839  */
 1840 static void
 1841 mly_map_command(struct mly_command *mc)
 1842 {
 1843     struct mly_softc    *sc = mc->mc_sc;
 1844 
 1845     debug_called(2);
 1846 
 1847     /* don't map more than once */
 1848     if (mc->mc_flags & MLY_CMD_MAPPED)
 1849         return;
 1850 
 1851     /* does the command have a data buffer? */
 1852     if (mc->mc_data != NULL) {
 1853         bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length, 
 1854                         mly_map_command_sg, mc, 0);
 1855         
 1856         if (mc->mc_flags & MLY_CMD_DATAIN)
 1857             bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
 1858         if (mc->mc_flags & MLY_CMD_DATAOUT)
 1859             bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
 1860     }
 1861     mc->mc_flags |= MLY_CMD_MAPPED;
 1862 }
 1863 
 1864 /********************************************************************************
 1865  * Unmap a command from controller-visible space
 1866  */
 1867 static void
 1868 mly_unmap_command(struct mly_command *mc)
 1869 {
 1870     struct mly_softc    *sc = mc->mc_sc;
 1871 
 1872     debug_called(2);
 1873 
 1874     if (!(mc->mc_flags & MLY_CMD_MAPPED))
 1875         return;
 1876 
 1877     /* does the command have a data buffer? */
 1878     if (mc->mc_data != NULL) {
 1879         if (mc->mc_flags & MLY_CMD_DATAIN)
 1880             bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
 1881         if (mc->mc_flags & MLY_CMD_DATAOUT)
 1882             bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
 1883 
 1884         bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
 1885     }
 1886     mc->mc_flags &= ~MLY_CMD_MAPPED;
 1887 }
 1888 
 1889 
 1890 /********************************************************************************
 1891  ********************************************************************************
 1892                                                                     CAM interface
 1893  ********************************************************************************
 1894  ********************************************************************************/
 1895 
 1896 /********************************************************************************
 1897  * Attach the physical and virtual SCSI busses to CAM.
 1898  *
 1899  * Physical bus numbering starts from 0, virtual bus numbering from one greater
 1900  * than the highest physical bus.  Physical busses are only registered if
 1901  * the kernel environment variable "hw.mly.register_physical_channels" is set.
 1902  *
 1903  * When we refer to a "bus", we are referring to the bus number registered with
 1904  * the SIM, wheras a "channel" is a channel number given to the adapter.  In order
 1905  * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
 1906  * interchangeably.
 1907  */
 1908 static int
 1909 mly_cam_attach(struct mly_softc *sc)
 1910 {
 1911     struct cam_devq     *devq;
 1912     int                 chn, i;
 1913 
 1914     debug_called(1);
 1915 
 1916     /*
 1917      * Allocate a devq for all our channels combined.
 1918      */
 1919     if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
 1920         mly_printf(sc, "can't allocate CAM SIM queue\n");
 1921         return(ENOMEM);
 1922     }
 1923 
 1924     /*
 1925      * If physical channel registration has been requested, register these first.
 1926      * Note that we enable tagged command queueing for physical channels.
 1927      */
 1928     if (ktestenv("hw.mly.register_physical_channels")) {
 1929         chn = 0;
 1930         for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
 1931 
 1932             if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
 1933                                                       device_get_unit(sc->mly_dev),
 1934                                                       &sim_mplock,
 1935                                                       sc->mly_controllerinfo->maximum_parallel_commands,
 1936                                                       1, devq)) == NULL) {
 1937                 return(ENOMEM);
 1938             }
 1939             if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
 1940                 mly_printf(sc, "CAM XPT physical channel registration failed\n");
 1941                 return(ENXIO);
 1942             }
 1943             debug(1, "registered physical channel %d", chn);
 1944         }
 1945     }
 1946 
 1947     /*
 1948      * Register our virtual channels, with bus numbers matching channel numbers.
 1949      */
 1950     chn = sc->mly_controllerinfo->physical_channels_present;
 1951     for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
 1952         if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
 1953                                                   device_get_unit(sc->mly_dev),
 1954                                                   &sim_mplock,
 1955                                                   sc->mly_controllerinfo->maximum_parallel_commands,
 1956                                                   0, devq)) == NULL) {
 1957             return(ENOMEM);
 1958         }
 1959         if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
 1960             mly_printf(sc, "CAM XPT virtual channel registration failed\n");
 1961             return(ENXIO);
 1962         }
 1963         debug(1, "registered virtual channel %d", chn);
 1964     }
 1965 
 1966     /*
 1967      * This is the total number of channels that (might have been) registered with
 1968      * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
 1969      */
 1970     sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
 1971         sc->mly_controllerinfo->virtual_channels_present;
 1972 
 1973     return(0);
 1974 }
 1975 
 1976 /********************************************************************************
 1977  * Detach from CAM
 1978  */
 1979 static void
 1980 mly_cam_detach(struct mly_softc *sc)
 1981 {
 1982     int         i;
 1983     
 1984     debug_called(1);
 1985 
 1986     for (i = 0; i < sc->mly_cam_channels; i++) {
 1987         if (sc->mly_cam_sim[i] != NULL) {
 1988             xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
 1989             cam_sim_free(sc->mly_cam_sim[i]);
 1990         }
 1991     }
 1992     if (sc->mly_cam_devq != NULL)
 1993         cam_simq_release(sc->mly_cam_devq);
 1994 }
 1995 
 1996 /************************************************************************
 1997  * Rescan a device.
 1998  */ 
 1999 static void
 2000 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
 2001 {
 2002     union ccb   *ccb;
 2003 
 2004     debug_called(1);
 2005 
 2006     if ((ccb = xpt_alloc_ccb()) == NULL) {
 2007         mly_printf(sc, "rescan failed (can't allocate CCB)\n");
 2008         return;
 2009     }
 2010     if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
 2011                         cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
 2012         mly_printf(sc, "rescan failed (can't create path)\n");
 2013         xpt_free_ccb(ccb);
 2014         return;
 2015     }
 2016 
 2017     xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5/*priority (low)*/);
 2018     ccb->ccb_h.func_code = XPT_SCAN_LUN;
 2019     ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
 2020     ccb->crcn.flags = CAM_FLAG_NONE;
 2021     debug(1, "rescan target %d:%d", bus, target);
 2022     xpt_action(ccb);
 2023 }
 2024 
 2025 static void
 2026 mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
 2027 {
 2028     xpt_free_ccb(ccb);
 2029 }
 2030 
 2031 /********************************************************************************
 2032  * Handle an action requested by CAM
 2033  */
 2034 static void
 2035 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
 2036 {
 2037     struct mly_softc    *sc = cam_sim_softc(sim);
 2038 
 2039     debug_called(2);
 2040 
 2041     switch (ccb->ccb_h.func_code) {
 2042 
 2043         /* perform SCSI I/O */
 2044     case XPT_SCSI_IO:
 2045         if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
 2046             return;
 2047         break;
 2048 
 2049         /* perform geometry calculations */
 2050     case XPT_CALC_GEOMETRY:
 2051     {
 2052         struct ccb_calc_geometry        *ccg = &ccb->ccg;
 2053         u_int32_t                       secs_per_cylinder;
 2054 
 2055         debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
 2056 
 2057         if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
 2058             ccg->heads = 255;
 2059             ccg->secs_per_track = 63;
 2060         } else {                                /* MLY_BIOSGEOM_2G */
 2061             ccg->heads = 128;
 2062             ccg->secs_per_track = 32;
 2063         }
 2064         secs_per_cylinder = ccg->heads * ccg->secs_per_track;
 2065         ccg->cylinders = ccg->volume_size / secs_per_cylinder;
 2066         ccb->ccb_h.status = CAM_REQ_CMP;
 2067         break;
 2068     }
 2069 
 2070         /* handle path attribute inquiry */
 2071     case XPT_PATH_INQ:
 2072     {
 2073         struct ccb_pathinq      *cpi = &ccb->cpi;
 2074 
 2075         debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
 2076 
 2077         cpi->version_num = 1;
 2078         cpi->hba_inquiry = PI_TAG_ABLE;         /* XXX extra flags for physical channels? */
 2079         cpi->target_sprt = 0;
 2080         cpi->hba_misc = 0;
 2081         cpi->max_target = MLY_MAX_TARGETS - 1;
 2082         cpi->max_lun = MLY_MAX_LUNS - 1;
 2083         cpi->initiator_id = sc->mly_controllerparam->initiator_id;
 2084         strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
 2085         strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
 2086         strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
 2087         cpi->unit_number = cam_sim_unit(sim);
 2088         cpi->bus_id = cam_sim_bus(sim);
 2089         cpi->base_transfer_speed = 132 * 1024;  /* XXX what to set this to? */
 2090         cpi->transport = XPORT_SPI;
 2091         cpi->transport_version = 2;
 2092         cpi->protocol = PROTO_SCSI;
 2093         cpi->protocol_version = SCSI_REV_2;
 2094         ccb->ccb_h.status = CAM_REQ_CMP;
 2095         break;
 2096     }
 2097 
 2098     case XPT_GET_TRAN_SETTINGS:
 2099     {
 2100         struct ccb_trans_settings       *cts = &ccb->cts;
 2101         int                             bus, target;
 2102         struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
 2103         struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
 2104 
 2105         cts->protocol = PROTO_SCSI;
 2106         cts->protocol_version = SCSI_REV_2;
 2107         cts->transport = XPORT_SPI;
 2108         cts->transport_version = 2;
 2109 
 2110         scsi->flags = 0;
 2111         scsi->valid = 0;
 2112         spi->flags = 0;
 2113         spi->valid = 0;
 2114 
 2115         bus = cam_sim_bus(sim);
 2116         target = cts->ccb_h.target_id;
 2117         debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
 2118         /* logical device? */
 2119         if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
 2120             /* nothing special for these */
 2121         /* physical device? */
 2122         } else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
 2123             /* allow CAM to try tagged transactions */
 2124             scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
 2125             scsi->valid |= CTS_SCSI_VALID_TQ;
 2126 
 2127             /* convert speed (MHz) to usec */
 2128             if (sc->mly_btl[bus][target].mb_speed == 0) {
 2129                 spi->sync_period = 1000000 / 5;
 2130             } else {
 2131                 spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
 2132             }
 2133 
 2134             /* convert bus width to CAM internal encoding */
 2135             switch (sc->mly_btl[bus][target].mb_width) {
 2136             case 32:
 2137                 spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
 2138                 break;
 2139             case 16:
 2140                 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
 2141                 break;
 2142             case 8:
 2143             default:
 2144                 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
 2145                 break;
 2146             }
 2147             spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
 2148 
 2149             /* not a device, bail out */
 2150         } else {
 2151             cts->ccb_h.status = CAM_REQ_CMP_ERR;
 2152             break;
 2153         }
 2154 
 2155         /* disconnect always OK */
 2156         spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
 2157         spi->valid |= CTS_SPI_VALID_DISC;
 2158 
 2159         cts->ccb_h.status = CAM_REQ_CMP;
 2160         break;
 2161     }
 2162 
 2163     default:            /* we can't do this */
 2164         debug(2, "unsupported func_code = 0x%x", ccb->ccb_h.func_code);
 2165         ccb->ccb_h.status = CAM_REQ_INVALID;
 2166         break;
 2167     }
 2168 
 2169     xpt_done(ccb);
 2170 }
 2171 
 2172 /********************************************************************************
 2173  * Handle an I/O operation requested by CAM
 2174  */
 2175 static int
 2176 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
 2177 {
 2178     struct mly_softc                    *sc = cam_sim_softc(sim);
 2179     struct mly_command                  *mc;
 2180     struct mly_command_scsi_small       *ss;
 2181     int                                 bus, target;
 2182     int                                 error;
 2183 
 2184     bus = cam_sim_bus(sim);
 2185     target = csio->ccb_h.target_id;
 2186 
 2187     debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
 2188 
 2189     /* validate bus number */
 2190     if (!MLY_BUS_IS_VALID(sc, bus)) {
 2191         debug(0, " invalid bus %d", bus);
 2192         csio->ccb_h.status = CAM_REQ_CMP_ERR;
 2193     }
 2194 
 2195     /*  check for I/O attempt to a protected device */
 2196     if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
 2197         debug(2, "  device protected");
 2198         csio->ccb_h.status = CAM_REQ_CMP_ERR;
 2199     }
 2200 
 2201     /* check for I/O attempt to nonexistent device */
 2202     if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
 2203         debug(2, "  device %d:%d does not exist", bus, target);
 2204         csio->ccb_h.status = CAM_REQ_CMP_ERR;
 2205     }
 2206 
 2207     /* XXX increase if/when we support large SCSI commands */
 2208     if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
 2209         debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
 2210         csio->ccb_h.status = CAM_REQ_CMP_ERR;
 2211     }
 2212 
 2213     /* check that the CDB pointer is not to a physical address */
 2214     if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
 2215         debug(0, "  CDB pointer is to physical address");
 2216         csio->ccb_h.status = CAM_REQ_CMP_ERR;
 2217     }
 2218 
 2219     /* if there is data transfer, it must be to/from a virtual address */
 2220     if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
 2221         if (csio->ccb_h.flags & CAM_DATA_PHYS) {                /* we can't map it */
 2222             debug(0, "  data pointer is to physical address");
 2223             csio->ccb_h.status = CAM_REQ_CMP_ERR;
 2224         }
 2225         if (csio->ccb_h.flags & CAM_SCATTER_VALID) {    /* we want to do the s/g setup */
 2226             debug(0, "  data has premature s/g setup");
 2227             csio->ccb_h.status = CAM_REQ_CMP_ERR;
 2228         }
 2229     }
 2230 
 2231     /* abandon aborted ccbs or those that have failed validation */
 2232     if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
 2233         debug(2, "abandoning CCB due to abort/validation failure");
 2234         return(EINVAL);
 2235     }
 2236 
 2237     /*
 2238      * Get a command, or push the ccb back to CAM and freeze the queue.
 2239      */
 2240     if ((error = mly_alloc_command(sc, &mc))) {
 2241         crit_enter();
 2242         xpt_freeze_simq(sim, 1);
 2243         csio->ccb_h.status |= CAM_REQUEUE_REQ;
 2244         sc->mly_qfrzn_cnt++;
 2245         crit_exit();
 2246         return(error);
 2247     }
 2248     
 2249     /* build the command */
 2250     mc->mc_data = csio->data_ptr;
 2251     mc->mc_length = csio->dxfer_len;
 2252     mc->mc_complete = mly_cam_complete;
 2253     mc->mc_private = csio;
 2254 
 2255     /* save the bus number in the ccb for later recovery XXX should be a better way */
 2256      csio->ccb_h.sim_priv.entries[0].field = bus;
 2257 
 2258     /* build the packet for the controller */
 2259     ss = &mc->mc_packet->scsi_small;
 2260     ss->opcode = MDACMD_SCSI;
 2261     if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
 2262         ss->command_control.disable_disconnect = 1;
 2263     if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
 2264         ss->command_control.data_direction = MLY_CCB_WRITE;
 2265     ss->data_size = csio->dxfer_len;
 2266     ss->addr.phys.lun = csio->ccb_h.target_lun;
 2267     ss->addr.phys.target = csio->ccb_h.target_id;
 2268     ss->addr.phys.channel = bus;
 2269     if (csio->ccb_h.timeout < (60 * 1000)) {
 2270         ss->timeout.value = csio->ccb_h.timeout / 1000;
 2271         ss->timeout.scale = MLY_TIMEOUT_SECONDS;
 2272     } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
 2273         ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
 2274         ss->timeout.scale = MLY_TIMEOUT_MINUTES;
 2275     } else {
 2276         ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);     /* overflow? */
 2277         ss->timeout.scale = MLY_TIMEOUT_HOURS;
 2278     }
 2279     ss->maximum_sense_size = csio->sense_len;
 2280     ss->cdb_length = csio->cdb_len;
 2281     if (csio->ccb_h.flags & CAM_CDB_POINTER) {
 2282         bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
 2283     } else {
 2284         bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
 2285     }
 2286 
 2287     /* give the command to the controller */
 2288     if ((error = mly_start(mc))) {
 2289         crit_enter();
 2290         xpt_freeze_simq(sim, 1);
 2291         csio->ccb_h.status |= CAM_REQUEUE_REQ;
 2292         sc->mly_qfrzn_cnt++;
 2293         crit_exit();
 2294         return(error);
 2295     }
 2296 
 2297     return(0);
 2298 }
 2299 
 2300 /********************************************************************************
 2301  * Check for possibly-completed commands.
 2302  */
 2303 static void
 2304 mly_cam_poll(struct cam_sim *sim)
 2305 {
 2306     struct mly_softc    *sc = cam_sim_softc(sim);
 2307 
 2308     debug_called(2);
 2309 
 2310     mly_done(sc);
 2311 }
 2312 
 2313 /********************************************************************************
 2314  * Handle completion of a command - pass results back through the CCB
 2315  */
 2316 static void
 2317 mly_cam_complete(struct mly_command *mc)
 2318 {
 2319     struct mly_softc            *sc = mc->mc_sc;
 2320     struct ccb_scsiio           *csio = (struct ccb_scsiio *)mc->mc_private;
 2321     struct scsi_inquiry_data    *inq = (struct scsi_inquiry_data *)csio->data_ptr;
 2322     struct mly_btl              *btl;
 2323     u_int8_t                    cmd;
 2324     int                         bus, target;
 2325 
 2326     debug_called(2);
 2327 
 2328     csio->scsi_status = mc->mc_status;
 2329     switch(mc->mc_status) {
 2330     case SCSI_STATUS_OK:
 2331         /*
 2332          * In order to report logical device type and status, we overwrite
 2333          * the result of the INQUIRY command to logical devices.
 2334          */
 2335         bus = csio->ccb_h.sim_priv.entries[0].field;
 2336         target = csio->ccb_h.target_id;
 2337         /* XXX validate bus/target? */
 2338         if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
 2339             if (csio->ccb_h.flags & CAM_CDB_POINTER) {
 2340                 cmd = *csio->cdb_io.cdb_ptr;
 2341             } else {
 2342                 cmd = csio->cdb_io.cdb_bytes[0];
 2343             }
 2344             if (cmd == INQUIRY) {
 2345                 btl = &sc->mly_btl[bus][target];
 2346                 padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
 2347                 padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
 2348                 padstr(inq->revision, "MYLX", 4);
 2349             }
 2350         }
 2351 
 2352         debug(2, "SCSI_STATUS_OK");
 2353         csio->ccb_h.status = CAM_REQ_CMP;
 2354         break;
 2355 
 2356     case SCSI_STATUS_CHECK_COND:
 2357         debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
 2358         csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
 2359         bzero(&csio->sense_data, SSD_FULL_SIZE);
 2360         bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
 2361         csio->sense_len = mc->mc_sense;
 2362         csio->ccb_h.status |= CAM_AUTOSNS_VALID;
 2363         csio->resid = mc->mc_resid;     /* XXX this is a signed value... */
 2364         break;
 2365 
 2366     case SCSI_STATUS_BUSY:
 2367         debug(1, "SCSI_STATUS_BUSY");
 2368         csio->ccb_h.status = CAM_SCSI_BUSY;
 2369         break;
 2370 
 2371     default:
 2372         debug(1, "unknown status 0x%x", csio->scsi_status);
 2373         csio->ccb_h.status = CAM_REQ_CMP_ERR;
 2374         break;
 2375     }
 2376 
 2377     crit_enter();
 2378     if (sc->mly_qfrzn_cnt) {
 2379         csio->ccb_h.status |= CAM_RELEASE_SIMQ;
 2380         sc->mly_qfrzn_cnt--;
 2381     }
 2382     crit_exit();
 2383 
 2384     xpt_done((union ccb *)csio);
 2385     mly_release_command(mc);
 2386 }
 2387 
 2388 /********************************************************************************
 2389  * Find a peripheral attahed at (bus),(target)
 2390  */
 2391 static struct cam_periph *
 2392 mly_find_periph(struct mly_softc *sc, int bus, int target)
 2393 {
 2394     struct cam_periph   *periph;
 2395     struct cam_path     *path;
 2396     int                 status;
 2397 
 2398     status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
 2399     if (status == CAM_REQ_CMP) {
 2400         periph = cam_periph_find(path, NULL);
 2401         xpt_free_path(path);
 2402     } else {
 2403         periph = NULL;
 2404     }
 2405     return(periph);
 2406 }
 2407 
 2408 /********************************************************************************
 2409  * Name the device at (bus)(target)
 2410  */
 2411 static int
 2412 mly_name_device(struct mly_softc *sc, int bus, int target)
 2413 {
 2414     struct cam_periph   *periph;
 2415 
 2416     if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
 2417         ksprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
 2418         return(0);
 2419     }
 2420     sc->mly_btl[bus][target].mb_name[0] = 0;
 2421     return(ENOENT);
 2422 }
 2423 
 2424 /********************************************************************************
 2425  ********************************************************************************
 2426                                                                  Hardware Control
 2427  ********************************************************************************
 2428  ********************************************************************************/
 2429 
 2430 /********************************************************************************
 2431  * Handshake with the firmware while the card is being initialised.
 2432  */
 2433 static int
 2434 mly_fwhandshake(struct mly_softc *sc) 
 2435 {
 2436     u_int8_t    error, param0, param1;
 2437     int         spinup = 0;
 2438 
 2439     debug_called(1);
 2440 
 2441     /* set HM_STSACK and let the firmware initialise */
 2442     MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
 2443     DELAY(1000);        /* too short? */
 2444 
 2445     /* if HM_STSACK is still true, the controller is initialising */
 2446     if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
 2447         return(0);
 2448     mly_printf(sc, "controller initialisation started\n");
 2449 
 2450     /* spin waiting for initialisation to finish, or for a message to be delivered */
 2451     while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
 2452         /* check for a message */
 2453         if (MLY_ERROR_VALID(sc)) {
 2454             error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
 2455             param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
 2456             param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
 2457 
 2458             switch(error) {
 2459             case MLY_MSG_SPINUP:
 2460                 if (!spinup) {
 2461                     mly_printf(sc, "drive spinup in progress\n");
 2462                     spinup = 1;                 /* only print this once (should print drive being spun?) */
 2463                 }
 2464                 break;
 2465             case MLY_MSG_RACE_RECOVERY_FAIL:
 2466                 mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
 2467                 break;
 2468             case MLY_MSG_RACE_IN_PROGRESS:
 2469                 mly_printf(sc, "mirror race recovery in progress\n");
 2470                 break;
 2471             case MLY_MSG_RACE_ON_CRITICAL:
 2472                 mly_printf(sc, "mirror race recovery on a critical drive\n");
 2473                 break;
 2474             case MLY_MSG_PARITY_ERROR:
 2475                 mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
 2476                 return(ENXIO);
 2477             default:
 2478                 mly_printf(sc, "unknown initialisation code 0x%x\n", error);
 2479             }
 2480         }
 2481     }
 2482     return(0);
 2483 }
 2484 
 2485 /********************************************************************************
 2486  ********************************************************************************
 2487                                                         Debugging and Diagnostics
 2488  ********************************************************************************
 2489  ********************************************************************************/
 2490 
 2491 /********************************************************************************
 2492  * Print some information about the controller.
 2493  */
 2494 static void
 2495 mly_describe_controller(struct mly_softc *sc)
 2496 {
 2497     struct mly_ioctl_getcontrollerinfo  *mi = sc->mly_controllerinfo;
 2498 
 2499     mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n", 
 2500                mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
 2501                mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,   /* XXX turn encoding? */
 2502                mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
 2503                mi->memory_size);
 2504 
 2505     if (bootverbose) {
 2506         mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n", 
 2507                    mly_describe_code(mly_table_oemname, mi->oem_information), 
 2508                    mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
 2509                    mi->interface_speed, mi->interface_width, mi->interface_name);
 2510         mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
 2511                    mi->memory_size, mi->memory_speed, mi->memory_width, 
 2512                    mly_describe_code(mly_table_memorytype, mi->memory_type),
 2513                    mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
 2514                    mi->cache_size);
 2515         mly_printf(sc, "CPU: %s @ %dMHz\n",
 2516                    mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
 2517         if (mi->l2cache_size != 0)
 2518             mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
 2519         if (mi->exmemory_size != 0)
 2520             mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
 2521                        mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
 2522                        mly_describe_code(mly_table_memorytype, mi->exmemory_type),
 2523                        mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
 2524         mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
 2525         mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
 2526                    mi->maximum_block_count, mi->maximum_sg_entries);
 2527         mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
 2528                    mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
 2529         mly_printf(sc, "physical devices present %d\n",
 2530                    mi->physical_devices_present);
 2531         mly_printf(sc, "physical disks present/offline %d/%d\n",
 2532                    mi->physical_disks_present, mi->physical_disks_offline);
 2533         mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
 2534                    mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
 2535                    mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
 2536                    mi->virtual_channels_possible);
 2537         mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
 2538         mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
 2539                    mi->flash_size, mi->flash_age, mi->flash_maximum_age);
 2540     }
 2541 }
 2542 
 2543 #ifdef MLY_DEBUG
 2544 /********************************************************************************
 2545  * Print some controller state
 2546  */
 2547 static void
 2548 mly_printstate(struct mly_softc *sc)
 2549 {
 2550     mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
 2551                   MLY_GET_REG(sc, sc->mly_idbr),
 2552                   MLY_GET_REG(sc, sc->mly_odbr),
 2553                   MLY_GET_REG(sc, sc->mly_error_status),
 2554                   sc->mly_idbr,
 2555                   sc->mly_odbr,
 2556                   sc->mly_error_status);
 2557     mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
 2558                   MLY_GET_REG(sc, sc->mly_interrupt_mask),
 2559                   MLY_GET_REG(sc, sc->mly_interrupt_status));
 2560     mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
 2561                   MLY_GET_REG(sc, sc->mly_command_mailbox),
 2562                   MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
 2563                   MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
 2564                   MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
 2565                   MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
 2566                   MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
 2567                   MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
 2568                   MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
 2569     mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
 2570                   MLY_GET_REG(sc, sc->mly_status_mailbox),
 2571                   MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
 2572                   MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
 2573                   MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
 2574                   MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
 2575                   MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
 2576                   MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
 2577                   MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
 2578     mly_printf(sc, "        %04x        %08x\n",
 2579                   MLY_GET_REG2(sc, sc->mly_status_mailbox),
 2580                   MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
 2581 }
 2582 
 2583 struct mly_softc        *mly_softc0 = NULL;
 2584 void
 2585 mly_printstate0(void)
 2586 {
 2587     if (mly_softc0 != NULL)
 2588         mly_printstate(mly_softc0);
 2589 }
 2590 
 2591 /********************************************************************************
 2592  * Print a command
 2593  */
 2594 static void
 2595 mly_print_command(struct mly_command *mc)
 2596 {
 2597     struct mly_softc    *sc = mc->mc_sc;
 2598     
 2599     mly_printf(sc, "COMMAND @ %p\n", mc);
 2600     mly_printf(sc, "  slot      %d\n", mc->mc_slot);
 2601     mly_printf(sc, "  status    0x%x\n", mc->mc_status);
 2602     mly_printf(sc, "  sense len %d\n", mc->mc_sense);
 2603     mly_printf(sc, "  resid     %d\n", mc->mc_resid);
 2604     mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
 2605     if (mc->mc_packet != NULL)
 2606         mly_print_packet(mc);
 2607     mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
 2608     mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\2\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
 2609     mly_printf(sc, "  complete  %p\n", mc->mc_complete);
 2610     mly_printf(sc, "  private   %p\n", mc->mc_private);
 2611 }
 2612 
 2613 /********************************************************************************
 2614  * Print a command packet
 2615  */
 2616 static void
 2617 mly_print_packet(struct mly_command *mc)
 2618 {
 2619     struct mly_softc                    *sc = mc->mc_sc;
 2620     struct mly_command_generic          *ge = (struct mly_command_generic *)mc->mc_packet;
 2621     struct mly_command_scsi_small       *ss = (struct mly_command_scsi_small *)mc->mc_packet;
 2622     struct mly_command_scsi_large       *sl = (struct mly_command_scsi_large *)mc->mc_packet;
 2623     struct mly_command_ioctl            *io = (struct mly_command_ioctl *)mc->mc_packet;
 2624     int                                 transfer;
 2625     char                                hexstr[HEX_NCPYLEN(MLY_CMD_SCSI_SMALL_CDB)];
 2626 
 2627     mly_printf(sc, "   command_id           %d\n", ge->command_id);
 2628     mly_printf(sc, "   opcode               %d\n", ge->opcode);
 2629     mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
 2630                   ge->command_control.force_unit_access,
 2631                   ge->command_control.disable_page_out,
 2632                   ge->command_control.extended_sg_table,
 2633                   (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
 2634                   ge->command_control.no_auto_sense,
 2635                   ge->command_control.disable_disconnect);
 2636     mly_printf(sc, "   data_size            %d\n", ge->data_size);
 2637     mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
 2638     mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
 2639     mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
 2640     mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
 2641     mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
 2642     mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
 2643     mly_printf(sc, "   timeout              %d %s\n", 
 2644                   ge->timeout.value,
 2645                   (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" : 
 2646                   ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
 2647     mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
 2648     switch(ge->opcode) {
 2649     case MDACMD_SCSIPT:
 2650     case MDACMD_SCSI:
 2651         mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
 2652         mly_printf(sc, "   cdb                  %s\n",
 2653             hexncpy(ss->cdb, ss->cdb_length, hexstr, HEX_NCPYLEN(ss->cdb_length), " "));
 2654         transfer = 1;
 2655         break;
 2656     case MDACMD_SCSILC:
 2657     case MDACMD_SCSILCPT:
 2658         mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
 2659         mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
 2660         transfer = 1;
 2661         break;
 2662     case MDACMD_IOCTL:
 2663         mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
 2664         switch(io->sub_ioctl) {
 2665         case MDACIOCTL_SETMEMORYMAILBOX:
 2666             mly_printf(sc, "   health_buffer_size   %d\n", 
 2667                           io->param.setmemorymailbox.health_buffer_size);
 2668             mly_printf(sc, "   health_buffer_phys   0x%llx\n",
 2669                           io->param.setmemorymailbox.health_buffer_physaddr);
 2670             mly_printf(sc, "   command_mailbox      0x%llx\n",
 2671                           io->param.setmemorymailbox.command_mailbox_physaddr);
 2672             mly_printf(sc, "   status_mailbox       0x%llx\n",
 2673                           io->param.setmemorymailbox.status_mailbox_physaddr);
 2674             transfer = 0;
 2675             break;
 2676 
 2677         case MDACIOCTL_SETREALTIMECLOCK:
 2678         case MDACIOCTL_GETHEALTHSTATUS:
 2679         case MDACIOCTL_GETCONTROLLERINFO:
 2680         case MDACIOCTL_GETLOGDEVINFOVALID:
 2681         case MDACIOCTL_GETPHYSDEVINFOVALID:
 2682         case MDACIOCTL_GETPHYSDEVSTATISTICS:
 2683         case MDACIOCTL_GETLOGDEVSTATISTICS:
 2684         case MDACIOCTL_GETCONTROLLERSTATISTICS:
 2685         case MDACIOCTL_GETBDT_FOR_SYSDRIVE:         
 2686         case MDACIOCTL_CREATENEWCONF:
 2687         case MDACIOCTL_ADDNEWCONF:
 2688         case MDACIOCTL_GETDEVCONFINFO:
 2689         case MDACIOCTL_GETFREESPACELIST:
 2690         case MDACIOCTL_MORE:
 2691         case MDACIOCTL_SETPHYSDEVPARAMETER:
 2692         case MDACIOCTL_GETPHYSDEVPARAMETER:
 2693         case MDACIOCTL_GETLOGDEVPARAMETER:
 2694         case MDACIOCTL_SETLOGDEVPARAMETER:
 2695             mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
 2696             transfer = 1;
 2697             break;
 2698 
 2699         case MDACIOCTL_GETEVENT:
 2700             mly_printf(sc, "   event                %d\n", 
 2701                        io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
 2702             transfer = 1;
 2703             break;
 2704 
 2705         case MDACIOCTL_SETRAIDDEVSTATE:
 2706             mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
 2707             transfer = 0;
 2708             break;
 2709 
 2710         case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
 2711             mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
 2712             mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
 2713             mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
 2714             mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
 2715             mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
 2716             transfer = 0;
 2717             break;
 2718 
 2719         case MDACIOCTL_GETGROUPCONFINFO:
 2720             mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
 2721             transfer = 1;
 2722             break;
 2723 
 2724         case MDACIOCTL_GET_SUBSYSTEM_DATA:
 2725         case MDACIOCTL_SET_SUBSYSTEM_DATA:
 2726         case MDACIOCTL_STARTDISOCVERY:
 2727         case MDACIOCTL_INITPHYSDEVSTART:
 2728         case MDACIOCTL_INITPHYSDEVSTOP:
 2729         case MDACIOCTL_INITRAIDDEVSTART:
 2730         case MDACIOCTL_INITRAIDDEVSTOP:
 2731         case MDACIOCTL_REBUILDRAIDDEVSTART:
 2732         case MDACIOCTL_REBUILDRAIDDEVSTOP:
 2733         case MDACIOCTL_MAKECONSISTENTDATASTART:
 2734         case MDACIOCTL_MAKECONSISTENTDATASTOP:
 2735         case MDACIOCTL_CONSISTENCYCHECKSTART:
 2736         case MDACIOCTL_CONSISTENCYCHECKSTOP:
 2737         case MDACIOCTL_RESETDEVICE:
 2738         case MDACIOCTL_FLUSHDEVICEDATA:
 2739         case MDACIOCTL_PAUSEDEVICE:
 2740         case MDACIOCTL_UNPAUSEDEVICE:
 2741         case MDACIOCTL_LOCATEDEVICE:
 2742         case MDACIOCTL_SETMASTERSLAVEMODE:
 2743         case MDACIOCTL_DELETERAIDDEV:
 2744         case MDACIOCTL_REPLACEINTERNALDEV:
 2745         case MDACIOCTL_CLEARCONF:
 2746         case MDACIOCTL_GETCONTROLLERPARAMETER:
 2747         case MDACIOCTL_SETCONTRLLERPARAMETER:
 2748         case MDACIOCTL_CLEARCONFSUSPMODE:
 2749         case MDACIOCTL_STOREIMAGE:
 2750         case MDACIOCTL_READIMAGE:
 2751         case MDACIOCTL_FLASHIMAGES:
 2752         case MDACIOCTL_RENAMERAIDDEV:
 2753         default:                        /* no idea what to print */
 2754             transfer = 0;
 2755             break;
 2756         }
 2757         break;
 2758 
 2759     case MDACMD_IOCTLCHECK:
 2760     case MDACMD_MEMCOPY:
 2761     default:
 2762         transfer = 0;
 2763         break;  /* print nothing */
 2764     }
 2765     if (transfer) {
 2766         if (ge->command_control.extended_sg_table) {
 2767             mly_printf(sc, "   sg table             0x%llx/%d\n",
 2768                           ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
 2769         } else {
 2770             mly_printf(sc, "   0000                 0x%llx/%lld\n",
 2771                           ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
 2772             mly_printf(sc, "   0001                 0x%llx/%lld\n",
 2773                           ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
 2774         }
 2775     }
 2776 }
 2777 
 2778 /********************************************************************************
 2779  * Panic in a slightly informative fashion
 2780  */
 2781 static void
 2782 mly_panic(struct mly_softc *sc, char *reason)
 2783 {
 2784     mly_printstate(sc);
 2785     panic(reason);
 2786 }
 2787 
 2788 /********************************************************************************
 2789  * Print queue statistics, callable from DDB.
 2790  */
 2791 void
 2792 mly_print_controller(int controller)
 2793 {
 2794     struct mly_softc    *sc;
 2795     
 2796     if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
 2797         kprintf("mly: controller %d invalid\n", controller);
 2798     } else {
 2799         device_printf(sc->mly_dev, "queue    curr max\n");
 2800         device_printf(sc->mly_dev, "free     %04d/%04d\n", 
 2801                       sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
 2802         device_printf(sc->mly_dev, "busy     %04d/%04d\n", 
 2803                       sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
 2804         device_printf(sc->mly_dev, "complete %04d/%04d\n", 
 2805                       sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
 2806     }
 2807 }
 2808 #endif
 2809 
 2810 
 2811 /********************************************************************************
 2812  ********************************************************************************
 2813                                                          Control device interface
 2814  ********************************************************************************
 2815  ********************************************************************************/
 2816 
 2817 /********************************************************************************
 2818  * Accept an open operation on the control device.
 2819  */
 2820 static int
 2821 mly_user_open(struct dev_open_args *ap)
 2822 {
 2823     cdev_t              dev = ap->a_head.a_dev;
 2824     int                 unit = minor(dev);
 2825     struct mly_softc    *sc = devclass_get_softc(devclass_find("mly"), unit);
 2826 
 2827     sc->mly_state |= MLY_STATE_OPEN;
 2828     return(0);
 2829 }
 2830 
 2831 /********************************************************************************
 2832  * Accept the last close on the control device.
 2833  */
 2834 static int
 2835 mly_user_close(struct dev_close_args *ap)
 2836 {
 2837     cdev_t              dev = ap->a_head.a_dev;
 2838     int                 unit = minor(dev);
 2839     struct mly_softc    *sc = devclass_get_softc(devclass_find("mly"), unit);
 2840 
 2841     sc->mly_state &= ~MLY_STATE_OPEN;
 2842     return (0);
 2843 }
 2844 
 2845 /********************************************************************************
 2846  * Handle controller-specific control operations.
 2847  */
 2848 static int
 2849 mly_user_ioctl(struct dev_ioctl_args *ap)
 2850 {
 2851     cdev_t                      dev = ap->a_head.a_dev;
 2852     caddr_t                     addr = ap->a_data;
 2853     u_long                      cmd = ap->a_cmd;
 2854     struct mly_softc            *sc = (struct mly_softc *)dev->si_drv1;
 2855     struct mly_user_command     *uc = (struct mly_user_command *)addr;
 2856     struct mly_user_health      *uh = (struct mly_user_health *)addr;
 2857     
 2858     switch(cmd) {
 2859     case MLYIO_COMMAND:
 2860         return(mly_user_command(sc, uc));
 2861     case MLYIO_HEALTH:
 2862         return(mly_user_health(sc, uh));
 2863     default:
 2864         return(ENOIOCTL);
 2865     }
 2866 }
 2867 
 2868 /********************************************************************************
 2869  * Execute a command passed in from userspace.
 2870  *
 2871  * The control structure contains the actual command for the controller, as well
 2872  * as the user-space data pointer and data size, and an optional sense buffer
 2873  * size/pointer.  On completion, the data size is adjusted to the command
 2874  * residual, and the sense buffer size to the size of the returned sense data.
 2875  * 
 2876  */
 2877 static int
 2878 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
 2879 {
 2880     struct mly_command  *mc;
 2881     int                 error;
 2882 
 2883     /* allocate a command */
 2884     if (mly_alloc_command(sc, &mc)) {
 2885         error = ENOMEM;
 2886         goto out;               /* XXX Linux version will wait for a command */
 2887     }
 2888 
 2889     /* handle data size/direction */
 2890     mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
 2891     if (mc->mc_length > 0)
 2892         mc->mc_data = kmalloc(mc->mc_length, M_DEVBUF, M_INTWAIT);
 2893     if (uc->DataTransferLength > 0) {
 2894         mc->mc_flags |= MLY_CMD_DATAIN;
 2895         bzero(mc->mc_data, mc->mc_length);
 2896     }
 2897     if (uc->DataTransferLength < 0) {
 2898         mc->mc_flags |= MLY_CMD_DATAOUT;
 2899         if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
 2900             goto out;
 2901     }
 2902 
 2903     /* copy the controller command */
 2904     bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
 2905 
 2906     /* clear command completion handler so that we get woken up */
 2907     mc->mc_complete = NULL;
 2908 
 2909     /* execute the command */
 2910     if ((error = mly_start(mc)) != 0)
 2911         goto out;
 2912     crit_enter();
 2913     while (!(mc->mc_flags & MLY_CMD_COMPLETE))
 2914         tsleep(mc, 0, "mlyioctl", 0);
 2915     crit_exit();
 2916 
 2917     /* return the data to userspace */
 2918     if (uc->DataTransferLength > 0)
 2919         if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
 2920             goto out;
 2921     
 2922     /* return the sense buffer to userspace */
 2923     if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
 2924         if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer, 
 2925                              min(uc->RequestSenseLength, mc->mc_sense))) != 0)
 2926             goto out;
 2927     }
 2928     
 2929     /* return command results to userspace (caller will copy out) */
 2930     uc->DataTransferLength = mc->mc_resid;
 2931     uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
 2932     uc->CommandStatus = mc->mc_status;
 2933     error = 0;
 2934 
 2935  out:
 2936     if (mc->mc_data != NULL)
 2937         kfree(mc->mc_data, M_DEVBUF);
 2938     if (mc != NULL)
 2939         mly_release_command(mc);
 2940     return(error);
 2941 }
 2942 
 2943 /********************************************************************************
 2944  * Return health status to userspace.  If the health change index in the user
 2945  * structure does not match that currently exported by the controller, we
 2946  * return the current status immediately.  Otherwise, we block until either
 2947  * interrupted or new status is delivered.
 2948  */
 2949 static int
 2950 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
 2951 {
 2952     struct mly_health_status            mh;
 2953     int                                 error;
 2954     
 2955     /* fetch the current health status from userspace */
 2956     if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
 2957         return(error);
 2958 
 2959     /* spin waiting for a status update */
 2960     crit_enter();
 2961     error = EWOULDBLOCK;
 2962     while ((error != 0) && (sc->mly_event_change == mh.change_counter))
 2963         error = tsleep(&sc->mly_event_change, PCATCH, "mlyhealth", 0);
 2964     crit_exit();
 2965     
 2966     /* copy the controller's health status buffer out (there is a race here if it changes again) */
 2967     error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer, 
 2968                     sizeof(uh->HealthStatusBuffer));
 2969     return(error);
 2970 }
 2971 
 2972 #ifdef MLY_DEBUG
 2973 static int
 2974 mly_timeout(struct mly_softc *sc)
 2975 {
 2976         struct mly_command *mc;
 2977         int deadline;
 2978 
 2979         deadline = time_uptime - MLY_CMD_TIMEOUT;
 2980         TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
 2981                 if ((mc->mc_timestamp < deadline)) {
 2982                         device_printf(sc->mly_dev,
 2983                             "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
 2984                             (int)(time_uptime - mc->mc_timestamp));
 2985                 }
 2986         }
 2987 
 2988         callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
 2989                       (timeout_t *)mly_timeout, sc);
 2990 
 2991         return (0);
 2992 }
 2993 #endif

Cache object: b7dd8c5bcf436835a3a0a61bed95e498


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.