The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/raid/mps/mps.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2009 Yahoo! Inc.
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  */
   27 /*-
   28  * Copyright (c) 2011 LSI Corp.
   29  * All rights reserved.
   30  *
   31  * Redistribution and use in source and binary forms, with or without
   32  * modification, are permitted provided that the following conditions
   33  * are met:
   34  * 1. Redistributions of source code must retain the above copyright
   35  *    notice, this list of conditions and the following disclaimer.
   36  * 2. Redistributions in binary form must reproduce the above copyright
   37  *    notice, this list of conditions and the following disclaimer in the
   38  *    documentation and/or other materials provided with the distribution.
   39  *
   40  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   50  * SUCH DAMAGE.
   51  *
   52  * LSI MPT-Fusion Host Adapter FreeBSD
   53  *
   54  * $FreeBSD: src/sys/dev/mps/mps.c,v 1.14 2012/01/26 18:17:21 ken Exp $
   55  */
   56 
   57 /* Communications core for LSI MPT2 */
   58 
   59 /* TODO Move headers to mpsvar */
   60 #include <sys/types.h>
   61 #include <sys/param.h>
   62 #include <sys/systm.h>
   63 #include <sys/kernel.h>
   64 #include <sys/lock.h>
   65 #include <sys/globaldata.h>
   66 #include <sys/module.h>
   67 #include <sys/bus.h>
   68 #include <sys/conf.h>
   69 #include <sys/bio.h>
   70 #include <sys/malloc.h>
   71 #include <sys/uio.h>
   72 #include <sys/sysctl.h>
   73 #include <sys/queue.h>
   74 #include <sys/kthread.h>
   75 #include <sys/endian.h>
   76 #include <sys/eventhandler.h>
   77 
   78 #include <sys/rman.h>
   79 
   80 #include <bus/pci/pcivar.h>
   81 
   82 #include <bus/cam/scsi/scsi_all.h>
   83 
   84 #include <dev/raid/mps/mpi/mpi2_type.h>
   85 #include <dev/raid/mps/mpi/mpi2.h>
   86 #include <dev/raid/mps/mpi/mpi2_ioc.h>
   87 #include <dev/raid/mps/mpi/mpi2_sas.h>
   88 #include <dev/raid/mps/mpi/mpi2_cnfg.h>
   89 #include <dev/raid/mps/mpi/mpi2_init.h>
   90 #include <dev/raid/mps/mpi/mpi2_tool.h>
   91 #include <dev/raid/mps/mps_ioctl.h>
   92 #include <dev/raid/mps/mpsvar.h>
   93 #include <dev/raid/mps/mps_table.h>
   94 
   95 static int mps_diag_reset(struct mps_softc *sc);
   96 static int mps_init_queues(struct mps_softc *sc);
   97 static int mps_message_unit_reset(struct mps_softc *sc);
   98 static int mps_transition_operational(struct mps_softc *sc);
   99 static void mps_startup(void *arg);
  100 static int mps_send_iocinit(struct mps_softc *sc);
  101 static int mps_attach_log(struct mps_softc *sc);
  102 static __inline void mps_complete_command(struct mps_command *cm);
  103 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
  104     MPI2_EVENT_NOTIFICATION_REPLY *reply);
  105 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
  106 static void mps_periodic(void *);
  107 static int mps_reregister_events(struct mps_softc *sc);
  108 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
  109 
  110 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
  111 
  112 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
  113 
  114 /*
  115  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
  116  * any state and back to its initialization state machine.
  117  */
  118 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
  119 
  120 static int
  121 mps_diag_reset(struct mps_softc *sc)
  122 {
  123         uint32_t reg;
  124         int i, error, tries = 0;
  125 
  126         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
  127 
  128         /* Clear any pending interrupts */
  129         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  130 
  131         /* Push the magic sequence */
  132         error = ETIMEDOUT;
  133         while (tries++ < 20) {
  134                 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
  135                         mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
  136                             mpt2_reset_magic[i]);
  137 
  138                 DELAY(100 * 1000);
  139 
  140                 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
  141                 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
  142                         error = 0;
  143                         break;
  144                 }
  145         }
  146         if (error)
  147                 return (error);
  148 
  149         /* Send the actual reset.  XXX need to refresh the reg? */
  150         mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
  151             reg | MPI2_DIAG_RESET_ADAPTER);
  152 
  153         /* Wait up to 300 seconds in 50ms intervals */
  154         error = ETIMEDOUT;
  155         for (i = 0; i < 60000; i++) {
  156                 DELAY(50000);
  157                 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
  158                 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
  159                         error = 0;
  160                         break;
  161                 }
  162         }
  163         if (error)
  164                 return (error);
  165 
  166         mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
  167 
  168         return (0);
  169 }
  170 
  171 static int
  172 mps_message_unit_reset(struct mps_softc *sc)
  173 {
  174 
  175         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
  176 
  177         mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
  178             MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
  179             MPI2_DOORBELL_FUNCTION_SHIFT);
  180         DELAY(50000);
  181 
  182         return (0);
  183 }
  184 
  185 static int
  186 mps_transition_ready(struct mps_softc *sc)
  187 {
  188         uint32_t reg, state;
  189         int error, tries = 0;
  190 
  191         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
  192 
  193         error = 0;
  194         while (tries++ < 5) {
  195                 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
  196                 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
  197 
  198                 /*
  199                  * Ensure the IOC is ready to talk.  If it's not, try
  200                  * resetting it.
  201                  */
  202                 if (reg & MPI2_DOORBELL_USED) {
  203                         mps_diag_reset(sc);
  204                         DELAY(50000);
  205                         continue;
  206                 }
  207 
  208                 /* Is the adapter owned by another peer? */
  209                 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
  210                     (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
  211                         device_printf(sc->mps_dev, "IOC is under the control "
  212                             "of another peer host, aborting initialization.\n");
  213                         return (ENXIO);
  214                 }
  215 
  216                 state = reg & MPI2_IOC_STATE_MASK;
  217                 if (state == MPI2_IOC_STATE_READY) {
  218                         /* Ready to go! */
  219                         error = 0;
  220                         break;
  221                 } else if (state == MPI2_IOC_STATE_FAULT) {
  222                         mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n",
  223                             state & MPI2_DOORBELL_FAULT_CODE_MASK);
  224                         mps_diag_reset(sc);
  225                 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
  226                         /* Need to take ownership */
  227                         mps_message_unit_reset(sc);
  228                 } else if (state == MPI2_IOC_STATE_RESET) {
  229                         /* Wait a bit, IOC might be in transition */
  230                         mps_dprint(sc, MPS_FAULT,
  231                             "IOC in unexpected reset state\n");
  232                 } else {
  233                         mps_dprint(sc, MPS_FAULT,
  234                             "IOC in unknown state 0x%x\n", state);
  235                         error = EINVAL;
  236                         break;
  237                 }
  238 
  239                 /* Wait 50ms for things to settle down. */
  240                 DELAY(50000);
  241         }
  242 
  243         if (error)
  244                 device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
  245 
  246         return (error);
  247 }
  248 
  249 static int
  250 mps_transition_operational(struct mps_softc *sc)
  251 {
  252         uint32_t reg, state;
  253         int error;
  254 
  255         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
  256 
  257         error = 0;
  258         reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
  259         mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
  260 
  261         state = reg & MPI2_IOC_STATE_MASK;
  262         if (state != MPI2_IOC_STATE_READY) {
  263                 if ((error = mps_transition_ready(sc)) != 0) {
  264                         mps_dprint(sc, MPS_FAULT,
  265                             "%s failed to transition ready\n", __func__);
  266                         return (error);
  267                 }
  268         }
  269 
  270         error = mps_send_iocinit(sc);
  271         return (error);
  272 }
  273 
  274 /*
  275  * XXX Some of this should probably move to mps.c
  276  *
  277  * The terms diag reset and hard reset are used interchangeably in the MPI
  278  * docs to mean resetting the controller chip.  In this code diag reset
  279  * cleans everything up, and the hard reset function just sends the reset
  280  * sequence to the chip.  This should probably be refactored so that every
  281  * subsystem gets a reset notification of some sort, and can clean up
  282  * appropriately.
  283  */
  284 int
  285 mps_reinit(struct mps_softc *sc)
  286 {
  287         int error;
  288         uint32_t db;
  289 
  290         mps_printf(sc, "%s sc %p\n", __func__, sc);
  291 
  292         KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
  293 
  294         if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
  295                 mps_printf(sc, "%s reset already in progress\n", __func__);
  296                 return 0;
  297         }
  298 
  299         /* make sure the completion callbacks can recognize they're getting
  300          * a NULL cm_reply due to a reset.
  301          */
  302         sc->mps_flags |= MPS_FLAGS_DIAGRESET;
  303 
  304         mps_printf(sc, "%s mask interrupts\n", __func__);
  305         mps_mask_intr(sc);
  306 
  307         error = mps_diag_reset(sc);
  308         if (error != 0) {
  309                 panic("%s hard reset failed with error %d",
  310                     __func__, error);
  311         }
  312 
  313         /* Restore the PCI state, including the MSI-X registers */
  314         mps_pci_restore(sc);
  315 
  316         /* Give the I/O subsystem special priority to get itself prepared */
  317         mpssas_handle_reinit(sc);
  318 
  319         /* reinitialize queues after the reset */
  320         bzero(sc->free_queue, sc->fqdepth * 4);
  321         mps_init_queues(sc);
  322 
  323         /* get the chip out of the reset state */
  324         error = mps_transition_operational(sc);
  325         if (error != 0)
  326                 panic("%s transition operational failed with error %d",
  327                     __func__, error);
  328 
  329         /* Reinitialize the reply queue. This is delicate because this
  330          * function is typically invoked by task mgmt completion callbacks,
  331          * which are called by the interrupt thread.  We need to make sure
  332          * the interrupt handler loop will exit when we return to it, and
  333          * that it will recognize the indexes we've changed.
  334          */
  335         sc->replypostindex = 0;
  336         mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
  337         mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
  338 
  339         db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
  340         mps_printf(sc, "%s doorbell 0x%08x\n", __func__, db);
  341 
  342         mps_printf(sc, "%s unmask interrupts post %u free %u\n", __func__,
  343             sc->replypostindex, sc->replyfreeindex);
  344 
  345         mps_unmask_intr(sc);
  346 
  347         mps_printf(sc, "%s restarting post %u free %u\n", __func__,
  348             sc->replypostindex, sc->replyfreeindex);
  349 
  350         /* restart will reload the event masks clobbered by the reset, and
  351          * then enable the port.
  352          */
  353         mps_reregister_events(sc);
  354 
  355         /* the end of discovery will release the simq, so we're done. */
  356         mps_printf(sc, "%s finished sc %p post %u free %u\n",
  357             __func__, sc,
  358             sc->replypostindex, sc->replyfreeindex);
  359 
  360         sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
  361 
  362         return 0;
  363 }
  364 
  365 /* Wait for the chip to ACK a word that we've put into its FIFO */
  366 static int
  367 mps_wait_db_ack(struct mps_softc *sc)
  368 {
  369         int retry;
  370 
  371         for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
  372                 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
  373                     MPI2_HIS_SYS2IOC_DB_STATUS) == 0)
  374                         return (0);
  375                 DELAY(2000);
  376         }
  377         return (ETIMEDOUT);
  378 }
  379 
  380 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
  381 static int
  382 mps_wait_db_int(struct mps_softc *sc)
  383 {
  384         int retry;
  385 
  386         for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
  387                 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
  388                     MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
  389                         return (0);
  390                 DELAY(2000);
  391         }
  392         return (ETIMEDOUT);
  393 }
  394 
  395 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
  396 static int
  397 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
  398     int req_sz, int reply_sz, int timeout)
  399 {
  400         uint32_t *data32;
  401         uint16_t *data16;
  402         int i, count, ioc_sz, residual;
  403 
  404         /* Step 1 */
  405         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  406 
  407         /* Step 2 */
  408         if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
  409                 return (EBUSY);
  410 
  411         /* Step 3
  412          * Announce that a message is coming through the doorbell.  Messages
  413          * are pushed at 32bit words, so round up if needed.
  414          */
  415         count = (req_sz + 3) / 4;
  416         mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
  417             (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
  418             (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
  419 
  420         /* Step 4 */
  421         if (mps_wait_db_int(sc) ||
  422             (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
  423                 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
  424                 return (ENXIO);
  425         }
  426         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  427         if (mps_wait_db_ack(sc) != 0) {
  428                 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
  429                 return (ENXIO);
  430         }
  431 
  432         /* Step 5 */
  433         /* Clock out the message data synchronously in 32-bit dwords*/
  434         data32 = (uint32_t *)req;
  435         for (i = 0; i < count; i++) {
  436                 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, data32[i]);
  437                 if (mps_wait_db_ack(sc) != 0) {
  438                         mps_dprint(sc, MPS_FAULT,
  439                             "Timeout while writing doorbell\n");
  440                         return (ENXIO);
  441                 }
  442         }
  443 
  444         /* Step 6 */
  445         /* Clock in the reply in 16-bit words.  The total length of the
  446          * message is always in the 4th byte, so clock out the first 2 words
  447          * manually, then loop the rest.
  448          */
  449         data16 = (uint16_t *)reply;
  450         if (mps_wait_db_int(sc) != 0) {
  451                 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
  452                 return (ENXIO);
  453         }
  454         data16[0] =
  455             mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
  456         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  457         if (mps_wait_db_int(sc) != 0) {
  458                 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
  459                 return (ENXIO);
  460         }
  461         data16[1] =
  462             mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
  463         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  464 
  465         /* Number of 32bit words in the message */
  466         ioc_sz = reply->MsgLength;
  467 
  468         /*
  469          * Figure out how many 16bit words to clock in without overrunning.
  470          * The precision loss with dividing reply_sz can safely be
  471          * ignored because the messages can only be multiples of 32bits.
  472          */
  473         residual = 0;
  474         count = MIN((reply_sz / 4), ioc_sz) * 2;
  475         if (count < ioc_sz * 2) {
  476                 residual = ioc_sz * 2 - count;
  477                 mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d "
  478                     "residual message words\n", residual);
  479         }
  480 
  481         for (i = 2; i < count; i++) {
  482                 if (mps_wait_db_int(sc) != 0) {
  483                         mps_dprint(sc, MPS_FAULT,
  484                             "Timeout reading doorbell %d\n", i);
  485                         return (ENXIO);
  486                 }
  487                 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
  488                     MPI2_DOORBELL_DATA_MASK;
  489                 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  490         }
  491 
  492         /*
  493          * Pull out residual words that won't fit into the provided buffer.
  494          * This keeps the chip from hanging due to a driver programming
  495          * error.
  496          */
  497         while (residual--) {
  498                 if (mps_wait_db_int(sc) != 0) {
  499                         mps_dprint(sc, MPS_FAULT,
  500                             "Timeout reading doorbell\n");
  501                         return (ENXIO);
  502                 }
  503                 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
  504                 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  505         }
  506 
  507         /* Step 7 */
  508         if (mps_wait_db_int(sc) != 0) {
  509                 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
  510                 return (ENXIO);
  511         }
  512         if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
  513                 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
  514         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  515 
  516         return (0);
  517 }
  518 
  519 static void
  520 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
  521 {
  522 
  523         mps_dprint(sc, MPS_TRACE, "%s SMID %u cm %p ccb %p\n", __func__,
  524             cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
  525 
  526         if ((sc->mps_flags & MPS_FLAGS_ATTACH_DONE) &&
  527             !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) {
  528                 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
  529         }
  530 
  531         if (++sc->io_cmds_active > sc->io_cmds_highwater)
  532                 sc->io_cmds_highwater++;
  533 
  534         mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
  535             cm->cm_desc.Words.Low);
  536         mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
  537             cm->cm_desc.Words.High);
  538 }
  539 
  540 /*
  541  * Just the FACTS, ma'am.
  542  */
  543 static int
  544 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
  545 {
  546         MPI2_DEFAULT_REPLY *reply;
  547         MPI2_IOC_FACTS_REQUEST request;
  548         int error, req_sz, reply_sz;
  549 
  550         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
  551 
  552         req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
  553         reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
  554         reply = (MPI2_DEFAULT_REPLY *)facts;
  555 
  556         bzero(&request, req_sz);
  557         request.Function = MPI2_FUNCTION_IOC_FACTS;
  558         error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
  559 
  560         return (error);
  561 }
  562 
  563 static int
  564 mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port)
  565 {
  566         MPI2_PORT_FACTS_REQUEST *request;
  567         MPI2_PORT_FACTS_REPLY *reply;
  568         struct mps_command *cm;
  569         int error;
  570 
  571         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
  572 
  573         if ((cm = mps_alloc_command(sc)) == NULL)
  574                 return (EBUSY);
  575         request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req;
  576         request->Function = MPI2_FUNCTION_PORT_FACTS;
  577         request->PortNumber = port;
  578         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
  579         cm->cm_data = NULL;
  580         error = mps_request_polled(sc, cm);
  581         reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply;
  582         if (reply == NULL) {
  583                 mps_printf(sc, "%s NULL reply\n", __func__);
  584                 goto done;
  585         }
  586         if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) {
  587                 mps_printf(sc,
  588                     "%s error %d iocstatus 0x%x iocloginfo 0x%x type 0x%x\n",
  589                     __func__, error, reply->IOCStatus, reply->IOCLogInfo,
  590                     reply->PortType);
  591                 error = ENXIO;
  592         }
  593         bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY));
  594 done:
  595         mps_free_command(sc, cm);
  596 
  597         return (error);
  598 }
  599 
  600 static int
  601 mps_send_iocinit(struct mps_softc *sc)
  602 {
  603         MPI2_IOC_INIT_REQUEST   init;
  604         MPI2_DEFAULT_REPLY      reply;
  605         int req_sz, reply_sz, error;
  606 
  607         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
  608 
  609         req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
  610         reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
  611         bzero(&init, req_sz);
  612         bzero(&reply, reply_sz);
  613 
  614         /*
  615          * Fill in the init block.  Note that most addresses are
  616          * deliberately in the lower 32bits of memory.  This is a micro-
  617          * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
  618          */
  619         init.Function = MPI2_FUNCTION_IOC_INIT;
  620         init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
  621         init.MsgVersion = MPI2_VERSION;
  622         init.HeaderVersion = MPI2_HEADER_VERSION;
  623         init.SystemRequestFrameSize = sc->facts->IOCRequestFrameSize;
  624         init.ReplyDescriptorPostQueueDepth = sc->pqdepth;
  625         init.ReplyFreeQueueDepth = sc->fqdepth;
  626         init.SenseBufferAddressHigh = 0;
  627         init.SystemReplyAddressHigh = 0;
  628         init.SystemRequestFrameBaseAddress.High = 0;
  629         init.SystemRequestFrameBaseAddress.Low = (uint32_t)sc->req_busaddr;
  630         init.ReplyDescriptorPostQueueAddress.High = 0;
  631         init.ReplyDescriptorPostQueueAddress.Low = (uint32_t)sc->post_busaddr;
  632         init.ReplyFreeQueueAddress.High = 0;
  633         init.ReplyFreeQueueAddress.Low = (uint32_t)sc->free_busaddr;
  634         init.TimeStamp.High = 0;
  635         init.TimeStamp.Low = (uint32_t)time_uptime;
  636 
  637         error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
  638         if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
  639                 error = ENXIO;
  640 
  641         mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus);
  642         return (error);
  643 }
  644 
  645 void
  646 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  647 {
  648         bus_addr_t *addr;
  649 
  650         addr = arg;
  651         *addr = segs[0].ds_addr;
  652 }
  653 
  654 static int
  655 mps_alloc_queues(struct mps_softc *sc)
  656 {
  657         bus_addr_t queues_busaddr;
  658         uint8_t *queues;
  659         int qsize, fqsize, pqsize;
  660 
  661         /*
  662          * The reply free queue contains 4 byte entries in multiples of 16 and
  663          * aligned on a 16 byte boundary. There must always be an unused entry.
  664          * This queue supplies fresh reply frames for the firmware to use.
  665          *
  666          * The reply descriptor post queue contains 8 byte entries in
  667          * multiples of 16 and aligned on a 16 byte boundary.  This queue
  668          * contains filled-in reply frames sent from the firmware to the host.
  669          *
  670          * These two queues are allocated together for simplicity.
  671          */
  672         sc->fqdepth = roundup2((sc->num_replies + 1), 16);
  673         sc->pqdepth = roundup2((sc->num_replies + 1), 16);
  674         fqsize= sc->fqdepth * 4;
  675         pqsize = sc->pqdepth * 8;
  676         qsize = fqsize + pqsize;
  677 
  678         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
  679                                 16, 0,                  /* algnmnt, boundary */
  680                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
  681                                 BUS_SPACE_MAXADDR,      /* highaddr */
  682                                 NULL, NULL,             /* filter, filterarg */
  683                                 qsize,                  /* maxsize */
  684                                 1,                      /* nsegments */
  685                                 qsize,                  /* maxsegsize */
  686                                 0,                      /* flags */
  687                                 &sc->queues_dmat)) {
  688                 device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
  689                 return (ENOMEM);
  690         }
  691         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
  692             &sc->queues_map)) {
  693                 device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
  694                 return (ENOMEM);
  695         }
  696         bzero(queues, qsize);
  697         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
  698             mps_memaddr_cb, &queues_busaddr, 0);
  699 
  700         sc->free_queue = (uint32_t *)queues;
  701         sc->free_busaddr = queues_busaddr;
  702         sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
  703         sc->post_busaddr = queues_busaddr + fqsize;
  704 
  705         return (0);
  706 }
  707 
  708 static int
  709 mps_alloc_replies(struct mps_softc *sc)
  710 {
  711         int rsize, num_replies;
  712 
  713         /*
  714          * sc->num_replies should be one less than sc->fqdepth.  We need to
  715          * allocate space for sc->fqdepth replies, but only sc->num_replies
  716          * replies can be used at once.
  717          */
  718         num_replies = max(sc->fqdepth, sc->num_replies);
  719 
  720         rsize = sc->facts->ReplyFrameSize * num_replies * 4;
  721         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
  722                                 4, 0,                   /* algnmnt, boundary */
  723                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
  724                                 BUS_SPACE_MAXADDR,      /* highaddr */
  725                                 NULL, NULL,             /* filter, filterarg */
  726                                 rsize,                  /* maxsize */
  727                                 1,                      /* nsegments */
  728                                 rsize,                  /* maxsegsize */
  729                                 0,                      /* flags */
  730                                 &sc->reply_dmat)) {
  731                 device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
  732                 return (ENOMEM);
  733         }
  734         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
  735             BUS_DMA_NOWAIT, &sc->reply_map)) {
  736                 device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
  737                 return (ENOMEM);
  738         }
  739         bzero(sc->reply_frames, rsize);
  740         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
  741             mps_memaddr_cb, &sc->reply_busaddr, 0);
  742 
  743         return (0);
  744 }
  745 
  746 static int
  747 mps_alloc_requests(struct mps_softc *sc)
  748 {
  749         struct mps_command *cm;
  750         struct mps_chain *chain;
  751         int i, rsize, nsegs;
  752 
  753         rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
  754         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
  755                                 16, 0,                  /* algnmnt, boundary */
  756                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
  757                                 BUS_SPACE_MAXADDR,      /* highaddr */
  758                                 NULL, NULL,             /* filter, filterarg */
  759                                 rsize,                  /* maxsize */
  760                                 1,                      /* nsegments */
  761                                 rsize,                  /* maxsegsize */
  762                                 0,                      /* flags */
  763                                 &sc->req_dmat)) {
  764                 device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
  765                 return (ENOMEM);
  766         }
  767         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
  768             BUS_DMA_NOWAIT, &sc->req_map)) {
  769                 device_printf(sc->mps_dev, "Cannot allocate request memory\n");
  770                 return (ENOMEM);
  771         }
  772         bzero(sc->req_frames, rsize);
  773         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
  774             mps_memaddr_cb, &sc->req_busaddr, 0);
  775 
  776         rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
  777         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
  778                                 16, 0,                  /* algnmnt, boundary */
  779                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
  780                                 BUS_SPACE_MAXADDR,      /* highaddr */
  781                                 NULL, NULL,             /* filter, filterarg */
  782                                 rsize,                  /* maxsize */
  783                                 1,                      /* nsegments */
  784                                 rsize,                  /* maxsegsize */
  785                                 0,                      /* flags */
  786                                 &sc->chain_dmat)) {
  787                 device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
  788                 return (ENOMEM);
  789         }
  790         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
  791             BUS_DMA_NOWAIT, &sc->chain_map)) {
  792                 device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
  793                 return (ENOMEM);
  794         }
  795         bzero(sc->chain_frames, rsize);
  796         bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
  797             mps_memaddr_cb, &sc->chain_busaddr, 0);
  798 
  799         rsize = MPS_SENSE_LEN * sc->num_reqs;
  800         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
  801                                 1, 0,                   /* algnmnt, boundary */
  802                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
  803                                 BUS_SPACE_MAXADDR,      /* highaddr */
  804                                 NULL, NULL,             /* filter, filterarg */
  805                                 rsize,                  /* maxsize */
  806                                 1,                      /* nsegments */
  807                                 rsize,                  /* maxsegsize */
  808                                 0,                      /* flags */
  809                                 &sc->sense_dmat)) {
  810                 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
  811                 return (ENOMEM);
  812         }
  813         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
  814             BUS_DMA_NOWAIT, &sc->sense_map)) {
  815                 device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
  816                 return (ENOMEM);
  817         }
  818         bzero(sc->sense_frames, rsize);
  819         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
  820             mps_memaddr_cb, &sc->sense_busaddr, 0);
  821 
  822         sc->chains = kmalloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2,
  823             M_WAITOK | M_ZERO);
  824         for (i = 0; i < sc->max_chains; i++) {
  825                 chain = &sc->chains[i];
  826                 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
  827                     i * sc->facts->IOCRequestFrameSize * 4);
  828                 chain->chain_busaddr = sc->chain_busaddr +
  829                     i * sc->facts->IOCRequestFrameSize * 4;
  830                 mps_free_chain(sc, chain);
  831                 sc->chain_free_lowwater++;
  832         }
  833 
  834         /* XXX Need to pick a more precise value */
  835         nsegs = (MAXPHYS / PAGE_SIZE) + 1;
  836         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
  837                                 1, 0,                   /* algnmnt, boundary */
  838                                 BUS_SPACE_MAXADDR,      /* lowaddr */
  839                                 BUS_SPACE_MAXADDR,      /* highaddr */
  840                                 NULL, NULL,             /* filter, filterarg */
  841                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
  842                                 nsegs,                  /* nsegments */
  843                                 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */
  844                                 BUS_DMA_ALLOCNOW,       /* flags */
  845                                 &sc->buffer_dmat)) {
  846                 device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n");
  847                 return (ENOMEM);
  848         }
  849 
  850         /*
  851          * SMID 0 cannot be used as a free command per the firmware spec.
  852          * Just drop that command instead of risking accounting bugs.
  853          */
  854         sc->commands = kmalloc(sizeof(struct mps_command) * sc->num_reqs,
  855             M_MPT2, M_WAITOK | M_ZERO);
  856         for (i = 1; i < sc->num_reqs; i++) {
  857                 cm = &sc->commands[i];
  858                 cm->cm_req = sc->req_frames +
  859                     i * sc->facts->IOCRequestFrameSize * 4;
  860                 cm->cm_req_busaddr = sc->req_busaddr +
  861                     i * sc->facts->IOCRequestFrameSize * 4;
  862                 cm->cm_sense = &sc->sense_frames[i];
  863                 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
  864                 cm->cm_desc.Default.SMID = i;
  865                 cm->cm_sc = sc;
  866                 TAILQ_INIT(&cm->cm_chain_list);
  867                 callout_init(&cm->cm_callout);
  868 
  869                 /* XXX Is a failure here a critical problem? */
  870                 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
  871                         if (i <= sc->facts->HighPriorityCredit)
  872                                 mps_free_high_priority_command(sc, cm);
  873                         else
  874                                 mps_free_command(sc, cm);
  875                 else {
  876                         panic("failed to allocate command %d", i);
  877                         sc->num_reqs = i;
  878                         break;
  879                 }
  880         }
  881 
  882         return (0);
  883 }
  884 
  885 static int
  886 mps_init_queues(struct mps_softc *sc)
  887 {
  888         int i;
  889 
  890         memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
  891 
  892         /*
  893          * According to the spec, we need to use one less reply than we
  894          * have space for on the queue.  So sc->num_replies (the number we
  895          * use) should be less than sc->fqdepth (allocated size).
  896          */
  897         if (sc->num_replies >= sc->fqdepth)
  898                 return (EINVAL);
  899 
  900         /*
  901          * Initialize all of the free queue entries.
  902          */
  903         for (i = 0; i < sc->fqdepth; i++)
  904                 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
  905         sc->replyfreeindex = sc->num_replies;
  906 
  907         return (0);
  908 }
  909 
  910 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
  911  * Next are the global settings, if they exist.  Highest are the per-unit
  912  * settings, if they exist.
  913  */
  914 static void
  915 mps_get_tunables(struct mps_softc *sc)
  916 {
  917         char tmpstr[80];
  918 
  919         /* XXX default to some debugging for now */
  920         sc->mps_debug = MPS_FAULT;
  921 #if 0 /* XXX swildner */
  922         sc->disable_msix = 0;
  923 #endif
  924         sc->enable_msi = 1;
  925         sc->max_chains = MPS_CHAIN_FRAMES;
  926 
  927         /*
  928          * Grab the global variables.
  929          */
  930         TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug);
  931 #if 0 /* XXX swildner */
  932         TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
  933 #endif
  934         TUNABLE_INT_FETCH("hw.mps.msi.enable", &sc->enable_msi);
  935         TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
  936 
  937         /* Grab the unit-instance variables */
  938         ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
  939             device_get_unit(sc->mps_dev));
  940         TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
  941 
  942 #if 0 /* XXX swildner */
  943         ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
  944             device_get_unit(sc->mps_dev));
  945         TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
  946 #endif
  947 
  948         ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_msi",
  949             device_get_unit(sc->mps_dev));
  950         TUNABLE_INT_FETCH(tmpstr, &sc->enable_msi);
  951 
  952         ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
  953             device_get_unit(sc->mps_dev));
  954         TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
  955 }
  956 
  957 static void
  958 mps_setup_sysctl(struct mps_softc *sc)
  959 {
  960         struct sysctl_ctx_list  *sysctl_ctx = NULL;
  961         struct sysctl_oid       *sysctl_tree = NULL;
  962         char tmpstr[80], tmpstr2[80];
  963 
  964         /*
  965          * Setup the sysctl variable so the user can change the debug level
  966          * on the fly.
  967          */
  968         ksnprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
  969             device_get_unit(sc->mps_dev));
  970         ksnprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
  971 
  972         sysctl_ctx_init(&sc->sysctl_ctx);
  973         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
  974             SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
  975             CTLFLAG_RD, 0, tmpstr);
  976         if (sc->sysctl_tree == NULL)
  977                 return;
  978         sysctl_ctx = &sc->sysctl_ctx;
  979         sysctl_tree = sc->sysctl_tree;
  980 
  981         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
  982             OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
  983             "mps debug level");
  984 
  985 #if 0 /* XXX swildner */
  986         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
  987             OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
  988             "Disable the use of MSI-X interrupts");
  989 #endif
  990 
  991         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
  992             OID_AUTO, "enable_msi", CTLFLAG_RD, &sc->enable_msi, 0,
  993             "Enable the use of MSI interrupts");
  994 
  995         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
  996             OID_AUTO, "firmware_version", CTLFLAG_RW, &sc->fw_version,
  997             strlen(sc->fw_version), "firmware version");
  998 
  999         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1000             OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
 1001             strlen(MPS_DRIVER_VERSION), "driver version");
 1002 
 1003         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1004             OID_AUTO, "io_cmds_active", CTLFLAG_RD,
 1005             &sc->io_cmds_active, 0, "number of currently active commands");
 1006 
 1007         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1008             OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
 1009             &sc->io_cmds_highwater, 0, "maximum active commands seen");
 1010 
 1011         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1012             OID_AUTO, "chain_free", CTLFLAG_RD,
 1013             &sc->chain_free, 0, "number of free chain elements");
 1014 
 1015         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1016             OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
 1017             &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
 1018 
 1019         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1020             OID_AUTO, "max_chains", CTLFLAG_RD,
 1021             &sc->max_chains, 0,"maximum chain frames that will be allocated");
 1022 
 1023 #if __FreeBSD_version >= 900030
 1024         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1025             OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
 1026             &sc->chain_alloc_fail, "chain allocation failures");
 1027 #endif //FreeBSD_version >= 900030
 1028 }
 1029 
 1030 int
 1031 mps_attach(struct mps_softc *sc)
 1032 {
 1033         int i, error;
 1034 
 1035         mps_get_tunables(sc);
 1036 
 1037         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 1038 
 1039         lockinit(&sc->mps_lock, "MPT2SAS lock", 0, LK_CANRECURSE);
 1040         callout_init(&sc->periodic);
 1041         TAILQ_INIT(&sc->event_list);
 1042 
 1043         if ((error = mps_transition_ready(sc)) != 0) {
 1044                 mps_printf(sc, "%s failed to transition ready\n", __func__);
 1045                 return (error);
 1046         }
 1047 
 1048         sc->facts = kmalloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
 1049             M_ZERO|M_WAITOK);
 1050         if ((error = mps_get_iocfacts(sc, sc->facts)) != 0)
 1051                 return (error);
 1052 
 1053         mps_print_iocfacts(sc, sc->facts);
 1054 
 1055         ksnprintf(sc->fw_version, sizeof(sc->fw_version),
 1056             "%02d.%02d.%02d.%02d",
 1057             sc->facts->FWVersion.Struct.Major,
 1058             sc->facts->FWVersion.Struct.Minor,
 1059             sc->facts->FWVersion.Struct.Unit,
 1060             sc->facts->FWVersion.Struct.Dev);
 1061 
 1062         mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
 1063             MPS_DRIVER_VERSION);
 1064         mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
 1065             "\2" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
 1066             "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
 1067             "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
 1068 
 1069         /*
 1070          * If the chip doesn't support event replay then a hard reset will be
 1071          * required to trigger a full discovery.  Do the reset here then
 1072          * retransition to Ready.  A hard reset might have already been done,
 1073          * but it doesn't hurt to do it again.
 1074          */
 1075         if ((sc->facts->IOCCapabilities &
 1076             MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
 1077                 mps_diag_reset(sc);
 1078                 if ((error = mps_transition_ready(sc)) != 0)
 1079                         return (error);
 1080         }
 1081 
 1082         /*
 1083          * Set flag if IR Firmware is loaded.
 1084          */
 1085         if (sc->facts->IOCCapabilities &
 1086             MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
 1087                 sc->ir_firmware = 1;
 1088 
 1089         /*
 1090          * Check if controller supports FW diag buffers and set flag to enable
 1091          * each type.
 1092          */
 1093         if (sc->facts->IOCCapabilities &
 1094             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
 1095                 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].enabled =
 1096                     TRUE;
 1097         if (sc->facts->IOCCapabilities &
 1098             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
 1099                 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].enabled =
 1100                     TRUE;
 1101         if (sc->facts->IOCCapabilities &
 1102             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
 1103                 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].enabled =
 1104                     TRUE;
 1105 
 1106         /*
 1107          * Set flag if EEDP is supported and if TLR is supported.
 1108          */
 1109         if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
 1110                 sc->eedp_enabled = TRUE;
 1111         if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
 1112                 sc->control_TLR = TRUE;
 1113 
 1114         /*
 1115          * Size the queues. Since the reply queues always need one free entry,
 1116          * we'll just deduct one reply message here.
 1117          */
 1118         sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
 1119         sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
 1120             sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
 1121         TAILQ_INIT(&sc->req_list);
 1122         TAILQ_INIT(&sc->high_priority_req_list);
 1123         TAILQ_INIT(&sc->chain_list);
 1124         TAILQ_INIT(&sc->tm_list);
 1125 
 1126         if (((error = mps_alloc_queues(sc)) != 0) ||
 1127             ((error = mps_alloc_replies(sc)) != 0) ||
 1128             ((error = mps_alloc_requests(sc)) != 0)) {
 1129                 mps_printf(sc, "%s failed to alloc\n", __func__);
 1130                 mps_free(sc);
 1131                 return (error);
 1132         }
 1133 
 1134         if (((error = mps_init_queues(sc)) != 0) ||
 1135             ((error = mps_transition_operational(sc)) != 0)) {
 1136                 mps_printf(sc, "%s failed to transition operational\n", __func__);
 1137                 mps_free(sc);
 1138                 return (error);
 1139         }
 1140 
 1141         /*
 1142          * Finish the queue initialization.
 1143          * These are set here instead of in mps_init_queues() because the
 1144          * IOC resets these values during the state transition in
 1145          * mps_transition_operational().  The free index is set to 1
 1146          * because the corresponding index in the IOC is set to 0, and the
 1147          * IOC treats the queues as full if both are set to the same value.
 1148          * Hence the reason that the queue can't hold all of the possible
 1149          * replies.
 1150          */
 1151         sc->replypostindex = 0;
 1152         mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
 1153         mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
 1154 
 1155         sc->pfacts = kmalloc(sizeof(MPI2_PORT_FACTS_REPLY) *
 1156             sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK);
 1157         for (i = 0; i < sc->facts->NumberOfPorts; i++) {
 1158                 if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) {
 1159                         mps_printf(sc, "%s failed to get portfacts for port %d\n",
 1160                             __func__, i);
 1161                         mps_free(sc);
 1162                         return (error);
 1163                 }
 1164                 mps_print_portfacts(sc, &sc->pfacts[i]);
 1165         }
 1166 
 1167         /* Attach the subsystems so they can prepare their event masks. */
 1168         /* XXX Should be dynamic so that IM/IR and user modules can attach */
 1169         if (((error = mps_attach_log(sc)) != 0) ||
 1170             ((error = mps_attach_sas(sc)) != 0) ||
 1171             ((error = mps_attach_user(sc)) != 0)) {
 1172                 mps_printf(sc, "%s failed to attach all subsystems: error %d\n",
 1173                     __func__, error);
 1174                 mps_free(sc);
 1175                 return (error);
 1176         }
 1177 
 1178         if ((error = mps_pci_setup_interrupts(sc)) != 0) {
 1179                 mps_printf(sc, "%s failed to setup interrupts\n", __func__);
 1180                 mps_free(sc);
 1181                 return (error);
 1182         }
 1183 
 1184         /*
 1185          * The static page function currently read is ioc page8.  Others can be
 1186          * added in future.
 1187          */
 1188         mps_base_static_config_pages(sc);
 1189 
 1190         /* Start the periodic watchdog check on the IOC Doorbell */
 1191         mps_periodic(sc);
 1192 
 1193         /*
 1194          * The portenable will kick off discovery events that will drive the
 1195          * rest of the initialization process.  The CAM/SAS module will
 1196          * hold up the boot sequence until discovery is complete.
 1197          */
 1198         sc->mps_ich.ich_func = mps_startup;
 1199         sc->mps_ich.ich_arg = sc;
 1200         sc->mps_ich.ich_desc = "mps";
 1201         if (config_intrhook_establish(&sc->mps_ich) != 0) {
 1202                 mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n");
 1203                 error = EINVAL;
 1204         }
 1205 
 1206         /*
 1207          * Allow IR to shutdown gracefully when shutdown occurs.
 1208          */
 1209         sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
 1210             mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
 1211 
 1212         if (sc->shutdown_eh == NULL)
 1213                 mps_dprint(sc, MPS_FAULT, "shutdown event registration "
 1214                     "failed\n");
 1215 
 1216         mps_setup_sysctl(sc);
 1217 
 1218         sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
 1219 
 1220         return (error);
 1221 }
 1222 
 1223 /* Run through any late-start handlers. */
 1224 static void
 1225 mps_startup(void *arg)
 1226 {
 1227         struct mps_softc *sc;
 1228 
 1229         sc = (struct mps_softc *)arg;
 1230 
 1231         mps_lock(sc);
 1232         mps_unmask_intr(sc);
 1233         /* initialize device mapping tables */
 1234         mps_mapping_initialize(sc);
 1235         mpssas_startup(sc);
 1236         mps_unlock(sc);
 1237 }
 1238 
 1239 /* Periodic watchdog.  Is called with the driver lock already held. */
 1240 static void
 1241 mps_periodic(void *arg)
 1242 {
 1243         struct mps_softc *sc;
 1244         uint32_t db;
 1245 
 1246         sc = (struct mps_softc *)arg;
 1247         mps_lock(sc);
 1248         if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) {
 1249                 mps_unlock(sc);
 1250                 return;
 1251         }
 1252 
 1253         db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
 1254         if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
 1255                 device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db);
 1256 
 1257                 mps_reinit(sc);
 1258         }
 1259 
 1260         callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
 1261         mps_unlock(sc);
 1262 }
 1263 
 1264 static void
 1265 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
 1266     MPI2_EVENT_NOTIFICATION_REPLY *event)
 1267 {
 1268         MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
 1269 
 1270         mps_print_event(sc, event);
 1271 
 1272         switch (event->Event) {
 1273         case MPI2_EVENT_LOG_DATA:
 1274                 device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n");
 1275                 hexdump(event->EventData, event->EventDataLength, NULL, 0);
 1276                 break;
 1277         case MPI2_EVENT_LOG_ENTRY_ADDED:
 1278                 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
 1279                 mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event "
 1280                     "0x%x Sequence %d:\n", entry->LogEntryQualifier,
 1281                      entry->LogSequence);
 1282                 break;
 1283         default:
 1284                 break;
 1285         }
 1286         return;
 1287 }
 1288 
 1289 static int
 1290 mps_attach_log(struct mps_softc *sc)
 1291 {
 1292         uint8_t events[16];
 1293 
 1294         bzero(events, 16);
 1295         setbit(events, MPI2_EVENT_LOG_DATA);
 1296         setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
 1297 
 1298         mps_register_events(sc, events, mps_log_evt_handler, NULL,
 1299             &sc->mps_log_eh);
 1300 
 1301         return (0);
 1302 }
 1303 
 1304 static int
 1305 mps_detach_log(struct mps_softc *sc)
 1306 {
 1307 
 1308         if (sc->mps_log_eh != NULL)
 1309                 mps_deregister_events(sc, sc->mps_log_eh);
 1310         return (0);
 1311 }
 1312 
 1313 /*
 1314  * Free all of the driver resources and detach submodules.  Should be called
 1315  * without the lock held.
 1316  */
 1317 int
 1318 mps_free(struct mps_softc *sc)
 1319 {
 1320         struct mps_command *cm;
 1321         int i, error;
 1322 
 1323         /* Turn off the watchdog */
 1324         mps_lock(sc);
 1325         sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
 1326         mps_unlock(sc);
 1327 #if 0 /* XXX swildner */
 1328         /* Lock must not be held for this */
 1329         callout_drain(&sc->periodic);
 1330 #else
 1331         callout_stop(&sc->periodic);
 1332 #endif
 1333 
 1334         if (((error = mps_detach_log(sc)) != 0) ||
 1335             ((error = mps_detach_sas(sc)) != 0))
 1336                 return (error);
 1337 
 1338         mps_detach_user(sc);
 1339 
 1340         /* Put the IOC back in the READY state. */
 1341         mps_lock(sc);
 1342         if ((error = mps_transition_ready(sc)) != 0) {
 1343                 mps_unlock(sc);
 1344                 return (error);
 1345         }
 1346         mps_unlock(sc);
 1347 
 1348         if (sc->facts != NULL)
 1349                 kfree(sc->facts, M_MPT2);
 1350 
 1351         if (sc->pfacts != NULL)
 1352                 kfree(sc->pfacts, M_MPT2);
 1353 
 1354         if (sc->post_busaddr != 0)
 1355                 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
 1356         if (sc->post_queue != NULL)
 1357                 bus_dmamem_free(sc->queues_dmat, sc->post_queue,
 1358                     sc->queues_map);
 1359         if (sc->queues_dmat != NULL)
 1360                 bus_dma_tag_destroy(sc->queues_dmat);
 1361 
 1362         if (sc->chain_busaddr != 0)
 1363                 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
 1364         if (sc->chain_frames != NULL)
 1365                 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map);
 1366         if (sc->chain_dmat != NULL)
 1367                 bus_dma_tag_destroy(sc->chain_dmat);
 1368 
 1369         if (sc->sense_busaddr != 0)
 1370                 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
 1371         if (sc->sense_frames != NULL)
 1372                 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map);
 1373         if (sc->sense_dmat != NULL)
 1374                 bus_dma_tag_destroy(sc->sense_dmat);
 1375 
 1376         if (sc->reply_busaddr != 0)
 1377                 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
 1378         if (sc->reply_frames != NULL)
 1379                 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map);
 1380         if (sc->reply_dmat != NULL)
 1381                 bus_dma_tag_destroy(sc->reply_dmat);
 1382 
 1383         if (sc->req_busaddr != 0)
 1384                 bus_dmamap_unload(sc->req_dmat, sc->req_map);
 1385         if (sc->req_frames != NULL)
 1386                 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
 1387         if (sc->req_dmat != NULL)
 1388                 bus_dma_tag_destroy(sc->req_dmat);
 1389 
 1390         if (sc->chains != NULL)
 1391                 kfree(sc->chains, M_MPT2);
 1392         if (sc->commands != NULL) {
 1393                 for (i = 1; i < sc->num_reqs; i++) {
 1394                         cm = &sc->commands[i];
 1395                         bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
 1396                 }
 1397                 kfree(sc->commands, M_MPT2);
 1398         }
 1399         if (sc->buffer_dmat != NULL)
 1400                 bus_dma_tag_destroy(sc->buffer_dmat);
 1401 
 1402         if (sc->sysctl_tree != NULL)
 1403                 sysctl_ctx_free(&sc->sysctl_ctx);
 1404 
 1405         mps_mapping_free_memory(sc);
 1406 
 1407         /* Deregister the shutdown function */
 1408         if (sc->shutdown_eh != NULL)
 1409                 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
 1410 
 1411         lockuninit(&sc->mps_lock);
 1412 
 1413         return (0);
 1414 }
 1415 
 1416 static __inline void
 1417 mps_complete_command(struct mps_command *cm)
 1418 {
 1419         if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
 1420                 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
 1421 
 1422         if (cm->cm_complete != NULL) {
 1423                 mps_dprint(cm->cm_sc, MPS_TRACE,
 1424                            "%s cm %p calling cm_complete %p data %p reply %p\n",
 1425                            __func__, cm, cm->cm_complete, cm->cm_complete_data,
 1426                            cm->cm_reply);
 1427                 cm->cm_complete(cm->cm_sc, cm);
 1428         }
 1429 
 1430         if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
 1431                 mps_dprint(cm->cm_sc, MPS_TRACE, "%s: waking up %p\n",
 1432                            __func__, cm);
 1433                 wakeup(cm);
 1434         }
 1435 
 1436         if (cm->cm_sc->io_cmds_active != 0) {
 1437                 cm->cm_sc->io_cmds_active--;
 1438         } else {
 1439                 mps_dprint(cm->cm_sc, MPS_INFO, "Warning: io_cmds_active is "
 1440                     "out of sync - resynching to 0\n");
 1441         }
 1442 }
 1443 
 1444 void
 1445 mps_intr(void *data)
 1446 {
 1447         struct mps_softc *sc;
 1448         uint32_t status;
 1449 
 1450         sc = (struct mps_softc *)data;
 1451         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 1452 
 1453         /*
 1454          * Check interrupt status register to flush the bus.  This is
 1455          * needed for both INTx interrupts and driver-driven polling
 1456          */
 1457         status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
 1458         if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
 1459                 return;
 1460 
 1461         mps_lock(sc);
 1462         mps_intr_locked(data);
 1463         mps_unlock(sc);
 1464         return;
 1465 }
 1466 
 1467 /*
 1468  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
 1469  * chip.  Hopefully this theory is correct.
 1470  */
 1471 void
 1472 mps_intr_msi(void *data)
 1473 {
 1474         struct mps_softc *sc;
 1475 
 1476         sc = (struct mps_softc *)data;
 1477         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 1478         mps_lock(sc);
 1479         mps_intr_locked(data);
 1480         mps_unlock(sc);
 1481         return;
 1482 }
 1483 
 1484 /*
 1485  * The locking is overly broad and simplistic, but easy to deal with for now.
 1486  */
 1487 void
 1488 mps_intr_locked(void *data)
 1489 {
 1490         MPI2_REPLY_DESCRIPTORS_UNION *desc;
 1491         struct mps_softc *sc;
 1492         struct mps_command *cm = NULL;
 1493         uint8_t flags;
 1494         u_int pq;
 1495         MPI2_DIAG_RELEASE_REPLY *rel_rep;
 1496         mps_fw_diagnostic_buffer_t *pBuffer;
 1497 
 1498         sc = (struct mps_softc *)data;
 1499 
 1500         pq = sc->replypostindex;
 1501         mps_dprint(sc, MPS_TRACE,
 1502             "%s sc %p starting with replypostindex %u\n",
 1503             __func__, sc, sc->replypostindex);
 1504 
 1505         for ( ;; ) {
 1506                 cm = NULL;
 1507                 desc = &sc->post_queue[sc->replypostindex];
 1508                 flags = desc->Default.ReplyFlags &
 1509                     MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
 1510                 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
 1511                  || (desc->Words.High == 0xffffffff))
 1512                         break;
 1513 
 1514                 /* increment the replypostindex now, so that event handlers
 1515                  * and cm completion handlers which decide to do a diag
 1516                  * reset can zero it without it getting incremented again
 1517                  * afterwards, and we break out of this loop on the next
 1518                  * iteration since the reply post queue has been cleared to
 1519                  * 0xFF and all descriptors look unused (which they are).
 1520                  */
 1521                 if (++sc->replypostindex >= sc->pqdepth)
 1522                         sc->replypostindex = 0;
 1523 
 1524                 switch (flags) {
 1525                 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
 1526                         cm = &sc->commands[desc->SCSIIOSuccess.SMID];
 1527                         cm->cm_reply = NULL;
 1528                         break;
 1529                 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
 1530                 {
 1531                         uint32_t baddr;
 1532                         uint8_t *reply;
 1533 
 1534                         /*
 1535                          * Re-compose the reply address from the address
 1536                          * sent back from the chip.  The ReplyFrameAddress
 1537                          * is the lower 32 bits of the physical address of
 1538                          * particular reply frame.  Convert that address to
 1539                          * host format, and then use that to provide the
 1540                          * offset against the virtual address base
 1541                          * (sc->reply_frames).
 1542                          */
 1543                         baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
 1544                         reply = sc->reply_frames +
 1545                                 (baddr - ((uint32_t)sc->reply_busaddr));
 1546                         /*
 1547                          * Make sure the reply we got back is in a valid
 1548                          * range.  If not, go ahead and panic here, since
 1549                          * we'll probably panic as soon as we deference the
 1550                          * reply pointer anyway.
 1551                          */
 1552                         if ((reply < sc->reply_frames)
 1553                          || (reply > (sc->reply_frames +
 1554                              (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
 1555                                 kprintf("%s: WARNING: reply %p out of range!\n",
 1556                                        __func__, reply);
 1557                                 kprintf("%s: reply_frames %p, fqdepth %d, "
 1558                                        "frame size %d\n", __func__,
 1559                                        sc->reply_frames, sc->fqdepth,
 1560                                        sc->facts->ReplyFrameSize * 4);
 1561                                 kprintf("%s: baddr %#x,\n", __func__, baddr);
 1562                                 panic("Reply address out of range");
 1563                         }
 1564                         if (desc->AddressReply.SMID == 0) {
 1565                                 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
 1566                                     MPI2_FUNCTION_DIAG_BUFFER_POST) {
 1567                                         /*
 1568                                          * If SMID is 0 for Diag Buffer Post,
 1569                                          * this implies that the reply is due to
 1570                                          * a release function with a status that
 1571                                          * the buffer has been released.  Set
 1572                                          * the buffer flags accordingly.
 1573                                          */
 1574                                         rel_rep =
 1575                                             (MPI2_DIAG_RELEASE_REPLY *)reply;
 1576                                         if (rel_rep->IOCStatus ==
 1577                                             MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
 1578                                             {
 1579                                                 pBuffer =
 1580                                                     &sc->fw_diag_buffer_list[
 1581                                                     rel_rep->BufferType];
 1582                                                 pBuffer->valid_data = TRUE;
 1583                                                 pBuffer->owned_by_firmware =
 1584                                                     FALSE;
 1585                                                 pBuffer->immediate = FALSE;
 1586                                         }
 1587                                 } else
 1588                                         mps_dispatch_event(sc, baddr,
 1589                                             (MPI2_EVENT_NOTIFICATION_REPLY *)
 1590                                             reply);
 1591                         } else {
 1592                                 cm = &sc->commands[desc->AddressReply.SMID];
 1593                                 cm->cm_reply = reply;
 1594                                 cm->cm_reply_data =
 1595                                     desc->AddressReply.ReplyFrameAddress;
 1596                         }
 1597                         break;
 1598                 }
 1599                 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
 1600                 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
 1601                 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
 1602                 default:
 1603                         /* Unhandled */
 1604                         device_printf(sc->mps_dev, "Unhandled reply 0x%x\n",
 1605                             desc->Default.ReplyFlags);
 1606                         cm = NULL;
 1607                         break;
 1608                 }
 1609 
 1610                 if (cm != NULL)
 1611                         mps_complete_command(cm);
 1612 
 1613                 desc->Words.Low = 0xffffffff;
 1614                 desc->Words.High = 0xffffffff;
 1615         }
 1616 
 1617         if (pq != sc->replypostindex) {
 1618                 mps_dprint(sc, MPS_TRACE,
 1619                     "%s sc %p writing postindex %d\n",
 1620                     __func__, sc, sc->replypostindex);
 1621                 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
 1622         }
 1623 
 1624         return;
 1625 }
 1626 
 1627 static void
 1628 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
 1629     MPI2_EVENT_NOTIFICATION_REPLY *reply)
 1630 {
 1631         struct mps_event_handle *eh;
 1632         int event, handled = 0;
 1633 
 1634         event = reply->Event;
 1635         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
 1636                 if (isset(eh->mask, event)) {
 1637                         eh->callback(sc, data, reply);
 1638                         handled++;
 1639                 }
 1640         }
 1641 
 1642         if (handled == 0)
 1643                 device_printf(sc->mps_dev, "Unhandled event 0x%x\n", event);
 1644 
 1645         /*
 1646          * This is the only place that the event/reply should be freed.
 1647          * Anything wanting to hold onto the event data should have
 1648          * already copied it into their own storage.
 1649          */
 1650         mps_free_reply(sc, data);
 1651 }
 1652 
 1653 static void
 1654 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
 1655 {
 1656         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 1657 
 1658         if (cm->cm_reply)
 1659                 mps_print_event(sc,
 1660                         (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
 1661 
 1662         mps_free_command(sc, cm);
 1663 
 1664         /* next, send a port enable */
 1665         mpssas_startup(sc);
 1666 }
 1667 
 1668 /*
 1669  * For both register_events and update_events, the caller supplies a bitmap
 1670  * of events that it _wants_.  These functions then turn that into a bitmask
 1671  * suitable for the controller.
 1672  */
 1673 int
 1674 mps_register_events(struct mps_softc *sc, uint8_t *mask,
 1675     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
 1676 {
 1677         struct mps_event_handle *eh;
 1678         int error = 0;
 1679 
 1680         eh = kmalloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
 1681         eh->callback = cb;
 1682         eh->data = data;
 1683         TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
 1684         if (mask != NULL)
 1685                 error = mps_update_events(sc, eh, mask);
 1686         *handle = eh;
 1687 
 1688         return (error);
 1689 }
 1690 
 1691 int
 1692 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
 1693     uint8_t *mask)
 1694 {
 1695         MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
 1696         MPI2_EVENT_NOTIFICATION_REPLY *reply;
 1697         struct mps_command *cm;
 1698         struct mps_event_handle *eh;
 1699         int error, i;
 1700 
 1701         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 1702 
 1703         if ((mask != NULL) && (handle != NULL))
 1704                 bcopy(mask, &handle->mask[0], 16);
 1705         memset(sc->event_mask, 0xff, 16);
 1706 
 1707         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
 1708                 for (i = 0; i < 16; i++)
 1709                         sc->event_mask[i] &= ~eh->mask[i];
 1710         }
 1711 
 1712         if ((cm = mps_alloc_command(sc)) == NULL)
 1713                 return (EBUSY);
 1714         evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
 1715         evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
 1716         evtreq->MsgFlags = 0;
 1717         evtreq->SASBroadcastPrimitiveMasks = 0;
 1718 #ifdef MPS_DEBUG_ALL_EVENTS
 1719         {
 1720                 u_char fullmask[16];
 1721                 memset(fullmask, 0x00, 16);
 1722                 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
 1723         }
 1724 #else
 1725                 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
 1726 #endif
 1727         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 1728         cm->cm_data = NULL;
 1729 
 1730         error = mps_request_polled(sc, cm);
 1731         reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
 1732         if ((reply == NULL) ||
 1733             (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
 1734                 error = ENXIO;
 1735         mps_print_event(sc, reply);
 1736         mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
 1737 
 1738         mps_free_command(sc, cm);
 1739         return (error);
 1740 }
 1741 
 1742 static int
 1743 mps_reregister_events(struct mps_softc *sc)
 1744 {
 1745         MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
 1746         struct mps_command *cm;
 1747         struct mps_event_handle *eh;
 1748         int error, i;
 1749 
 1750         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 1751 
 1752         /* first, reregister events */
 1753 
 1754         memset(sc->event_mask, 0xff, 16);
 1755 
 1756         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
 1757                 for (i = 0; i < 16; i++)
 1758                         sc->event_mask[i] &= ~eh->mask[i];
 1759         }
 1760 
 1761         if ((cm = mps_alloc_command(sc)) == NULL)
 1762                 return (EBUSY);
 1763         evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
 1764         evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
 1765         evtreq->MsgFlags = 0;
 1766         evtreq->SASBroadcastPrimitiveMasks = 0;
 1767 #ifdef MPS_DEBUG_ALL_EVENTS
 1768         {
 1769                 u_char fullmask[16];
 1770                 memset(fullmask, 0x00, 16);
 1771                 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
 1772         }
 1773 #else
 1774                 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
 1775 #endif
 1776         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 1777         cm->cm_data = NULL;
 1778         cm->cm_complete = mps_reregister_events_complete;
 1779 
 1780         error = mps_map_command(sc, cm);
 1781 
 1782         mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, error);
 1783         return (error);
 1784 }
 1785 
 1786 int
 1787 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
 1788 {
 1789 
 1790         TAILQ_REMOVE(&sc->event_list, handle, eh_list);
 1791         kfree(handle, M_MPT2);
 1792         return (mps_update_events(sc, NULL, NULL));
 1793 }
 1794 
 1795 /*
 1796  * Add a chain element as the next SGE for the specified command.
 1797  * Reset cm_sge and cm_sgesize to indicate all the available space.
 1798  */
 1799 static int
 1800 mps_add_chain(struct mps_command *cm)
 1801 {
 1802         MPI2_SGE_CHAIN32 *sgc;
 1803         struct mps_chain *chain;
 1804         int space;
 1805 
 1806         if (cm->cm_sglsize < MPS_SGC_SIZE)
 1807                 panic("MPS: Need SGE Error Code");
 1808 
 1809         chain = mps_alloc_chain(cm->cm_sc);
 1810         if (chain == NULL)
 1811                 return (ENOBUFS);
 1812 
 1813         space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
 1814 
 1815         /*
 1816          * Note: a double-linked list is used to make it easier to
 1817          * walk for debugging.
 1818          */
 1819         TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
 1820 
 1821         sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
 1822         sgc->Length = space;
 1823         sgc->NextChainOffset = 0;
 1824         sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
 1825         sgc->Address = chain->chain_busaddr;
 1826 
 1827         cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
 1828         cm->cm_sglsize = space;
 1829         return (0);
 1830 }
 1831 
 1832 /*
 1833  * Add one scatter-gather element (chain, simple, transaction context)
 1834  * to the scatter-gather list for a command.  Maintain cm_sglsize and
 1835  * cm_sge as the remaining size and pointer to the next SGE to fill
 1836  * in, respectively.
 1837  */
 1838 int
 1839 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
 1840 {
 1841         MPI2_SGE_TRANSACTION_UNION *tc = sgep;
 1842         MPI2_SGE_SIMPLE64 *sge = sgep;
 1843         int error, type;
 1844         uint32_t saved_buf_len, saved_address_low, saved_address_high;
 1845 
 1846         type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
 1847 
 1848 #ifdef INVARIANTS
 1849         switch (type) {
 1850         case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
 1851                 if (len != tc->DetailsLength + 4)
 1852                         panic("TC %p length %u or %zu?", tc,
 1853                             tc->DetailsLength + 4, len);
 1854                 }
 1855                 break;
 1856         case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
 1857                 /* Driver only uses 32-bit chain elements */
 1858                 if (len != MPS_SGC_SIZE)
 1859                         panic("CHAIN %p length %u or %zu?", sgep,
 1860                             MPS_SGC_SIZE, len);
 1861                 break;
 1862         case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
 1863                 /* Driver only uses 64-bit SGE simple elements */
 1864                 if (len != MPS_SGE64_SIZE)
 1865                         panic("SGE simple %p length %u or %zu?", sge,
 1866                             MPS_SGE64_SIZE, len);
 1867                 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
 1868                     MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
 1869                         panic("SGE simple %p not marked 64-bit?", sge);
 1870 
 1871                 break;
 1872         default:
 1873                 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
 1874         }
 1875 #endif
 1876 
 1877         /*
 1878          * case 1: 1 more segment, enough room for it
 1879          * case 2: 2 more segments, enough room for both
 1880          * case 3: >=2 more segments, only enough room for 1 and a chain
 1881          * case 4: >=1 more segment, enough room for only a chain
 1882          * case 5: >=1 more segment, no room for anything (error)
 1883          */
 1884 
 1885         /*
 1886          * There should be room for at least a chain element, or this
 1887          * code is buggy.  Case (5).
 1888          */
 1889         if (cm->cm_sglsize < MPS_SGC_SIZE)
 1890                 panic("MPS: Need SGE Error Code");
 1891 
 1892         if (segsleft >= 2 &&
 1893             cm->cm_sglsize >= len + MPS_SGC_SIZE &&
 1894             cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
 1895                 /*
 1896                  * There are 2 or more segments left to add, and only
 1897                  * enough room for 1 and a chain.  Case (3).
 1898                  *
 1899                  * Mark as last element in this chain if necessary.
 1900                  */
 1901                 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
 1902                         sge->FlagsLength |= htole32(
 1903                                 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
 1904                 }
 1905 
 1906                 /*
 1907                  * Add the item then a chain.  Do the chain now,
 1908                  * rather than on the next iteration, to simplify
 1909                  * understanding the code.
 1910                  */
 1911                 cm->cm_sglsize -= len;
 1912                 bcopy(sgep, cm->cm_sge, len);
 1913                 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
 1914                 return (mps_add_chain(cm));
 1915         }
 1916 
 1917         if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
 1918                 /*
 1919                  * 1 or more segment, enough room for only a chain.
 1920                  * Hope the previous element wasn't a Simple entry
 1921                  * that needed to be marked with
 1922                  * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
 1923                  */
 1924                 if ((error = mps_add_chain(cm)) != 0)
 1925                         return (error);
 1926         }
 1927 
 1928 #ifdef INVARIANTS
 1929         /* Case 1: 1 more segment, enough room for it. */
 1930         if (segsleft == 1 && cm->cm_sglsize < len)
 1931                 panic("1 seg left and no room? %u versus %zu",
 1932                     cm->cm_sglsize, len);
 1933 
 1934         /* Case 2: 2 more segments, enough room for both */
 1935         if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
 1936                 panic("2 segs left and no room? %u versus %zu",
 1937                     cm->cm_sglsize, len);
 1938 #endif
 1939 
 1940         if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
 1941                 /*
 1942                  * If this is a bi-directional request, need to account for that
 1943                  * here.  Save the pre-filled sge values.  These will be used
 1944                  * either for the 2nd SGL or for a single direction SGL.  If
 1945                  * cm_out_len is non-zero, this is a bi-directional request, so
 1946                  * fill in the OUT SGL first, then the IN SGL, otherwise just
 1947                  * fill in the IN SGL.  Note that at this time, when filling in
 1948                  * 2 SGL's for a bi-directional request, they both use the same
 1949                  * DMA buffer (same cm command).
 1950                  */
 1951                 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
 1952                 saved_address_low = sge->Address.Low;
 1953                 saved_address_high = sge->Address.High;
 1954                 if (cm->cm_out_len) {
 1955                         sge->FlagsLength = htole32(cm->cm_out_len |
 1956                             ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 1957                             MPI2_SGE_FLAGS_END_OF_BUFFER |
 1958                             MPI2_SGE_FLAGS_HOST_TO_IOC |
 1959                             MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
 1960                             MPI2_SGE_FLAGS_SHIFT));
 1961                         cm->cm_sglsize -= len;
 1962                         bcopy(sgep, cm->cm_sge, len);
 1963                         cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
 1964                             + len);
 1965                 }
 1966                 saved_buf_len |=
 1967                     ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 1968                     MPI2_SGE_FLAGS_END_OF_BUFFER |
 1969                     MPI2_SGE_FLAGS_LAST_ELEMENT |
 1970                     MPI2_SGE_FLAGS_END_OF_LIST |
 1971                     MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
 1972                     MPI2_SGE_FLAGS_SHIFT);
 1973                 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
 1974                         saved_buf_len |=
 1975                             ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
 1976                             MPI2_SGE_FLAGS_SHIFT);
 1977                 } else {
 1978                         saved_buf_len |=
 1979                             ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
 1980                             MPI2_SGE_FLAGS_SHIFT);
 1981                 }
 1982                 sge->FlagsLength = htole32(saved_buf_len);
 1983                 sge->Address.Low = saved_address_low;
 1984                 sge->Address.High = saved_address_high;
 1985         }
 1986 
 1987         cm->cm_sglsize -= len;
 1988         bcopy(sgep, cm->cm_sge, len);
 1989         cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
 1990         return (0);
 1991 }
 1992 
 1993 /*
 1994  * Add one dma segment to the scatter-gather list for a command.
 1995  */
 1996 int
 1997 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
 1998     int segsleft)
 1999 {
 2000         MPI2_SGE_SIMPLE64 sge;
 2001 
 2002         /*
 2003          * This driver always uses 64-bit address elements for simplicity.
 2004          */
 2005         bzero(&sge, sizeof(sge));
 2006         flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 2007             MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
 2008         sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
 2009         mps_from_u64(pa, &sge.Address);
 2010 
 2011         return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
 2012 }
 2013 
 2014 static void
 2015 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 2016 {
 2017         struct mps_softc *sc;
 2018         struct mps_command *cm;
 2019         u_int i, dir, sflags;
 2020 
 2021         cm = (struct mps_command *)arg;
 2022         sc = cm->cm_sc;
 2023 
 2024         /*
 2025          * In this case, just print out a warning and let the chip tell the
 2026          * user they did the wrong thing.
 2027          */
 2028         if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
 2029                 mps_printf(sc, "%s: warning: busdma returned %d segments, "
 2030                            "more than the %d allowed\n", __func__, nsegs,
 2031                            cm->cm_max_segs);
 2032         }
 2033 
 2034         /*
 2035          * Set up DMA direction flags.  Bi-directional requests are also handled
 2036          * here.  In that case, both direction flags will be set.
 2037          */
 2038         sflags = 0;
 2039         if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
 2040                 /*
 2041                  * We have to add a special case for SMP passthrough, there
 2042                  * is no easy way to generically handle it.  The first
 2043                  * S/G element is used for the command (therefore the
 2044                  * direction bit needs to be set).  The second one is used
 2045                  * for the reply.  We'll leave it to the caller to make
 2046                  * sure we only have two buffers.
 2047                  */
 2048                 /*
 2049                  * Even though the busdma man page says it doesn't make
 2050                  * sense to have both direction flags, it does in this case.
 2051                  * We have one s/g element being accessed in each direction.
 2052                  */
 2053                 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
 2054 
 2055                 /*
 2056                  * Set the direction flag on the first buffer in the SMP
 2057                  * passthrough request.  We'll clear it for the second one.
 2058                  */
 2059                 sflags |= MPI2_SGE_FLAGS_DIRECTION |
 2060                           MPI2_SGE_FLAGS_END_OF_BUFFER;
 2061         } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
 2062                 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
 2063                 dir = BUS_DMASYNC_PREWRITE;
 2064         } else
 2065                 dir = BUS_DMASYNC_PREREAD;
 2066 
 2067         for (i = 0; i < nsegs; i++) {
 2068                 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
 2069                         sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
 2070                 }
 2071                 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
 2072                     sflags, nsegs - i);
 2073                 if (error != 0) {
 2074                         /* Resource shortage, roll back! */
 2075                         mps_dprint(sc, MPS_INFO, "out of chain frames\n");
 2076                         cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
 2077                         mps_complete_command(cm);
 2078                         return;
 2079                 }
 2080         }
 2081 
 2082         bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
 2083         mps_enqueue_request(sc, cm);
 2084 
 2085         return;
 2086 }
 2087 
 2088 static void
 2089 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
 2090              int error)
 2091 {
 2092         mps_data_cb(arg, segs, nsegs, error);
 2093 }
 2094 
 2095 /*
 2096  * This is the routine to enqueue commands ansynchronously.
 2097  * Note that the only error path here is from bus_dmamap_load(), which can
 2098  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
 2099  * assumed that if you have a command in-hand, then you have enough credits
 2100  * to use it.
 2101  */
 2102 int
 2103 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
 2104 {
 2105         int error = 0;
 2106 
 2107         if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
 2108                 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
 2109                     &cm->cm_uio, mps_data_cb2, cm, 0);
 2110         } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
 2111                 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
 2112                     cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
 2113         } else {
 2114                 /* Add a zero-length element as needed */
 2115                 if (cm->cm_sge != NULL)
 2116                         mps_add_dmaseg(cm, 0, 0, 0, 1);
 2117                 mps_enqueue_request(sc, cm);
 2118         }
 2119 
 2120         return (error);
 2121 }
 2122 
 2123 /*
 2124  * This is the routine to enqueue commands synchronously.  An error of
 2125  * EINPROGRESS from mps_map_command() is ignored since the command will
 2126  * be executed and enqueued automatically.  Other errors come from msleep().
 2127  */
 2128 int
 2129 mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout)
 2130 {
 2131         int error;
 2132 
 2133         KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
 2134 
 2135         cm->cm_complete = NULL;
 2136         cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
 2137         error = mps_map_command(sc, cm);
 2138         if ((error != 0) && (error != EINPROGRESS))
 2139                 return (error);
 2140         error = lksleep(cm, &sc->mps_lock, 0, "mpswait", timeout*hz);
 2141         if (error == EWOULDBLOCK)
 2142                 error = ETIMEDOUT;
 2143         return (error);
 2144 }
 2145 
 2146 /*
 2147  * This is the routine to enqueue a command synchonously and poll for
 2148  * completion.  Its use should be rare.
 2149  */
 2150 int
 2151 mps_request_polled(struct mps_softc *sc, struct mps_command *cm)
 2152 {
 2153         int error, timeout = 0;
 2154 
 2155         error = 0;
 2156 
 2157         cm->cm_flags |= MPS_CM_FLAGS_POLLED;
 2158         cm->cm_complete = NULL;
 2159         mps_map_command(sc, cm);
 2160 
 2161         while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
 2162                 mps_intr_locked(sc);
 2163                 DELAY(50 * 1000);
 2164                 if (timeout++ > 1000) {
 2165                         mps_dprint(sc, MPS_FAULT, "polling failed\n");
 2166                         error = ETIMEDOUT;
 2167                         break;
 2168                 }
 2169         }
 2170 
 2171         return (error);
 2172 }
 2173 
 2174 /*
 2175  * The MPT driver had a verbose interface for config pages.  In this driver,
 2176  * reduce it to much simplier terms, similar to the Linux driver.
 2177  */
 2178 int
 2179 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
 2180 {
 2181         MPI2_CONFIG_REQUEST *req;
 2182         struct mps_command *cm;
 2183         int error;
 2184 
 2185         if (sc->mps_flags & MPS_FLAGS_BUSY) {
 2186                 return (EBUSY);
 2187         }
 2188 
 2189         cm = mps_alloc_command(sc);
 2190         if (cm == NULL) {
 2191                 return (EBUSY);
 2192         }
 2193 
 2194         req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
 2195         req->Function = MPI2_FUNCTION_CONFIG;
 2196         req->Action = params->action;
 2197         req->SGLFlags = 0;
 2198         req->ChainOffset = 0;
 2199         req->PageAddress = params->page_address;
 2200         if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
 2201                 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
 2202 
 2203                 hdr = &params->hdr.Ext;
 2204                 req->ExtPageType = hdr->ExtPageType;
 2205                 req->ExtPageLength = hdr->ExtPageLength;
 2206                 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
 2207                 req->Header.PageLength = 0; /* Must be set to zero */
 2208                 req->Header.PageNumber = hdr->PageNumber;
 2209                 req->Header.PageVersion = hdr->PageVersion;
 2210         } else {
 2211                 MPI2_CONFIG_PAGE_HEADER *hdr;
 2212 
 2213                 hdr = &params->hdr.Struct;
 2214                 req->Header.PageType = hdr->PageType;
 2215                 req->Header.PageNumber = hdr->PageNumber;
 2216                 req->Header.PageLength = hdr->PageLength;
 2217                 req->Header.PageVersion = hdr->PageVersion;
 2218         }
 2219 
 2220         cm->cm_data = params->buffer;
 2221         cm->cm_length = params->length;
 2222         cm->cm_sge = &req->PageBufferSGE;
 2223         cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
 2224         cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
 2225         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 2226 
 2227         cm->cm_complete_data = params;
 2228         if (params->callback != NULL) {
 2229                 cm->cm_complete = mps_config_complete;
 2230                 return (mps_map_command(sc, cm));
 2231         } else {
 2232                 error = mps_wait_command(sc, cm, 0);
 2233                 if (error) {
 2234                         mps_dprint(sc, MPS_FAULT,
 2235                             "Error %d reading config page\n", error);
 2236                         mps_free_command(sc, cm);
 2237                         return (error);
 2238                 }
 2239                 mps_config_complete(sc, cm);
 2240         }
 2241 
 2242         return (0);
 2243 }
 2244 
 2245 int
 2246 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
 2247 {
 2248         return (EINVAL);
 2249 }
 2250 
 2251 static void
 2252 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
 2253 {
 2254         MPI2_CONFIG_REPLY *reply;
 2255         struct mps_config_params *params;
 2256 
 2257         params = cm->cm_complete_data;
 2258 
 2259         if (cm->cm_data != NULL) {
 2260                 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
 2261                     BUS_DMASYNC_POSTREAD);
 2262                 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
 2263         }
 2264 
 2265         /*
 2266          * XXX KDM need to do more error recovery?  This results in the
 2267          * device in question not getting probed.
 2268          */
 2269         if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
 2270                 params->status = MPI2_IOCSTATUS_BUSY;
 2271                 goto done;
 2272         }
 2273 
 2274         reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
 2275         if (reply == NULL) {
 2276                 params->status = MPI2_IOCSTATUS_BUSY;
 2277                 goto done;
 2278         }
 2279         params->status = reply->IOCStatus;
 2280         if (params->hdr.Ext.ExtPageType != 0) {
 2281                 params->hdr.Ext.ExtPageType = reply->ExtPageType;
 2282                 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
 2283         } else {
 2284                 params->hdr.Struct.PageType = reply->Header.PageType;
 2285                 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
 2286                 params->hdr.Struct.PageLength = reply->Header.PageLength;
 2287                 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
 2288         }
 2289 
 2290 done:
 2291         mps_free_command(sc, cm);
 2292         if (params->callback != NULL)
 2293                 params->callback(sc, params);
 2294 
 2295         return;
 2296 }

Cache object: 928df7f722fb9aeeb005da3a93e96527


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.