FreeBSD/Linux Kernel Cross Reference
sys/dev/raid/mps/mps.c
1 /*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27 /*-
28 * Copyright (c) 2011 LSI Corp.
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * LSI MPT-Fusion Host Adapter FreeBSD
53 *
54 * $FreeBSD: src/sys/dev/mps/mps.c,v 1.14 2012/01/26 18:17:21 ken Exp $
55 */
56
57 /* Communications core for LSI MPT2 */
58
59 /* TODO Move headers to mpsvar */
60 #include <sys/types.h>
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/globaldata.h>
66 #include <sys/module.h>
67 #include <sys/bus.h>
68 #include <sys/conf.h>
69 #include <sys/bio.h>
70 #include <sys/malloc.h>
71 #include <sys/uio.h>
72 #include <sys/sysctl.h>
73 #include <sys/queue.h>
74 #include <sys/kthread.h>
75 #include <sys/endian.h>
76 #include <sys/eventhandler.h>
77
78 #include <sys/rman.h>
79
80 #include <bus/pci/pcivar.h>
81
82 #include <bus/cam/scsi/scsi_all.h>
83
84 #include <dev/raid/mps/mpi/mpi2_type.h>
85 #include <dev/raid/mps/mpi/mpi2.h>
86 #include <dev/raid/mps/mpi/mpi2_ioc.h>
87 #include <dev/raid/mps/mpi/mpi2_sas.h>
88 #include <dev/raid/mps/mpi/mpi2_cnfg.h>
89 #include <dev/raid/mps/mpi/mpi2_init.h>
90 #include <dev/raid/mps/mpi/mpi2_tool.h>
91 #include <dev/raid/mps/mps_ioctl.h>
92 #include <dev/raid/mps/mpsvar.h>
93 #include <dev/raid/mps/mps_table.h>
94
95 static int mps_diag_reset(struct mps_softc *sc);
96 static int mps_init_queues(struct mps_softc *sc);
97 static int mps_message_unit_reset(struct mps_softc *sc);
98 static int mps_transition_operational(struct mps_softc *sc);
99 static void mps_startup(void *arg);
100 static int mps_send_iocinit(struct mps_softc *sc);
101 static int mps_attach_log(struct mps_softc *sc);
102 static __inline void mps_complete_command(struct mps_command *cm);
103 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
104 MPI2_EVENT_NOTIFICATION_REPLY *reply);
105 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
106 static void mps_periodic(void *);
107 static int mps_reregister_events(struct mps_softc *sc);
108 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
109
110 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
111
112 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
113
114 /*
115 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
116 * any state and back to its initialization state machine.
117 */
118 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
119
120 static int
121 mps_diag_reset(struct mps_softc *sc)
122 {
123 uint32_t reg;
124 int i, error, tries = 0;
125
126 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
127
128 /* Clear any pending interrupts */
129 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
130
131 /* Push the magic sequence */
132 error = ETIMEDOUT;
133 while (tries++ < 20) {
134 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
135 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
136 mpt2_reset_magic[i]);
137
138 DELAY(100 * 1000);
139
140 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
141 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
142 error = 0;
143 break;
144 }
145 }
146 if (error)
147 return (error);
148
149 /* Send the actual reset. XXX need to refresh the reg? */
150 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
151 reg | MPI2_DIAG_RESET_ADAPTER);
152
153 /* Wait up to 300 seconds in 50ms intervals */
154 error = ETIMEDOUT;
155 for (i = 0; i < 60000; i++) {
156 DELAY(50000);
157 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
158 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
159 error = 0;
160 break;
161 }
162 }
163 if (error)
164 return (error);
165
166 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
167
168 return (0);
169 }
170
171 static int
172 mps_message_unit_reset(struct mps_softc *sc)
173 {
174
175 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
176
177 mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
178 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
179 MPI2_DOORBELL_FUNCTION_SHIFT);
180 DELAY(50000);
181
182 return (0);
183 }
184
185 static int
186 mps_transition_ready(struct mps_softc *sc)
187 {
188 uint32_t reg, state;
189 int error, tries = 0;
190
191 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
192
193 error = 0;
194 while (tries++ < 5) {
195 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
196 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
197
198 /*
199 * Ensure the IOC is ready to talk. If it's not, try
200 * resetting it.
201 */
202 if (reg & MPI2_DOORBELL_USED) {
203 mps_diag_reset(sc);
204 DELAY(50000);
205 continue;
206 }
207
208 /* Is the adapter owned by another peer? */
209 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
210 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
211 device_printf(sc->mps_dev, "IOC is under the control "
212 "of another peer host, aborting initialization.\n");
213 return (ENXIO);
214 }
215
216 state = reg & MPI2_IOC_STATE_MASK;
217 if (state == MPI2_IOC_STATE_READY) {
218 /* Ready to go! */
219 error = 0;
220 break;
221 } else if (state == MPI2_IOC_STATE_FAULT) {
222 mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n",
223 state & MPI2_DOORBELL_FAULT_CODE_MASK);
224 mps_diag_reset(sc);
225 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
226 /* Need to take ownership */
227 mps_message_unit_reset(sc);
228 } else if (state == MPI2_IOC_STATE_RESET) {
229 /* Wait a bit, IOC might be in transition */
230 mps_dprint(sc, MPS_FAULT,
231 "IOC in unexpected reset state\n");
232 } else {
233 mps_dprint(sc, MPS_FAULT,
234 "IOC in unknown state 0x%x\n", state);
235 error = EINVAL;
236 break;
237 }
238
239 /* Wait 50ms for things to settle down. */
240 DELAY(50000);
241 }
242
243 if (error)
244 device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
245
246 return (error);
247 }
248
249 static int
250 mps_transition_operational(struct mps_softc *sc)
251 {
252 uint32_t reg, state;
253 int error;
254
255 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
256
257 error = 0;
258 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
259 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
260
261 state = reg & MPI2_IOC_STATE_MASK;
262 if (state != MPI2_IOC_STATE_READY) {
263 if ((error = mps_transition_ready(sc)) != 0) {
264 mps_dprint(sc, MPS_FAULT,
265 "%s failed to transition ready\n", __func__);
266 return (error);
267 }
268 }
269
270 error = mps_send_iocinit(sc);
271 return (error);
272 }
273
274 /*
275 * XXX Some of this should probably move to mps.c
276 *
277 * The terms diag reset and hard reset are used interchangeably in the MPI
278 * docs to mean resetting the controller chip. In this code diag reset
279 * cleans everything up, and the hard reset function just sends the reset
280 * sequence to the chip. This should probably be refactored so that every
281 * subsystem gets a reset notification of some sort, and can clean up
282 * appropriately.
283 */
284 int
285 mps_reinit(struct mps_softc *sc)
286 {
287 int error;
288 uint32_t db;
289
290 mps_printf(sc, "%s sc %p\n", __func__, sc);
291
292 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
293
294 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
295 mps_printf(sc, "%s reset already in progress\n", __func__);
296 return 0;
297 }
298
299 /* make sure the completion callbacks can recognize they're getting
300 * a NULL cm_reply due to a reset.
301 */
302 sc->mps_flags |= MPS_FLAGS_DIAGRESET;
303
304 mps_printf(sc, "%s mask interrupts\n", __func__);
305 mps_mask_intr(sc);
306
307 error = mps_diag_reset(sc);
308 if (error != 0) {
309 panic("%s hard reset failed with error %d",
310 __func__, error);
311 }
312
313 /* Restore the PCI state, including the MSI-X registers */
314 mps_pci_restore(sc);
315
316 /* Give the I/O subsystem special priority to get itself prepared */
317 mpssas_handle_reinit(sc);
318
319 /* reinitialize queues after the reset */
320 bzero(sc->free_queue, sc->fqdepth * 4);
321 mps_init_queues(sc);
322
323 /* get the chip out of the reset state */
324 error = mps_transition_operational(sc);
325 if (error != 0)
326 panic("%s transition operational failed with error %d",
327 __func__, error);
328
329 /* Reinitialize the reply queue. This is delicate because this
330 * function is typically invoked by task mgmt completion callbacks,
331 * which are called by the interrupt thread. We need to make sure
332 * the interrupt handler loop will exit when we return to it, and
333 * that it will recognize the indexes we've changed.
334 */
335 sc->replypostindex = 0;
336 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
337 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
338
339 db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
340 mps_printf(sc, "%s doorbell 0x%08x\n", __func__, db);
341
342 mps_printf(sc, "%s unmask interrupts post %u free %u\n", __func__,
343 sc->replypostindex, sc->replyfreeindex);
344
345 mps_unmask_intr(sc);
346
347 mps_printf(sc, "%s restarting post %u free %u\n", __func__,
348 sc->replypostindex, sc->replyfreeindex);
349
350 /* restart will reload the event masks clobbered by the reset, and
351 * then enable the port.
352 */
353 mps_reregister_events(sc);
354
355 /* the end of discovery will release the simq, so we're done. */
356 mps_printf(sc, "%s finished sc %p post %u free %u\n",
357 __func__, sc,
358 sc->replypostindex, sc->replyfreeindex);
359
360 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
361
362 return 0;
363 }
364
365 /* Wait for the chip to ACK a word that we've put into its FIFO */
366 static int
367 mps_wait_db_ack(struct mps_softc *sc)
368 {
369 int retry;
370
371 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
372 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
373 MPI2_HIS_SYS2IOC_DB_STATUS) == 0)
374 return (0);
375 DELAY(2000);
376 }
377 return (ETIMEDOUT);
378 }
379
380 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
381 static int
382 mps_wait_db_int(struct mps_softc *sc)
383 {
384 int retry;
385
386 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
387 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
388 MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
389 return (0);
390 DELAY(2000);
391 }
392 return (ETIMEDOUT);
393 }
394
395 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
396 static int
397 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
398 int req_sz, int reply_sz, int timeout)
399 {
400 uint32_t *data32;
401 uint16_t *data16;
402 int i, count, ioc_sz, residual;
403
404 /* Step 1 */
405 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
406
407 /* Step 2 */
408 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
409 return (EBUSY);
410
411 /* Step 3
412 * Announce that a message is coming through the doorbell. Messages
413 * are pushed at 32bit words, so round up if needed.
414 */
415 count = (req_sz + 3) / 4;
416 mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
417 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
418 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
419
420 /* Step 4 */
421 if (mps_wait_db_int(sc) ||
422 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
423 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
424 return (ENXIO);
425 }
426 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
427 if (mps_wait_db_ack(sc) != 0) {
428 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
429 return (ENXIO);
430 }
431
432 /* Step 5 */
433 /* Clock out the message data synchronously in 32-bit dwords*/
434 data32 = (uint32_t *)req;
435 for (i = 0; i < count; i++) {
436 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, data32[i]);
437 if (mps_wait_db_ack(sc) != 0) {
438 mps_dprint(sc, MPS_FAULT,
439 "Timeout while writing doorbell\n");
440 return (ENXIO);
441 }
442 }
443
444 /* Step 6 */
445 /* Clock in the reply in 16-bit words. The total length of the
446 * message is always in the 4th byte, so clock out the first 2 words
447 * manually, then loop the rest.
448 */
449 data16 = (uint16_t *)reply;
450 if (mps_wait_db_int(sc) != 0) {
451 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
452 return (ENXIO);
453 }
454 data16[0] =
455 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
456 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
457 if (mps_wait_db_int(sc) != 0) {
458 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
459 return (ENXIO);
460 }
461 data16[1] =
462 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
463 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
464
465 /* Number of 32bit words in the message */
466 ioc_sz = reply->MsgLength;
467
468 /*
469 * Figure out how many 16bit words to clock in without overrunning.
470 * The precision loss with dividing reply_sz can safely be
471 * ignored because the messages can only be multiples of 32bits.
472 */
473 residual = 0;
474 count = MIN((reply_sz / 4), ioc_sz) * 2;
475 if (count < ioc_sz * 2) {
476 residual = ioc_sz * 2 - count;
477 mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d "
478 "residual message words\n", residual);
479 }
480
481 for (i = 2; i < count; i++) {
482 if (mps_wait_db_int(sc) != 0) {
483 mps_dprint(sc, MPS_FAULT,
484 "Timeout reading doorbell %d\n", i);
485 return (ENXIO);
486 }
487 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
488 MPI2_DOORBELL_DATA_MASK;
489 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
490 }
491
492 /*
493 * Pull out residual words that won't fit into the provided buffer.
494 * This keeps the chip from hanging due to a driver programming
495 * error.
496 */
497 while (residual--) {
498 if (mps_wait_db_int(sc) != 0) {
499 mps_dprint(sc, MPS_FAULT,
500 "Timeout reading doorbell\n");
501 return (ENXIO);
502 }
503 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
504 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
505 }
506
507 /* Step 7 */
508 if (mps_wait_db_int(sc) != 0) {
509 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
510 return (ENXIO);
511 }
512 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
513 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
514 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
515
516 return (0);
517 }
518
519 static void
520 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
521 {
522
523 mps_dprint(sc, MPS_TRACE, "%s SMID %u cm %p ccb %p\n", __func__,
524 cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
525
526 if ((sc->mps_flags & MPS_FLAGS_ATTACH_DONE) &&
527 !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) {
528 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
529 }
530
531 if (++sc->io_cmds_active > sc->io_cmds_highwater)
532 sc->io_cmds_highwater++;
533
534 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
535 cm->cm_desc.Words.Low);
536 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
537 cm->cm_desc.Words.High);
538 }
539
540 /*
541 * Just the FACTS, ma'am.
542 */
543 static int
544 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
545 {
546 MPI2_DEFAULT_REPLY *reply;
547 MPI2_IOC_FACTS_REQUEST request;
548 int error, req_sz, reply_sz;
549
550 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
551
552 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
553 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
554 reply = (MPI2_DEFAULT_REPLY *)facts;
555
556 bzero(&request, req_sz);
557 request.Function = MPI2_FUNCTION_IOC_FACTS;
558 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
559
560 return (error);
561 }
562
563 static int
564 mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port)
565 {
566 MPI2_PORT_FACTS_REQUEST *request;
567 MPI2_PORT_FACTS_REPLY *reply;
568 struct mps_command *cm;
569 int error;
570
571 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
572
573 if ((cm = mps_alloc_command(sc)) == NULL)
574 return (EBUSY);
575 request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req;
576 request->Function = MPI2_FUNCTION_PORT_FACTS;
577 request->PortNumber = port;
578 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
579 cm->cm_data = NULL;
580 error = mps_request_polled(sc, cm);
581 reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply;
582 if (reply == NULL) {
583 mps_printf(sc, "%s NULL reply\n", __func__);
584 goto done;
585 }
586 if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) {
587 mps_printf(sc,
588 "%s error %d iocstatus 0x%x iocloginfo 0x%x type 0x%x\n",
589 __func__, error, reply->IOCStatus, reply->IOCLogInfo,
590 reply->PortType);
591 error = ENXIO;
592 }
593 bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY));
594 done:
595 mps_free_command(sc, cm);
596
597 return (error);
598 }
599
600 static int
601 mps_send_iocinit(struct mps_softc *sc)
602 {
603 MPI2_IOC_INIT_REQUEST init;
604 MPI2_DEFAULT_REPLY reply;
605 int req_sz, reply_sz, error;
606
607 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
608
609 req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
610 reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
611 bzero(&init, req_sz);
612 bzero(&reply, reply_sz);
613
614 /*
615 * Fill in the init block. Note that most addresses are
616 * deliberately in the lower 32bits of memory. This is a micro-
617 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
618 */
619 init.Function = MPI2_FUNCTION_IOC_INIT;
620 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
621 init.MsgVersion = MPI2_VERSION;
622 init.HeaderVersion = MPI2_HEADER_VERSION;
623 init.SystemRequestFrameSize = sc->facts->IOCRequestFrameSize;
624 init.ReplyDescriptorPostQueueDepth = sc->pqdepth;
625 init.ReplyFreeQueueDepth = sc->fqdepth;
626 init.SenseBufferAddressHigh = 0;
627 init.SystemReplyAddressHigh = 0;
628 init.SystemRequestFrameBaseAddress.High = 0;
629 init.SystemRequestFrameBaseAddress.Low = (uint32_t)sc->req_busaddr;
630 init.ReplyDescriptorPostQueueAddress.High = 0;
631 init.ReplyDescriptorPostQueueAddress.Low = (uint32_t)sc->post_busaddr;
632 init.ReplyFreeQueueAddress.High = 0;
633 init.ReplyFreeQueueAddress.Low = (uint32_t)sc->free_busaddr;
634 init.TimeStamp.High = 0;
635 init.TimeStamp.Low = (uint32_t)time_uptime;
636
637 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
638 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
639 error = ENXIO;
640
641 mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus);
642 return (error);
643 }
644
645 void
646 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
647 {
648 bus_addr_t *addr;
649
650 addr = arg;
651 *addr = segs[0].ds_addr;
652 }
653
654 static int
655 mps_alloc_queues(struct mps_softc *sc)
656 {
657 bus_addr_t queues_busaddr;
658 uint8_t *queues;
659 int qsize, fqsize, pqsize;
660
661 /*
662 * The reply free queue contains 4 byte entries in multiples of 16 and
663 * aligned on a 16 byte boundary. There must always be an unused entry.
664 * This queue supplies fresh reply frames for the firmware to use.
665 *
666 * The reply descriptor post queue contains 8 byte entries in
667 * multiples of 16 and aligned on a 16 byte boundary. This queue
668 * contains filled-in reply frames sent from the firmware to the host.
669 *
670 * These two queues are allocated together for simplicity.
671 */
672 sc->fqdepth = roundup2((sc->num_replies + 1), 16);
673 sc->pqdepth = roundup2((sc->num_replies + 1), 16);
674 fqsize= sc->fqdepth * 4;
675 pqsize = sc->pqdepth * 8;
676 qsize = fqsize + pqsize;
677
678 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
679 16, 0, /* algnmnt, boundary */
680 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
681 BUS_SPACE_MAXADDR, /* highaddr */
682 NULL, NULL, /* filter, filterarg */
683 qsize, /* maxsize */
684 1, /* nsegments */
685 qsize, /* maxsegsize */
686 0, /* flags */
687 &sc->queues_dmat)) {
688 device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
689 return (ENOMEM);
690 }
691 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
692 &sc->queues_map)) {
693 device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
694 return (ENOMEM);
695 }
696 bzero(queues, qsize);
697 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
698 mps_memaddr_cb, &queues_busaddr, 0);
699
700 sc->free_queue = (uint32_t *)queues;
701 sc->free_busaddr = queues_busaddr;
702 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
703 sc->post_busaddr = queues_busaddr + fqsize;
704
705 return (0);
706 }
707
708 static int
709 mps_alloc_replies(struct mps_softc *sc)
710 {
711 int rsize, num_replies;
712
713 /*
714 * sc->num_replies should be one less than sc->fqdepth. We need to
715 * allocate space for sc->fqdepth replies, but only sc->num_replies
716 * replies can be used at once.
717 */
718 num_replies = max(sc->fqdepth, sc->num_replies);
719
720 rsize = sc->facts->ReplyFrameSize * num_replies * 4;
721 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
722 4, 0, /* algnmnt, boundary */
723 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
724 BUS_SPACE_MAXADDR, /* highaddr */
725 NULL, NULL, /* filter, filterarg */
726 rsize, /* maxsize */
727 1, /* nsegments */
728 rsize, /* maxsegsize */
729 0, /* flags */
730 &sc->reply_dmat)) {
731 device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
732 return (ENOMEM);
733 }
734 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
735 BUS_DMA_NOWAIT, &sc->reply_map)) {
736 device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
737 return (ENOMEM);
738 }
739 bzero(sc->reply_frames, rsize);
740 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
741 mps_memaddr_cb, &sc->reply_busaddr, 0);
742
743 return (0);
744 }
745
746 static int
747 mps_alloc_requests(struct mps_softc *sc)
748 {
749 struct mps_command *cm;
750 struct mps_chain *chain;
751 int i, rsize, nsegs;
752
753 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
754 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
755 16, 0, /* algnmnt, boundary */
756 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
757 BUS_SPACE_MAXADDR, /* highaddr */
758 NULL, NULL, /* filter, filterarg */
759 rsize, /* maxsize */
760 1, /* nsegments */
761 rsize, /* maxsegsize */
762 0, /* flags */
763 &sc->req_dmat)) {
764 device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
765 return (ENOMEM);
766 }
767 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
768 BUS_DMA_NOWAIT, &sc->req_map)) {
769 device_printf(sc->mps_dev, "Cannot allocate request memory\n");
770 return (ENOMEM);
771 }
772 bzero(sc->req_frames, rsize);
773 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
774 mps_memaddr_cb, &sc->req_busaddr, 0);
775
776 rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
777 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
778 16, 0, /* algnmnt, boundary */
779 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
780 BUS_SPACE_MAXADDR, /* highaddr */
781 NULL, NULL, /* filter, filterarg */
782 rsize, /* maxsize */
783 1, /* nsegments */
784 rsize, /* maxsegsize */
785 0, /* flags */
786 &sc->chain_dmat)) {
787 device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
788 return (ENOMEM);
789 }
790 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
791 BUS_DMA_NOWAIT, &sc->chain_map)) {
792 device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
793 return (ENOMEM);
794 }
795 bzero(sc->chain_frames, rsize);
796 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
797 mps_memaddr_cb, &sc->chain_busaddr, 0);
798
799 rsize = MPS_SENSE_LEN * sc->num_reqs;
800 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
801 1, 0, /* algnmnt, boundary */
802 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
803 BUS_SPACE_MAXADDR, /* highaddr */
804 NULL, NULL, /* filter, filterarg */
805 rsize, /* maxsize */
806 1, /* nsegments */
807 rsize, /* maxsegsize */
808 0, /* flags */
809 &sc->sense_dmat)) {
810 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
811 return (ENOMEM);
812 }
813 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
814 BUS_DMA_NOWAIT, &sc->sense_map)) {
815 device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
816 return (ENOMEM);
817 }
818 bzero(sc->sense_frames, rsize);
819 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
820 mps_memaddr_cb, &sc->sense_busaddr, 0);
821
822 sc->chains = kmalloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2,
823 M_WAITOK | M_ZERO);
824 for (i = 0; i < sc->max_chains; i++) {
825 chain = &sc->chains[i];
826 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
827 i * sc->facts->IOCRequestFrameSize * 4);
828 chain->chain_busaddr = sc->chain_busaddr +
829 i * sc->facts->IOCRequestFrameSize * 4;
830 mps_free_chain(sc, chain);
831 sc->chain_free_lowwater++;
832 }
833
834 /* XXX Need to pick a more precise value */
835 nsegs = (MAXPHYS / PAGE_SIZE) + 1;
836 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
837 1, 0, /* algnmnt, boundary */
838 BUS_SPACE_MAXADDR, /* lowaddr */
839 BUS_SPACE_MAXADDR, /* highaddr */
840 NULL, NULL, /* filter, filterarg */
841 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
842 nsegs, /* nsegments */
843 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */
844 BUS_DMA_ALLOCNOW, /* flags */
845 &sc->buffer_dmat)) {
846 device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n");
847 return (ENOMEM);
848 }
849
850 /*
851 * SMID 0 cannot be used as a free command per the firmware spec.
852 * Just drop that command instead of risking accounting bugs.
853 */
854 sc->commands = kmalloc(sizeof(struct mps_command) * sc->num_reqs,
855 M_MPT2, M_WAITOK | M_ZERO);
856 for (i = 1; i < sc->num_reqs; i++) {
857 cm = &sc->commands[i];
858 cm->cm_req = sc->req_frames +
859 i * sc->facts->IOCRequestFrameSize * 4;
860 cm->cm_req_busaddr = sc->req_busaddr +
861 i * sc->facts->IOCRequestFrameSize * 4;
862 cm->cm_sense = &sc->sense_frames[i];
863 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
864 cm->cm_desc.Default.SMID = i;
865 cm->cm_sc = sc;
866 TAILQ_INIT(&cm->cm_chain_list);
867 callout_init(&cm->cm_callout);
868
869 /* XXX Is a failure here a critical problem? */
870 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
871 if (i <= sc->facts->HighPriorityCredit)
872 mps_free_high_priority_command(sc, cm);
873 else
874 mps_free_command(sc, cm);
875 else {
876 panic("failed to allocate command %d", i);
877 sc->num_reqs = i;
878 break;
879 }
880 }
881
882 return (0);
883 }
884
885 static int
886 mps_init_queues(struct mps_softc *sc)
887 {
888 int i;
889
890 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
891
892 /*
893 * According to the spec, we need to use one less reply than we
894 * have space for on the queue. So sc->num_replies (the number we
895 * use) should be less than sc->fqdepth (allocated size).
896 */
897 if (sc->num_replies >= sc->fqdepth)
898 return (EINVAL);
899
900 /*
901 * Initialize all of the free queue entries.
902 */
903 for (i = 0; i < sc->fqdepth; i++)
904 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
905 sc->replyfreeindex = sc->num_replies;
906
907 return (0);
908 }
909
910 /* Get the driver parameter tunables. Lowest priority are the driver defaults.
911 * Next are the global settings, if they exist. Highest are the per-unit
912 * settings, if they exist.
913 */
914 static void
915 mps_get_tunables(struct mps_softc *sc)
916 {
917 char tmpstr[80];
918
919 /* XXX default to some debugging for now */
920 sc->mps_debug = MPS_FAULT;
921 #if 0 /* XXX swildner */
922 sc->disable_msix = 0;
923 #endif
924 sc->enable_msi = 1;
925 sc->max_chains = MPS_CHAIN_FRAMES;
926
927 /*
928 * Grab the global variables.
929 */
930 TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug);
931 #if 0 /* XXX swildner */
932 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
933 #endif
934 TUNABLE_INT_FETCH("hw.mps.msi.enable", &sc->enable_msi);
935 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
936
937 /* Grab the unit-instance variables */
938 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
939 device_get_unit(sc->mps_dev));
940 TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
941
942 #if 0 /* XXX swildner */
943 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
944 device_get_unit(sc->mps_dev));
945 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
946 #endif
947
948 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_msi",
949 device_get_unit(sc->mps_dev));
950 TUNABLE_INT_FETCH(tmpstr, &sc->enable_msi);
951
952 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
953 device_get_unit(sc->mps_dev));
954 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
955 }
956
957 static void
958 mps_setup_sysctl(struct mps_softc *sc)
959 {
960 struct sysctl_ctx_list *sysctl_ctx = NULL;
961 struct sysctl_oid *sysctl_tree = NULL;
962 char tmpstr[80], tmpstr2[80];
963
964 /*
965 * Setup the sysctl variable so the user can change the debug level
966 * on the fly.
967 */
968 ksnprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
969 device_get_unit(sc->mps_dev));
970 ksnprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
971
972 sysctl_ctx_init(&sc->sysctl_ctx);
973 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
974 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
975 CTLFLAG_RD, 0, tmpstr);
976 if (sc->sysctl_tree == NULL)
977 return;
978 sysctl_ctx = &sc->sysctl_ctx;
979 sysctl_tree = sc->sysctl_tree;
980
981 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
982 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
983 "mps debug level");
984
985 #if 0 /* XXX swildner */
986 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
987 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
988 "Disable the use of MSI-X interrupts");
989 #endif
990
991 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
992 OID_AUTO, "enable_msi", CTLFLAG_RD, &sc->enable_msi, 0,
993 "Enable the use of MSI interrupts");
994
995 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
996 OID_AUTO, "firmware_version", CTLFLAG_RW, &sc->fw_version,
997 strlen(sc->fw_version), "firmware version");
998
999 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1000 OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
1001 strlen(MPS_DRIVER_VERSION), "driver version");
1002
1003 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1004 OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1005 &sc->io_cmds_active, 0, "number of currently active commands");
1006
1007 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1008 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1009 &sc->io_cmds_highwater, 0, "maximum active commands seen");
1010
1011 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1012 OID_AUTO, "chain_free", CTLFLAG_RD,
1013 &sc->chain_free, 0, "number of free chain elements");
1014
1015 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1016 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1017 &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1018
1019 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1020 OID_AUTO, "max_chains", CTLFLAG_RD,
1021 &sc->max_chains, 0,"maximum chain frames that will be allocated");
1022
1023 #if __FreeBSD_version >= 900030
1024 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1025 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1026 &sc->chain_alloc_fail, "chain allocation failures");
1027 #endif //FreeBSD_version >= 900030
1028 }
1029
1030 int
1031 mps_attach(struct mps_softc *sc)
1032 {
1033 int i, error;
1034
1035 mps_get_tunables(sc);
1036
1037 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1038
1039 lockinit(&sc->mps_lock, "MPT2SAS lock", 0, LK_CANRECURSE);
1040 callout_init(&sc->periodic);
1041 TAILQ_INIT(&sc->event_list);
1042
1043 if ((error = mps_transition_ready(sc)) != 0) {
1044 mps_printf(sc, "%s failed to transition ready\n", __func__);
1045 return (error);
1046 }
1047
1048 sc->facts = kmalloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1049 M_ZERO|M_WAITOK);
1050 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0)
1051 return (error);
1052
1053 mps_print_iocfacts(sc, sc->facts);
1054
1055 ksnprintf(sc->fw_version, sizeof(sc->fw_version),
1056 "%02d.%02d.%02d.%02d",
1057 sc->facts->FWVersion.Struct.Major,
1058 sc->facts->FWVersion.Struct.Minor,
1059 sc->facts->FWVersion.Struct.Unit,
1060 sc->facts->FWVersion.Struct.Dev);
1061
1062 mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
1063 MPS_DRIVER_VERSION);
1064 mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
1065 "\2" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
1066 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
1067 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
1068
1069 /*
1070 * If the chip doesn't support event replay then a hard reset will be
1071 * required to trigger a full discovery. Do the reset here then
1072 * retransition to Ready. A hard reset might have already been done,
1073 * but it doesn't hurt to do it again.
1074 */
1075 if ((sc->facts->IOCCapabilities &
1076 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
1077 mps_diag_reset(sc);
1078 if ((error = mps_transition_ready(sc)) != 0)
1079 return (error);
1080 }
1081
1082 /*
1083 * Set flag if IR Firmware is loaded.
1084 */
1085 if (sc->facts->IOCCapabilities &
1086 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
1087 sc->ir_firmware = 1;
1088
1089 /*
1090 * Check if controller supports FW diag buffers and set flag to enable
1091 * each type.
1092 */
1093 if (sc->facts->IOCCapabilities &
1094 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1095 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].enabled =
1096 TRUE;
1097 if (sc->facts->IOCCapabilities &
1098 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1099 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].enabled =
1100 TRUE;
1101 if (sc->facts->IOCCapabilities &
1102 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1103 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].enabled =
1104 TRUE;
1105
1106 /*
1107 * Set flag if EEDP is supported and if TLR is supported.
1108 */
1109 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
1110 sc->eedp_enabled = TRUE;
1111 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
1112 sc->control_TLR = TRUE;
1113
1114 /*
1115 * Size the queues. Since the reply queues always need one free entry,
1116 * we'll just deduct one reply message here.
1117 */
1118 sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
1119 sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
1120 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
1121 TAILQ_INIT(&sc->req_list);
1122 TAILQ_INIT(&sc->high_priority_req_list);
1123 TAILQ_INIT(&sc->chain_list);
1124 TAILQ_INIT(&sc->tm_list);
1125
1126 if (((error = mps_alloc_queues(sc)) != 0) ||
1127 ((error = mps_alloc_replies(sc)) != 0) ||
1128 ((error = mps_alloc_requests(sc)) != 0)) {
1129 mps_printf(sc, "%s failed to alloc\n", __func__);
1130 mps_free(sc);
1131 return (error);
1132 }
1133
1134 if (((error = mps_init_queues(sc)) != 0) ||
1135 ((error = mps_transition_operational(sc)) != 0)) {
1136 mps_printf(sc, "%s failed to transition operational\n", __func__);
1137 mps_free(sc);
1138 return (error);
1139 }
1140
1141 /*
1142 * Finish the queue initialization.
1143 * These are set here instead of in mps_init_queues() because the
1144 * IOC resets these values during the state transition in
1145 * mps_transition_operational(). The free index is set to 1
1146 * because the corresponding index in the IOC is set to 0, and the
1147 * IOC treats the queues as full if both are set to the same value.
1148 * Hence the reason that the queue can't hold all of the possible
1149 * replies.
1150 */
1151 sc->replypostindex = 0;
1152 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
1153 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
1154
1155 sc->pfacts = kmalloc(sizeof(MPI2_PORT_FACTS_REPLY) *
1156 sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK);
1157 for (i = 0; i < sc->facts->NumberOfPorts; i++) {
1158 if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) {
1159 mps_printf(sc, "%s failed to get portfacts for port %d\n",
1160 __func__, i);
1161 mps_free(sc);
1162 return (error);
1163 }
1164 mps_print_portfacts(sc, &sc->pfacts[i]);
1165 }
1166
1167 /* Attach the subsystems so they can prepare their event masks. */
1168 /* XXX Should be dynamic so that IM/IR and user modules can attach */
1169 if (((error = mps_attach_log(sc)) != 0) ||
1170 ((error = mps_attach_sas(sc)) != 0) ||
1171 ((error = mps_attach_user(sc)) != 0)) {
1172 mps_printf(sc, "%s failed to attach all subsystems: error %d\n",
1173 __func__, error);
1174 mps_free(sc);
1175 return (error);
1176 }
1177
1178 if ((error = mps_pci_setup_interrupts(sc)) != 0) {
1179 mps_printf(sc, "%s failed to setup interrupts\n", __func__);
1180 mps_free(sc);
1181 return (error);
1182 }
1183
1184 /*
1185 * The static page function currently read is ioc page8. Others can be
1186 * added in future.
1187 */
1188 mps_base_static_config_pages(sc);
1189
1190 /* Start the periodic watchdog check on the IOC Doorbell */
1191 mps_periodic(sc);
1192
1193 /*
1194 * The portenable will kick off discovery events that will drive the
1195 * rest of the initialization process. The CAM/SAS module will
1196 * hold up the boot sequence until discovery is complete.
1197 */
1198 sc->mps_ich.ich_func = mps_startup;
1199 sc->mps_ich.ich_arg = sc;
1200 sc->mps_ich.ich_desc = "mps";
1201 if (config_intrhook_establish(&sc->mps_ich) != 0) {
1202 mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n");
1203 error = EINVAL;
1204 }
1205
1206 /*
1207 * Allow IR to shutdown gracefully when shutdown occurs.
1208 */
1209 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1210 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1211
1212 if (sc->shutdown_eh == NULL)
1213 mps_dprint(sc, MPS_FAULT, "shutdown event registration "
1214 "failed\n");
1215
1216 mps_setup_sysctl(sc);
1217
1218 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
1219
1220 return (error);
1221 }
1222
1223 /* Run through any late-start handlers. */
1224 static void
1225 mps_startup(void *arg)
1226 {
1227 struct mps_softc *sc;
1228
1229 sc = (struct mps_softc *)arg;
1230
1231 mps_lock(sc);
1232 mps_unmask_intr(sc);
1233 /* initialize device mapping tables */
1234 mps_mapping_initialize(sc);
1235 mpssas_startup(sc);
1236 mps_unlock(sc);
1237 }
1238
1239 /* Periodic watchdog. Is called with the driver lock already held. */
1240 static void
1241 mps_periodic(void *arg)
1242 {
1243 struct mps_softc *sc;
1244 uint32_t db;
1245
1246 sc = (struct mps_softc *)arg;
1247 mps_lock(sc);
1248 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) {
1249 mps_unlock(sc);
1250 return;
1251 }
1252
1253 db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
1254 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1255 device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db);
1256
1257 mps_reinit(sc);
1258 }
1259
1260 callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
1261 mps_unlock(sc);
1262 }
1263
1264 static void
1265 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
1266 MPI2_EVENT_NOTIFICATION_REPLY *event)
1267 {
1268 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1269
1270 mps_print_event(sc, event);
1271
1272 switch (event->Event) {
1273 case MPI2_EVENT_LOG_DATA:
1274 device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n");
1275 hexdump(event->EventData, event->EventDataLength, NULL, 0);
1276 break;
1277 case MPI2_EVENT_LOG_ENTRY_ADDED:
1278 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1279 mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1280 "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1281 entry->LogSequence);
1282 break;
1283 default:
1284 break;
1285 }
1286 return;
1287 }
1288
1289 static int
1290 mps_attach_log(struct mps_softc *sc)
1291 {
1292 uint8_t events[16];
1293
1294 bzero(events, 16);
1295 setbit(events, MPI2_EVENT_LOG_DATA);
1296 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1297
1298 mps_register_events(sc, events, mps_log_evt_handler, NULL,
1299 &sc->mps_log_eh);
1300
1301 return (0);
1302 }
1303
1304 static int
1305 mps_detach_log(struct mps_softc *sc)
1306 {
1307
1308 if (sc->mps_log_eh != NULL)
1309 mps_deregister_events(sc, sc->mps_log_eh);
1310 return (0);
1311 }
1312
1313 /*
1314 * Free all of the driver resources and detach submodules. Should be called
1315 * without the lock held.
1316 */
1317 int
1318 mps_free(struct mps_softc *sc)
1319 {
1320 struct mps_command *cm;
1321 int i, error;
1322
1323 /* Turn off the watchdog */
1324 mps_lock(sc);
1325 sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
1326 mps_unlock(sc);
1327 #if 0 /* XXX swildner */
1328 /* Lock must not be held for this */
1329 callout_drain(&sc->periodic);
1330 #else
1331 callout_stop(&sc->periodic);
1332 #endif
1333
1334 if (((error = mps_detach_log(sc)) != 0) ||
1335 ((error = mps_detach_sas(sc)) != 0))
1336 return (error);
1337
1338 mps_detach_user(sc);
1339
1340 /* Put the IOC back in the READY state. */
1341 mps_lock(sc);
1342 if ((error = mps_transition_ready(sc)) != 0) {
1343 mps_unlock(sc);
1344 return (error);
1345 }
1346 mps_unlock(sc);
1347
1348 if (sc->facts != NULL)
1349 kfree(sc->facts, M_MPT2);
1350
1351 if (sc->pfacts != NULL)
1352 kfree(sc->pfacts, M_MPT2);
1353
1354 if (sc->post_busaddr != 0)
1355 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
1356 if (sc->post_queue != NULL)
1357 bus_dmamem_free(sc->queues_dmat, sc->post_queue,
1358 sc->queues_map);
1359 if (sc->queues_dmat != NULL)
1360 bus_dma_tag_destroy(sc->queues_dmat);
1361
1362 if (sc->chain_busaddr != 0)
1363 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
1364 if (sc->chain_frames != NULL)
1365 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map);
1366 if (sc->chain_dmat != NULL)
1367 bus_dma_tag_destroy(sc->chain_dmat);
1368
1369 if (sc->sense_busaddr != 0)
1370 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
1371 if (sc->sense_frames != NULL)
1372 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map);
1373 if (sc->sense_dmat != NULL)
1374 bus_dma_tag_destroy(sc->sense_dmat);
1375
1376 if (sc->reply_busaddr != 0)
1377 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
1378 if (sc->reply_frames != NULL)
1379 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map);
1380 if (sc->reply_dmat != NULL)
1381 bus_dma_tag_destroy(sc->reply_dmat);
1382
1383 if (sc->req_busaddr != 0)
1384 bus_dmamap_unload(sc->req_dmat, sc->req_map);
1385 if (sc->req_frames != NULL)
1386 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
1387 if (sc->req_dmat != NULL)
1388 bus_dma_tag_destroy(sc->req_dmat);
1389
1390 if (sc->chains != NULL)
1391 kfree(sc->chains, M_MPT2);
1392 if (sc->commands != NULL) {
1393 for (i = 1; i < sc->num_reqs; i++) {
1394 cm = &sc->commands[i];
1395 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
1396 }
1397 kfree(sc->commands, M_MPT2);
1398 }
1399 if (sc->buffer_dmat != NULL)
1400 bus_dma_tag_destroy(sc->buffer_dmat);
1401
1402 if (sc->sysctl_tree != NULL)
1403 sysctl_ctx_free(&sc->sysctl_ctx);
1404
1405 mps_mapping_free_memory(sc);
1406
1407 /* Deregister the shutdown function */
1408 if (sc->shutdown_eh != NULL)
1409 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1410
1411 lockuninit(&sc->mps_lock);
1412
1413 return (0);
1414 }
1415
1416 static __inline void
1417 mps_complete_command(struct mps_command *cm)
1418 {
1419 if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1420 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1421
1422 if (cm->cm_complete != NULL) {
1423 mps_dprint(cm->cm_sc, MPS_TRACE,
1424 "%s cm %p calling cm_complete %p data %p reply %p\n",
1425 __func__, cm, cm->cm_complete, cm->cm_complete_data,
1426 cm->cm_reply);
1427 cm->cm_complete(cm->cm_sc, cm);
1428 }
1429
1430 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1431 mps_dprint(cm->cm_sc, MPS_TRACE, "%s: waking up %p\n",
1432 __func__, cm);
1433 wakeup(cm);
1434 }
1435
1436 if (cm->cm_sc->io_cmds_active != 0) {
1437 cm->cm_sc->io_cmds_active--;
1438 } else {
1439 mps_dprint(cm->cm_sc, MPS_INFO, "Warning: io_cmds_active is "
1440 "out of sync - resynching to 0\n");
1441 }
1442 }
1443
1444 void
1445 mps_intr(void *data)
1446 {
1447 struct mps_softc *sc;
1448 uint32_t status;
1449
1450 sc = (struct mps_softc *)data;
1451 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1452
1453 /*
1454 * Check interrupt status register to flush the bus. This is
1455 * needed for both INTx interrupts and driver-driven polling
1456 */
1457 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1458 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1459 return;
1460
1461 mps_lock(sc);
1462 mps_intr_locked(data);
1463 mps_unlock(sc);
1464 return;
1465 }
1466
1467 /*
1468 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1469 * chip. Hopefully this theory is correct.
1470 */
1471 void
1472 mps_intr_msi(void *data)
1473 {
1474 struct mps_softc *sc;
1475
1476 sc = (struct mps_softc *)data;
1477 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1478 mps_lock(sc);
1479 mps_intr_locked(data);
1480 mps_unlock(sc);
1481 return;
1482 }
1483
1484 /*
1485 * The locking is overly broad and simplistic, but easy to deal with for now.
1486 */
1487 void
1488 mps_intr_locked(void *data)
1489 {
1490 MPI2_REPLY_DESCRIPTORS_UNION *desc;
1491 struct mps_softc *sc;
1492 struct mps_command *cm = NULL;
1493 uint8_t flags;
1494 u_int pq;
1495 MPI2_DIAG_RELEASE_REPLY *rel_rep;
1496 mps_fw_diagnostic_buffer_t *pBuffer;
1497
1498 sc = (struct mps_softc *)data;
1499
1500 pq = sc->replypostindex;
1501 mps_dprint(sc, MPS_TRACE,
1502 "%s sc %p starting with replypostindex %u\n",
1503 __func__, sc, sc->replypostindex);
1504
1505 for ( ;; ) {
1506 cm = NULL;
1507 desc = &sc->post_queue[sc->replypostindex];
1508 flags = desc->Default.ReplyFlags &
1509 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1510 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1511 || (desc->Words.High == 0xffffffff))
1512 break;
1513
1514 /* increment the replypostindex now, so that event handlers
1515 * and cm completion handlers which decide to do a diag
1516 * reset can zero it without it getting incremented again
1517 * afterwards, and we break out of this loop on the next
1518 * iteration since the reply post queue has been cleared to
1519 * 0xFF and all descriptors look unused (which they are).
1520 */
1521 if (++sc->replypostindex >= sc->pqdepth)
1522 sc->replypostindex = 0;
1523
1524 switch (flags) {
1525 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1526 cm = &sc->commands[desc->SCSIIOSuccess.SMID];
1527 cm->cm_reply = NULL;
1528 break;
1529 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1530 {
1531 uint32_t baddr;
1532 uint8_t *reply;
1533
1534 /*
1535 * Re-compose the reply address from the address
1536 * sent back from the chip. The ReplyFrameAddress
1537 * is the lower 32 bits of the physical address of
1538 * particular reply frame. Convert that address to
1539 * host format, and then use that to provide the
1540 * offset against the virtual address base
1541 * (sc->reply_frames).
1542 */
1543 baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1544 reply = sc->reply_frames +
1545 (baddr - ((uint32_t)sc->reply_busaddr));
1546 /*
1547 * Make sure the reply we got back is in a valid
1548 * range. If not, go ahead and panic here, since
1549 * we'll probably panic as soon as we deference the
1550 * reply pointer anyway.
1551 */
1552 if ((reply < sc->reply_frames)
1553 || (reply > (sc->reply_frames +
1554 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1555 kprintf("%s: WARNING: reply %p out of range!\n",
1556 __func__, reply);
1557 kprintf("%s: reply_frames %p, fqdepth %d, "
1558 "frame size %d\n", __func__,
1559 sc->reply_frames, sc->fqdepth,
1560 sc->facts->ReplyFrameSize * 4);
1561 kprintf("%s: baddr %#x,\n", __func__, baddr);
1562 panic("Reply address out of range");
1563 }
1564 if (desc->AddressReply.SMID == 0) {
1565 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1566 MPI2_FUNCTION_DIAG_BUFFER_POST) {
1567 /*
1568 * If SMID is 0 for Diag Buffer Post,
1569 * this implies that the reply is due to
1570 * a release function with a status that
1571 * the buffer has been released. Set
1572 * the buffer flags accordingly.
1573 */
1574 rel_rep =
1575 (MPI2_DIAG_RELEASE_REPLY *)reply;
1576 if (rel_rep->IOCStatus ==
1577 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1578 {
1579 pBuffer =
1580 &sc->fw_diag_buffer_list[
1581 rel_rep->BufferType];
1582 pBuffer->valid_data = TRUE;
1583 pBuffer->owned_by_firmware =
1584 FALSE;
1585 pBuffer->immediate = FALSE;
1586 }
1587 } else
1588 mps_dispatch_event(sc, baddr,
1589 (MPI2_EVENT_NOTIFICATION_REPLY *)
1590 reply);
1591 } else {
1592 cm = &sc->commands[desc->AddressReply.SMID];
1593 cm->cm_reply = reply;
1594 cm->cm_reply_data =
1595 desc->AddressReply.ReplyFrameAddress;
1596 }
1597 break;
1598 }
1599 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1600 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1601 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1602 default:
1603 /* Unhandled */
1604 device_printf(sc->mps_dev, "Unhandled reply 0x%x\n",
1605 desc->Default.ReplyFlags);
1606 cm = NULL;
1607 break;
1608 }
1609
1610 if (cm != NULL)
1611 mps_complete_command(cm);
1612
1613 desc->Words.Low = 0xffffffff;
1614 desc->Words.High = 0xffffffff;
1615 }
1616
1617 if (pq != sc->replypostindex) {
1618 mps_dprint(sc, MPS_TRACE,
1619 "%s sc %p writing postindex %d\n",
1620 __func__, sc, sc->replypostindex);
1621 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
1622 }
1623
1624 return;
1625 }
1626
1627 static void
1628 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
1629 MPI2_EVENT_NOTIFICATION_REPLY *reply)
1630 {
1631 struct mps_event_handle *eh;
1632 int event, handled = 0;
1633
1634 event = reply->Event;
1635 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1636 if (isset(eh->mask, event)) {
1637 eh->callback(sc, data, reply);
1638 handled++;
1639 }
1640 }
1641
1642 if (handled == 0)
1643 device_printf(sc->mps_dev, "Unhandled event 0x%x\n", event);
1644
1645 /*
1646 * This is the only place that the event/reply should be freed.
1647 * Anything wanting to hold onto the event data should have
1648 * already copied it into their own storage.
1649 */
1650 mps_free_reply(sc, data);
1651 }
1652
1653 static void
1654 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
1655 {
1656 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1657
1658 if (cm->cm_reply)
1659 mps_print_event(sc,
1660 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
1661
1662 mps_free_command(sc, cm);
1663
1664 /* next, send a port enable */
1665 mpssas_startup(sc);
1666 }
1667
1668 /*
1669 * For both register_events and update_events, the caller supplies a bitmap
1670 * of events that it _wants_. These functions then turn that into a bitmask
1671 * suitable for the controller.
1672 */
1673 int
1674 mps_register_events(struct mps_softc *sc, uint8_t *mask,
1675 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
1676 {
1677 struct mps_event_handle *eh;
1678 int error = 0;
1679
1680 eh = kmalloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
1681 eh->callback = cb;
1682 eh->data = data;
1683 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
1684 if (mask != NULL)
1685 error = mps_update_events(sc, eh, mask);
1686 *handle = eh;
1687
1688 return (error);
1689 }
1690
1691 int
1692 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
1693 uint8_t *mask)
1694 {
1695 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1696 MPI2_EVENT_NOTIFICATION_REPLY *reply;
1697 struct mps_command *cm;
1698 struct mps_event_handle *eh;
1699 int error, i;
1700
1701 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1702
1703 if ((mask != NULL) && (handle != NULL))
1704 bcopy(mask, &handle->mask[0], 16);
1705 memset(sc->event_mask, 0xff, 16);
1706
1707 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1708 for (i = 0; i < 16; i++)
1709 sc->event_mask[i] &= ~eh->mask[i];
1710 }
1711
1712 if ((cm = mps_alloc_command(sc)) == NULL)
1713 return (EBUSY);
1714 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1715 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1716 evtreq->MsgFlags = 0;
1717 evtreq->SASBroadcastPrimitiveMasks = 0;
1718 #ifdef MPS_DEBUG_ALL_EVENTS
1719 {
1720 u_char fullmask[16];
1721 memset(fullmask, 0x00, 16);
1722 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1723 }
1724 #else
1725 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1726 #endif
1727 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1728 cm->cm_data = NULL;
1729
1730 error = mps_request_polled(sc, cm);
1731 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
1732 if ((reply == NULL) ||
1733 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1734 error = ENXIO;
1735 mps_print_event(sc, reply);
1736 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
1737
1738 mps_free_command(sc, cm);
1739 return (error);
1740 }
1741
1742 static int
1743 mps_reregister_events(struct mps_softc *sc)
1744 {
1745 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1746 struct mps_command *cm;
1747 struct mps_event_handle *eh;
1748 int error, i;
1749
1750 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1751
1752 /* first, reregister events */
1753
1754 memset(sc->event_mask, 0xff, 16);
1755
1756 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1757 for (i = 0; i < 16; i++)
1758 sc->event_mask[i] &= ~eh->mask[i];
1759 }
1760
1761 if ((cm = mps_alloc_command(sc)) == NULL)
1762 return (EBUSY);
1763 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1764 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1765 evtreq->MsgFlags = 0;
1766 evtreq->SASBroadcastPrimitiveMasks = 0;
1767 #ifdef MPS_DEBUG_ALL_EVENTS
1768 {
1769 u_char fullmask[16];
1770 memset(fullmask, 0x00, 16);
1771 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1772 }
1773 #else
1774 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1775 #endif
1776 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1777 cm->cm_data = NULL;
1778 cm->cm_complete = mps_reregister_events_complete;
1779
1780 error = mps_map_command(sc, cm);
1781
1782 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, error);
1783 return (error);
1784 }
1785
1786 int
1787 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
1788 {
1789
1790 TAILQ_REMOVE(&sc->event_list, handle, eh_list);
1791 kfree(handle, M_MPT2);
1792 return (mps_update_events(sc, NULL, NULL));
1793 }
1794
1795 /*
1796 * Add a chain element as the next SGE for the specified command.
1797 * Reset cm_sge and cm_sgesize to indicate all the available space.
1798 */
1799 static int
1800 mps_add_chain(struct mps_command *cm)
1801 {
1802 MPI2_SGE_CHAIN32 *sgc;
1803 struct mps_chain *chain;
1804 int space;
1805
1806 if (cm->cm_sglsize < MPS_SGC_SIZE)
1807 panic("MPS: Need SGE Error Code");
1808
1809 chain = mps_alloc_chain(cm->cm_sc);
1810 if (chain == NULL)
1811 return (ENOBUFS);
1812
1813 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
1814
1815 /*
1816 * Note: a double-linked list is used to make it easier to
1817 * walk for debugging.
1818 */
1819 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
1820
1821 sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
1822 sgc->Length = space;
1823 sgc->NextChainOffset = 0;
1824 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
1825 sgc->Address = chain->chain_busaddr;
1826
1827 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
1828 cm->cm_sglsize = space;
1829 return (0);
1830 }
1831
1832 /*
1833 * Add one scatter-gather element (chain, simple, transaction context)
1834 * to the scatter-gather list for a command. Maintain cm_sglsize and
1835 * cm_sge as the remaining size and pointer to the next SGE to fill
1836 * in, respectively.
1837 */
1838 int
1839 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
1840 {
1841 MPI2_SGE_TRANSACTION_UNION *tc = sgep;
1842 MPI2_SGE_SIMPLE64 *sge = sgep;
1843 int error, type;
1844 uint32_t saved_buf_len, saved_address_low, saved_address_high;
1845
1846 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
1847
1848 #ifdef INVARIANTS
1849 switch (type) {
1850 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
1851 if (len != tc->DetailsLength + 4)
1852 panic("TC %p length %u or %zu?", tc,
1853 tc->DetailsLength + 4, len);
1854 }
1855 break;
1856 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
1857 /* Driver only uses 32-bit chain elements */
1858 if (len != MPS_SGC_SIZE)
1859 panic("CHAIN %p length %u or %zu?", sgep,
1860 MPS_SGC_SIZE, len);
1861 break;
1862 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
1863 /* Driver only uses 64-bit SGE simple elements */
1864 if (len != MPS_SGE64_SIZE)
1865 panic("SGE simple %p length %u or %zu?", sge,
1866 MPS_SGE64_SIZE, len);
1867 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
1868 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
1869 panic("SGE simple %p not marked 64-bit?", sge);
1870
1871 break;
1872 default:
1873 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
1874 }
1875 #endif
1876
1877 /*
1878 * case 1: 1 more segment, enough room for it
1879 * case 2: 2 more segments, enough room for both
1880 * case 3: >=2 more segments, only enough room for 1 and a chain
1881 * case 4: >=1 more segment, enough room for only a chain
1882 * case 5: >=1 more segment, no room for anything (error)
1883 */
1884
1885 /*
1886 * There should be room for at least a chain element, or this
1887 * code is buggy. Case (5).
1888 */
1889 if (cm->cm_sglsize < MPS_SGC_SIZE)
1890 panic("MPS: Need SGE Error Code");
1891
1892 if (segsleft >= 2 &&
1893 cm->cm_sglsize >= len + MPS_SGC_SIZE &&
1894 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
1895 /*
1896 * There are 2 or more segments left to add, and only
1897 * enough room for 1 and a chain. Case (3).
1898 *
1899 * Mark as last element in this chain if necessary.
1900 */
1901 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1902 sge->FlagsLength |= htole32(
1903 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
1904 }
1905
1906 /*
1907 * Add the item then a chain. Do the chain now,
1908 * rather than on the next iteration, to simplify
1909 * understanding the code.
1910 */
1911 cm->cm_sglsize -= len;
1912 bcopy(sgep, cm->cm_sge, len);
1913 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1914 return (mps_add_chain(cm));
1915 }
1916
1917 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
1918 /*
1919 * 1 or more segment, enough room for only a chain.
1920 * Hope the previous element wasn't a Simple entry
1921 * that needed to be marked with
1922 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4).
1923 */
1924 if ((error = mps_add_chain(cm)) != 0)
1925 return (error);
1926 }
1927
1928 #ifdef INVARIANTS
1929 /* Case 1: 1 more segment, enough room for it. */
1930 if (segsleft == 1 && cm->cm_sglsize < len)
1931 panic("1 seg left and no room? %u versus %zu",
1932 cm->cm_sglsize, len);
1933
1934 /* Case 2: 2 more segments, enough room for both */
1935 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
1936 panic("2 segs left and no room? %u versus %zu",
1937 cm->cm_sglsize, len);
1938 #endif
1939
1940 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1941 /*
1942 * If this is a bi-directional request, need to account for that
1943 * here. Save the pre-filled sge values. These will be used
1944 * either for the 2nd SGL or for a single direction SGL. If
1945 * cm_out_len is non-zero, this is a bi-directional request, so
1946 * fill in the OUT SGL first, then the IN SGL, otherwise just
1947 * fill in the IN SGL. Note that at this time, when filling in
1948 * 2 SGL's for a bi-directional request, they both use the same
1949 * DMA buffer (same cm command).
1950 */
1951 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
1952 saved_address_low = sge->Address.Low;
1953 saved_address_high = sge->Address.High;
1954 if (cm->cm_out_len) {
1955 sge->FlagsLength = htole32(cm->cm_out_len |
1956 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1957 MPI2_SGE_FLAGS_END_OF_BUFFER |
1958 MPI2_SGE_FLAGS_HOST_TO_IOC |
1959 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1960 MPI2_SGE_FLAGS_SHIFT));
1961 cm->cm_sglsize -= len;
1962 bcopy(sgep, cm->cm_sge, len);
1963 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
1964 + len);
1965 }
1966 saved_buf_len |=
1967 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1968 MPI2_SGE_FLAGS_END_OF_BUFFER |
1969 MPI2_SGE_FLAGS_LAST_ELEMENT |
1970 MPI2_SGE_FLAGS_END_OF_LIST |
1971 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1972 MPI2_SGE_FLAGS_SHIFT);
1973 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
1974 saved_buf_len |=
1975 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
1976 MPI2_SGE_FLAGS_SHIFT);
1977 } else {
1978 saved_buf_len |=
1979 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
1980 MPI2_SGE_FLAGS_SHIFT);
1981 }
1982 sge->FlagsLength = htole32(saved_buf_len);
1983 sge->Address.Low = saved_address_low;
1984 sge->Address.High = saved_address_high;
1985 }
1986
1987 cm->cm_sglsize -= len;
1988 bcopy(sgep, cm->cm_sge, len);
1989 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1990 return (0);
1991 }
1992
1993 /*
1994 * Add one dma segment to the scatter-gather list for a command.
1995 */
1996 int
1997 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
1998 int segsleft)
1999 {
2000 MPI2_SGE_SIMPLE64 sge;
2001
2002 /*
2003 * This driver always uses 64-bit address elements for simplicity.
2004 */
2005 bzero(&sge, sizeof(sge));
2006 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2007 MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2008 sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2009 mps_from_u64(pa, &sge.Address);
2010
2011 return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2012 }
2013
2014 static void
2015 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2016 {
2017 struct mps_softc *sc;
2018 struct mps_command *cm;
2019 u_int i, dir, sflags;
2020
2021 cm = (struct mps_command *)arg;
2022 sc = cm->cm_sc;
2023
2024 /*
2025 * In this case, just print out a warning and let the chip tell the
2026 * user they did the wrong thing.
2027 */
2028 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2029 mps_printf(sc, "%s: warning: busdma returned %d segments, "
2030 "more than the %d allowed\n", __func__, nsegs,
2031 cm->cm_max_segs);
2032 }
2033
2034 /*
2035 * Set up DMA direction flags. Bi-directional requests are also handled
2036 * here. In that case, both direction flags will be set.
2037 */
2038 sflags = 0;
2039 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2040 /*
2041 * We have to add a special case for SMP passthrough, there
2042 * is no easy way to generically handle it. The first
2043 * S/G element is used for the command (therefore the
2044 * direction bit needs to be set). The second one is used
2045 * for the reply. We'll leave it to the caller to make
2046 * sure we only have two buffers.
2047 */
2048 /*
2049 * Even though the busdma man page says it doesn't make
2050 * sense to have both direction flags, it does in this case.
2051 * We have one s/g element being accessed in each direction.
2052 */
2053 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2054
2055 /*
2056 * Set the direction flag on the first buffer in the SMP
2057 * passthrough request. We'll clear it for the second one.
2058 */
2059 sflags |= MPI2_SGE_FLAGS_DIRECTION |
2060 MPI2_SGE_FLAGS_END_OF_BUFFER;
2061 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2062 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2063 dir = BUS_DMASYNC_PREWRITE;
2064 } else
2065 dir = BUS_DMASYNC_PREREAD;
2066
2067 for (i = 0; i < nsegs; i++) {
2068 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2069 sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2070 }
2071 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2072 sflags, nsegs - i);
2073 if (error != 0) {
2074 /* Resource shortage, roll back! */
2075 mps_dprint(sc, MPS_INFO, "out of chain frames\n");
2076 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2077 mps_complete_command(cm);
2078 return;
2079 }
2080 }
2081
2082 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2083 mps_enqueue_request(sc, cm);
2084
2085 return;
2086 }
2087
2088 static void
2089 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2090 int error)
2091 {
2092 mps_data_cb(arg, segs, nsegs, error);
2093 }
2094
2095 /*
2096 * This is the routine to enqueue commands ansynchronously.
2097 * Note that the only error path here is from bus_dmamap_load(), which can
2098 * return EINPROGRESS if it is waiting for resources. Other than this, it's
2099 * assumed that if you have a command in-hand, then you have enough credits
2100 * to use it.
2101 */
2102 int
2103 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
2104 {
2105 int error = 0;
2106
2107 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
2108 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2109 &cm->cm_uio, mps_data_cb2, cm, 0);
2110 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2111 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2112 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
2113 } else {
2114 /* Add a zero-length element as needed */
2115 if (cm->cm_sge != NULL)
2116 mps_add_dmaseg(cm, 0, 0, 0, 1);
2117 mps_enqueue_request(sc, cm);
2118 }
2119
2120 return (error);
2121 }
2122
2123 /*
2124 * This is the routine to enqueue commands synchronously. An error of
2125 * EINPROGRESS from mps_map_command() is ignored since the command will
2126 * be executed and enqueued automatically. Other errors come from msleep().
2127 */
2128 int
2129 mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout)
2130 {
2131 int error;
2132
2133 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
2134
2135 cm->cm_complete = NULL;
2136 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
2137 error = mps_map_command(sc, cm);
2138 if ((error != 0) && (error != EINPROGRESS))
2139 return (error);
2140 error = lksleep(cm, &sc->mps_lock, 0, "mpswait", timeout*hz);
2141 if (error == EWOULDBLOCK)
2142 error = ETIMEDOUT;
2143 return (error);
2144 }
2145
2146 /*
2147 * This is the routine to enqueue a command synchonously and poll for
2148 * completion. Its use should be rare.
2149 */
2150 int
2151 mps_request_polled(struct mps_softc *sc, struct mps_command *cm)
2152 {
2153 int error, timeout = 0;
2154
2155 error = 0;
2156
2157 cm->cm_flags |= MPS_CM_FLAGS_POLLED;
2158 cm->cm_complete = NULL;
2159 mps_map_command(sc, cm);
2160
2161 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
2162 mps_intr_locked(sc);
2163 DELAY(50 * 1000);
2164 if (timeout++ > 1000) {
2165 mps_dprint(sc, MPS_FAULT, "polling failed\n");
2166 error = ETIMEDOUT;
2167 break;
2168 }
2169 }
2170
2171 return (error);
2172 }
2173
2174 /*
2175 * The MPT driver had a verbose interface for config pages. In this driver,
2176 * reduce it to much simplier terms, similar to the Linux driver.
2177 */
2178 int
2179 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
2180 {
2181 MPI2_CONFIG_REQUEST *req;
2182 struct mps_command *cm;
2183 int error;
2184
2185 if (sc->mps_flags & MPS_FLAGS_BUSY) {
2186 return (EBUSY);
2187 }
2188
2189 cm = mps_alloc_command(sc);
2190 if (cm == NULL) {
2191 return (EBUSY);
2192 }
2193
2194 req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2195 req->Function = MPI2_FUNCTION_CONFIG;
2196 req->Action = params->action;
2197 req->SGLFlags = 0;
2198 req->ChainOffset = 0;
2199 req->PageAddress = params->page_address;
2200 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2201 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2202
2203 hdr = ¶ms->hdr.Ext;
2204 req->ExtPageType = hdr->ExtPageType;
2205 req->ExtPageLength = hdr->ExtPageLength;
2206 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2207 req->Header.PageLength = 0; /* Must be set to zero */
2208 req->Header.PageNumber = hdr->PageNumber;
2209 req->Header.PageVersion = hdr->PageVersion;
2210 } else {
2211 MPI2_CONFIG_PAGE_HEADER *hdr;
2212
2213 hdr = ¶ms->hdr.Struct;
2214 req->Header.PageType = hdr->PageType;
2215 req->Header.PageNumber = hdr->PageNumber;
2216 req->Header.PageLength = hdr->PageLength;
2217 req->Header.PageVersion = hdr->PageVersion;
2218 }
2219
2220 cm->cm_data = params->buffer;
2221 cm->cm_length = params->length;
2222 cm->cm_sge = &req->PageBufferSGE;
2223 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2224 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
2225 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2226
2227 cm->cm_complete_data = params;
2228 if (params->callback != NULL) {
2229 cm->cm_complete = mps_config_complete;
2230 return (mps_map_command(sc, cm));
2231 } else {
2232 error = mps_wait_command(sc, cm, 0);
2233 if (error) {
2234 mps_dprint(sc, MPS_FAULT,
2235 "Error %d reading config page\n", error);
2236 mps_free_command(sc, cm);
2237 return (error);
2238 }
2239 mps_config_complete(sc, cm);
2240 }
2241
2242 return (0);
2243 }
2244
2245 int
2246 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
2247 {
2248 return (EINVAL);
2249 }
2250
2251 static void
2252 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
2253 {
2254 MPI2_CONFIG_REPLY *reply;
2255 struct mps_config_params *params;
2256
2257 params = cm->cm_complete_data;
2258
2259 if (cm->cm_data != NULL) {
2260 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2261 BUS_DMASYNC_POSTREAD);
2262 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2263 }
2264
2265 /*
2266 * XXX KDM need to do more error recovery? This results in the
2267 * device in question not getting probed.
2268 */
2269 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2270 params->status = MPI2_IOCSTATUS_BUSY;
2271 goto done;
2272 }
2273
2274 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2275 if (reply == NULL) {
2276 params->status = MPI2_IOCSTATUS_BUSY;
2277 goto done;
2278 }
2279 params->status = reply->IOCStatus;
2280 if (params->hdr.Ext.ExtPageType != 0) {
2281 params->hdr.Ext.ExtPageType = reply->ExtPageType;
2282 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2283 } else {
2284 params->hdr.Struct.PageType = reply->Header.PageType;
2285 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2286 params->hdr.Struct.PageLength = reply->Header.PageLength;
2287 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2288 }
2289
2290 done:
2291 mps_free_command(sc, cm);
2292 if (params->callback != NULL)
2293 params->callback(sc, params);
2294
2295 return;
2296 }
Cache object: 928df7f722fb9aeeb005da3a93e96527
|