The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/raid/vinum/vinumrequest.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *  Nan Yang Computer Services Limited.  All rights reserved.
    4  *
    5  *  Parts copyright (c) 1997, 1998 Cybernet Corporation, NetMAX project.
    6  *
    7  *  Written by Greg Lehey
    8  *
    9  *  This software is distributed under the so-called ``Berkeley
   10  *  License'':
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by Nan Yang Computer
   23  *      Services Limited.
   24  * 4. Neither the name of the Company nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * This software is provided ``as is'', and any express or implied
   29  * warranties, including, but not limited to, the implied warranties of
   30  * merchantability and fitness for a particular purpose are disclaimed.
   31  * In no event shall the company or contributors be liable for any
   32  * direct, indirect, incidental, special, exemplary, or consequential
   33  * damages (including, but not limited to, procurement of substitute
   34  * goods or services; loss of use, data, or profits; or business
   35  * interruption) however caused and on any theory of liability, whether
   36  * in contract, strict liability, or tort (including negligence or
   37  * otherwise) arising in any way out of the use of this software, even if
   38  * advised of the possibility of such damage.
   39  *
   40  * $Id: vinumrequest.c,v 1.30 2001/01/09 04:20:55 grog Exp grog $
   41  * $FreeBSD: src/sys/dev/vinum/vinumrequest.c,v 1.44.2.5 2002/08/28 04:30:56 grog Exp $
   42  */
   43 
   44 #include "vinumhdr.h"
   45 #include "request.h"
   46 #include <sys/resourcevar.h>
   47 
   48 enum requeststatus bre(struct request *rq,
   49     int plexno,
   50     vinum_off_t * diskstart,
   51     vinum_off_t diskend);
   52 enum requeststatus bre5(struct request *rq,
   53     int plexno,
   54     vinum_off_t * diskstart,
   55     vinum_off_t diskend);
   56 enum requeststatus build_read_request(struct request *rq, int volplexno);
   57 enum requeststatus build_write_request(struct request *rq);
   58 enum requeststatus build_rq_buffer(struct rqelement *rqe, struct plex *plex);
   59 int find_alternate_sd(struct request *rq);
   60 int check_range_covered(struct request *);
   61 void complete_rqe(struct bio *bio);
   62 void complete_raid5_write(struct rqelement *);
   63 int abortrequest(struct request *rq, int error);
   64 void sdio_done(struct bio *bio);
   65 struct bio *vinum_bounds_check(struct bio *bio, struct volume *vol);
   66 caddr_t allocdatabuf(struct rqelement *rqe);
   67 void freedatabuf(struct rqelement *rqe);
   68 
   69 #ifdef VINUMDEBUG
   70 struct rqinfo rqinfo[RQINFO_SIZE];
   71 struct rqinfo *rqip = rqinfo;
   72 
   73 void
   74 logrq(enum rqinfo_type type, union rqinfou info, struct bio *ubio)
   75 {
   76     cdev_t dev;
   77 
   78     crit_enter();
   79 
   80     microtime(&rqip->timestamp);                            /* when did this happen? */
   81     rqip->type = type;
   82     rqip->bio = ubio;                                       /* user buffer */
   83 
   84     switch (type) {
   85     case loginfo_user_bp:
   86     case loginfo_user_bpl:
   87     case loginfo_sdio:                                      /* subdisk I/O */
   88     case loginfo_sdiol:                                     /* subdisk I/O launch */
   89     case loginfo_sdiodone:                                  /* subdisk I/O complete */
   90         bcopy(info.bio, &rqip->info.bio, sizeof(struct bio));
   91         dev = info.bio->bio_driver_info;
   92         rqip->devmajor = major(dev);
   93         rqip->devminor = minor(dev);
   94         break;
   95 
   96     case loginfo_iodone:
   97     case loginfo_rqe:
   98     case loginfo_raid5_data:
   99     case loginfo_raid5_parity:
  100         bcopy(info.rqe, &rqip->info.rqe, sizeof(struct rqelement));
  101         dev = info.rqe->b.b_bio1.bio_driver_info;
  102         rqip->devmajor = major(dev);
  103         rqip->devminor = minor(dev);
  104         break;
  105 
  106     case loginfo_lockwait:
  107     case loginfo_lock:
  108     case loginfo_unlock:
  109         bcopy(info.lockinfo, &rqip->info.lockinfo, sizeof(struct rangelock));
  110 
  111         break;
  112 
  113     case loginfo_unused:
  114         break;
  115     }
  116     rqip++;
  117     if (rqip >= &rqinfo[RQINFO_SIZE])                       /* wrap around */
  118         rqip = rqinfo;
  119     crit_exit();
  120 }
  121 
  122 #endif
  123 
  124 int
  125 vinumstrategy(struct dev_strategy_args *ap)
  126 {
  127     cdev_t dev = ap->a_head.a_dev;
  128     struct bio *bio = ap->a_bio;
  129     struct buf *bp = bio->bio_buf;
  130     struct bio *nbio = bio;
  131     struct volume *vol = NULL;
  132     int volno;
  133 
  134     switch (DEVTYPE(dev)) {
  135     case VINUM_SD_TYPE:
  136     case VINUM_RAWSD_TYPE:
  137         bio->bio_driver_info = dev;
  138         sdio(bio);
  139         break;
  140     case VINUM_DRIVE_TYPE:
  141     default:
  142         /*
  143          * In fact, vinum doesn't handle drives: they're
  144          * handled directly by the disk drivers
  145          */
  146         bp->b_error = EIO;                                  /* I/O error */
  147         bp->b_flags |= B_ERROR;
  148         biodone(bio);
  149         break;
  150 
  151     case VINUM_VOLUME_TYPE:                                 /* volume I/O */
  152         volno = Volno(dev);
  153         vol = &VOL[volno];
  154         if (vol->state != volume_up) {                      /* can't access this volume */
  155             bp->b_error = EIO;                              /* I/O error */
  156             bp->b_flags |= B_ERROR;
  157             biodone(bio);
  158             break;
  159         }
  160         nbio = vinum_bounds_check(bio, vol);
  161         if (nbio == NULL) {
  162             biodone(bio);
  163             break;
  164         }
  165         /* FALLTHROUGH */
  166     case VINUM_PLEX_TYPE:
  167     case VINUM_RAWPLEX_TYPE:
  168         /*
  169          * Plex I/O is pretty much the same as volume I/O
  170          * for a single plex.  Indicate this by passing a NULL
  171          * pointer (set above) for the volume
  172          */
  173         bp->b_resid = bp->b_bcount;                         /* transfer everything */
  174         vinumstart(dev, nbio, 0);
  175         break;
  176     }
  177     return(0);
  178 }
  179 
  180 /*
  181  * Start a transfer.  Return -1 on error,
  182  * 0 if OK, 1 if we need to retry.
  183  * Parameter reviveok is set when doing
  184  * transfers for revives: it allows transfers to
  185  * be started immediately when a revive is in
  186  * progress.  During revive, normal transfers
  187  * are queued if they share address space with
  188  * a currently active revive operation.
  189  */
  190 int
  191 vinumstart(cdev_t dev, struct bio *bio, int reviveok)
  192 {
  193     struct buf *bp = bio->bio_buf;
  194     int plexno;
  195     struct volume *vol;
  196     struct request *rq;                                     /* build up our request here */
  197     enum requeststatus status;
  198 
  199     bio->bio_driver_info = dev;
  200 
  201 #if VINUMDEBUG
  202     if (debug & DEBUG_LASTREQS)
  203         logrq(loginfo_user_bp, (union rqinfou) bio, bio);
  204 #endif
  205 
  206     if ((bp->b_bcount % DEV_BSIZE) != 0) {                  /* bad length */
  207         bp->b_error = EINVAL;                               /* invalid size */
  208         bp->b_flags |= B_ERROR;
  209         biodone(bio);
  210         return -1;
  211     }
  212     rq = (struct request *) Malloc(sizeof(struct request)); /* allocate a request struct */
  213     if (rq == NULL) {                                       /* can't do it */
  214         bp->b_error = ENOMEM;                               /* can't get memory */
  215         bp->b_flags |= B_ERROR;
  216         biodone(bio);
  217         return -1;
  218     }
  219     bzero(rq, sizeof(struct request));
  220 
  221     /*
  222      * Note the volume ID.  This can be NULL, which
  223      * the request building functions use as an
  224      * indication for single plex I/O
  225      */
  226     rq->bio = bio;                                          /* and the user buffer struct */
  227 
  228     if (DEVTYPE(dev) == VINUM_VOLUME_TYPE) {        /* it's a volume, */
  229         rq->volplex.volno = Volno(dev);             /* get the volume number */
  230         vol = &VOL[rq->volplex.volno];                      /* and point to it */
  231         vol->active++;                                      /* one more active request */
  232     } else {
  233         vol = NULL;                                         /* no volume */
  234         rq->volplex.plexno = Plexno(dev);                   /* point to the plex */
  235         rq->isplex = 1;                                     /* note that it's a plex */
  236     }
  237 
  238     if (bp->b_cmd == BUF_CMD_READ) {
  239         /*
  240          * This is a read request.  Decide
  241          * which plex to read from.
  242          *
  243          * There's a potential race condition here,
  244          * since we're not locked, and we could end
  245          * up multiply incrementing the round-robin
  246          * counter.  This doesn't have any serious
  247          * effects, however.
  248          */
  249         if (vol != NULL) {
  250             plexno = vol->preferred_plex;                   /* get the plex to use */
  251             if (plexno < 0) {                               /* round robin */
  252                 plexno = vol->last_plex_read;
  253                 vol->last_plex_read++;
  254                 if (vol->last_plex_read >= vol->plexes)     /* got the the end? */
  255                     vol->last_plex_read = 0;                /* wrap around */
  256             }
  257             status = build_read_request(rq, plexno);        /* build a request */
  258         } else {
  259             vinum_off_t diskaddr = (vinum_off_t)(bio->bio_offset >> DEV_BSHIFT);
  260                                                             /* start offset of transfer */
  261             status = bre(rq,                                /* build a request list */
  262                 rq->volplex.plexno,
  263                 &diskaddr,
  264                 diskaddr + (bp->b_bcount / DEV_BSIZE));
  265         }
  266 
  267         if (status > REQUEST_RECOVERED) {                   /* can't satisfy it */
  268             if (status == REQUEST_DOWN) {                   /* not enough subdisks */
  269                 bp->b_error = EIO;                          /* I/O error */
  270                 bp->b_flags |= B_ERROR;
  271             }
  272             biodone(bio);
  273             freerq(rq);
  274             return -1;
  275         }
  276         return launch_requests(rq, reviveok);               /* now start the requests if we can */
  277     } else
  278         /*
  279          * This is a write operation.  We write to all plexes.  If this is
  280          * a RAID-4 or RAID-5 plex, we must also update the parity stripe.
  281          */
  282     {
  283         if (vol != NULL)
  284             status = build_write_request(rq);               /* Not all the subdisks are up */
  285         else {                                              /* plex I/O */
  286             vinum_off_t diskstart;
  287             vinum_off_t diskend;
  288 
  289             diskstart = (vinum_off_t)(bio->bio_offset >> DEV_BSHIFT); /* start offset of transfer */
  290             diskend = diskstart + bp->b_bcount / DEV_BSIZE;
  291             status = bre(rq, Plexno(dev),
  292                 &diskstart, diskend);  /* build requests for the plex */
  293         }
  294         if (status > REQUEST_RECOVERED) {                   /* can't satisfy it */
  295             if (status == REQUEST_DOWN) {                   /* not enough subdisks */
  296                 bp->b_error = EIO;                          /* I/O error */
  297                 bp->b_flags |= B_ERROR;
  298             }
  299             biodone(bio);
  300             freerq(rq);
  301             return -1;
  302         }
  303         return launch_requests(rq, reviveok);               /* now start the requests if we can */
  304     }
  305 }
  306 
  307 /*
  308  * Call the low-level strategy routines to
  309  * perform the requests in a struct request
  310  */
  311 int
  312 launch_requests(struct request *rq, int reviveok)
  313 {
  314     struct rqgroup *rqg;
  315     int rqno;                                               /* loop index */
  316     struct rqelement *rqe;                                  /* current element */
  317     struct drive *drive;
  318     int rcount;                                             /* request count */
  319 
  320     /*
  321      * First find out whether we're reviving, and the
  322      * request contains a conflict.  If so, we hang
  323      * the request off plex->waitlist of the first
  324      * plex we find which is reviving
  325      */
  326 
  327     if ((rq->flags & XFR_REVIVECONFLICT)                    /* possible revive conflict */
  328     &&(!reviveok)) {                                        /* and we don't want to do it now, */
  329         struct sd *sd;
  330         struct request *waitlist;                           /* point to the waitlist */
  331 
  332         sd = &SD[rq->sdno];
  333         if (sd->waitlist != NULL) {                         /* something there already, */
  334             waitlist = sd->waitlist;
  335             while (waitlist->next != NULL)                  /* find the end */
  336                 waitlist = waitlist->next;
  337             waitlist->next = rq;                            /* hook our request there */
  338         } else
  339             sd->waitlist = rq;                              /* hook our request at the front */
  340 
  341 #if VINUMDEBUG
  342         if (debug & DEBUG_REVIVECONFLICT) {
  343             log(LOG_DEBUG,
  344                 "Revive conflict sd %d: %p\n%s dev %d.%d, offset 0x%llx, length %d\n",
  345                 rq->sdno,
  346                 rq,
  347                 (rq->bio->bio_buf->b_cmd & BUF_CMD_READ) ? "Read" : "Write",
  348                 major(((cdev_t)rq->bio->bio_driver_info)),
  349                 minor(((cdev_t)rq->bio->bio_driver_info)),
  350                 rq->bio->bio_offset,
  351                 rq->bio->bio_buf->b_bcount);
  352         }
  353 #endif
  354         return 0;                                           /* and get out of here */
  355     }
  356     rq->active = 0;                                         /* nothing yet */
  357 #if VINUMDEBUG
  358     if (debug & DEBUG_ADDRESSES)
  359         log(LOG_DEBUG,
  360             "Request: %p\n%s dev %d.%d, offset 0x%llx, length %d\n",
  361             rq,
  362             (rq->bio->bio_buf->b_cmd == BUF_CMD_READ) ? "Read" : "Write",
  363             major(((cdev_t)rq->bio->bio_driver_info)),
  364             minor(((cdev_t)rq->bio->bio_driver_info)),
  365             rq->bio->bio_offset,
  366             rq->bio->bio_buf->b_bcount);
  367     vinum_conf.lastrq = rq;
  368     vinum_conf.lastbio = rq->bio;
  369     if (debug & DEBUG_LASTREQS)
  370         logrq(loginfo_user_bpl, (union rqinfou) rq->bio, rq->bio);
  371 #endif
  372 
  373     /*
  374      * This loop happens without any participation
  375      * of the bottom half, so it requires no
  376      * protection.
  377      */
  378     for (rqg = rq->rqg; rqg != NULL; rqg = rqg->next) {     /* through the whole request chain */
  379         rqg->active = rqg->count;                           /* they're all active */
  380         for (rqno = 0; rqno < rqg->count; rqno++) {
  381             rqe = &rqg->rqe[rqno];
  382             if (rqe->flags & XFR_BAD_SUBDISK)               /* this subdisk is bad, */
  383                 rqg->active--;                              /* one less active request */
  384         }
  385         if (rqg->active)                                    /* we have at least one active request, */
  386             rq->active++;                                   /* one more active request group */
  387     }
  388 
  389     /*
  390      * Now fire off the requests.  In this loop the
  391      * bottom half could be completing requests
  392      * before we finish, so we need critical section protection.
  393      */
  394     crit_enter();
  395     for (rqg = rq->rqg; rqg != NULL;) {                     /* through the whole request chain */
  396         if (rqg->lockbase >= 0)                             /* this rqg needs a lock first */
  397             rqg->lock = lockrange(rqg->lockbase, rqg->rq->bio->bio_buf, &PLEX[rqg->plexno]);
  398         rcount = rqg->count;
  399         for (rqno = 0; rqno < rcount;) {
  400             cdev_t dev;
  401 
  402             rqe = &rqg->rqe[rqno];
  403 
  404             /*
  405              * Point to next rqg before the bottom end
  406              * changes the structures.
  407              */
  408             if (++rqno >= rcount)
  409                 rqg = rqg->next;
  410             if ((rqe->flags & XFR_BAD_SUBDISK) == 0) {      /* this subdisk is good, */
  411                 drive = &DRIVE[rqe->driveno];               /* look at drive */
  412                 drive->active++;
  413                 if (drive->active >= drive->maxactive)
  414                     drive->maxactive = drive->active;
  415                 vinum_conf.active++;
  416                 if (vinum_conf.active >= vinum_conf.maxactive)
  417                     vinum_conf.maxactive = vinum_conf.active;
  418 
  419                 dev = rqe->b.b_bio1.bio_driver_info;
  420 #ifdef VINUMDEBUG
  421                 if (debug & DEBUG_ADDRESSES)
  422                     log(LOG_DEBUG,
  423                         "  %s dev %d.%d, sd %d, offset 0x%llx, devoffset 0x%llx, length %d\n",
  424                         (rqe->b.b_cmd == BUF_CMD_READ) ? "Read" : "Write",
  425                         major(dev),
  426                         minor(dev),
  427                         rqe->sdno,
  428                         rqe->b.b_bio1.bio_offset - ((off_t)SD[rqe->sdno].driveoffset << DEV_BSHIFT),
  429                         rqe->b.b_bio1.bio_offset,
  430                         rqe->b.b_bcount);
  431                 if (debug & DEBUG_LASTREQS)
  432                     logrq(loginfo_rqe, (union rqinfou) rqe, rq->bio);
  433 #endif
  434                 /* fire off the request */
  435                 /* XXX this had better not be a low level drive */
  436                 dev_dstrategy(dev, &rqe->b.b_bio1);
  437             }
  438         }
  439     }
  440     crit_exit();
  441     return 0;
  442 }
  443 
  444 /*
  445  * define the low-level requests needed to perform a
  446  * high-level I/O operation for a specific plex 'plexno'.
  447  *
  448  * Return REQUEST_OK if all subdisks involved in the request are up,
  449  * REQUEST_DOWN if some subdisks are not up, and REQUEST_EOF if the
  450  * request is at least partially outside the bounds of the subdisks.
  451  *
  452  * Modify the pointer *diskstart to point to the end address.  On
  453  * read, return on the first bad subdisk, so that the caller
  454  * (build_read_request) can try alternatives.
  455  *
  456  * On entry to this routine, the rqg structures are not assigned.  The
  457  * assignment is performed by expandrq().  Strictly speaking, the
  458  * elements rqe->sdno of all entries should be set to -1, since 0
  459  * (from bzero) is a valid subdisk number.  We avoid this problem by
  460  * initializing the ones we use, and not looking at the others (index
  461  * >= rqg->requests).
  462  */
  463 enum requeststatus
  464 bre(struct request *rq,
  465     int plexno,
  466     vinum_off_t * diskaddr,
  467     vinum_off_t diskend)
  468 {
  469     int sdno;
  470     struct sd *sd;
  471     struct rqgroup *rqg;
  472     struct bio *bio;
  473     struct buf *bp;                                         /* user's bp */
  474     struct plex *plex;
  475     enum requeststatus status;                              /* return value */
  476     vinum_off_t plexoffset;                                         /* offset of transfer in plex */
  477     vinum_off_t stripebase;                                         /* base address of stripe (1st subdisk) */
  478     vinum_off_t stripeoffset;                               /* offset in stripe */
  479     vinum_off_t blockoffset;                                /* offset in stripe on subdisk */
  480     struct rqelement *rqe;                                  /* point to this request information */
  481     vinum_off_t diskstart = *diskaddr;                      /* remember where this transfer starts */
  482     enum requeststatus s;                                   /* temp return value */
  483 
  484     bio = rq->bio;                                          /* buffer pointer */
  485     bp = bio->bio_buf;
  486     status = REQUEST_OK;                                    /* return value: OK until proven otherwise */
  487     plex = &PLEX[plexno];                                   /* point to the plex */
  488 
  489     switch (plex->organization) {
  490     case plex_concat:
  491         sd = NULL;                                          /* (keep compiler quiet) */
  492         for (sdno = 0; sdno < plex->subdisks; sdno++) {
  493             sd = &SD[plex->sdnos[sdno]];
  494             if (*diskaddr < sd->plexoffset)                 /* we must have a hole, */
  495                 status = REQUEST_DEGRADED;                  /* note the fact */
  496             if (*diskaddr < (sd->plexoffset + sd->sectors)) { /* the request starts in this subdisk */
  497                 rqg = allocrqg(rq, 1);                      /* space for the request */
  498                 if (rqg == NULL) {                          /* malloc failed */
  499                     bp->b_error = ENOMEM;
  500                     bp->b_flags |= B_ERROR;
  501                     return REQUEST_ENOMEM;
  502                 }
  503                 rqg->plexno = plexno;
  504 
  505                 rqe = &rqg->rqe[0];                         /* point to the element */
  506                 rqe->rqg = rqg;                             /* group */
  507                 rqe->sdno = sd->sdno;                       /* put in the subdisk number */
  508                 plexoffset = *diskaddr;                     /* start offset in plex */
  509                 rqe->sdoffset = plexoffset - sd->plexoffset; /* start offset in subdisk */
  510                 rqe->useroffset = plexoffset - diskstart;   /* start offset in user buffer */
  511                 rqe->dataoffset = 0;
  512                 rqe->datalen = u64min(diskend - *diskaddr,
  513                                       sd->sectors - rqe->sdoffset);
  514                 rqe->groupoffset = 0;                       /* no groups for concatenated plexes */
  515                 rqe->grouplen = 0;
  516                 rqe->buflen = rqe->datalen;                 /* buffer length is data buffer length */
  517                 rqe->flags = 0;
  518                 rqe->driveno = sd->driveno;
  519                 if (sd->state != sd_up) {                   /* *now* we find the sd is down */
  520                     s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
  521                     if (s == REQUEST_DOWN) {                /* down? */
  522                         rqe->flags = XFR_BAD_SUBDISK;       /* yup */
  523                         if (rq->bio->bio_buf->b_cmd == BUF_CMD_READ)    /* read request, */
  524                             return REQUEST_DEGRADED;        /* give up here */
  525                         /*
  526                          * If we're writing, don't give up
  527                          * because of a bad subdisk.  Go
  528                          * through to the bitter end, but note
  529                          * which ones we can't access.
  530                          */
  531                         status = REQUEST_DEGRADED;          /* can't do it all */
  532                     }
  533                 }
  534                 *diskaddr += rqe->datalen;                  /* bump the address */
  535                 if (build_rq_buffer(rqe, plex)) {           /* build the buffer */
  536                     deallocrqg(rqg);
  537                     bp->b_error = ENOMEM;
  538                     bp->b_flags |= B_ERROR;
  539                     return REQUEST_ENOMEM;                  /* can't do it */
  540                 }
  541             }
  542             if (*diskaddr == diskend)                       /* we're finished, */
  543                 break;                                      /* get out of here */
  544         }
  545         /*
  546          * We've got to the end of the plex.  Have we got to the end of
  547          * the transfer?  It would seem that having an offset beyond the
  548          * end of the subdisk is an error, but in fact it can happen if
  549          * the volume has another plex of different size.  There's a valid
  550          * question as to why you would want to do this, but currently
  551          * it's allowed.
  552          *
  553          * In a previous version, I returned REQUEST_DOWN here.  I think
  554          * REQUEST_EOF is more appropriate now.
  555          */
  556         if (diskend > sd->sectors + sd->plexoffset)         /* pointing beyond EOF? */
  557             status = REQUEST_EOF;
  558         break;
  559 
  560     case plex_striped:
  561         {
  562             while (*diskaddr < diskend) {                   /* until we get it all sorted out */
  563                 if (*diskaddr >= plex->length)              /* beyond the end of the plex */
  564                     return REQUEST_EOF;                     /* can't continue */
  565 
  566                 /* The offset of the start address from the start of the stripe. */
  567                 stripeoffset = *diskaddr % (plex->stripesize * plex->subdisks);
  568 
  569                 /* The plex-relative address of the start of the stripe. */
  570                 stripebase = *diskaddr - stripeoffset;
  571 
  572                 /* The number of the subdisk in which the start is located. */
  573                 sdno = stripeoffset / plex->stripesize;
  574 
  575                 /* The offset from the beginning of the stripe on this subdisk. */
  576                 blockoffset = stripeoffset % plex->stripesize;
  577 
  578                 sd = &SD[plex->sdnos[sdno]];                /* the subdisk in question */
  579                 rqg = allocrqg(rq, 1);                      /* space for the request */
  580                 if (rqg == NULL) {                          /* malloc failed */
  581                     bp->b_error = ENOMEM;
  582                     bp->b_flags |= B_ERROR;
  583                     return REQUEST_ENOMEM;
  584                 }
  585                 rqg->plexno = plexno;
  586 
  587                 rqe = &rqg->rqe[0];                         /* point to the element */
  588                 rqe->rqg = rqg;
  589                 rqe->sdoffset = stripebase / plex->subdisks + blockoffset; /* start offset in this subdisk */
  590                 rqe->useroffset = *diskaddr - diskstart;    /* The offset of the start in the user buffer */
  591                 rqe->dataoffset = 0;
  592                 rqe->datalen = u64min(diskend - *diskaddr,
  593                                       plex->stripesize - blockoffset);
  594                 rqe->groupoffset = 0;                       /* no groups for striped plexes */
  595                 rqe->grouplen = 0;
  596                 rqe->buflen = rqe->datalen;                 /* buffer length is data buffer length */
  597                 rqe->flags = 0;
  598                 rqe->sdno = sd->sdno;                       /* put in the subdisk number */
  599                 rqe->driveno = sd->driveno;
  600 
  601                 if (sd->state != sd_up) {                   /* *now* we find the sd is down */
  602                     s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
  603                     if (s == REQUEST_DOWN) {                /* down? */
  604                         rqe->flags = XFR_BAD_SUBDISK;       /* yup */
  605                         if (rq->bio->bio_buf->b_cmd == BUF_CMD_READ)        /* read request, */
  606                             return REQUEST_DEGRADED;        /* give up here */
  607                         /*
  608                          * If we're writing, don't give up
  609                          * because of a bad subdisk.  Go through
  610                          * to the bitter end, but note which
  611                          * ones we can't access.
  612                          */
  613                         status = REQUEST_DEGRADED;          /* can't do it all */
  614                     }
  615                 }
  616                 /*
  617                  * It would seem that having an offset
  618                  * beyond the end of the subdisk is an
  619                  * error, but in fact it can happen if the
  620                  * volume has another plex of different
  621                  * size.  There's a valid question as to why
  622                  * you would want to do this, but currently
  623                  * it's allowed.
  624                  */
  625                 if (rqe->sdoffset + rqe->datalen > sd->sectors) { /* ends beyond the end of the subdisk? */
  626                     rqe->datalen = sd->sectors - rqe->sdoffset; /* truncate */
  627 #if VINUMDEBUG
  628                     if (debug & DEBUG_EOFINFO) {            /* tell on the request */
  629                         log(LOG_DEBUG,
  630                             "vinum: EOF on plex %s, sd %s offset %jx (user offset %jx)\n",
  631                             plex->name,
  632                             sd->name,
  633                             (uintmax_t)sd->sectors,
  634                             (uintmax_t)bp->b_bio1.bio_offset);
  635                         log(LOG_DEBUG,
  636                             "vinum: stripebase 0x%llx, stripeoffset 0x%llx, "
  637                             "blockoffset 0x%llx\n",
  638                             (long long)stripebase,
  639                             (long long)stripeoffset,
  640                             (long long)blockoffset);
  641                     }
  642 #endif
  643                 }
  644                 if (build_rq_buffer(rqe, plex)) {           /* build the buffer */
  645                     deallocrqg(rqg);
  646                     bp->b_error = ENOMEM;
  647                     bp->b_flags |= B_ERROR;
  648                     return REQUEST_ENOMEM;                  /* can't do it */
  649                 }
  650                 *diskaddr += rqe->datalen;                  /* look at the remainder */
  651                 if ((*diskaddr < diskend)                   /* didn't finish the request on this stripe */
  652                 &&(*diskaddr < plex->length)) {             /* and there's more to come */
  653                     plex->multiblock++;                     /* count another one */
  654                     if (sdno == plex->subdisks - 1)         /* last subdisk, */
  655                         plex->multistripe++;                /* another stripe as well */
  656                 }
  657             }
  658         }
  659         break;
  660 
  661         /*
  662          * RAID-4 and RAID-5 are complicated enough to have their own
  663          * function.
  664          */
  665     case plex_raid4:
  666     case plex_raid5:
  667         status = bre5(rq, plexno, diskaddr, diskend);
  668         break;
  669 
  670     default:
  671         log(LOG_ERR, "vinum: invalid plex type %d in bre\n", plex->organization);
  672         status = REQUEST_DOWN;                              /* can't access it */
  673     }
  674 
  675     return status;
  676 }
  677 
  678 /*
  679  * Build up a request structure for reading volumes.
  680  * This function is not needed for plex reads, since there's
  681  * no recovery if a plex read can't be satisified.
  682  */
  683 enum requeststatus
  684 build_read_request(struct request *rq,                      /* request */
  685     int plexindex)
  686 {                                                           /* index in the volume's plex table */
  687     struct bio *bio;
  688     struct buf *bp;
  689     vinum_off_t startaddr;                                          /* offset of previous part of transfer */
  690     vinum_off_t diskaddr;                                           /* offset of current part of transfer */
  691     vinum_off_t diskend;                                            /* and end offset of transfer */
  692     int plexno;                                             /* plex index in vinum_conf */
  693     struct volume *vol;                                     /* volume in question */
  694     int recovered = 0;                                      /* set if we recover a read */
  695     enum requeststatus status = REQUEST_OK;
  696     int plexmask;                                           /* bit mask of plexes, for recovery */
  697 
  698     bio = rq->bio;                                          /* buffer pointer */
  699     bp = bio->bio_buf;
  700     diskaddr = bio->bio_offset >> DEV_BSHIFT;               /* start offset of transfer */
  701     diskend = diskaddr + (bp->b_bcount / DEV_BSIZE);        /* and end offset of transfer */
  702     vol = &VOL[rq->volplex.volno];                          /* point to volume */
  703 
  704     while (diskaddr < diskend) {                            /* build up request components */
  705         startaddr = diskaddr;
  706         status = bre(rq, vol->plex[plexindex], &diskaddr, diskend); /* build up a request */
  707         switch (status) {
  708         case REQUEST_OK:
  709             continue;
  710 
  711         case REQUEST_RECOVERED:
  712             /*
  713              * XXX FIXME if we have more than one plex, and we can
  714              * satisfy the request from another, don't use the
  715              * recovered request, since it's more expensive.
  716              */
  717             recovered = 1;
  718             break;
  719 
  720         case REQUEST_ENOMEM:
  721             return status;
  722             /*
  723              * If we get here, our request is not complete.  Try
  724              * to fill in the missing parts from another plex.
  725              * This can happen multiple times in this function,
  726              * and we reinitialize the plex mask each time, since
  727              * we could have a hole in our plexes.
  728              */
  729         case REQUEST_EOF:
  730         case REQUEST_DOWN:                                  /* can't access the plex */
  731         case REQUEST_DEGRADED:                              /* can't access the plex */
  732             plexmask = ((1 << vol->plexes) - 1)             /* all plexes in the volume */
  733             &~(1 << plexindex);                             /* except for the one we were looking at */
  734             for (plexno = 0; plexno < vol->plexes; plexno++) {
  735                 if (plexmask == 0)                          /* no plexes left to try */
  736                     return REQUEST_DOWN;                    /* failed */
  737                 diskaddr = startaddr;                       /* start at the beginning again */
  738                 if (plexmask & (1 << plexno)) {             /* we haven't tried this plex yet */
  739                     bre(rq, vol->plex[plexno], &diskaddr, diskend); /* try a request */
  740                     if (diskaddr > startaddr) {             /* we satisfied another part */
  741                         recovered = 1;                      /* we recovered from the problem */
  742                         status = REQUEST_OK;                /* don't complain about it */
  743                         break;
  744                     }
  745                 }
  746             }
  747             if (diskaddr == startaddr)                      /* didn't get any further, */
  748                 return status;
  749         }
  750         if (recovered)
  751             vol->recovered_reads += recovered;              /* adjust our recovery count */
  752     }
  753     return status;
  754 }
  755 
  756 /*
  757  * Build up a request structure for writes.
  758  * Return 0 if all subdisks involved in the request are up, 1 if some
  759  * subdisks are not up, and -1 if the request is at least partially
  760  * outside the bounds of the subdisks.
  761  */
  762 enum requeststatus
  763 build_write_request(struct request *rq)
  764 {                                                           /* request */
  765     struct bio *bio;
  766     struct buf *bp;
  767     vinum_off_t diskstart;                                          /* offset of current part of transfer */
  768     vinum_off_t diskend;                                            /* and end offset of transfer */
  769     int plexno;                                             /* plex index in vinum_conf */
  770     struct volume *vol;                                     /* volume in question */
  771     enum requeststatus status;
  772 
  773     bio = rq->bio;                                          /* buffer pointer */
  774     bp = bio->bio_buf;
  775     vol = &VOL[rq->volplex.volno];                          /* point to volume */
  776     diskend = (vinum_off_t)(bio->bio_offset >> DEV_BSHIFT) + (bp->b_bcount / DEV_BSIZE);            /* end offset of transfer */
  777     status = REQUEST_DOWN;                                  /* assume the worst */
  778     for (plexno = 0; plexno < vol->plexes; plexno++) {
  779         diskstart = (vinum_off_t)(bio->bio_offset >> DEV_BSHIFT);                           /* start offset of transfer */
  780         /*
  781          * Build requests for the plex.
  782          * We take the best possible result here (min,
  783          * not max): we're happy if we can write at all
  784          */
  785         status = u64min(status,
  786                      bre(rq, vol->plex[plexno], &diskstart, diskend));
  787     }
  788     return status;
  789 }
  790 
  791 /* Fill in the struct buf part of a request element. */
  792 enum requeststatus
  793 build_rq_buffer(struct rqelement *rqe, struct plex *plex)
  794 {
  795     struct sd *sd;                                          /* point to subdisk */
  796     struct buf *bp;
  797     struct buf *ubp;                                        /* user (high level) buffer header */
  798     struct bio *ubio;
  799 
  800     sd = &SD[rqe->sdno];                                    /* point to subdisk */
  801     bp = &rqe->b;
  802     ubio = rqe->rqg->rq->bio;                               /* pointer to user buffer header */
  803     ubp = ubio->bio_buf;
  804 
  805     /* Initialize the buf struct */
  806     /* copy these flags from user bp */
  807     bp->b_flags = ubp->b_flags & (B_ORDERED | B_NOCACHE);
  808     bp->b_cmd = ubp->b_cmd;
  809 #ifdef VINUMDEBUG
  810     if (rqe->flags & XFR_BUFLOCKED)                         /* paranoia */
  811         panic("build_rq_buffer: rqe already locked");       /* XXX remove this when we're sure */
  812 #endif
  813     initbufbio(bp);
  814     BUF_LOCK(bp, LK_EXCLUSIVE);                             /* and lock it */
  815     BUF_KERNPROC(bp);
  816     rqe->flags |= XFR_BUFLOCKED;
  817     bp->b_bio1.bio_done = complete_rqe;
  818     /*
  819      * You'd think that we wouldn't need to even
  820      * build the request buffer for a dead subdisk,
  821      * but in some cases we need information like
  822      * the user buffer address.  Err on the side of
  823      * generosity and supply what we can.  That
  824      * obviously doesn't include drive information
  825      * when the drive is dead.
  826      */
  827     if ((rqe->flags & XFR_BAD_SUBDISK) == 0)                /* subdisk is accessible, */
  828         bp->b_bio1.bio_driver_info = DRIVE[rqe->driveno].dev; /* drive device */
  829     bp->b_bio1.bio_offset = (off_t)(rqe->sdoffset + sd->driveoffset) << DEV_BSHIFT;     /* start address */
  830     bp->b_bcount = rqe->buflen << DEV_BSHIFT;               /* number of bytes to transfer */
  831     bp->b_resid = bp->b_bcount;                             /* and it's still all waiting */
  832 
  833     if (rqe->flags & XFR_MALLOCED) {                        /* this operation requires a malloced buffer */
  834         bp->b_data = Malloc(bp->b_bcount);                  /* get a buffer to put it in */
  835         if (bp->b_data == NULL) {                           /* failed */
  836             abortrequest(rqe->rqg->rq, ENOMEM);
  837             return REQUEST_ENOMEM;                          /* no memory */
  838         }
  839     } else
  840         /*
  841          * Point directly to user buffer data.  This means
  842          * that we don't need to do anything when we have
  843          * finished the transfer
  844          */
  845         bp->b_data = ubp->b_data + rqe->useroffset * DEV_BSIZE;
  846     /*
  847      * On a recovery read, we perform an XOR of
  848      * all blocks to the user buffer.  To make
  849      * this work, we first clean out the buffer
  850      */
  851     if ((rqe->flags & (XFR_RECOVERY_READ | XFR_BAD_SUBDISK))
  852         == (XFR_RECOVERY_READ | XFR_BAD_SUBDISK)) {         /* bad subdisk of a recovery read */
  853         int length = rqe->grouplen << DEV_BSHIFT;           /* and count involved */
  854         char *data = (char *) &rqe->b.b_data[rqe->groupoffset << DEV_BSHIFT]; /* destination */
  855 
  856         bzero(data, length);                                /* clean it out */
  857     }
  858     return 0;
  859 }
  860 
  861 /*
  862  * Abort a request: free resources and complete the
  863  * user request with the specified error
  864  */
  865 int
  866 abortrequest(struct request *rq, int error)
  867 {
  868     struct buf *bp = rq->bio->bio_buf;                      /* user buffer */
  869 
  870     bp->b_error = error;
  871     freerq(rq);                                             /* free everything we're doing */
  872     bp->b_flags |= B_ERROR;
  873     return error;                                           /* and give up */
  874 }
  875 
  876 /*
  877  * Check that our transfer will cover the
  878  * complete address space of the user request.
  879  *
  880  * Return 1 if it can, otherwise 0
  881  */
  882 int
  883 check_range_covered(struct request *rq)
  884 {
  885     return 1;
  886 }
  887 
  888 /* Perform I/O on a subdisk */
  889 void
  890 sdio(struct bio *bio)
  891 {
  892     cdev_t dev;
  893     struct sd *sd;
  894     struct sdbuf *sbp;
  895     vinum_off_t endoffset;
  896     struct drive *drive;
  897     struct buf *bp = bio->bio_buf;
  898 
  899     dev = bio->bio_driver_info;
  900 
  901 #if VINUMDEBUG
  902     if (debug & DEBUG_LASTREQS)
  903         logrq(loginfo_sdio, (union rqinfou) bio, bio);
  904 #endif
  905     sd = &SD[Sdno(dev)];                                    /* point to the subdisk */
  906     drive = &DRIVE[sd->driveno];
  907 
  908     if (drive->state != drive_up) {
  909         if (sd->state >= sd_crashed) {
  910             if (bp->b_cmd != BUF_CMD_READ)                  /* writing, */
  911                 set_sd_state(sd->sdno, sd_stale, setstate_force);
  912             else
  913                 set_sd_state(sd->sdno, sd_crashed, setstate_force);
  914         }
  915         bp->b_error = EIO;
  916         bp->b_flags |= B_ERROR;
  917         biodone(bio);
  918         return;
  919     }
  920     /*
  921      * We allow access to any kind of subdisk as long as we can expect
  922      * to get the I/O performed.
  923      */
  924     if (sd->state < sd_empty) {                             /* nothing to talk to, */
  925         bp->b_error = EIO;
  926         bp->b_flags |= B_ERROR;
  927         biodone(bio);
  928         return;
  929     }
  930     /* Get a buffer */
  931     sbp = (struct sdbuf *) Malloc(sizeof(struct sdbuf));
  932     if (sbp == NULL) {
  933         bp->b_error = ENOMEM;
  934         bp->b_flags |= B_ERROR;
  935         biodone(bio);
  936         return;
  937     }
  938     bzero(sbp, sizeof(struct sdbuf));                       /* start with nothing */
  939     sbp->b.b_cmd = bp->b_cmd;
  940     sbp->b.b_bcount = bp->b_bcount;                         /* number of bytes to transfer */
  941     sbp->b.b_resid = bp->b_resid;                           /* and amount waiting */
  942     sbp->b.b_data = bp->b_data;                             /* data buffer */
  943     initbufbio(&sbp->b);
  944     BUF_LOCK(&sbp->b, LK_EXCLUSIVE);                        /* and lock it */
  945     BUF_KERNPROC(&sbp->b);
  946     sbp->b.b_bio1.bio_offset = bio->bio_offset + ((off_t)sd->driveoffset << DEV_BSHIFT);
  947     sbp->b.b_bio1.bio_done = sdio_done;                     /* come here on completion */
  948     sbp->b.b_bio1.bio_flags |= BIO_SYNC;
  949     sbp->bio = bio;                                         /* note the address of the original header */
  950     sbp->sdno = sd->sdno;                                   /* note for statistics */
  951     sbp->driveno = sd->driveno;
  952     endoffset = (vinum_off_t)(bio->bio_offset >> DEV_BSHIFT) + sbp->b.b_bcount / DEV_BSIZE;  /* final sector offset */
  953     if (endoffset > sd->sectors) {                          /* beyond the end */
  954         sbp->b.b_bcount -= (endoffset - sd->sectors) * DEV_BSIZE; /* trim */
  955         if (sbp->b.b_bcount <= 0) {                         /* nothing to transfer */
  956             bp->b_resid = bp->b_bcount;                     /* nothing transferred */
  957             biodone(bio);
  958             BUF_UNLOCK(&sbp->b);
  959             uninitbufbio(&sbp->b);
  960             Free(sbp);
  961             return;
  962         }
  963     }
  964 #if VINUMDEBUG
  965     if (debug & DEBUG_ADDRESSES)
  966         log(LOG_DEBUG,
  967             "  %s dev %s, sd %d, offset 0x%llx, devoffset 0x%llx, length %d\n",
  968             (sbp->b.b_cmd == BUF_CMD_READ) ? "Read" : "Write",
  969             drive->devicename,
  970             sbp->sdno,
  971             sbp->b.b_bio1.bio_offset - ((off_t)SD[sbp->sdno].driveoffset << DEV_BSHIFT),
  972             sbp->b.b_bio1.bio_offset,
  973             sbp->b.b_bcount);
  974 #endif
  975     crit_enter();
  976 #if VINUMDEBUG
  977     if (debug & DEBUG_LASTREQS)
  978         logrq(loginfo_sdiol, (union rqinfou) &sbp->b.b_bio1, &sbp->b.b_bio1);
  979 #endif
  980     vn_strategy(drive->vp, &sbp->b.b_bio1);
  981     crit_exit();
  982 }
  983 
  984 /*
  985  * Determine the size of the transfer, and make sure it is
  986  * within the boundaries of the partition. Adjust transfer
  987  * if needed, and signal errors or early completion.
  988  *
  989  * Volumes are simpler than disk slices: they only contain
  990  * one component (though we call them a, b and c to make
  991  * system utilities happy), and they always take up the
  992  * complete space of the "partition".
  993  *
  994  * I'm still not happy with this: why should the label be
  995  * protected?  If it weren't so damned difficult to write
  996  * one in the first pleace (because it's protected), it wouldn't
  997  * be a problem.
  998  */
  999 struct bio *
 1000 vinum_bounds_check(struct bio *bio, struct volume *vol)
 1001 {
 1002     struct buf *bp = bio->bio_buf;
 1003     struct bio *nbio;
 1004     vinum_off_t maxsize = vol->size;                                /* size of the partition (sectors) */
 1005     int size = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; /* size of this request (sectors) */
 1006     vinum_off_t blkno = (vinum_off_t)(bio->bio_offset >> DEV_BSHIFT);
 1007 
 1008     if (size == 0)                                          /* no transfer specified, */
 1009         return 0;                                           /* treat as EOF */
 1010     /* beyond partition? */
 1011     if (bio->bio_offset < 0                                 /* negative start */
 1012         || blkno + size > maxsize) {                /* or goes beyond the end of the partition */
 1013         /* if exactly at end of disk, return an EOF */
 1014         if (blkno == maxsize) {
 1015             bp->b_resid = bp->b_bcount;
 1016             return (NULL);
 1017         }
 1018         /* or truncate if part of it fits */
 1019         size = maxsize - blkno;
 1020         if (size <= 0) {                                    /* nothing to transfer */
 1021             bp->b_error = EINVAL;
 1022             bp->b_flags |= B_ERROR;
 1023             return (NULL);
 1024         }
 1025         bp->b_bcount = size << DEV_BSHIFT;
 1026     }
 1027     nbio = push_bio(bio);
 1028     nbio->bio_offset = bio->bio_offset;
 1029     return (nbio);
 1030 }
 1031 
 1032 /*
 1033  * Allocate a request group and hook
 1034  * it in in the list for rq
 1035  */
 1036 struct rqgroup *
 1037 allocrqg(struct request *rq, int elements)
 1038 {
 1039     struct rqgroup *rqg;                                    /* the one we're going to allocate */
 1040     int size = sizeof(struct rqgroup) + elements * sizeof(struct rqelement);
 1041 
 1042     rqg = (struct rqgroup *) Malloc(size);
 1043     if (rqg != NULL) {                                      /* malloc OK, */
 1044         if (rq->rqg)                                        /* we already have requests */
 1045             rq->lrqg->next = rqg;                           /* hang it off the end */
 1046         else                                                /* first request */
 1047             rq->rqg = rqg;                                  /* at the start */
 1048         rq->lrqg = rqg;                                     /* this one is the last in the list */
 1049 
 1050         bzero(rqg, size);                                   /* no old junk */
 1051         rqg->rq = rq;                                       /* point back to the parent request */
 1052         rqg->count = elements;                              /* number of requests in the group */
 1053         rqg->lockbase = -1;                                 /* no lock required yet */
 1054     }
 1055     return rqg;
 1056 }
 1057 
 1058 /*
 1059  * Deallocate a request group out of a chain.  We do
 1060  * this by linear search: the chain is short, this
 1061  * almost never happens, and currently it can only
 1062  * happen to the first member of the chain.
 1063  */
 1064 void
 1065 deallocrqg(struct rqgroup *rqg)
 1066 {
 1067     struct rqgroup *rqgc = rqg->rq->rqg;                    /* point to the request chain */
 1068 
 1069     if (rqg->lock)                                          /* got a lock? */
 1070         unlockrange(rqg->plexno, rqg->lock);                /* yes, free it */
 1071     if (rqgc == rqg)                                        /* we're first in line */
 1072         rqg->rq->rqg = rqg->next;                           /* unhook ourselves */
 1073     else {
 1074         while ((rqgc->next != NULL)                         /* find the group */
 1075         &&(rqgc->next != rqg))
 1076             rqgc = rqgc->next;
 1077         if (rqgc->next == NULL)
 1078             log(LOG_ERR,
 1079                 "vinum deallocrqg: rqg %p not found in request %p\n",
 1080                 rqg->rq,
 1081                 rqg);
 1082         else
 1083             rqgc->next = rqg->next;                         /* make the chain jump over us */
 1084     }
 1085     Free(rqg);
 1086 }

Cache object: 79f1aa85bf85cbc6d5221398704c0c4c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.