The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/raidframe/rf_parityscan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: rf_parityscan.c,v 1.27 2004/03/18 17:26:36 oster Exp $ */
    2 /*
    3  * Copyright (c) 1995 Carnegie-Mellon University.
    4  * All rights reserved.
    5  *
    6  * Author: Mark Holland
    7  *
    8  * Permission to use, copy, modify and distribute this software and
    9  * its documentation is hereby granted, provided that both the copyright
   10  * notice and this permission notice appear in all copies of the
   11  * software, derivative works or modified versions, and any portions
   12  * thereof, and that both notices appear in supporting documentation.
   13  *
   14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   17  *
   18  * Carnegie Mellon requests users of this software to return to
   19  *
   20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   21  *  School of Computer Science
   22  *  Carnegie Mellon University
   23  *  Pittsburgh PA 15213-3890
   24  *
   25  * any improvements or extensions that they make and grant Carnegie the
   26  * rights to redistribute these changes.
   27  */
   28 
   29 /*****************************************************************************
   30  *
   31  * rf_parityscan.c -- misc utilities related to parity verification
   32  *
   33  ****************************************************************************/
   34 
   35 #include <sys/cdefs.h>
   36 __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.27 2004/03/18 17:26:36 oster Exp $");
   37 
   38 #include <dev/raidframe/raidframevar.h>
   39 
   40 #include "rf_raid.h"
   41 #include "rf_dag.h"
   42 #include "rf_dagfuncs.h"
   43 #include "rf_dagutils.h"
   44 #include "rf_mcpair.h"
   45 #include "rf_general.h"
   46 #include "rf_engine.h"
   47 #include "rf_parityscan.h"
   48 #include "rf_map.h"
   49 
   50 /*****************************************************************************
   51  *
   52  * walk through the entire arry and write new parity.  This works by
   53  * creating two DAGs, one to read a stripe of data and one to write
   54  * new parity.  The first is executed, the data is xored together, and
   55  * then the second is executed.  To avoid constantly building and
   56  * tearing down the DAGs, we create them a priori and fill them in
   57  * with the mapping information as we go along.
   58  *
   59  * there should never be more than one thread running this.
   60  *
   61  ****************************************************************************/
   62 
   63 int 
   64 rf_RewriteParity(RF_Raid_t *raidPtr)
   65 {
   66         RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   67         RF_AccessStripeMapHeader_t *asm_h;
   68         int ret_val;
   69         int rc;
   70         RF_SectorNum_t i;
   71 
   72         if (raidPtr->Layout.map->faultsTolerated == 0) {
   73                 /* There isn't any parity. Call it "okay." */
   74                 return (RF_PARITY_OKAY);
   75         }
   76         if (raidPtr->status != rf_rs_optimal) {
   77                 /*
   78                  * We're in degraded mode.  Don't try to verify parity now! 
   79                  * XXX: this should be a "we don't want to", not a 
   80                  * "we can't" error. 
   81                  */
   82                 return (RF_PARITY_COULD_NOT_VERIFY);
   83         }
   84 
   85         ret_val = 0;
   86 
   87         rc = RF_PARITY_OKAY;
   88 
   89         for (i = 0; i < raidPtr->totalSectors && 
   90                      rc <= RF_PARITY_CORRECTED; 
   91              i += layoutPtr->dataSectorsPerStripe) {
   92                 if (raidPtr->waitShutdown) {
   93                         /* Someone is pulling the plug on this set...
   94                            abort the re-write */
   95                         return (1);
   96                 }
   97                 asm_h = rf_MapAccess(raidPtr, i, 
   98                                      layoutPtr->dataSectorsPerStripe, 
   99                                      NULL, RF_DONT_REMAP);
  100                 raidPtr->parity_rewrite_stripes_done = 
  101                         i / layoutPtr->dataSectorsPerStripe ;
  102                 rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
  103 
  104                 switch (rc) {
  105                 case RF_PARITY_OKAY:
  106                 case RF_PARITY_CORRECTED:
  107                         break;
  108                 case RF_PARITY_BAD:
  109                         printf("Parity bad during correction\n");
  110                         ret_val = 1;
  111                         break;
  112                 case RF_PARITY_COULD_NOT_CORRECT:
  113                         printf("Could not correct bad parity\n");
  114                         ret_val = 1;
  115                         break;
  116                 case RF_PARITY_COULD_NOT_VERIFY:
  117                         printf("Could not verify parity\n");
  118                         ret_val = 1;
  119                         break;
  120                 default:
  121                         printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
  122                         ret_val = 1;
  123                 }
  124                 rf_FreeAccessStripeMap(asm_h);
  125         }
  126         return (ret_val);
  127 }
  128 /*****************************************************************************
  129  *
  130  * verify that the parity in a particular stripe is correct.  we
  131  * validate only the range of parity defined by parityPDA, since this
  132  * is all we have locked.  The way we do this is to create an asm that
  133  * maps the whole stripe and then range-restrict it to the parity
  134  * region defined by the parityPDA.
  135  *
  136  ****************************************************************************/
  137 int 
  138 rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
  139                 int correct_it, RF_RaidAccessFlags_t flags)
  140 {
  141         RF_PhysDiskAddr_t *parityPDA;
  142         RF_AccessStripeMap_t *doasm;
  143         const RF_LayoutSW_t *lp;
  144         int     lrc, rc;
  145 
  146         lp = raidPtr->Layout.map;
  147         if (lp->faultsTolerated == 0) {
  148                 /*
  149                  * There isn't any parity. Call it "okay."
  150                  */
  151                 return (RF_PARITY_OKAY);
  152         }
  153         rc = RF_PARITY_OKAY;
  154         if (lp->VerifyParity) {
  155                 for (doasm = aasm; doasm; doasm = doasm->next) {
  156                         for (parityPDA = doasm->parityInfo; parityPDA; 
  157                              parityPDA = parityPDA->next) {
  158                                 lrc = lp->VerifyParity(raidPtr, 
  159                                                        doasm->raidAddress, 
  160                                                        parityPDA,
  161                                                        correct_it, flags);
  162                                 if (lrc > rc) {
  163                                         /* see rf_parityscan.h for why this
  164                                          * works */
  165                                         rc = lrc;
  166                                 }
  167                         }
  168                 }
  169         } else {
  170                 rc = RF_PARITY_COULD_NOT_VERIFY;
  171         }
  172         return (rc);
  173 }
  174 
  175 int 
  176 rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
  177                      RF_PhysDiskAddr_t *parityPDA, int correct_it,
  178                      RF_RaidAccessFlags_t flags)
  179 {
  180         RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
  181         RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
  182                                                                      raidAddr);
  183         RF_SectorCount_t numsector = parityPDA->numSector;
  184         int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
  185         int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
  186         RF_DagHeader_t *rd_dag_h, *wr_dag_h;    /* read, write dag */
  187         RF_DagNode_t *blockNode, *wrBlock;
  188         RF_AccessStripeMapHeader_t *asm_h;
  189         RF_AccessStripeMap_t *asmap;
  190         RF_AllocListElem_t *alloclist;
  191         RF_PhysDiskAddr_t *pda;
  192         char   *pbuf, *buf, *end_p, *p;
  193         int     i, retcode;
  194         RF_ReconUnitNum_t which_ru;
  195         RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, 
  196                                                              raidAddr, 
  197                                                              &which_ru);
  198         int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
  199 #if RF_ACC_TRACE > 0
  200         RF_AccTraceEntry_t tracerec;
  201 #endif
  202         RF_MCPair_t *mcpair;
  203 
  204         retcode = RF_PARITY_OKAY;
  205 
  206         mcpair = rf_AllocMCPair();
  207         rf_MakeAllocList(alloclist);
  208         RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
  209         RF_MallocAndAdd(pbuf, numbytes, (char *), alloclist);
  210         end_p = buf + bytesPerStripe;
  211 
  212         rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
  213             "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
  214         blockNode = rd_dag_h->succedents[0];
  215 
  216         /* map the stripe and fill in the PDAs in the dag */
  217         asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
  218         asmap = asm_h->stripeMap;
  219 
  220         for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
  221                 RF_ASSERT(pda);
  222                 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
  223                 RF_ASSERT(pda->numSector != 0);
  224                 if (rf_TryToRedirectPDA(raidPtr, pda, 0))
  225                         goto out;       /* no way to verify parity if disk is
  226                                          * dead.  return w/ good status */
  227                 blockNode->succedents[i]->params[0].p = pda;
  228                 blockNode->succedents[i]->params[2].v = psID;
  229                 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
  230         }
  231 
  232         RF_ASSERT(!asmap->parityInfo->next);
  233         rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
  234         RF_ASSERT(asmap->parityInfo->numSector != 0);
  235         if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
  236                 goto out;
  237         blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
  238 
  239         /* fire off the DAG */
  240 #if RF_ACC_TRACE > 0
  241         memset((char *) &tracerec, 0, sizeof(tracerec));
  242         rd_dag_h->tracerec = &tracerec;
  243 #endif
  244 #if 0
  245         if (rf_verifyParityDebug) {
  246                 printf("Parity verify read dag:\n");
  247                 rf_PrintDAGList(rd_dag_h);
  248         }
  249 #endif
  250         RF_LOCK_MUTEX(mcpair->mutex);
  251         mcpair->flag = 0;
  252         RF_UNLOCK_MUTEX(mcpair->mutex);
  253 
  254         rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
  255             (void *) mcpair);
  256 
  257         RF_LOCK_MUTEX(mcpair->mutex);
  258         while (!mcpair->flag)
  259                 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
  260         RF_UNLOCK_MUTEX(mcpair->mutex);
  261         if (rd_dag_h->status != rf_enable) {
  262                 RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
  263                 retcode = RF_PARITY_COULD_NOT_VERIFY;
  264                 goto out;
  265         }
  266         for (p = buf; p < end_p; p += numbytes) {
  267                 rf_bxor(p, pbuf, numbytes);
  268         }
  269         for (i = 0; i < numbytes; i++) {
  270                 if (pbuf[i] != buf[bytesPerStripe + i]) {
  271                         if (!correct_it)
  272                                 RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
  273                                     i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
  274                         retcode = RF_PARITY_BAD;
  275                         break;
  276                 }
  277         }
  278 
  279         if (retcode && correct_it) {
  280                 wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
  281                     "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
  282                 wrBlock = wr_dag_h->succedents[0];
  283                 wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
  284                 wrBlock->succedents[0]->params[2].v = psID;
  285                 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
  286 #if RF_ACC_TRACE > 0
  287                 memset((char *) &tracerec, 0, sizeof(tracerec));
  288                 wr_dag_h->tracerec = &tracerec;
  289 #endif
  290 #if 0
  291                 if (rf_verifyParityDebug) {
  292                         printf("Parity verify write dag:\n");
  293                         rf_PrintDAGList(wr_dag_h);
  294                 }
  295 #endif
  296                 RF_LOCK_MUTEX(mcpair->mutex);
  297                 mcpair->flag = 0;
  298                 RF_UNLOCK_MUTEX(mcpair->mutex);
  299 
  300                 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
  301                     (void *) mcpair);
  302 
  303                 RF_LOCK_MUTEX(mcpair->mutex);
  304                 while (!mcpair->flag)
  305                         RF_WAIT_COND(mcpair->cond, mcpair->mutex);
  306                 RF_UNLOCK_MUTEX(mcpair->mutex);
  307                 if (wr_dag_h->status != rf_enable) {
  308                         RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
  309                         retcode = RF_PARITY_COULD_NOT_CORRECT;
  310                 }
  311                 rf_FreeDAG(wr_dag_h);
  312                 if (retcode == RF_PARITY_BAD)
  313                         retcode = RF_PARITY_CORRECTED;
  314         }
  315 out:
  316         rf_FreeAccessStripeMap(asm_h);
  317         rf_FreeAllocList(alloclist);
  318         rf_FreeDAG(rd_dag_h);
  319         rf_FreeMCPair(mcpair);
  320         return (retcode);
  321 }
  322 
  323 int 
  324 rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, int parity)
  325 {
  326         if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
  327                 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
  328 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
  329                         if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
  330 #if RF_DEBUG_VERIFYPARITY
  331                                 RF_RowCol_t oc = pda->col;
  332                                 RF_SectorNum_t os = pda->startSector;
  333 #endif
  334                                 if (parity) {
  335                                         (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
  336 #if RF_DEBUG_VERIFYPARITY
  337                                         if (rf_verifyParityDebug)
  338                                                 printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
  339                                                     oc, (long) os, pda->col, (long) pda->startSector);
  340 #endif
  341                                 } else {
  342                                         (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
  343 #if RF_DEBUG_VERIFYPARITY
  344                                         if (rf_verifyParityDebug)
  345                                                 printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
  346                                                    oc, (long) os, pda->col, (long) pda->startSector);
  347 #endif
  348                                 }
  349                         } else {
  350 #endif
  351                                 RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
  352                                 pda->col = spCol;
  353 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
  354                         }
  355 #endif
  356                 }
  357         }
  358         if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
  359                 return (1);
  360         return (0);
  361 }
  362 /*****************************************************************************
  363  *
  364  * currently a stub.
  365  *
  366  * takes as input an ASM describing a write operation and containing
  367  * one failure, and verifies that the parity was correctly updated to
  368  * reflect the write.
  369  *
  370  * if it's a data unit that's failed, we read the other data units in
  371  * the stripe and the parity unit, XOR them together, and verify that
  372  * we get the data intended for the failed disk.  Since it's easy, we
  373  * also validate that the right data got written to the surviving data
  374  * disks.
  375  *
  376  * If it's the parity that failed, there's really no validation we can
  377  * do except the above verification that the right data got written to
  378  * all disks.  This is because the new data intended for the failed
  379  * disk is supplied in the ASM, but this is of course not the case for
  380  * the new parity.
  381  *
  382  ****************************************************************************/
  383 #if 0
  384 int 
  385 rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
  386 {
  387         return (0);
  388 }
  389 #endif
  390 /* creates a simple DAG with a header, a block-recon node at level 1,
  391  * nNodes nodes at level 2, an unblock-recon node at level 3, and a
  392  * terminator node at level 4.  The stripe address field in the block
  393  * and unblock nodes are not touched, nor are the pda fields in the
  394  * second-level nodes, so they must be filled in later.
  395  *
  396  * commit point is established at unblock node - this means that any
  397  * failure during dag execution causes the dag to fail 
  398  *
  399  * name - node names at the second level
  400  */
  401 RF_DagHeader_t *
  402 rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
  403                  int (*doFunc) (RF_DagNode_t * node),
  404                  int (*undoFunc) (RF_DagNode_t * node),
  405                  char *name, RF_AllocListElem_t *alloclist,
  406                  RF_RaidAccessFlags_t flags, int priority)
  407 {
  408         RF_DagHeader_t *dag_h;
  409         RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode;
  410         int     i;
  411 
  412         /* grab a DAG header... */
  413 
  414         dag_h = rf_AllocDAGHeader();
  415         dag_h->raidPtr = (void *) raidPtr;
  416         dag_h->allocList = NULL;/* we won't use this alloc list */
  417         dag_h->status = rf_enable;
  418         dag_h->numSuccedents = 1;
  419         dag_h->creator = "SimpleDAG";
  420 
  421         /* this dag can not commit until the unblock node is reached errors
  422          * prior to the commit point imply the dag has failed */
  423         dag_h->numCommitNodes = 1;
  424         dag_h->numCommits = 0;
  425 
  426         /* create the nodes, the block & unblock nodes, and the terminator
  427          * node */
  428 
  429         for (i = 0; i < nNodes; i++) {
  430                 tmpNode = rf_AllocDAGNode();
  431                 tmpNode->list_next = dag_h->nodes;
  432                 dag_h->nodes = tmpNode;
  433         }
  434         nodes = dag_h->nodes;
  435 
  436         blockNode = rf_AllocDAGNode();
  437         blockNode->list_next = dag_h->nodes;
  438         dag_h->nodes = blockNode;
  439 
  440         unblockNode = rf_AllocDAGNode();
  441         unblockNode->list_next = dag_h->nodes;
  442         dag_h->nodes = unblockNode;
  443 
  444         termNode = rf_AllocDAGNode();
  445         termNode->list_next = dag_h->nodes;
  446         dag_h->nodes = termNode;
  447 
  448         dag_h->succedents[0] = blockNode;
  449         rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
  450         rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
  451         unblockNode->succedents[0] = termNode;
  452         tmpNode = nodes;
  453         for (i = 0; i < nNodes; i++) {
  454                 blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode;
  455                 unblockNode->antType[i] = rf_control;
  456                 rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
  457                 tmpNode->succedents[0] = unblockNode;
  458                 tmpNode->antecedents[0] = blockNode;
  459                 tmpNode->antType[0] = rf_control;
  460                 tmpNode->params[1].p = (databuf + (i * bytesPerSU));
  461                 tmpNode = tmpNode->list_next;
  462         }
  463         rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
  464         termNode->antecedents[0] = unblockNode;
  465         termNode->antType[0] = rf_control;
  466         return (dag_h);
  467 }

Cache object: 99097d7d5250ce9f1c6a2682244f251f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.