The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ral/if_ral.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $FreeBSD: releng/6.0/sys/dev/ral/if_ral.c 151142 2005-10-09 04:15:59Z delphij $ */
    2 
    3 /*-
    4  * Copyright (c) 2005
    5  *      Damien Bergamini <damien.bergamini@free.fr>
    6  *
    7  * Permission to use, copy, modify, and distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  */
   19 
   20 #include <sys/cdefs.h>
   21 __FBSDID("$FreeBSD: releng/6.0/sys/dev/ral/if_ral.c 151142 2005-10-09 04:15:59Z delphij $");
   22 
   23 /*-
   24  * Ralink Technology RT2500 chipset driver
   25  * http://www.ralinktech.com/
   26  */
   27 
   28 #include <sys/param.h>
   29 #include <sys/sysctl.h>
   30 #include <sys/sockio.h>
   31 #include <sys/mbuf.h>
   32 #include <sys/kernel.h>
   33 #include <sys/socket.h>
   34 #include <sys/systm.h>
   35 #include <sys/malloc.h>
   36 #include <sys/module.h>
   37 #include <sys/bus.h>
   38 #include <sys/endian.h>
   39 
   40 #include <machine/bus.h>
   41 #include <machine/resource.h>
   42 #include <machine/clock.h>
   43 #include <sys/rman.h>
   44 
   45 #include <net/bpf.h>
   46 #include <net/if.h>
   47 #include <net/if_arp.h>
   48 #include <net/ethernet.h>
   49 #include <net/if_dl.h>
   50 #include <net/if_media.h>
   51 #include <net/if_types.h>
   52 
   53 #include <net80211/ieee80211_var.h>
   54 #include <net80211/ieee80211_radiotap.h>
   55 
   56 #include <netinet/in.h>
   57 #include <netinet/in_systm.h>
   58 #include <netinet/in_var.h>
   59 #include <netinet/ip.h>
   60 #include <netinet/if_ether.h>
   61 
   62 #include <dev/ral/if_ralrate.h>
   63 #include <dev/ral/if_ralreg.h>
   64 #include <dev/ral/if_ralvar.h>
   65 
   66 #ifdef RAL_DEBUG
   67 #define DPRINTF(x)      do { if (ral_debug > 0) printf x; } while (0)
   68 #define DPRINTFN(n, x)  do { if (ral_debug >= (n)) printf x; } while (0)
   69 int ral_debug = 0;
   70 SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level");
   71 #else
   72 #define DPRINTF(x)
   73 #define DPRINTFN(n, x)
   74 #endif
   75 
   76 MODULE_DEPEND(ral, wlan, 1, 1, 1);
   77 
   78 static void             ral_dma_map_addr(void *, bus_dma_segment_t *, int, int);
   79 static int              ral_alloc_tx_ring(struct ral_softc *,
   80                             struct ral_tx_ring *, int);
   81 static void             ral_reset_tx_ring(struct ral_softc *,
   82                             struct ral_tx_ring *);
   83 static void             ral_free_tx_ring(struct ral_softc *,
   84                             struct ral_tx_ring *);
   85 static int              ral_alloc_rx_ring(struct ral_softc *,
   86                             struct ral_rx_ring *, int);
   87 static void             ral_reset_rx_ring(struct ral_softc *,
   88                             struct ral_rx_ring *);
   89 static void             ral_free_rx_ring(struct ral_softc *,
   90                             struct ral_rx_ring *);
   91 static struct           ieee80211_node *ral_node_alloc(
   92                             struct ieee80211_node_table *);
   93 static int              ral_media_change(struct ifnet *);
   94 static void             ral_next_scan(void *);
   95 static void             ral_iter_func(void *, struct ieee80211_node *);
   96 static void             ral_update_rssadapt(void *);
   97 static int              ral_newstate(struct ieee80211com *,
   98                             enum ieee80211_state, int);
   99 static uint16_t         ral_eeprom_read(struct ral_softc *, uint8_t);
  100 static void             ral_encryption_intr(struct ral_softc *);
  101 static void             ral_tx_intr(struct ral_softc *);
  102 static void             ral_prio_intr(struct ral_softc *);
  103 static void             ral_decryption_intr(struct ral_softc *);
  104 static void             ral_rx_intr(struct ral_softc *);
  105 static void             ral_beacon_expire(struct ral_softc *);
  106 static void             ral_wakeup_expire(struct ral_softc *);
  107 static void             ral_intr(void *);
  108 static int              ral_ack_rate(struct ieee80211com *, int);
  109 static uint16_t         ral_txtime(int, int, uint32_t);
  110 static uint8_t          ral_plcp_signal(int);
  111 static void             ral_setup_tx_desc(struct ral_softc *,
  112                             struct ral_tx_desc *, uint32_t, int, int, int,
  113                             bus_addr_t);
  114 static int              ral_tx_bcn(struct ral_softc *, struct mbuf *,
  115                             struct ieee80211_node *);
  116 static int              ral_tx_mgt(struct ral_softc *, struct mbuf *,
  117                             struct ieee80211_node *);
  118 static struct           mbuf *ral_get_rts(struct ral_softc *,
  119                             struct ieee80211_frame *, uint16_t);
  120 static int              ral_tx_data(struct ral_softc *, struct mbuf *,
  121                             struct ieee80211_node *);
  122 static void             ral_start(struct ifnet *);
  123 static void             ral_watchdog(struct ifnet *);
  124 static int              ral_reset(struct ifnet *);
  125 static int              ral_ioctl(struct ifnet *, u_long, caddr_t);
  126 static void             ral_bbp_write(struct ral_softc *, uint8_t, uint8_t);
  127 static uint8_t          ral_bbp_read(struct ral_softc *, uint8_t);
  128 static void             ral_rf_write(struct ral_softc *, uint8_t, uint32_t);
  129 static void             ral_set_chan(struct ral_softc *,
  130                             struct ieee80211_channel *);
  131 #if 0
  132 static void             ral_disable_rf_tune(struct ral_softc *);
  133 #endif
  134 static void             ral_enable_tsf_sync(struct ral_softc *);
  135 static void             ral_update_plcp(struct ral_softc *);
  136 static void             ral_update_slot(struct ifnet *);
  137 static void             ral_update_led(struct ral_softc *, int, int);
  138 static void             ral_set_bssid(struct ral_softc *, uint8_t *);
  139 static void             ral_set_macaddr(struct ral_softc *, uint8_t *);
  140 static void             ral_get_macaddr(struct ral_softc *, uint8_t *);
  141 static void             ral_update_promisc(struct ral_softc *);
  142 static const char       *ral_get_rf(int);
  143 static void             ral_read_eeprom(struct ral_softc *);
  144 static int              ral_bbp_init(struct ral_softc *);
  145 static void             ral_set_txantenna(struct ral_softc *, int);
  146 static void             ral_set_rxantenna(struct ral_softc *, int);
  147 static void             ral_init(void *);
  148 
  149 devclass_t ral_devclass;
  150 
  151 /*
  152  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
  153  */
  154 static const struct ieee80211_rateset ral_rateset_11a =
  155         { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
  156 
  157 static const struct ieee80211_rateset ral_rateset_11b =
  158         { 4, { 2, 4, 11, 22 } };
  159 
  160 static const struct ieee80211_rateset ral_rateset_11g =
  161         { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
  162 
  163 /*
  164  * Default values for MAC registers; values taken from the reference driver.
  165  */
  166 static const struct {
  167         uint32_t        reg;
  168         uint32_t        val;
  169 } ral_def_mac[] = {
  170         { RAL_PSCSR0,      0x00020002 },
  171         { RAL_PSCSR1,      0x00000002 },
  172         { RAL_PSCSR2,      0x00020002 },
  173         { RAL_PSCSR3,      0x00000002 },
  174         { RAL_TIMECSR,     0x00003f21 },
  175         { RAL_CSR9,        0x00000780 },
  176         { RAL_CSR11,       0x07041483 },
  177         { RAL_CNT3,        0x00000000 },
  178         { RAL_TXCSR1,      0x07614562 },
  179         { RAL_ARSP_PLCP_0, 0x8c8d8b8a },
  180         { RAL_ACKPCTCSR,   0x7038140a },
  181         { RAL_ARTCSR1,     0x1d21252d },
  182         { RAL_ARTCSR2,     0x1919191d },
  183         { RAL_RXCSR0,      0xffffffff },
  184         { RAL_RXCSR3,      0xb3aab3af },
  185         { RAL_PCICSR,      0x000003b8 },
  186         { RAL_PWRCSR0,     0x3f3b3100 },
  187         { RAL_GPIOCSR,     0x0000ff00 },
  188         { RAL_TESTCSR,     0x000000f0 },
  189         { RAL_PWRCSR1,     0x000001ff },
  190         { RAL_MACCSR0,     0x00213223 },
  191         { RAL_MACCSR1,     0x00235518 },
  192         { RAL_RLPWCSR,     0x00000040 },
  193         { RAL_RALINKCSR,   0x9a009a11 },
  194         { RAL_CSR7,        0xffffffff },
  195         { RAL_BBPCSR1,     0x82188200 },
  196         { RAL_TXACKCSR0,   0x00000020 },
  197         { RAL_SECCSR3,     0x0000e78f }
  198 };
  199 
  200 /*
  201  * Default values for BBP registers; values taken from the reference driver.
  202  */
  203 static const struct {
  204         uint8_t reg;
  205         uint8_t val;
  206 } ral_def_bbp[] = {
  207         {  3, 0x02 },
  208         {  4, 0x19 },
  209         { 14, 0x1c },
  210         { 15, 0x30 },
  211         { 16, 0xac },
  212         { 17, 0x48 },
  213         { 18, 0x18 },
  214         { 19, 0xff },
  215         { 20, 0x1e },
  216         { 21, 0x08 },
  217         { 22, 0x08 },
  218         { 23, 0x08 },
  219         { 24, 0x80 },
  220         { 25, 0x50 },
  221         { 26, 0x08 },
  222         { 27, 0x23 },
  223         { 30, 0x10 },
  224         { 31, 0x2b },
  225         { 32, 0xb9 },
  226         { 34, 0x12 },
  227         { 35, 0x50 },
  228         { 39, 0xc4 },
  229         { 40, 0x02 },
  230         { 41, 0x60 },
  231         { 53, 0x10 },
  232         { 54, 0x18 },
  233         { 56, 0x08 },
  234         { 57, 0x10 },
  235         { 58, 0x08 },
  236         { 61, 0x60 },
  237         { 62, 0x10 },
  238         { 75, 0xff }
  239 };
  240 
  241 /*
  242  * Default values for RF register R2 indexed by channel numbers; values taken
  243  * from the reference driver.
  244  */
  245 static const uint32_t ral_rf2522_r2[] = {
  246         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
  247         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
  248 };
  249 
  250 static const uint32_t ral_rf2523_r2[] = {
  251         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
  252         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
  253 };
  254 
  255 static const uint32_t ral_rf2524_r2[] = {
  256         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
  257         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
  258 };
  259 
  260 static const uint32_t ral_rf2525_r2[] = {
  261         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
  262         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
  263 };
  264 
  265 static const uint32_t ral_rf2525_hi_r2[] = {
  266         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
  267         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
  268 };
  269 
  270 static const uint32_t ral_rf2525e_r2[] = {
  271         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
  272         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
  273 };
  274 
  275 static const uint32_t ral_rf2526_hi_r2[] = {
  276         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
  277         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
  278 };
  279 
  280 static const uint32_t ral_rf2526_r2[] = {
  281         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
  282         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
  283 };
  284 
  285 /*
  286  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
  287  * values taken from the reference driver.
  288  */
  289 static const struct {
  290         uint8_t         chan;
  291         uint32_t        r1;
  292         uint32_t        r2;
  293         uint32_t        r4;
  294 } ral_rf5222[] = {
  295         /* channels in the 2.4GHz band */
  296         {   1, 0x08808, 0x0044d, 0x00282 },
  297         {   2, 0x08808, 0x0044e, 0x00282 },
  298         {   3, 0x08808, 0x0044f, 0x00282 },
  299         {   4, 0x08808, 0x00460, 0x00282 },
  300         {   5, 0x08808, 0x00461, 0x00282 },
  301         {   6, 0x08808, 0x00462, 0x00282 },
  302         {   7, 0x08808, 0x00463, 0x00282 },
  303         {   8, 0x08808, 0x00464, 0x00282 },
  304         {   9, 0x08808, 0x00465, 0x00282 },
  305         {  10, 0x08808, 0x00466, 0x00282 },
  306         {  11, 0x08808, 0x00467, 0x00282 },
  307         {  12, 0x08808, 0x00468, 0x00282 },
  308         {  13, 0x08808, 0x00469, 0x00282 },
  309         {  14, 0x08808, 0x0046b, 0x00286 },
  310 
  311         /* channels in the 5.2GHz band */
  312         {  36, 0x08804, 0x06225, 0x00287 },
  313         {  40, 0x08804, 0x06226, 0x00287 },
  314         {  44, 0x08804, 0x06227, 0x00287 },
  315         {  48, 0x08804, 0x06228, 0x00287 },
  316         {  52, 0x08804, 0x06229, 0x00287 },
  317         {  56, 0x08804, 0x0622a, 0x00287 },
  318         {  60, 0x08804, 0x0622b, 0x00287 },
  319         {  64, 0x08804, 0x0622c, 0x00287 },
  320 
  321         { 100, 0x08804, 0x02200, 0x00283 },
  322         { 104, 0x08804, 0x02201, 0x00283 },
  323         { 108, 0x08804, 0x02202, 0x00283 },
  324         { 112, 0x08804, 0x02203, 0x00283 },
  325         { 116, 0x08804, 0x02204, 0x00283 },
  326         { 120, 0x08804, 0x02205, 0x00283 },
  327         { 124, 0x08804, 0x02206, 0x00283 },
  328         { 128, 0x08804, 0x02207, 0x00283 },
  329         { 132, 0x08804, 0x02208, 0x00283 },
  330         { 136, 0x08804, 0x02209, 0x00283 },
  331         { 140, 0x08804, 0x0220a, 0x00283 },
  332 
  333         { 149, 0x08808, 0x02429, 0x00281 },
  334         { 153, 0x08808, 0x0242b, 0x00281 },
  335         { 157, 0x08808, 0x0242d, 0x00281 },
  336         { 161, 0x08808, 0x0242f, 0x00281 }
  337 };
  338 
  339 int
  340 ral_attach(device_t dev)
  341 {
  342         struct ral_softc *sc = device_get_softc(dev);
  343         struct ifnet *ifp;
  344         struct ieee80211com *ic = &sc->sc_ic;
  345         int error, i;
  346 
  347         sc->sc_dev = dev;
  348 
  349         mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  350             MTX_DEF | MTX_RECURSE);
  351 
  352         callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
  353         callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
  354 
  355         /* retrieve RT2560 rev. no */
  356         sc->asic_rev = RAL_READ(sc, RAL_CSR0);
  357 
  358         /* retrieve MAC address */
  359         ral_get_macaddr(sc, ic->ic_myaddr);
  360 
  361         /* retrieve RF rev. no and various other things from EEPROM */
  362         ral_read_eeprom(sc);
  363 
  364         device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
  365             sc->asic_rev, ral_get_rf(sc->rf_rev));
  366 
  367         /*
  368          * Allocate Tx and Rx rings.
  369          */
  370         if (ral_alloc_tx_ring(sc, &sc->txq, RAL_TX_RING_COUNT) != 0) {
  371                 device_printf(sc->sc_dev, "could not allocate Tx ring\n");
  372                 goto fail1;
  373         }
  374 
  375         if (ral_alloc_tx_ring(sc, &sc->atimq, RAL_ATIM_RING_COUNT) != 0) {
  376                 device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
  377                 goto fail2;
  378         }
  379 
  380         if (ral_alloc_tx_ring(sc, &sc->prioq, RAL_PRIO_RING_COUNT) != 0) {
  381                 device_printf(sc->sc_dev, "could not allocate Prio ring\n");
  382                 goto fail3;
  383         }
  384 
  385         if (ral_alloc_tx_ring(sc, &sc->bcnq, RAL_BEACON_RING_COUNT) != 0) {
  386                 device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
  387                 goto fail4;
  388         }
  389 
  390         if (ral_alloc_rx_ring(sc, &sc->rxq, RAL_RX_RING_COUNT) != 0) {
  391                 device_printf(sc->sc_dev, "could not allocate Rx ring\n");
  392                 goto fail5;
  393         }
  394         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
  395         if (ifp == NULL) {
  396                 device_printf(sc->sc_dev, "can not if_alloc()\n");
  397                 goto fail6;
  398         }
  399         ifp->if_softc = sc;
  400         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  401         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  402         ifp->if_init = ral_init;
  403         ifp->if_ioctl = ral_ioctl;
  404         ifp->if_start = ral_start;
  405         ifp->if_watchdog = ral_watchdog;
  406         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
  407         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
  408         IFQ_SET_READY(&ifp->if_snd);
  409 
  410         ic->ic_ifp = ifp;
  411         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
  412         ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
  413         ic->ic_state = IEEE80211_S_INIT;
  414 
  415         /* set device capabilities */
  416         ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS |
  417             IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT |
  418             IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WPA;
  419 
  420         if (sc->rf_rev == RAL_RF_5222) {
  421                 /* set supported .11a rates */
  422                 ic->ic_sup_rates[IEEE80211_MODE_11A] = ral_rateset_11a;
  423 
  424                 /* set supported .11a channels */
  425                 for (i = 36; i <= 64; i += 4) {
  426                         ic->ic_channels[i].ic_freq =
  427                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
  428                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
  429                 }
  430                 for (i = 100; i <= 140; i += 4) {
  431                         ic->ic_channels[i].ic_freq =
  432                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
  433                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
  434                 }
  435                 for (i = 149; i <= 161; i += 4) {
  436                         ic->ic_channels[i].ic_freq =
  437                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
  438                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
  439                 }
  440         }
  441 
  442         /* set supported .11b and .11g rates */
  443         ic->ic_sup_rates[IEEE80211_MODE_11B] = ral_rateset_11b;
  444         ic->ic_sup_rates[IEEE80211_MODE_11G] = ral_rateset_11g;
  445 
  446         /* set supported .11b and .11g channels (1 through 14) */
  447         for (i = 1; i <= 14; i++) {
  448                 ic->ic_channels[i].ic_freq =
  449                     ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
  450                 ic->ic_channels[i].ic_flags =
  451                     IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
  452                     IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
  453         }
  454 
  455         ieee80211_ifattach(ic);
  456         ic->ic_node_alloc = ral_node_alloc;
  457         ic->ic_updateslot = ral_update_slot;
  458         ic->ic_reset = ral_reset;
  459 
  460         /* override state transition machine */
  461         sc->sc_newstate = ic->ic_newstate;
  462         ic->ic_newstate = ral_newstate;
  463         ieee80211_media_init(ic, ral_media_change, ieee80211_media_status);
  464 
  465         bpfattach2(ifp, DLT_IEEE802_11_RADIO,
  466             sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
  467 
  468         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
  469         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
  470         sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
  471 
  472         sc->sc_txtap_len = sizeof sc->sc_txtapu;
  473         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
  474         sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
  475 
  476         /*
  477          * Add a few sysctl knobs.
  478          */
  479         sc->dwelltime = 200;
  480 
  481         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
  482             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
  483             "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
  484 
  485         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
  486             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
  487             "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
  488 
  489         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
  490             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
  491             CTLFLAG_RW, &sc->dwelltime, 0,
  492             "channel dwell time (ms) for AP/station scanning");
  493 
  494         /*
  495          * Hook our interrupt after all initialization is complete.
  496          */
  497         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
  498             ral_intr, sc, &sc->sc_ih);
  499         if (error != 0) {
  500                 device_printf(dev, "could not set up interrupt\n");
  501                 goto fail7;
  502         }
  503 
  504         if (bootverbose)
  505                 ieee80211_announce(ic);
  506 
  507         return 0;
  508 
  509 fail7:  bpfdetach(ifp);
  510         ieee80211_ifdetach(ic);
  511         if_free(ifp);
  512 fail6:  ral_free_rx_ring(sc, &sc->rxq);
  513 fail5:  ral_free_tx_ring(sc, &sc->bcnq);
  514 fail4:  ral_free_tx_ring(sc, &sc->prioq);
  515 fail3:  ral_free_tx_ring(sc, &sc->atimq);
  516 fail2:  ral_free_tx_ring(sc, &sc->txq);
  517 fail1:  mtx_destroy(&sc->sc_mtx);
  518 
  519         return ENXIO;
  520 }
  521 
  522 int
  523 ral_detach(device_t dev)
  524 {
  525         struct ral_softc *sc = device_get_softc(dev);
  526         struct ieee80211com *ic = &sc->sc_ic;
  527         struct ifnet *ifp = ic->ic_ifp;
  528 
  529         callout_stop(&sc->scan_ch);
  530         callout_stop(&sc->rssadapt_ch);
  531 
  532         bpfdetach(ifp);
  533         ieee80211_ifdetach(ic);
  534         if_free(ifp);
  535 
  536         ral_free_tx_ring(sc, &sc->txq);
  537         ral_free_tx_ring(sc, &sc->atimq);
  538         ral_free_tx_ring(sc, &sc->prioq);
  539         ral_free_tx_ring(sc, &sc->bcnq);
  540         ral_free_rx_ring(sc, &sc->rxq);
  541 
  542         bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  543         ral_free(dev);
  544 
  545         mtx_destroy(&sc->sc_mtx);
  546 
  547         return 0;
  548 }
  549 
  550 void
  551 ral_shutdown(device_t dev)
  552 {
  553         struct ral_softc *sc = device_get_softc(dev);
  554 
  555         ral_stop(sc);
  556 }
  557 
  558 int
  559 ral_alloc(device_t dev, int rid)
  560 {
  561         struct ral_softc *sc = device_get_softc(dev);
  562 
  563         sc->mem_rid = rid;
  564         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
  565             RF_ACTIVE);
  566         if (sc->mem == NULL) {
  567                 device_printf(dev, "could not allocate memory resource\n");
  568                 return ENXIO;
  569         }
  570 
  571         sc->sc_st = rman_get_bustag(sc->mem);
  572         sc->sc_sh = rman_get_bushandle(sc->mem);
  573 
  574         sc->irq_rid = 0;
  575         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
  576             RF_ACTIVE | RF_SHAREABLE);
  577         if (sc->irq == NULL) {
  578                 device_printf(dev, "could not allocate interrupt resource\n");
  579                 ral_free(dev);
  580                 return ENXIO;
  581         }
  582 
  583         return 0;
  584 }
  585 
  586 void
  587 ral_free(device_t dev)
  588 {
  589         struct ral_softc *sc = device_get_softc(dev);
  590 
  591         if (sc->irq != NULL) {
  592                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
  593                 sc->irq = NULL;
  594         }
  595 
  596         if (sc->mem != NULL) {
  597                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
  598                 sc->mem = NULL;
  599         }
  600 }
  601 
  602 static void
  603 ral_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  604 {
  605         if (error != 0)
  606                 return;
  607 
  608         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
  609 
  610         *(bus_addr_t *)arg = segs[0].ds_addr;
  611 }
  612 
  613 static int
  614 ral_alloc_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring, int count)
  615 {
  616         int i, error;
  617 
  618         ring->count = count;
  619         ring->queued = 0;
  620         ring->cur = ring->next = 0;
  621         ring->cur_encrypt = ring->next_encrypt = 0;
  622 
  623         error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
  624             BUS_SPACE_MAXADDR, NULL, NULL, count * RAL_TX_DESC_SIZE, 1,
  625             count * RAL_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
  626         if (error != 0) {
  627                 device_printf(sc->sc_dev, "could not create desc DMA tag\n");
  628                 goto fail;
  629         }
  630 
  631         error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
  632             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
  633         if (error != 0) {
  634                 device_printf(sc->sc_dev, "could not allocate DMA memory\n");
  635                 goto fail;
  636         }
  637 
  638         error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
  639             count * RAL_TX_DESC_SIZE, ral_dma_map_addr, &ring->physaddr, 0);
  640         if (error != 0) {
  641                 device_printf(sc->sc_dev, "could not load desc DMA map\n");
  642                 goto fail;
  643         }
  644 
  645         ring->data = malloc(count * sizeof (struct ral_tx_data), M_DEVBUF,
  646             M_NOWAIT | M_ZERO);
  647         if (ring->data == NULL) {
  648                 device_printf(sc->sc_dev, "could not allocate soft data\n");
  649                 error = ENOMEM;
  650                 goto fail;
  651         }
  652 
  653         error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
  654             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RAL_MAX_SCATTER, MCLBYTES,
  655             0, NULL, NULL, &ring->data_dmat);
  656         if (error != 0) {
  657                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
  658                 goto fail;
  659         }
  660 
  661         for (i = 0; i < count; i++) {
  662                 error = bus_dmamap_create(ring->data_dmat, 0,
  663                     &ring->data[i].map);
  664                 if (error != 0) {
  665                         device_printf(sc->sc_dev, "could not create DMA map\n");
  666                         goto fail;
  667                 }
  668         }
  669 
  670         return 0;
  671 
  672 fail:   ral_free_tx_ring(sc, ring);
  673         return error;
  674 }
  675 
  676 static void
  677 ral_reset_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring)
  678 {
  679         struct ral_tx_desc *desc;
  680         struct ral_tx_data *data;
  681         int i;
  682 
  683         for (i = 0; i < ring->count; i++) {
  684                 desc = &ring->desc[i];
  685                 data = &ring->data[i];
  686 
  687                 if (data->m != NULL) {
  688                         bus_dmamap_sync(ring->data_dmat, data->map,
  689                             BUS_DMASYNC_POSTWRITE);
  690                         bus_dmamap_unload(ring->data_dmat, data->map);
  691                         m_freem(data->m);
  692                         data->m = NULL;
  693                 }
  694 
  695                 if (data->ni != NULL) {
  696                         ieee80211_free_node(data->ni);
  697                         data->ni = NULL;
  698                 }
  699 
  700                 desc->flags = 0;
  701         }
  702 
  703         bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
  704 
  705         ring->queued = 0;
  706         ring->cur = ring->next = 0;
  707         ring->cur_encrypt = ring->next_encrypt = 0;
  708 }
  709 
  710 static void
  711 ral_free_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring)
  712 {
  713         struct ral_tx_data *data;
  714         int i;
  715 
  716         if (ring->desc != NULL) {
  717                 bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
  718                     BUS_DMASYNC_POSTWRITE);
  719                 bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
  720                 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
  721         }
  722 
  723         if (ring->desc_dmat != NULL)
  724                 bus_dma_tag_destroy(ring->desc_dmat);
  725 
  726         if (ring->data != NULL) {
  727                 for (i = 0; i < ring->count; i++) {
  728                         data = &ring->data[i];
  729 
  730                         if (data->m != NULL) {
  731                                 bus_dmamap_sync(ring->data_dmat, data->map,
  732                                     BUS_DMASYNC_POSTWRITE);
  733                                 bus_dmamap_unload(ring->data_dmat, data->map);
  734                                 m_freem(data->m);
  735                         }
  736 
  737                         if (data->ni != NULL)
  738                                 ieee80211_free_node(data->ni);
  739 
  740                         if (data->map != NULL)
  741                                 bus_dmamap_destroy(ring->data_dmat, data->map);
  742                 }
  743 
  744                 free(ring->data, M_DEVBUF);
  745         }
  746 
  747         if (ring->data_dmat != NULL)
  748                 bus_dma_tag_destroy(ring->data_dmat);
  749 }
  750 
  751 static int
  752 ral_alloc_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring, int count)
  753 {
  754         struct ral_rx_desc *desc;
  755         struct ral_rx_data *data;
  756         bus_addr_t physaddr;
  757         int i, error;
  758 
  759         ring->count = count;
  760         ring->cur = ring->next = 0;
  761         ring->cur_decrypt = 0;
  762 
  763         error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
  764             BUS_SPACE_MAXADDR, NULL, NULL, count * RAL_RX_DESC_SIZE, 1,
  765             count * RAL_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
  766         if (error != 0) {
  767                 device_printf(sc->sc_dev, "could not create desc DMA tag\n");
  768                 goto fail;
  769         }
  770 
  771         error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
  772             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
  773         if (error != 0) {
  774                 device_printf(sc->sc_dev, "could not allocate DMA memory\n");
  775                 goto fail;
  776         }
  777 
  778         error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
  779             count * RAL_RX_DESC_SIZE, ral_dma_map_addr, &ring->physaddr, 0);
  780         if (error != 0) {
  781                 device_printf(sc->sc_dev, "could not load desc DMA map\n");
  782                 goto fail;
  783         }
  784 
  785         ring->data = malloc(count * sizeof (struct ral_rx_data), M_DEVBUF,
  786             M_NOWAIT | M_ZERO);
  787         if (ring->data == NULL) {
  788                 device_printf(sc->sc_dev, "could not allocate soft data\n");
  789                 error = ENOMEM;
  790                 goto fail;
  791         }
  792 
  793         /*
  794          * Pre-allocate Rx buffers and populate Rx ring.
  795          */
  796         error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
  797             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
  798             NULL, &ring->data_dmat);
  799         if (error != 0) {
  800                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
  801                 goto fail;
  802         }
  803 
  804         for (i = 0; i < count; i++) {
  805                 desc = &sc->rxq.desc[i];
  806                 data = &sc->rxq.data[i];
  807 
  808                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
  809                 if (error != 0) {
  810                         device_printf(sc->sc_dev, "could not create DMA map\n");
  811                         goto fail;
  812                 }
  813 
  814                 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
  815                 if (data->m == NULL) {
  816                         device_printf(sc->sc_dev,
  817                             "could not allocate rx mbuf\n");
  818                         error = ENOMEM;
  819                         goto fail;
  820                 }
  821 
  822                 error = bus_dmamap_load(ring->data_dmat, data->map,
  823                     mtod(data->m, void *), MCLBYTES, ral_dma_map_addr,
  824                     &physaddr, 0);
  825                 if (error != 0) {
  826                         device_printf(sc->sc_dev,
  827                             "could not load rx buf DMA map");
  828                         goto fail;
  829                 }
  830 
  831                 desc->flags = htole32(RAL_RX_BUSY);
  832                 desc->physaddr = htole32(physaddr);
  833         }
  834 
  835         bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
  836 
  837         return 0;
  838 
  839 fail:   ral_free_rx_ring(sc, ring);
  840         return error;
  841 }
  842 
  843 static void
  844 ral_reset_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring)
  845 {
  846         int i;
  847 
  848         for (i = 0; i < ring->count; i++) {
  849                 ring->desc[i].flags = htole32(RAL_RX_BUSY);
  850                 ring->data[i].drop = 0;
  851         }
  852 
  853         bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
  854 
  855         ring->cur = ring->next = 0;
  856         ring->cur_decrypt = 0;
  857 }
  858 
  859 static void
  860 ral_free_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring)
  861 {
  862         struct ral_rx_data *data;
  863         int i;
  864 
  865         if (ring->desc != NULL) {
  866                 bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
  867                     BUS_DMASYNC_POSTWRITE);
  868                 bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
  869                 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
  870         }
  871 
  872         if (ring->desc_dmat != NULL)
  873                 bus_dma_tag_destroy(ring->desc_dmat);
  874 
  875         if (ring->data != NULL) {
  876                 for (i = 0; i < ring->count; i++) {
  877                         data = &ring->data[i];
  878 
  879                         if (data->m != NULL) {
  880                                 bus_dmamap_sync(ring->data_dmat, data->map,
  881                                     BUS_DMASYNC_POSTREAD);
  882                                 bus_dmamap_unload(ring->data_dmat, data->map);
  883                                 m_freem(data->m);
  884                         }
  885 
  886                         if (data->map != NULL)
  887                                 bus_dmamap_destroy(ring->data_dmat, data->map);
  888                 }
  889 
  890                 free(ring->data, M_DEVBUF);
  891         }
  892 
  893         if (ring->data_dmat != NULL)
  894                 bus_dma_tag_destroy(ring->data_dmat);
  895 }
  896 
  897 static struct ieee80211_node *
  898 ral_node_alloc(struct ieee80211_node_table *nt)
  899 {
  900         struct ral_node *rn;
  901 
  902         rn = malloc(sizeof (struct ral_node), M_80211_NODE, M_NOWAIT | M_ZERO);
  903 
  904         return (rn != NULL) ? &rn->ni : NULL;
  905 }
  906 
  907 static int
  908 ral_media_change(struct ifnet *ifp)
  909 {
  910         struct ral_softc *sc = ifp->if_softc;
  911         int error;
  912 
  913         error = ieee80211_media_change(ifp);
  914         if (error != ENETRESET)
  915                 return error;
  916 
  917         if ((ifp->if_flags & IFF_UP) &&
  918             (ifp->if_drv_flags & IFF_DRV_RUNNING))
  919                 ral_init(sc);
  920 
  921         return 0;
  922 }
  923 
  924 /*
  925  * This function is called periodically (every 200ms) during scanning to
  926  * switch from one channel to another.
  927  */
  928 static void
  929 ral_next_scan(void *arg)
  930 {
  931         struct ral_softc *sc = arg;
  932         struct ieee80211com *ic = &sc->sc_ic;
  933 
  934         if (ic->ic_state == IEEE80211_S_SCAN)
  935                 ieee80211_next_scan(ic);
  936 }
  937 
  938 /*
  939  * This function is called for each node present in the node station table.
  940  */
  941 static void
  942 ral_iter_func(void *arg, struct ieee80211_node *ni)
  943 {
  944         struct ral_node *rn = (struct ral_node *)ni;
  945 
  946         ral_rssadapt_updatestats(&rn->rssadapt);
  947 }
  948 
  949 /*
  950  * This function is called periodically (every 100ms) in RUN state to update
  951  * the rate adaptation statistics.
  952  */
  953 static void
  954 ral_update_rssadapt(void *arg)
  955 {
  956         struct ral_softc *sc = arg;
  957         struct ieee80211com *ic = &sc->sc_ic;
  958 
  959         RAL_LOCK(sc);
  960 
  961         ieee80211_iterate_nodes(&ic->ic_sta, ral_iter_func, arg);
  962         callout_reset(&sc->rssadapt_ch, hz / 10, ral_update_rssadapt, sc);
  963 
  964         RAL_UNLOCK(sc);
  965 }
  966 
  967 static int
  968 ral_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
  969 {
  970         struct ral_softc *sc = ic->ic_ifp->if_softc;
  971         struct mbuf *m;
  972         enum ieee80211_state ostate;
  973         int error = 0;
  974 
  975         ostate = ic->ic_state;
  976         callout_stop(&sc->scan_ch);
  977 
  978         switch (nstate) {
  979         case IEEE80211_S_INIT:
  980                 callout_stop(&sc->rssadapt_ch);
  981 
  982                 if (ostate == IEEE80211_S_RUN) {
  983                         /* abort TSF synchronization */
  984                         RAL_WRITE(sc, RAL_CSR14, 0);
  985 
  986                         /* turn association led off */
  987                         ral_update_led(sc, 0, 0);
  988                 }
  989                 break;
  990 
  991         case IEEE80211_S_SCAN:
  992                 ral_set_chan(sc, ic->ic_curchan);
  993                 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
  994                     ral_next_scan, sc);
  995                 break;
  996 
  997         case IEEE80211_S_AUTH:
  998                 ral_set_chan(sc, ic->ic_curchan);
  999                 break;
 1000 
 1001         case IEEE80211_S_ASSOC:
 1002                 ral_set_chan(sc, ic->ic_curchan);
 1003                 break;
 1004 
 1005         case IEEE80211_S_RUN:
 1006                 ral_set_chan(sc, ic->ic_curchan);
 1007 
 1008                 /* update basic rate set */
 1009                 if (ic->ic_curmode == IEEE80211_MODE_11B) {
 1010                         /* 11b basic rates: 1, 2Mbps */
 1011                         RAL_WRITE(sc, RAL_ARSP_PLCP_1, 0x3);
 1012                 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
 1013                         /* 11a basic rates: 6, 12, 24Mbps */
 1014                         RAL_WRITE(sc, RAL_ARSP_PLCP_1, 0x150);
 1015                 } else {
 1016                         /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
 1017                         RAL_WRITE(sc, RAL_ARSP_PLCP_1, 0x15f);
 1018                 }
 1019 
 1020                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
 1021                         ral_set_bssid(sc, ic->ic_bss->ni_bssid);
 1022 
 1023                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
 1024                     ic->ic_opmode == IEEE80211_M_IBSS) {
 1025                         m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
 1026                         if (m == NULL) {
 1027                                 device_printf(sc->sc_dev,
 1028                                     "could not allocate beacon\n");
 1029                                 error = ENOBUFS;
 1030                                 break;
 1031                         }
 1032 
 1033                         ieee80211_ref_node(ic->ic_bss);
 1034                         error = ral_tx_bcn(sc, m, ic->ic_bss);
 1035                         if (error != 0)
 1036                                 break;
 1037                 }
 1038 
 1039                 /* turn assocation led on */
 1040                 ral_update_led(sc, 1, 0);
 1041 
 1042                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
 1043                         callout_reset(&sc->rssadapt_ch, hz / 10,
 1044                             ral_update_rssadapt, sc);
 1045 
 1046                         ral_enable_tsf_sync(sc);
 1047                 }
 1048                 break;
 1049         }
 1050 
 1051         return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
 1052 }
 1053 
 1054 /*
 1055  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
 1056  * 93C66).
 1057  */
 1058 static uint16_t
 1059 ral_eeprom_read(struct ral_softc *sc, uint8_t addr)
 1060 {
 1061         uint32_t tmp;
 1062         uint16_t val;
 1063         int n;
 1064 
 1065         /* clock C once before the first command */
 1066         RAL_EEPROM_CTL(sc, 0);
 1067 
 1068         RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
 1069         RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C);
 1070         RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
 1071 
 1072         /* write start bit (1) */
 1073         RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D);
 1074         RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D | RAL_EEPROM_C);
 1075 
 1076         /* write READ opcode (10) */
 1077         RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D);
 1078         RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D | RAL_EEPROM_C);
 1079         RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
 1080         RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C);
 1081 
 1082         /* write address (A5-A0 or A7-A0) */
 1083         n = (RAL_READ(sc, RAL_CSR21) & RAL_EEPROM_93C46) ? 5 : 7;
 1084         for (; n >= 0; n--) {
 1085                 RAL_EEPROM_CTL(sc, RAL_EEPROM_S |
 1086                     (((addr >> n) & 1) << RAL_EEPROM_SHIFT_D));
 1087                 RAL_EEPROM_CTL(sc, RAL_EEPROM_S |
 1088                     (((addr >> n) & 1) << RAL_EEPROM_SHIFT_D) | RAL_EEPROM_C);
 1089         }
 1090 
 1091         RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
 1092 
 1093         /* read data Q15-Q0 */
 1094         val = 0;
 1095         for (n = 15; n >= 0; n--) {
 1096                 RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C);
 1097                 tmp = RAL_READ(sc, RAL_CSR21);
 1098                 val |= ((tmp & RAL_EEPROM_Q) >> RAL_EEPROM_SHIFT_Q) << n;
 1099                 RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
 1100         }
 1101 
 1102         RAL_EEPROM_CTL(sc, 0);
 1103 
 1104         /* clear Chip Select and clock C */
 1105         RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
 1106         RAL_EEPROM_CTL(sc, 0);
 1107         RAL_EEPROM_CTL(sc, RAL_EEPROM_C);
 1108 
 1109         return le16toh(val);
 1110 }
 1111 
 1112 /*
 1113  * Some frames were processed by the hardware cipher engine and are ready for
 1114  * transmission.
 1115  */
 1116 static void
 1117 ral_encryption_intr(struct ral_softc *sc)
 1118 {
 1119         struct ral_tx_desc *desc;
 1120         int hw;
 1121 
 1122         /* retrieve last descriptor index processed by cipher engine */
 1123         hw = (RAL_READ(sc, RAL_SECCSR1) - sc->txq.physaddr) / RAL_TX_DESC_SIZE;
 1124 
 1125         bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
 1126             BUS_DMASYNC_POSTREAD);
 1127 
 1128         for (; sc->txq.next_encrypt != hw;) {
 1129                 desc = &sc->txq.desc[sc->txq.next_encrypt];
 1130 
 1131                 if ((le32toh(desc->flags) & RAL_TX_BUSY) ||
 1132                     (le32toh(desc->flags) & RAL_TX_CIPHER_BUSY))
 1133                         break;
 1134 
 1135                 /* for TKIP, swap eiv field to fix a bug in ASIC */
 1136                 if ((le32toh(desc->flags) & RAL_TX_CIPHER_MASK) ==
 1137                     RAL_TX_CIPHER_TKIP)
 1138                         desc->eiv = bswap32(desc->eiv);
 1139 
 1140                 /* mark the frame ready for transmission */
 1141                 desc->flags |= htole32(RAL_TX_BUSY | RAL_TX_VALID);
 1142 
 1143                 DPRINTFN(15, ("encryption done idx=%u\n",
 1144                     sc->txq.next_encrypt));
 1145 
 1146                 sc->txq.next_encrypt =
 1147                     (sc->txq.next_encrypt + 1) % RAL_TX_RING_COUNT;
 1148         }
 1149 
 1150         bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
 1151             BUS_DMASYNC_PREWRITE);
 1152 
 1153         /* kick Tx */
 1154         RAL_WRITE(sc, RAL_TXCSR0, RAL_KICK_TX);
 1155 }
 1156 
 1157 static void
 1158 ral_tx_intr(struct ral_softc *sc)
 1159 {
 1160         struct ieee80211com *ic = &sc->sc_ic;
 1161         struct ifnet *ifp = ic->ic_ifp;
 1162         struct ral_tx_desc *desc;
 1163         struct ral_tx_data *data;
 1164         struct ral_node *rn;
 1165 
 1166         bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
 1167             BUS_DMASYNC_POSTREAD);
 1168 
 1169         for (;;) {
 1170                 desc = &sc->txq.desc[sc->txq.next];
 1171                 data = &sc->txq.data[sc->txq.next];
 1172 
 1173                 if ((le32toh(desc->flags) & RAL_TX_BUSY) ||
 1174                     (le32toh(desc->flags) & RAL_TX_CIPHER_BUSY) ||
 1175                     !(le32toh(desc->flags) & RAL_TX_VALID))
 1176                         break;
 1177 
 1178                 rn = (struct ral_node *)data->ni;
 1179 
 1180                 switch (le32toh(desc->flags) & RAL_TX_RESULT_MASK) {
 1181                 case RAL_TX_SUCCESS:
 1182                         DPRINTFN(10, ("data frame sent successfully\n"));
 1183                         if (data->id.id_node != NULL) {
 1184                                 ral_rssadapt_raise_rate(ic, &rn->rssadapt,
 1185                                     &data->id);
 1186                         }
 1187                         ifp->if_opackets++;
 1188                         break;
 1189 
 1190                 case RAL_TX_SUCCESS_RETRY:
 1191                         DPRINTFN(9, ("data frame sent after %u retries\n",
 1192                             (le32toh(desc->flags) >> 5) & 0x7));
 1193                         ifp->if_opackets++;
 1194                         break;
 1195 
 1196                 case RAL_TX_FAIL_RETRY:
 1197                         DPRINTFN(9, ("sending data frame failed (too much "
 1198                             "retries)\n"));
 1199                         if (data->id.id_node != NULL) {
 1200                                 ral_rssadapt_lower_rate(ic, data->ni,
 1201                                     &rn->rssadapt, &data->id);
 1202                         }
 1203                         ifp->if_oerrors++;
 1204                         break;
 1205 
 1206                 case RAL_TX_FAIL_INVALID:
 1207                 case RAL_TX_FAIL_OTHER:
 1208                 default:
 1209                         device_printf(sc->sc_dev, "sending data frame failed "
 1210                             "0x%08x\n", le32toh(desc->flags));
 1211                         ifp->if_oerrors++;
 1212                 }
 1213 
 1214                 bus_dmamap_sync(sc->txq.data_dmat, data->map,
 1215                     BUS_DMASYNC_POSTWRITE);
 1216                 bus_dmamap_unload(sc->txq.data_dmat, data->map);
 1217                 m_freem(data->m);
 1218                 data->m = NULL;
 1219                 ieee80211_free_node(data->ni);
 1220                 data->ni = NULL;
 1221 
 1222                 /* descriptor is no longer valid */
 1223                 desc->flags &= ~htole32(RAL_TX_VALID);
 1224 
 1225                 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
 1226 
 1227                 sc->txq.queued--;
 1228                 sc->txq.next = (sc->txq.next + 1) % RAL_TX_RING_COUNT;
 1229         }
 1230 
 1231         bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
 1232             BUS_DMASYNC_PREWRITE);
 1233 
 1234         sc->sc_tx_timer = 0;
 1235         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1236         ral_start(ifp);
 1237 }
 1238 
 1239 static void
 1240 ral_prio_intr(struct ral_softc *sc)
 1241 {
 1242         struct ieee80211com *ic = &sc->sc_ic;
 1243         struct ifnet *ifp = ic->ic_ifp;
 1244         struct ral_tx_desc *desc;
 1245         struct ral_tx_data *data;
 1246 
 1247         bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
 1248             BUS_DMASYNC_POSTREAD);
 1249 
 1250         for (;;) {
 1251                 desc = &sc->prioq.desc[sc->prioq.next];
 1252                 data = &sc->prioq.data[sc->prioq.next];
 1253 
 1254                 if ((le32toh(desc->flags) & RAL_TX_BUSY) ||
 1255                     !(le32toh(desc->flags) & RAL_TX_VALID))
 1256                         break;
 1257 
 1258                 switch (le32toh(desc->flags) & RAL_TX_RESULT_MASK) {
 1259                 case RAL_TX_SUCCESS:
 1260                         DPRINTFN(10, ("mgt frame sent successfully\n"));
 1261                         break;
 1262 
 1263                 case RAL_TX_SUCCESS_RETRY:
 1264                         DPRINTFN(9, ("mgt frame sent after %u retries\n",
 1265                             (le32toh(desc->flags) >> 5) & 0x7));
 1266                         break;
 1267 
 1268                 case RAL_TX_FAIL_RETRY:
 1269                         DPRINTFN(9, ("sending mgt frame failed (too much "
 1270                             "retries)\n"));
 1271                         break;
 1272 
 1273                 case RAL_TX_FAIL_INVALID:
 1274                 case RAL_TX_FAIL_OTHER:
 1275                 default:
 1276                         device_printf(sc->sc_dev, "sending mgt frame failed "
 1277                             "0x%08x\n", le32toh(desc->flags));
 1278                 }
 1279 
 1280                 bus_dmamap_sync(sc->prioq.data_dmat, data->map,
 1281                     BUS_DMASYNC_POSTWRITE);
 1282                 bus_dmamap_unload(sc->prioq.data_dmat, data->map);
 1283                 m_freem(data->m);
 1284                 data->m = NULL;
 1285                 ieee80211_free_node(data->ni);
 1286                 data->ni = NULL;
 1287 
 1288                 /* descriptor is no longer valid */
 1289                 desc->flags &= ~htole32(RAL_TX_VALID);
 1290 
 1291                 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
 1292 
 1293                 sc->prioq.queued--;
 1294                 sc->prioq.next = (sc->prioq.next + 1) % RAL_PRIO_RING_COUNT;
 1295         }
 1296 
 1297         bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
 1298             BUS_DMASYNC_PREWRITE);
 1299 
 1300         sc->sc_tx_timer = 0;
 1301         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1302         ral_start(ifp);
 1303 }
 1304 
 1305 /*
 1306  * Some frames were processed by the hardware cipher engine and are ready for
 1307  * transmission to the IEEE802.11 layer.
 1308  */
 1309 static void
 1310 ral_decryption_intr(struct ral_softc *sc)
 1311 {
 1312         struct ieee80211com *ic = &sc->sc_ic;
 1313         struct ifnet *ifp = ic->ic_ifp;
 1314         struct ral_rx_desc *desc;
 1315         struct ral_rx_data *data;
 1316         bus_addr_t physaddr;
 1317         struct ieee80211_frame *wh;
 1318         struct ieee80211_node *ni;
 1319         struct ral_node *rn;
 1320         struct mbuf *m;
 1321         int hw, error;
 1322 
 1323         /* retrieve last decriptor index processed by cipher engine */
 1324         hw = (RAL_READ(sc, RAL_SECCSR0) - sc->rxq.physaddr) / RAL_RX_DESC_SIZE;
 1325 
 1326         bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
 1327             BUS_DMASYNC_POSTREAD);
 1328 
 1329         for (; sc->rxq.cur_decrypt != hw;) {
 1330                 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
 1331                 data = &sc->rxq.data[sc->rxq.cur_decrypt];
 1332 
 1333                 if ((le32toh(desc->flags) & RAL_RX_BUSY) ||
 1334                     (le32toh(desc->flags) & RAL_RX_CIPHER_BUSY))
 1335                         break;
 1336 
 1337                 if (data->drop) {
 1338                         ifp->if_ierrors++;
 1339                         goto skip;
 1340                 }
 1341 
 1342                 if ((le32toh(desc->flags) & RAL_RX_CIPHER_MASK) != 0 &&
 1343                     (le32toh(desc->flags) & RAL_RX_ICV_ERROR)) {
 1344                         ifp->if_ierrors++;
 1345                         goto skip;
 1346                 }
 1347 
 1348                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 1349                     BUS_DMASYNC_POSTREAD);
 1350                 bus_dmamap_unload(sc->rxq.data_dmat, data->map);
 1351 
 1352                 /* finalize mbuf */
 1353                 m = data->m;
 1354                 m->m_pkthdr.rcvif = ifp;
 1355                 m->m_pkthdr.len = m->m_len =
 1356                     (le32toh(desc->flags) >> 16) & 0xfff;
 1357 
 1358                 if (sc->sc_drvbpf != NULL) {
 1359                         struct ral_rx_radiotap_header *tap = &sc->sc_rxtap;
 1360                         uint32_t tsf_lo, tsf_hi;
 1361 
 1362                         /* get timestamp (low and high 32 bits) */
 1363                         tsf_lo = RAL_READ(sc, RAL_CSR16);
 1364                         tsf_hi = RAL_READ(sc, RAL_CSR17);
 1365 
 1366                         tap->wr_tsf =
 1367                             htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
 1368                         tap->wr_flags = 0;
 1369                         tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
 1370                         tap->wr_chan_flags =
 1371                             htole16(ic->ic_ibss_chan->ic_flags);
 1372                         tap->wr_antenna = sc->rx_ant;
 1373                         tap->wr_antsignal = desc->rssi;
 1374 
 1375                         bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
 1376                 }
 1377 
 1378                 wh = mtod(m, struct ieee80211_frame *);
 1379                 ni = ieee80211_find_rxnode(ic,
 1380                     (struct ieee80211_frame_min *)wh);
 1381 
 1382                 /* send the frame to the 802.11 layer */
 1383                 ieee80211_input(ic, m, ni, desc->rssi, 0);
 1384 
 1385                 /* give rssi to the rate adatation algorithm */
 1386                 rn = (struct ral_node *)ni;
 1387                 ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
 1388 
 1389                 /* node is no longer needed */
 1390                 ieee80211_free_node(ni);
 1391 
 1392                 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1393                 if (data->m == NULL) {
 1394                         device_printf(sc->sc_dev,
 1395                             "could not allocate rx mbuf\n");
 1396                         break;
 1397                 }
 1398 
 1399                 error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
 1400                     mtod(data->m, void *), MCLBYTES, ral_dma_map_addr,
 1401                     &physaddr, 0);
 1402                 if (error != 0) {
 1403                         device_printf(sc->sc_dev,
 1404                             "could not load rx buf DMA map\n");
 1405                         m_freem(data->m);
 1406                         data->m = NULL;
 1407                         break;
 1408                 }
 1409 
 1410                 desc->physaddr = htole32(physaddr);
 1411 skip:           desc->flags = htole32(RAL_RX_BUSY);
 1412 
 1413                 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
 1414 
 1415                 sc->rxq.cur_decrypt =
 1416                     (sc->rxq.cur_decrypt + 1) % RAL_RX_RING_COUNT;
 1417         }
 1418 
 1419         bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
 1420             BUS_DMASYNC_PREWRITE);
 1421 }
 1422 
 1423 /*
 1424  * Some frames were received. Pass them to the hardware cipher engine before
 1425  * sending them to the 802.11 layer.
 1426  */
 1427 static void
 1428 ral_rx_intr(struct ral_softc *sc)
 1429 {
 1430         struct ral_rx_desc *desc;
 1431         struct ral_rx_data *data;
 1432 
 1433         bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
 1434             BUS_DMASYNC_POSTREAD);
 1435 
 1436         for (;;) {
 1437                 desc = &sc->rxq.desc[sc->rxq.cur];
 1438                 data = &sc->rxq.data[sc->rxq.cur];
 1439 
 1440                 if ((le32toh(desc->flags) & RAL_RX_BUSY) ||
 1441                     (le32toh(desc->flags) & RAL_RX_CIPHER_BUSY))
 1442                         break;
 1443 
 1444                 data->drop = 0;
 1445 
 1446                 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
 1447                     (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
 1448                         /*
 1449                          * This should not happen since we did not request
 1450                          * to receive those frames when we filled RXCSR0.
 1451                          */
 1452                         DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
 1453                             le32toh(desc->flags)));
 1454                         data->drop = 1;
 1455                 }
 1456 
 1457                 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
 1458                         DPRINTFN(5, ("bad length\n"));
 1459                         data->drop = 1;
 1460                 }
 1461 
 1462                 /* mark the frame for decryption */
 1463                 desc->flags |= htole32(RAL_RX_CIPHER_BUSY);
 1464 
 1465                 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
 1466 
 1467                 sc->rxq.cur = (sc->rxq.cur + 1) % RAL_RX_RING_COUNT;
 1468         }
 1469 
 1470         bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
 1471             BUS_DMASYNC_PREWRITE);
 1472 
 1473         /* kick decrypt */
 1474         RAL_WRITE(sc, RAL_SECCSR0, RAL_KICK_DECRYPT);
 1475 }
 1476 
 1477 /*
 1478  * This function is called periodically in IBSS mode when a new beacon must be
 1479  * sent out.
 1480  */
 1481 static void
 1482 ral_beacon_expire(struct ral_softc *sc)
 1483 {
 1484         struct ieee80211com *ic = &sc->sc_ic;
 1485         struct ral_tx_data *data;
 1486 
 1487         if (ic->ic_opmode != IEEE80211_M_IBSS &&
 1488             ic->ic_opmode != IEEE80211_M_HOSTAP)
 1489                 return;
 1490 
 1491         data = &sc->bcnq.data[sc->bcnq.next];
 1492 
 1493         bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
 1494         bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
 1495 
 1496         ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
 1497 
 1498         if (ic->ic_rawbpf != NULL)
 1499                 bpf_mtap(ic->ic_rawbpf, data->m);
 1500 
 1501         ral_tx_bcn(sc, data->m, data->ni);
 1502 
 1503         DPRINTFN(15, ("beacon expired\n"));
 1504 
 1505         sc->bcnq.next = (sc->bcnq.next + 1) % RAL_BEACON_RING_COUNT;
 1506 }
 1507 
 1508 static void
 1509 ral_wakeup_expire(struct ral_softc *sc)
 1510 {
 1511         DPRINTFN(2, ("wakeup expired\n"));
 1512 }
 1513 
 1514 static void
 1515 ral_intr(void *arg)
 1516 {
 1517         struct ral_softc *sc = arg;
 1518         uint32_t r;
 1519 
 1520         RAL_LOCK(sc);
 1521 
 1522         /* disable interrupts */
 1523         RAL_WRITE(sc, RAL_CSR8, 0xffffffff);
 1524 
 1525         r = RAL_READ(sc, RAL_CSR7);
 1526         RAL_WRITE(sc, RAL_CSR7, r);
 1527 
 1528         if (r & RAL_BEACON_EXPIRE)
 1529                 ral_beacon_expire(sc);
 1530 
 1531         if (r & RAL_WAKEUP_EXPIRE)
 1532                 ral_wakeup_expire(sc);
 1533 
 1534         if (r & RAL_ENCRYPTION_DONE)
 1535                 ral_encryption_intr(sc);
 1536 
 1537         if (r & RAL_TX_DONE)
 1538                 ral_tx_intr(sc);
 1539 
 1540         if (r & RAL_PRIO_DONE)
 1541                 ral_prio_intr(sc);
 1542 
 1543         if (r & RAL_DECRYPTION_DONE)
 1544                 ral_decryption_intr(sc);
 1545 
 1546         if (r & RAL_RX_DONE)
 1547                 ral_rx_intr(sc);
 1548 
 1549         /* re-enable interrupts */
 1550         RAL_WRITE(sc, RAL_CSR8, RAL_INTR_MASK);
 1551 
 1552         RAL_UNLOCK(sc);
 1553 }
 1554 
 1555 /* quickly determine if a given rate is CCK or OFDM */
 1556 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
 1557 
 1558 #define RAL_ACK_SIZE    14      /* 10 + 4(FCS) */
 1559 #define RAL_CTS_SIZE    14      /* 10 + 4(FCS) */
 1560 
 1561 #define RAL_SIFS                10      /* us */
 1562 #define RAL_TXRX_TURNAROUND     10      /* us */
 1563 
 1564 /*
 1565  * Return the expected ack rate for a frame transmitted at rate `rate'.
 1566  * XXX: this should depend on the destination node basic rate set.
 1567  */
 1568 static int
 1569 ral_ack_rate(struct ieee80211com *ic, int rate)
 1570 {
 1571         switch (rate) {
 1572         /* CCK rates */
 1573         case 2:
 1574                 return 2;
 1575         case 4:
 1576         case 11:
 1577         case 22:
 1578                 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
 1579 
 1580         /* OFDM rates */
 1581         case 12:
 1582         case 18:
 1583                 return 12;
 1584         case 24:
 1585         case 36:
 1586                 return 24;
 1587         case 48:
 1588         case 72:
 1589         case 96:
 1590         case 108:
 1591                 return 48;
 1592         }
 1593 
 1594         /* default to 1Mbps */
 1595         return 2;
 1596 }
 1597 
 1598 /*
 1599  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
 1600  * The function automatically determines the operating mode depending on the
 1601  * given rate. `flags' indicates whether short preamble is in use or not.
 1602  */
 1603 static uint16_t
 1604 ral_txtime(int len, int rate, uint32_t flags)
 1605 {
 1606         uint16_t txtime;
 1607         int ceil, dbps;
 1608 
 1609         if (RAL_RATE_IS_OFDM(rate)) {
 1610                 /*
 1611                  * OFDM TXTIME calculation.
 1612                  * From IEEE Std 802.11a-1999, pp. 37.
 1613                  */
 1614                 dbps = rate * 2; /* data bits per OFDM symbol */
 1615 
 1616                 ceil = (16 + 8 * len + 6) / dbps;
 1617                 if ((16 + 8 * len + 6) % dbps != 0)
 1618                         ceil++;
 1619 
 1620                 txtime = 16 + 4 + 4 * ceil + 6;
 1621         } else {
 1622                 /*
 1623                  * High Rate TXTIME calculation.
 1624                  * From IEEE Std 802.11b-1999, pp. 28.
 1625                  */
 1626                 ceil = (8 * len * 2) / rate;
 1627                 if ((8 * len * 2) % rate != 0)
 1628                         ceil++;
 1629 
 1630                 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
 1631                         txtime =  72 + 24 + ceil;
 1632                 else
 1633                         txtime = 144 + 48 + ceil;
 1634         }
 1635 
 1636         return txtime;
 1637 }
 1638 
 1639 static uint8_t
 1640 ral_plcp_signal(int rate)
 1641 {
 1642         switch (rate) {
 1643         /* CCK rates (returned values are device-dependent) */
 1644         case 2:         return 0x0;
 1645         case 4:         return 0x1;
 1646         case 11:        return 0x2;
 1647         case 22:        return 0x3;
 1648 
 1649         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1650         case 12:        return 0xb;
 1651         case 18:        return 0xf;
 1652         case 24:        return 0xa;
 1653         case 36:        return 0xe;
 1654         case 48:        return 0x9;
 1655         case 72:        return 0xd;
 1656         case 96:        return 0x8;
 1657         case 108:       return 0xc;
 1658 
 1659         /* unsupported rates (should not get there) */
 1660         default:        return 0xff;
 1661         }
 1662 }
 1663 
 1664 static void
 1665 ral_setup_tx_desc(struct ral_softc *sc, struct ral_tx_desc *desc,
 1666     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
 1667 {
 1668         struct ieee80211com *ic = &sc->sc_ic;
 1669         uint16_t plcp_length;
 1670         int remainder;
 1671 
 1672         desc->flags = htole32(flags);
 1673         desc->flags |= htole32(len << 16);
 1674         desc->flags |= encrypt ? htole32(RAL_TX_CIPHER_BUSY) :
 1675             htole32(RAL_TX_BUSY | RAL_TX_VALID);
 1676         if (RAL_RATE_IS_OFDM(rate))
 1677                 desc->flags |= htole32(RAL_TX_OFDM);
 1678 
 1679         desc->physaddr = htole32(physaddr);
 1680         desc->wme = htole16(RAL_AIFSN(3) | RAL_LOGCWMIN(4) | RAL_LOGCWMAX(6));
 1681 
 1682         /*
 1683          * Fill PLCP fields.
 1684          */
 1685         desc->plcp_service = 4;
 1686 
 1687         len += 4; /* account for FCS */
 1688         if (RAL_RATE_IS_OFDM(rate)) {
 1689                 /*
 1690                  * PLCP length field (LENGTH).
 1691                  * From IEEE Std 802.11a-1999, pp. 14.
 1692                  */
 1693                 plcp_length = len & 0xfff;
 1694                 desc->plcp_length = htole16((plcp_length >> 6) << 8 |
 1695                     (plcp_length & 0x3f));
 1696         } else {
 1697                 /*
 1698                  * Long PLCP LENGTH field.
 1699                  * From IEEE Std 802.11b-1999, pp. 16.
 1700                  */
 1701                 plcp_length = (8 * len * 2) / rate;
 1702                 remainder = (8 * len * 2) % rate;
 1703                 if (remainder != 0) {
 1704                         if (rate == 22 && (rate - remainder) / 16 != 0)
 1705                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
 1706                         plcp_length++;
 1707                 }
 1708                 desc->plcp_length = htole16(plcp_length);
 1709         }
 1710 
 1711         desc->plcp_signal = ral_plcp_signal(rate);
 1712         if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
 1713                 desc->plcp_signal |= 0x08;
 1714 }
 1715 
 1716 static int
 1717 ral_tx_bcn(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
 1718 {
 1719         struct ieee80211com *ic = &sc->sc_ic;
 1720         struct ral_tx_desc *desc;
 1721         struct ral_tx_data *data;
 1722         bus_dma_segment_t segs[RAL_MAX_SCATTER];
 1723         int nsegs, rate, error;
 1724 
 1725         desc = &sc->bcnq.desc[sc->bcnq.cur];
 1726         data = &sc->bcnq.data[sc->bcnq.cur];
 1727 
 1728         rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
 1729 
 1730         error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
 1731             segs, &nsegs, BUS_DMA_NOWAIT);
 1732         if (error != 0) {
 1733                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1734                     error);
 1735                 m_freem(m0);
 1736                 return error;
 1737         }
 1738 
 1739         if (sc->sc_drvbpf != NULL) {
 1740                 struct ral_tx_radiotap_header *tap = &sc->sc_txtap;
 1741 
 1742                 tap->wt_flags = 0;
 1743                 tap->wt_rate = rate;
 1744                 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
 1745                 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
 1746                 tap->wt_antenna = sc->tx_ant;
 1747 
 1748                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
 1749         }
 1750 
 1751         data->m = m0;
 1752         data->ni = ni;
 1753 
 1754         ral_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
 1755             m0->m_pkthdr.len, rate, 0, segs->ds_addr);
 1756 
 1757         DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
 1758             m0->m_pkthdr.len, sc->bcnq.cur, rate));
 1759 
 1760         bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 1761         bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
 1762             BUS_DMASYNC_PREWRITE);
 1763 
 1764         sc->bcnq.cur = (sc->bcnq.cur + 1) % RAL_BEACON_RING_COUNT;
 1765 
 1766         return 0;
 1767 }
 1768 
 1769 static int
 1770 ral_tx_mgt(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
 1771 {
 1772         struct ieee80211com *ic = &sc->sc_ic;
 1773         struct ral_tx_desc *desc;
 1774         struct ral_tx_data *data;
 1775         struct ieee80211_frame *wh;
 1776         bus_dma_segment_t segs[RAL_MAX_SCATTER];
 1777         uint16_t dur;
 1778         uint32_t flags = 0;
 1779         int nsegs, rate, error;
 1780 
 1781         desc = &sc->prioq.desc[sc->prioq.cur];
 1782         data = &sc->prioq.data[sc->prioq.cur];
 1783 
 1784         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 4;
 1785 
 1786         error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
 1787             segs, &nsegs, 0);
 1788         if (error != 0) {
 1789                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1790                     error);
 1791                 m_freem(m0);
 1792                 return error;
 1793         }
 1794 
 1795         if (sc->sc_drvbpf != NULL) {
 1796                 struct ral_tx_radiotap_header *tap = &sc->sc_txtap;
 1797 
 1798                 tap->wt_flags = 0;
 1799                 tap->wt_rate = rate;
 1800                 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
 1801                 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
 1802                 tap->wt_antenna = sc->tx_ant;
 1803 
 1804                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
 1805         }
 1806 
 1807         data->m = m0;
 1808         data->ni = ni;
 1809 
 1810         wh = mtod(m0, struct ieee80211_frame *);
 1811 
 1812         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 1813                 flags |= RAL_TX_ACK;
 1814 
 1815                 dur = ral_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
 1816                 *(uint16_t *)wh->i_dur = htole16(dur);
 1817 
 1818                 /* tell hardware to add timestamp for probe responses */
 1819                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
 1820                     IEEE80211_FC0_TYPE_MGT &&
 1821                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
 1822                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 1823                         flags |= RAL_TX_TIMESTAMP;
 1824         }
 1825 
 1826         ral_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
 1827             segs->ds_addr);
 1828 
 1829         bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 1830         bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
 1831             BUS_DMASYNC_PREWRITE);
 1832 
 1833         DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
 1834             m0->m_pkthdr.len, sc->prioq.cur, rate));
 1835 
 1836         /* kick prio */
 1837         sc->prioq.queued++;
 1838         sc->prioq.cur = (sc->prioq.cur + 1) % RAL_PRIO_RING_COUNT;
 1839         RAL_WRITE(sc, RAL_TXCSR0, RAL_KICK_PRIO);
 1840 
 1841         return 0;
 1842 }
 1843 
 1844 /*
 1845  * Build a RTS control frame.
 1846  */
 1847 static struct mbuf *
 1848 ral_get_rts(struct ral_softc *sc, struct ieee80211_frame *wh, uint16_t dur)
 1849 {
 1850         struct ieee80211_frame_rts *rts;
 1851         struct mbuf *m;
 1852 
 1853         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1854         if (m == NULL) {
 1855                 sc->sc_ic.ic_stats.is_tx_nobuf++;
 1856                 device_printf(sc->sc_dev, "could not allocate RTS frame\n");
 1857                 return NULL;
 1858         }
 1859 
 1860         rts = mtod(m, struct ieee80211_frame_rts *);
 1861 
 1862         rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
 1863             IEEE80211_FC0_SUBTYPE_RTS;
 1864         rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 1865         *(uint16_t *)rts->i_dur = htole16(dur);
 1866         IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
 1867         IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
 1868 
 1869         m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
 1870 
 1871         return m;
 1872 }
 1873 
 1874 static int
 1875 ral_tx_data(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
 1876 {
 1877         struct ieee80211com *ic = &sc->sc_ic;
 1878         struct ral_tx_desc *desc;
 1879         struct ral_tx_data *data;
 1880         struct ral_node *rn;
 1881         struct ieee80211_rateset *rs;
 1882         struct ieee80211_frame *wh;
 1883         struct ieee80211_key *k;
 1884         struct mbuf *mnew;
 1885         bus_dma_segment_t segs[RAL_MAX_SCATTER];
 1886         uint16_t dur;
 1887         uint32_t flags = 0;
 1888         int nsegs, rate, error;
 1889 
 1890         wh = mtod(m0, struct ieee80211_frame *);
 1891 
 1892         if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
 1893                 rs = &ic->ic_sup_rates[ic->ic_curmode];
 1894                 rate = rs->rs_rates[ic->ic_fixed_rate];
 1895         } else {
 1896                 rs = &ni->ni_rates;
 1897                 rn = (struct ral_node *)ni;
 1898                 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs,
 1899                     wh, m0->m_pkthdr.len, NULL, 0);
 1900                 rate = rs->rs_rates[ni->ni_txrate];
 1901         }
 1902         rate &= IEEE80211_RATE_VAL;
 1903 
 1904         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1905                 k = ieee80211_crypto_encap(ic, ni, m0);
 1906                 if (k == NULL) {
 1907                         m_freem(m0);
 1908                         return ENOBUFS;
 1909                 }
 1910 
 1911                 /* packet header may have moved, reset our local pointer */
 1912                 wh = mtod(m0, struct ieee80211_frame *);
 1913         }
 1914 
 1915         /*
 1916          * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
 1917          * for directed frames only when the length of the MPDU is greater
 1918          * than the length threshold indicated by [...]" ic_rtsthreshold.
 1919          */
 1920         if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
 1921             m0->m_pkthdr.len > ic->ic_rtsthreshold) {
 1922                 struct mbuf *m;
 1923                 uint16_t dur;
 1924                 int rtsrate, ackrate;
 1925 
 1926                 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 4;
 1927                 ackrate = ral_ack_rate(ic, rate);
 1928 
 1929                 dur = ral_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
 1930                       ral_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
 1931                       ral_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
 1932                       3 * RAL_SIFS;
 1933 
 1934                 m = ral_get_rts(sc, wh, dur);
 1935 
 1936                 desc = &sc->txq.desc[sc->txq.cur_encrypt];
 1937                 data = &sc->txq.data[sc->txq.cur_encrypt];
 1938 
 1939                 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
 1940                     m, segs, &nsegs, 0);
 1941                 if (error != 0) {
 1942                         device_printf(sc->sc_dev,
 1943                             "could not map mbuf (error %d)\n", error);
 1944                         m_freem(m);
 1945                         m_freem(m0);
 1946                         return error;
 1947                 }
 1948 
 1949                 /* avoid multiple free() of the same node for each fragment */
 1950                 ieee80211_ref_node(ni);
 1951 
 1952                 data->m = m;
 1953                 data->ni = ni;
 1954 
 1955                 /* RTS frames are not taken into account for rssadapt */
 1956                 data->id.id_node = NULL;
 1957 
 1958                 ral_setup_tx_desc(sc, desc, RAL_TX_ACK | RAL_TX_MORE_FRAG,
 1959                     m->m_pkthdr.len, rtsrate, 1, segs->ds_addr);
 1960 
 1961                 bus_dmamap_sync(sc->txq.data_dmat, data->map,
 1962                     BUS_DMASYNC_PREWRITE);
 1963 
 1964                 sc->txq.queued++;
 1965                 sc->txq.cur_encrypt =
 1966                     (sc->txq.cur_encrypt + 1) % RAL_TX_RING_COUNT;
 1967 
 1968                 /*
 1969                  * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
 1970                  * asynchronous data frame shall be transmitted after the CTS
 1971                  * frame and a SIFS period.
 1972                  */
 1973                 flags |= RAL_TX_LONG_RETRY | RAL_TX_IFS_SIFS;
 1974         }
 1975 
 1976         data = &sc->txq.data[sc->txq.cur_encrypt];
 1977         desc = &sc->txq.desc[sc->txq.cur_encrypt];
 1978 
 1979         error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
 1980             segs, &nsegs, 0);
 1981         if (error != 0 && error != EFBIG) {
 1982                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1983                     error);
 1984                 m_freem(m0);
 1985                 return error;
 1986         }
 1987         if (error != 0) {
 1988                 mnew = m_defrag(m0, M_DONTWAIT);
 1989                 if (mnew == NULL) {
 1990                         device_printf(sc->sc_dev,
 1991                             "could not defragment mbuf\n");
 1992                         m_freem(m0);
 1993                         return ENOBUFS;
 1994                 }
 1995                 m0 = mnew;
 1996 
 1997                 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
 1998                     m0, segs, &nsegs, 0);
 1999                 if (error != 0) {
 2000                         device_printf(sc->sc_dev,
 2001                             "could not map mbuf (error %d)\n", error);
 2002                         m_freem(m0);
 2003                         return error;
 2004                 }
 2005 
 2006                 /* packet header may have moved, reset our local pointer */
 2007                 wh = mtod(m0, struct ieee80211_frame *);
 2008         }
 2009 
 2010         if (sc->sc_drvbpf != NULL) {
 2011                 struct ral_tx_radiotap_header *tap = &sc->sc_txtap;
 2012 
 2013                 tap->wt_flags = 0;
 2014                 tap->wt_rate = rate;
 2015                 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
 2016                 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
 2017                 tap->wt_antenna = sc->tx_ant;
 2018 
 2019                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
 2020         }
 2021 
 2022         data->m = m0;
 2023         data->ni = ni;
 2024 
 2025         /* remember link conditions for rate adaptation algorithm */
 2026         if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
 2027                 data->id.id_len = m0->m_pkthdr.len;
 2028                 data->id.id_rateidx = ni->ni_txrate;
 2029                 data->id.id_node = ni;
 2030                 data->id.id_rssi = ni->ni_rssi;
 2031         } else
 2032                 data->id.id_node = NULL;
 2033 
 2034         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 2035                 flags |= RAL_TX_ACK;
 2036 
 2037                 dur = ral_txtime(RAL_ACK_SIZE, ral_ack_rate(ic, rate),
 2038                     ic->ic_flags) + RAL_SIFS;
 2039                 *(uint16_t *)wh->i_dur = htole16(dur);
 2040         }
 2041 
 2042         ral_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
 2043             segs->ds_addr);
 2044 
 2045         bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2046         bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
 2047             BUS_DMASYNC_PREWRITE);
 2048 
 2049         DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
 2050             m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
 2051 
 2052         /* kick encrypt */
 2053         sc->txq.queued++;
 2054         sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RAL_TX_RING_COUNT;
 2055         RAL_WRITE(sc, RAL_SECCSR1, RAL_KICK_ENCRYPT);
 2056 
 2057         return 0;
 2058 }
 2059 
 2060 static void
 2061 ral_start(struct ifnet *ifp)
 2062 {
 2063         struct ral_softc *sc = ifp->if_softc;
 2064         struct ieee80211com *ic = &sc->sc_ic;
 2065         struct mbuf *m0;
 2066         struct ether_header *eh;
 2067         struct ieee80211_node *ni;
 2068 
 2069         RAL_LOCK(sc);
 2070 
 2071         for (;;) {
 2072                 IF_POLL(&ic->ic_mgtq, m0);
 2073                 if (m0 != NULL) {
 2074                         if (sc->prioq.queued >= RAL_PRIO_RING_COUNT) {
 2075                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2076                                 break;
 2077                         }
 2078                         IF_DEQUEUE(&ic->ic_mgtq, m0);
 2079 
 2080                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
 2081                         m0->m_pkthdr.rcvif = NULL;
 2082 
 2083                         if (ic->ic_rawbpf != NULL)
 2084                                 bpf_mtap(ic->ic_rawbpf, m0);
 2085 
 2086                         if (ral_tx_mgt(sc, m0, ni) != 0)
 2087                                 break;
 2088 
 2089                 } else {
 2090                         if (ic->ic_state != IEEE80211_S_RUN)
 2091                                 break;
 2092                         IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
 2093                         if (m0 == NULL)
 2094                                 break;
 2095                         if (sc->txq.queued >= RAL_TX_RING_COUNT - 1) {
 2096                                 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
 2097                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2098                                 break;
 2099                         }
 2100 
 2101                         if (m0->m_len < sizeof (struct ether_header) &&
 2102                             !(m0 = m_pullup(m0, sizeof (struct ether_header))))
 2103                                 continue;
 2104 
 2105                         eh = mtod(m0, struct ether_header *);
 2106                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
 2107                         if (ni == NULL) {
 2108                                 m_freem(m0);
 2109                                 continue;
 2110                         }
 2111                         BPF_MTAP(ifp, m0);
 2112 
 2113                         m0 = ieee80211_encap(ic, m0, ni);
 2114                         if (m0 == NULL) {
 2115                                 ieee80211_free_node(ni);
 2116                                 continue;
 2117                         }
 2118 
 2119                         if (ic->ic_rawbpf != NULL)
 2120                                 bpf_mtap(ic->ic_rawbpf, m0);
 2121 
 2122                         if (ral_tx_data(sc, m0, ni) != 0) {
 2123                                 ieee80211_free_node(ni);
 2124                                 ifp->if_oerrors++;
 2125                                 break;
 2126                         }
 2127                 }
 2128 
 2129                 sc->sc_tx_timer = 5;
 2130                 ifp->if_timer = 1;
 2131         }
 2132 
 2133         RAL_UNLOCK(sc);
 2134 }
 2135 
 2136 static void
 2137 ral_watchdog(struct ifnet *ifp)
 2138 {
 2139         struct ral_softc *sc = ifp->if_softc;
 2140         struct ieee80211com *ic = &sc->sc_ic;
 2141 
 2142         RAL_LOCK(sc);
 2143 
 2144         ifp->if_timer = 0;
 2145 
 2146         if (sc->sc_tx_timer > 0) {
 2147                 if (--sc->sc_tx_timer == 0) {
 2148                         device_printf(sc->sc_dev, "device timeout\n");
 2149                         ral_init(sc);
 2150                         ifp->if_oerrors++;
 2151                         RAL_UNLOCK(sc);
 2152                         return;
 2153                 }
 2154                 ifp->if_timer = 1;
 2155         }
 2156 
 2157         ieee80211_watchdog(ic);
 2158 
 2159         RAL_UNLOCK(sc);
 2160 }
 2161 
 2162 /*
 2163  * This function allows for fast channel switching in monitor mode (used by
 2164  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
 2165  * generate a new beacon frame.
 2166  */
 2167 static int
 2168 ral_reset(struct ifnet *ifp)
 2169 {
 2170         struct ral_softc *sc = ifp->if_softc;
 2171         struct ieee80211com *ic = &sc->sc_ic;
 2172 
 2173         if (ic->ic_opmode != IEEE80211_M_MONITOR)
 2174                 return ENETRESET;
 2175 
 2176         ral_set_chan(sc, ic->ic_ibss_chan);
 2177 
 2178         return 0;
 2179 }
 2180 
 2181 static int
 2182 ral_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 2183 {
 2184         struct ral_softc *sc = ifp->if_softc;
 2185         struct ieee80211com *ic = &sc->sc_ic;
 2186         int error = 0;
 2187 
 2188         RAL_LOCK(sc);
 2189 
 2190         switch (cmd) {
 2191         case SIOCSIFFLAGS:
 2192                 if (ifp->if_flags & IFF_UP) {
 2193                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 2194                                 ral_update_promisc(sc);
 2195                         else
 2196                                 ral_init(sc);
 2197                 } else {
 2198                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 2199                                 ral_stop(sc);
 2200                 }
 2201                 break;
 2202 
 2203         default:
 2204                 error = ieee80211_ioctl(ic, cmd, data);
 2205         }
 2206 
 2207         if (error == ENETRESET) {
 2208                 if ((ifp->if_flags & IFF_UP) &&
 2209                     (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
 2210                     (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
 2211                         ral_init(sc);
 2212                 error = 0;
 2213         }
 2214 
 2215         RAL_UNLOCK(sc);
 2216 
 2217         return error;
 2218 }
 2219 
 2220 static void
 2221 ral_bbp_write(struct ral_softc *sc, uint8_t reg, uint8_t val)
 2222 {
 2223         uint32_t tmp;
 2224         int ntries;
 2225 
 2226         for (ntries = 0; ntries < 100; ntries++) {
 2227                 if (!(RAL_READ(sc, RAL_BBPCSR) & RAL_BBP_BUSY))
 2228                         break;
 2229                 DELAY(1);
 2230         }
 2231         if (ntries == 100) {
 2232                 device_printf(sc->sc_dev, "could not write to BBP\n");
 2233                 return;
 2234         }
 2235 
 2236         tmp = RAL_BBP_WRITE | RAL_BBP_BUSY | reg << 8 | val;
 2237         RAL_WRITE(sc, RAL_BBPCSR, tmp);
 2238 
 2239         DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
 2240 }
 2241 
 2242 static uint8_t
 2243 ral_bbp_read(struct ral_softc *sc, uint8_t reg)
 2244 {
 2245         uint32_t val;
 2246         int ntries;
 2247 
 2248         val = RAL_BBP_BUSY | reg << 8;
 2249         RAL_WRITE(sc, RAL_BBPCSR, val);
 2250 
 2251         for (ntries = 0; ntries < 100; ntries++) {
 2252                 val = RAL_READ(sc, RAL_BBPCSR);
 2253                 if (!(val & RAL_BBP_BUSY))
 2254                         return val & 0xff;
 2255                 DELAY(1);
 2256         }
 2257 
 2258         device_printf(sc->sc_dev, "could not read from BBP\n");
 2259         return 0;
 2260 }
 2261 
 2262 static void
 2263 ral_rf_write(struct ral_softc *sc, uint8_t reg, uint32_t val)
 2264 {
 2265         uint32_t tmp;
 2266         int ntries;
 2267 
 2268         for (ntries = 0; ntries < 100; ntries++) {
 2269                 if (!(RAL_READ(sc, RAL_RFCSR) & RAL_RF_BUSY))
 2270                         break;
 2271                 DELAY(1);
 2272         }
 2273         if (ntries == 100) {
 2274                 device_printf(sc->sc_dev, "could not write to RF\n");
 2275                 return;
 2276         }
 2277 
 2278         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
 2279         RAL_WRITE(sc, RAL_RFCSR, tmp);
 2280 
 2281         /* remember last written value in sc */
 2282         sc->rf_regs[reg] = val;
 2283 
 2284         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
 2285 }
 2286 
 2287 static void
 2288 ral_set_chan(struct ral_softc *sc, struct ieee80211_channel *c)
 2289 {
 2290 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
 2291         struct ieee80211com *ic = &sc->sc_ic;
 2292         uint8_t power, tmp;
 2293         u_int i, chan;
 2294 
 2295         chan = ieee80211_chan2ieee(ic, c);
 2296         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
 2297                 return;
 2298 
 2299         if (IEEE80211_IS_CHAN_2GHZ(c))
 2300                 power = min(sc->txpow[chan - 1], 31);
 2301         else
 2302                 power = 31;
 2303 
 2304         DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
 2305 
 2306         switch (sc->rf_rev) {
 2307         case RAL_RF_2522:
 2308                 ral_rf_write(sc, RAL_RF1, 0x00814);
 2309                 ral_rf_write(sc, RAL_RF2, ral_rf2522_r2[chan - 1]);
 2310                 ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
 2311                 break;
 2312 
 2313         case RAL_RF_2523:
 2314                 ral_rf_write(sc, RAL_RF1, 0x08804);
 2315                 ral_rf_write(sc, RAL_RF2, ral_rf2523_r2[chan - 1]);
 2316                 ral_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
 2317                 ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
 2318                 break;
 2319 
 2320         case RAL_RF_2524:
 2321                 ral_rf_write(sc, RAL_RF1, 0x0c808);
 2322                 ral_rf_write(sc, RAL_RF2, ral_rf2524_r2[chan - 1]);
 2323                 ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
 2324                 ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
 2325                 break;
 2326 
 2327         case RAL_RF_2525:
 2328                 ral_rf_write(sc, RAL_RF1, 0x08808);
 2329                 ral_rf_write(sc, RAL_RF2, ral_rf2525_hi_r2[chan - 1]);
 2330                 ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
 2331                 ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
 2332 
 2333                 ral_rf_write(sc, RAL_RF1, 0x08808);
 2334                 ral_rf_write(sc, RAL_RF2, ral_rf2525_r2[chan - 1]);
 2335                 ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
 2336                 ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
 2337                 break;
 2338 
 2339         case RAL_RF_2525E:
 2340                 ral_rf_write(sc, RAL_RF1, 0x08808);
 2341                 ral_rf_write(sc, RAL_RF2, ral_rf2525e_r2[chan - 1]);
 2342                 ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
 2343                 ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
 2344                 break;
 2345 
 2346         case RAL_RF_2526:
 2347                 ral_rf_write(sc, RAL_RF2, ral_rf2526_hi_r2[chan - 1]);
 2348                 ral_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
 2349                 ral_rf_write(sc, RAL_RF1, 0x08804);
 2350 
 2351                 ral_rf_write(sc, RAL_RF2, ral_rf2526_r2[chan - 1]);
 2352                 ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
 2353                 ral_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
 2354                 break;
 2355 
 2356         /* dual-band RF */
 2357         case RAL_RF_5222:
 2358                 for (i = 0; i < N(ral_rf5222); i++)
 2359                         if (ral_rf5222[i].chan == chan)
 2360                                 break;
 2361 
 2362                 if (i < N(ral_rf5222)) {
 2363                         ral_rf_write(sc, RAL_RF1, ral_rf5222[i].r1);
 2364                         ral_rf_write(sc, RAL_RF2, ral_rf5222[i].r2);
 2365                         ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
 2366                         ral_rf_write(sc, RAL_RF4, ral_rf5222[i].r4);
 2367                 }
 2368                 break;
 2369         }
 2370 
 2371         if (ic->ic_state != IEEE80211_S_SCAN) {
 2372                 /* set Japan filter bit for channel 14 */
 2373                 tmp = ral_bbp_read(sc, 70);
 2374 
 2375                 tmp &= ~RAL_JAPAN_FILTER;
 2376                 if (chan == 14)
 2377                         tmp |= RAL_JAPAN_FILTER;
 2378 
 2379                 ral_bbp_write(sc, 70, tmp);
 2380 
 2381                 /* clear CRC errors */
 2382                 RAL_READ(sc, RAL_CNT0);
 2383         }
 2384 #undef N
 2385 }
 2386 
 2387 #if 0
 2388 /*
 2389  * Disable RF auto-tuning.
 2390  */
 2391 static void
 2392 ral_disable_rf_tune(struct ral_softc *sc)
 2393 {
 2394         uint32_t tmp;
 2395 
 2396         if (sc->rf_rev != RAL_RF_2523) {
 2397                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
 2398                 ral_rf_write(sc, RAL_RF1, tmp);
 2399         }
 2400 
 2401         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
 2402         ral_rf_write(sc, RAL_RF3, tmp);
 2403 
 2404         DPRINTFN(2, ("disabling RF autotune\n"));
 2405 }
 2406 #endif
 2407 
 2408 /*
 2409  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
 2410  * synchronization.
 2411  */
 2412 static void
 2413 ral_enable_tsf_sync(struct ral_softc *sc)
 2414 {
 2415         struct ieee80211com *ic = &sc->sc_ic;
 2416         uint16_t logcwmin, preload;
 2417         uint32_t tmp;
 2418 
 2419         /* first, disable TSF synchronization */
 2420         RAL_WRITE(sc, RAL_CSR14, 0);
 2421 
 2422         tmp = 16 * ic->ic_bss->ni_intval;
 2423         RAL_WRITE(sc, RAL_CSR12, tmp);
 2424 
 2425         RAL_WRITE(sc, RAL_CSR13, 0);
 2426 
 2427         logcwmin = 5;
 2428         preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
 2429         tmp = logcwmin << 16 | preload;
 2430         RAL_WRITE(sc, RAL_BCNOCSR, tmp);
 2431 
 2432         /* finally, enable TSF synchronization */
 2433         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
 2434         if (ic->ic_opmode == IEEE80211_M_STA)
 2435                 tmp |= RAL_ENABLE_TSF_SYNC(1);
 2436         else
 2437                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
 2438         RAL_WRITE(sc, RAL_CSR14, tmp);
 2439 
 2440         DPRINTF(("enabling TSF synchronization\n"));
 2441 }
 2442 
 2443 static void
 2444 ral_update_plcp(struct ral_softc *sc)
 2445 {
 2446         struct ieee80211com *ic = &sc->sc_ic;
 2447 
 2448         /* no short preamble for 1Mbps */
 2449         RAL_WRITE(sc, RAL_PLCP1MCSR, 0x00700400);
 2450 
 2451         if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
 2452                 /* values taken from the reference driver */
 2453                 RAL_WRITE(sc, RAL_PLCP2MCSR,   0x00380401);
 2454                 RAL_WRITE(sc, RAL_PLCP5p5MCSR, 0x00150402);
 2455                 RAL_WRITE(sc, RAL_PLCP11MCSR,  0x000b8403);
 2456         } else {
 2457                 /* same values as above or'ed 0x8 */
 2458                 RAL_WRITE(sc, RAL_PLCP2MCSR,   0x00380409);
 2459                 RAL_WRITE(sc, RAL_PLCP5p5MCSR, 0x0015040a);
 2460                 RAL_WRITE(sc, RAL_PLCP11MCSR,  0x000b840b);
 2461         }
 2462 
 2463         DPRINTF(("updating PLCP for %s preamble\n",
 2464             (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
 2465 }
 2466 
 2467 /*
 2468  * This function can be called by ieee80211_set_shortslottime(). Refer to
 2469  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
 2470  */
 2471 static void
 2472 ral_update_slot(struct ifnet *ifp)
 2473 {
 2474         struct ral_softc *sc = ifp->if_softc;
 2475         struct ieee80211com *ic = &sc->sc_ic;
 2476         uint8_t slottime;
 2477         uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
 2478         uint32_t tmp;
 2479 
 2480         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
 2481 
 2482         /* update the MAC slot boundaries */
 2483         tx_sifs = RAL_SIFS - RAL_TXRX_TURNAROUND;
 2484         tx_pifs = tx_sifs + slottime;
 2485         tx_difs = tx_sifs + 2 * slottime;
 2486         eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
 2487 
 2488         tmp = RAL_READ(sc, RAL_CSR11);
 2489         tmp = (tmp & ~0x1f00) | slottime << 8;
 2490         RAL_WRITE(sc, RAL_CSR11, tmp);
 2491 
 2492         tmp = tx_pifs << 16 | tx_sifs;
 2493         RAL_WRITE(sc, RAL_CSR18, tmp);
 2494 
 2495         tmp = eifs << 16 | tx_difs;
 2496         RAL_WRITE(sc, RAL_CSR19, tmp);
 2497 
 2498         DPRINTF(("setting slottime to %uus\n", slottime));
 2499 }
 2500 
 2501 static void
 2502 ral_update_led(struct ral_softc *sc, int led1, int led2)
 2503 {
 2504         uint32_t tmp;
 2505 
 2506         /* set ON period to 70ms and OFF period to 30ms */
 2507         tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
 2508         RAL_WRITE(sc, RAL_LEDCSR, tmp);
 2509 }
 2510 
 2511 static void
 2512 ral_set_bssid(struct ral_softc *sc, uint8_t *bssid)
 2513 {
 2514         uint32_t tmp;
 2515 
 2516         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
 2517         RAL_WRITE(sc, RAL_CSR5, tmp);
 2518 
 2519         tmp = bssid[4] | bssid[5] << 8;
 2520         RAL_WRITE(sc, RAL_CSR6, tmp);
 2521 
 2522         DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
 2523 }
 2524 
 2525 static void
 2526 ral_set_macaddr(struct ral_softc *sc, uint8_t *addr)
 2527 {
 2528         uint32_t tmp;
 2529 
 2530         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
 2531         RAL_WRITE(sc, RAL_CSR3, tmp);
 2532 
 2533         tmp = addr[4] | addr[5] << 8;
 2534         RAL_WRITE(sc, RAL_CSR4, tmp);
 2535 
 2536         DPRINTF(("setting MAC address to %6D\n", addr, ":"));
 2537 }
 2538 
 2539 static void
 2540 ral_get_macaddr(struct ral_softc *sc, uint8_t *addr)
 2541 {
 2542         uint32_t tmp;
 2543 
 2544         tmp = RAL_READ(sc, RAL_CSR3);
 2545         addr[0] = tmp & 0xff;
 2546         addr[1] = (tmp >>  8) & 0xff;
 2547         addr[2] = (tmp >> 16) & 0xff;
 2548         addr[3] = (tmp >> 24);
 2549 
 2550         tmp = RAL_READ(sc, RAL_CSR4);
 2551         addr[4] = tmp & 0xff;
 2552         addr[5] = (tmp >> 8) & 0xff;
 2553 }
 2554 
 2555 static void
 2556 ral_update_promisc(struct ral_softc *sc)
 2557 {
 2558         struct ifnet *ifp = sc->sc_ic.ic_ifp;
 2559         uint32_t tmp;
 2560 
 2561         tmp = RAL_READ(sc, RAL_RXCSR0);
 2562 
 2563         tmp &= ~RAL_DROP_NOT_TO_ME;
 2564         if (!(ifp->if_flags & IFF_PROMISC))
 2565                 tmp |= RAL_DROP_NOT_TO_ME;
 2566 
 2567         RAL_WRITE(sc, RAL_RXCSR0, tmp);
 2568 
 2569         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
 2570             "entering" : "leaving"));
 2571 }
 2572 
 2573 static const char *
 2574 ral_get_rf(int rev)
 2575 {
 2576         switch (rev) {
 2577         case RAL_RF_2522:       return "RT2522";
 2578         case RAL_RF_2523:       return "RT2523";
 2579         case RAL_RF_2524:       return "RT2524";
 2580         case RAL_RF_2525:       return "RT2525";
 2581         case RAL_RF_2525E:      return "RT2525e";
 2582         case RAL_RF_2526:       return "RT2526";
 2583         case RAL_RF_5222:       return "RT5222";
 2584         default:                return "unknown";
 2585         }
 2586 }
 2587 
 2588 static void
 2589 ral_read_eeprom(struct ral_softc *sc)
 2590 {
 2591         uint16_t val;
 2592         int i;
 2593 
 2594         val = ral_eeprom_read(sc, RAL_EEPROM_CONFIG0);
 2595         sc->rf_rev =   (val >> 11) & 0x7;
 2596         sc->hw_radio = (val >> 10) & 0x1;
 2597         sc->led_mode = (val >> 6)  & 0x7;
 2598         sc->rx_ant =   (val >> 4)  & 0x3;
 2599         sc->tx_ant =   (val >> 2)  & 0x3;
 2600         sc->nb_ant =   val & 0x3;
 2601 
 2602         /* read default values for BBP registers */
 2603         for (i = 0; i < 16; i++) {
 2604                 val = ral_eeprom_read(sc, RAL_EEPROM_BBP_BASE + i);
 2605                 sc->bbp_prom[i].reg = val >> 8;
 2606                 sc->bbp_prom[i].val = val & 0xff;
 2607         }
 2608 
 2609         /* read Tx power for all b/g channels */
 2610         for (i = 0; i < 14 / 2; i++) {
 2611                 val = ral_eeprom_read(sc, RAL_EEPROM_TXPOWER + i);
 2612                 sc->txpow[i * 2] = val >> 8;
 2613                 sc->txpow[i * 2 + 1] = val & 0xff;
 2614         }
 2615 }
 2616 
 2617 static int
 2618 ral_bbp_init(struct ral_softc *sc)
 2619 {
 2620 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
 2621         int i, ntries;
 2622 
 2623         /* wait for BBP to be ready */
 2624         for (ntries = 0; ntries < 100; ntries++) {
 2625                 if (ral_bbp_read(sc, RAL_BBP_VERSION) != 0)
 2626                         break;
 2627                 DELAY(1);
 2628         }
 2629         if (ntries == 100) {
 2630                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
 2631                 return EIO;
 2632         }
 2633 
 2634         /* initialize BBP registers to default values */
 2635         for (i = 0; i < N(ral_def_bbp); i++)
 2636                 ral_bbp_write(sc, ral_def_bbp[i].reg, ral_def_bbp[i].val);
 2637 
 2638 #if 0
 2639         /* initialize BBP registers to values stored in EEPROM */
 2640         for (i = 0; i < 16; i++) {
 2641                 if (sc->bbp_prom[i].reg == 0xff)
 2642                         continue;
 2643                 ral_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
 2644         }
 2645 #endif
 2646 
 2647         return 0;
 2648 #undef N
 2649 }
 2650 
 2651 static void
 2652 ral_set_txantenna(struct ral_softc *sc, int antenna)
 2653 {
 2654         uint32_t tmp;
 2655         uint8_t tx;
 2656 
 2657         tx = ral_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
 2658         if (antenna == 1)
 2659                 tx |= RAL_BBP_ANTA;
 2660         else if (antenna == 2)
 2661                 tx |= RAL_BBP_ANTB;
 2662         else
 2663                 tx |= RAL_BBP_DIVERSITY;
 2664 
 2665         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
 2666         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
 2667             sc->rf_rev == RAL_RF_5222)
 2668                 tx |= RAL_BBP_FLIPIQ;
 2669 
 2670         ral_bbp_write(sc, RAL_BBP_TX, tx);
 2671 
 2672         /* update values for CCK and OFDM in BBPCSR1 */
 2673         tmp = RAL_READ(sc, RAL_BBPCSR1) & ~0x00070007;
 2674         tmp |= (tx & 0x7) << 16 | (tx & 0x7);
 2675         RAL_WRITE(sc, RAL_BBPCSR1, tmp);
 2676 }
 2677 
 2678 static void
 2679 ral_set_rxantenna(struct ral_softc *sc, int antenna)
 2680 {
 2681         uint8_t rx;
 2682 
 2683         rx = ral_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
 2684         if (antenna == 1)
 2685                 rx |= RAL_BBP_ANTA;
 2686         else if (antenna == 2)
 2687                 rx |= RAL_BBP_ANTB;
 2688         else
 2689                 rx |= RAL_BBP_DIVERSITY;
 2690 
 2691         /* need to force no I/Q flip for RF 2525e and 2526 */
 2692         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
 2693                 rx &= ~RAL_BBP_FLIPIQ;
 2694 
 2695         ral_bbp_write(sc, RAL_BBP_RX, rx);
 2696 }
 2697 
 2698 static void
 2699 ral_init(void *priv)
 2700 {
 2701 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
 2702         struct ral_softc *sc = priv;
 2703         struct ieee80211com *ic = &sc->sc_ic;
 2704         struct ifnet *ifp = ic->ic_ifp;
 2705         uint32_t tmp;
 2706         int i;
 2707 
 2708         ral_stop(sc);
 2709 
 2710         /* setup tx rings */
 2711         tmp = RAL_PRIO_RING_COUNT << 24 |
 2712               RAL_ATIM_RING_COUNT << 16 |
 2713               RAL_TX_RING_COUNT   <<  8 |
 2714               RAL_TX_DESC_SIZE;
 2715 
 2716         /* rings _must_ be initialized in this _exact_ order! */
 2717         RAL_WRITE(sc, RAL_TXCSR2, tmp);
 2718         RAL_WRITE(sc, RAL_TXCSR3, sc->txq.physaddr);
 2719         RAL_WRITE(sc, RAL_TXCSR5, sc->prioq.physaddr);
 2720         RAL_WRITE(sc, RAL_TXCSR4, sc->atimq.physaddr);
 2721         RAL_WRITE(sc, RAL_TXCSR6, sc->bcnq.physaddr);
 2722 
 2723         /* setup rx ring */
 2724         tmp = RAL_RX_RING_COUNT << 8 | RAL_RX_DESC_SIZE;
 2725 
 2726         RAL_WRITE(sc, RAL_RXCSR1, tmp);
 2727         RAL_WRITE(sc, RAL_RXCSR2, sc->rxq.physaddr);
 2728 
 2729         /* initialize MAC registers to default values */
 2730         for (i = 0; i < N(ral_def_mac); i++)
 2731                 RAL_WRITE(sc, ral_def_mac[i].reg, ral_def_mac[i].val);
 2732 
 2733         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
 2734         ral_set_macaddr(sc, ic->ic_myaddr);
 2735 
 2736         /* set basic rate set (will be updated later) */
 2737         RAL_WRITE(sc, RAL_ARSP_PLCP_1, 0x153);
 2738 
 2739         ral_set_txantenna(sc, sc->tx_ant);
 2740         ral_set_rxantenna(sc, sc->rx_ant);
 2741         ral_update_slot(ifp);
 2742         ral_update_plcp(sc);
 2743         ral_update_led(sc, 0, 0);
 2744 
 2745         RAL_WRITE(sc, RAL_CSR1, RAL_RESET_ASIC);
 2746         RAL_WRITE(sc, RAL_CSR1, RAL_HOST_READY);
 2747 
 2748         if (ral_bbp_init(sc) != 0) {
 2749                 ral_stop(sc);
 2750                 return;
 2751         }
 2752 
 2753         /* set default BSS channel */
 2754         ic->ic_bss->ni_chan = ic->ic_ibss_chan;
 2755         ic->ic_curchan = ic->ic_ibss_chan;
 2756         ral_set_chan(sc, ic->ic_curchan);
 2757 
 2758         /* kick Rx */
 2759         tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
 2760         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
 2761                 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
 2762                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
 2763                         tmp |= RAL_DROP_TODS;
 2764                 if (!(ifp->if_flags & IFF_PROMISC))
 2765                         tmp |= RAL_DROP_NOT_TO_ME;
 2766         }
 2767         RAL_WRITE(sc, RAL_RXCSR0, tmp);
 2768 
 2769         /* clear old FCS and Rx FIFO errors */
 2770         RAL_READ(sc, RAL_CNT0);
 2771         RAL_READ(sc, RAL_CNT4);
 2772 
 2773         /* clear any pending interrupts */
 2774         RAL_WRITE(sc, RAL_CSR7, 0xffffffff);
 2775 
 2776         /* enable interrupts */
 2777         RAL_WRITE(sc, RAL_CSR8, RAL_INTR_MASK);
 2778 
 2779         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2780         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2781 
 2782         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
 2783                 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
 2784                         ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
 2785         } else
 2786                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
 2787 #undef N
 2788 }
 2789 
 2790 void
 2791 ral_stop(void *priv)
 2792 {
 2793         struct ral_softc *sc = priv;
 2794         struct ieee80211com *ic = &sc->sc_ic;
 2795         struct ifnet *ifp = ic->ic_ifp;
 2796 
 2797         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
 2798 
 2799         sc->sc_tx_timer = 0;
 2800         ifp->if_timer = 0;
 2801         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2802 
 2803         /* abort Tx */
 2804         RAL_WRITE(sc, RAL_TXCSR0, RAL_ABORT_TX);
 2805 
 2806         /* disable Rx */
 2807         RAL_WRITE(sc, RAL_RXCSR0, RAL_DISABLE_RX);
 2808 
 2809         /* reset ASIC (imply reset BBP) */
 2810         RAL_WRITE(sc, RAL_CSR1, RAL_RESET_ASIC);
 2811         RAL_WRITE(sc, RAL_CSR1, 0);
 2812 
 2813         /* disable interrupts */
 2814         RAL_WRITE(sc, RAL_CSR8, 0xffffffff);
 2815 
 2816         /* reset Tx and Rx rings */
 2817         ral_reset_tx_ring(sc, &sc->txq);
 2818         ral_reset_tx_ring(sc, &sc->atimq);
 2819         ral_reset_tx_ring(sc, &sc->prioq);
 2820         ral_reset_tx_ring(sc, &sc->bcnq);
 2821         ral_reset_rx_ring(sc, &sc->rxq);
 2822 }

Cache object: b21ed45ef4100bedbb97b14847c8045b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.