FreeBSD/Linux Kernel Cross Reference
sys/dev/ral/rt2560.c
1 /* $FreeBSD$ */
2
3 /*-
4 * Copyright (c) 2005, 2006
5 * Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22
23 /*-
24 * Ralink Technology RT2560 chipset driver
25 * http://www.ralinktech.com/
26 */
27
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <sys/rman.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_radiotap.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 #include <netinet/if_ether.h>
60
61 #include <dev/ral/if_ralrate.h>
62 #include <dev/ral/rt2560reg.h>
63 #include <dev/ral/rt2560var.h>
64
65 #ifdef RAL_DEBUG
66 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0)
67 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0)
68 extern int ral_debug;
69 #else
70 #define DPRINTF(x)
71 #define DPRINTFN(n, x)
72 #endif
73
74 static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
75 int);
76 static int rt2560_alloc_tx_ring(struct rt2560_softc *,
77 struct rt2560_tx_ring *, int);
78 static void rt2560_reset_tx_ring(struct rt2560_softc *,
79 struct rt2560_tx_ring *);
80 static void rt2560_free_tx_ring(struct rt2560_softc *,
81 struct rt2560_tx_ring *);
82 static int rt2560_alloc_rx_ring(struct rt2560_softc *,
83 struct rt2560_rx_ring *, int);
84 static void rt2560_reset_rx_ring(struct rt2560_softc *,
85 struct rt2560_rx_ring *);
86 static void rt2560_free_rx_ring(struct rt2560_softc *,
87 struct rt2560_rx_ring *);
88 static struct ieee80211_node *rt2560_node_alloc(
89 struct ieee80211_node_table *);
90 static int rt2560_media_change(struct ifnet *);
91 static void rt2560_next_scan(void *);
92 static void rt2560_iter_func(void *, struct ieee80211_node *);
93 static void rt2560_update_rssadapt(void *);
94 static int rt2560_newstate(struct ieee80211com *,
95 enum ieee80211_state, int);
96 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
97 static void rt2560_encryption_intr(struct rt2560_softc *);
98 static void rt2560_tx_intr(struct rt2560_softc *);
99 static void rt2560_prio_intr(struct rt2560_softc *);
100 static void rt2560_decryption_intr(struct rt2560_softc *);
101 static void rt2560_rx_intr(struct rt2560_softc *);
102 static void rt2560_beacon_expire(struct rt2560_softc *);
103 static void rt2560_wakeup_expire(struct rt2560_softc *);
104 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *);
105 static int rt2560_ack_rate(struct ieee80211com *, int);
106 static uint16_t rt2560_txtime(int, int, uint32_t);
107 static uint8_t rt2560_plcp_signal(int);
108 static void rt2560_setup_tx_desc(struct rt2560_softc *,
109 struct rt2560_tx_desc *, uint32_t, int, int, int,
110 bus_addr_t);
111 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
112 struct ieee80211_node *);
113 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
114 struct ieee80211_node *);
115 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
116 struct ieee80211_frame *, uint16_t);
117 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
118 struct ieee80211_node *);
119 static void rt2560_start(struct ifnet *);
120 static void rt2560_watchdog(struct ifnet *);
121 static int rt2560_reset(struct ifnet *);
122 static int rt2560_ioctl(struct ifnet *, u_long, caddr_t);
123 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t,
124 uint8_t);
125 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
126 static void rt2560_rf_write(struct rt2560_softc *, uint8_t,
127 uint32_t);
128 static void rt2560_set_chan(struct rt2560_softc *,
129 struct ieee80211_channel *);
130 #if 0
131 static void rt2560_disable_rf_tune(struct rt2560_softc *);
132 #endif
133 static void rt2560_enable_tsf_sync(struct rt2560_softc *);
134 static void rt2560_update_plcp(struct rt2560_softc *);
135 static void rt2560_update_slot(struct ifnet *);
136 static void rt2560_set_basicrates(struct rt2560_softc *);
137 static void rt2560_update_led(struct rt2560_softc *, int, int);
138 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
139 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
140 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
141 static void rt2560_update_promisc(struct rt2560_softc *);
142 static const char *rt2560_get_rf(int);
143 static void rt2560_read_eeprom(struct rt2560_softc *);
144 static int rt2560_bbp_init(struct rt2560_softc *);
145 static void rt2560_set_txantenna(struct rt2560_softc *, int);
146 static void rt2560_set_rxantenna(struct rt2560_softc *, int);
147 static void rt2560_init(void *);
148 static void rt2560_stop(void *);
149
150 static const struct {
151 uint32_t reg;
152 uint32_t val;
153 } rt2560_def_mac[] = {
154 RT2560_DEF_MAC
155 };
156
157 static const struct {
158 uint8_t reg;
159 uint8_t val;
160 } rt2560_def_bbp[] = {
161 RT2560_DEF_BBP
162 };
163
164 static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2;
165 static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2;
166 static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2;
167 static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2;
168 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
169 static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2;
170 static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2;
171 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
172
173 static const struct {
174 uint8_t chan;
175 uint32_t r1, r2, r4;
176 } rt2560_rf5222[] = {
177 RT2560_RF5222
178 };
179
180 int
181 rt2560_attach(device_t dev, int id)
182 {
183 struct rt2560_softc *sc = device_get_softc(dev);
184 struct ieee80211com *ic = &sc->sc_ic;
185 struct ifnet *ifp;
186 int error, i;
187
188 sc->sc_dev = dev;
189
190 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
191 MTX_DEF | MTX_RECURSE);
192
193 callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
194 callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
195
196 /* retrieve RT2560 rev. no */
197 sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
198
199 /* retrieve MAC address */
200 rt2560_get_macaddr(sc, ic->ic_myaddr);
201
202 /* retrieve RF rev. no and various other things from EEPROM */
203 rt2560_read_eeprom(sc);
204
205 device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
206 sc->asic_rev, rt2560_get_rf(sc->rf_rev));
207
208 /*
209 * Allocate Tx and Rx rings.
210 */
211 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
212 if (error != 0) {
213 device_printf(sc->sc_dev, "could not allocate Tx ring\n");
214 goto fail1;
215 }
216
217 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
218 if (error != 0) {
219 device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
220 goto fail2;
221 }
222
223 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
224 if (error != 0) {
225 device_printf(sc->sc_dev, "could not allocate Prio ring\n");
226 goto fail3;
227 }
228
229 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
230 if (error != 0) {
231 device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
232 goto fail4;
233 }
234
235 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
236 if (error != 0) {
237 device_printf(sc->sc_dev, "could not allocate Rx ring\n");
238 goto fail5;
239 }
240
241 ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
242 if (ifp == NULL) {
243 device_printf(sc->sc_dev, "can not if_alloc()\n");
244 goto fail6;
245 }
246
247 ifp->if_softc = sc;
248 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
249 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
250 ifp->if_init = rt2560_init;
251 ifp->if_ioctl = rt2560_ioctl;
252 ifp->if_start = rt2560_start;
253 ifp->if_watchdog = rt2560_watchdog;
254 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
255 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
256 IFQ_SET_READY(&ifp->if_snd);
257
258 ic->ic_ifp = ifp;
259 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
260 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
261 ic->ic_state = IEEE80211_S_INIT;
262
263 /* set device capabilities */
264 ic->ic_caps =
265 IEEE80211_C_IBSS | /* IBSS mode supported */
266 IEEE80211_C_MONITOR | /* monitor mode supported */
267 IEEE80211_C_HOSTAP | /* HostAp mode supported */
268 IEEE80211_C_TXPMGT | /* tx power management */
269 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
270 IEEE80211_C_SHSLOT | /* short slot time supported */
271 IEEE80211_C_WPA; /* 802.11i */
272
273 if (sc->rf_rev == RT2560_RF_5222) {
274 /* set supported .11a channels */
275 for (i = 36; i <= 64; i += 4) {
276 ic->ic_channels[i].ic_freq =
277 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
278 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
279 }
280 for (i = 100; i <= 140; i += 4) {
281 ic->ic_channels[i].ic_freq =
282 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
283 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
284 }
285 for (i = 149; i <= 161; i += 4) {
286 ic->ic_channels[i].ic_freq =
287 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
288 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
289 }
290 }
291
292 /* set supported .11b and .11g channels (1 through 14) */
293 for (i = 1; i <= 14; i++) {
294 ic->ic_channels[i].ic_freq =
295 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
296 ic->ic_channels[i].ic_flags =
297 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
298 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
299 }
300
301 ieee80211_ifattach(ic);
302 ic->ic_node_alloc = rt2560_node_alloc;
303 ic->ic_updateslot = rt2560_update_slot;
304 ic->ic_reset = rt2560_reset;
305 /* enable s/w bmiss handling in sta mode */
306 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
307
308 /* override state transition machine */
309 sc->sc_newstate = ic->ic_newstate;
310 ic->ic_newstate = rt2560_newstate;
311 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
312
313 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
314 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
315
316 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
317 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
318 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
319
320 sc->sc_txtap_len = sizeof sc->sc_txtapu;
321 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
322 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
323
324 /*
325 * Add a few sysctl knobs.
326 */
327 sc->dwelltime = 200;
328
329 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
330 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
331 "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
332
333 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
334 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
335 "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
336
337 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
338 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
339 CTLFLAG_RW, &sc->dwelltime, 0,
340 "channel dwell time (ms) for AP/station scanning");
341
342 if (bootverbose)
343 ieee80211_announce(ic);
344
345 return 0;
346
347 fail6: rt2560_free_rx_ring(sc, &sc->rxq);
348 fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
349 fail4: rt2560_free_tx_ring(sc, &sc->prioq);
350 fail3: rt2560_free_tx_ring(sc, &sc->atimq);
351 fail2: rt2560_free_tx_ring(sc, &sc->txq);
352 fail1: mtx_destroy(&sc->sc_mtx);
353
354 return ENXIO;
355 }
356
357 int
358 rt2560_detach(void *xsc)
359 {
360 struct rt2560_softc *sc = xsc;
361 struct ieee80211com *ic = &sc->sc_ic;
362 struct ifnet *ifp = ic->ic_ifp;
363
364 rt2560_stop(sc);
365 callout_stop(&sc->scan_ch);
366 callout_stop(&sc->rssadapt_ch);
367
368 bpfdetach(ifp);
369 ieee80211_ifdetach(ic);
370
371 rt2560_free_tx_ring(sc, &sc->txq);
372 rt2560_free_tx_ring(sc, &sc->atimq);
373 rt2560_free_tx_ring(sc, &sc->prioq);
374 rt2560_free_tx_ring(sc, &sc->bcnq);
375 rt2560_free_rx_ring(sc, &sc->rxq);
376
377 if_free(ifp);
378
379 mtx_destroy(&sc->sc_mtx);
380
381 return 0;
382 }
383
384 void
385 rt2560_shutdown(void *xsc)
386 {
387 struct rt2560_softc *sc = xsc;
388
389 rt2560_stop(sc);
390 }
391
392 void
393 rt2560_suspend(void *xsc)
394 {
395 struct rt2560_softc *sc = xsc;
396
397 rt2560_stop(sc);
398 }
399
400 void
401 rt2560_resume(void *xsc)
402 {
403 struct rt2560_softc *sc = xsc;
404 struct ifnet *ifp = sc->sc_ic.ic_ifp;
405
406 if (ifp->if_flags & IFF_UP) {
407 ifp->if_init(ifp->if_softc);
408 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
409 ifp->if_start(ifp);
410 }
411 }
412
413 static void
414 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
415 {
416 if (error != 0)
417 return;
418
419 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
420
421 *(bus_addr_t *)arg = segs[0].ds_addr;
422 }
423
424 static int
425 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
426 int count)
427 {
428 int i, error;
429
430 ring->count = count;
431 ring->queued = 0;
432 ring->cur = ring->next = 0;
433 ring->cur_encrypt = ring->next_encrypt = 0;
434
435 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
436 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1,
437 count * RT2560_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
438 if (error != 0) {
439 device_printf(sc->sc_dev, "could not create desc DMA tag\n");
440 goto fail;
441 }
442
443 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
444 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
445 if (error != 0) {
446 device_printf(sc->sc_dev, "could not allocate DMA memory\n");
447 goto fail;
448 }
449
450 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
451 count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
452 0);
453 if (error != 0) {
454 device_printf(sc->sc_dev, "could not load desc DMA map\n");
455 goto fail;
456 }
457
458 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
459 M_NOWAIT | M_ZERO);
460 if (ring->data == NULL) {
461 device_printf(sc->sc_dev, "could not allocate soft data\n");
462 error = ENOMEM;
463 goto fail;
464 }
465
466 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
467 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER,
468 MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
469 if (error != 0) {
470 device_printf(sc->sc_dev, "could not create data DMA tag\n");
471 goto fail;
472 }
473
474 for (i = 0; i < count; i++) {
475 error = bus_dmamap_create(ring->data_dmat, 0,
476 &ring->data[i].map);
477 if (error != 0) {
478 device_printf(sc->sc_dev, "could not create DMA map\n");
479 goto fail;
480 }
481 }
482
483 return 0;
484
485 fail: rt2560_free_tx_ring(sc, ring);
486 return error;
487 }
488
489 static void
490 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
491 {
492 struct rt2560_tx_desc *desc;
493 struct rt2560_tx_data *data;
494 int i;
495
496 for (i = 0; i < ring->count; i++) {
497 desc = &ring->desc[i];
498 data = &ring->data[i];
499
500 if (data->m != NULL) {
501 bus_dmamap_sync(ring->data_dmat, data->map,
502 BUS_DMASYNC_POSTWRITE);
503 bus_dmamap_unload(ring->data_dmat, data->map);
504 m_freem(data->m);
505 data->m = NULL;
506 }
507
508 if (data->ni != NULL) {
509 ieee80211_free_node(data->ni);
510 data->ni = NULL;
511 }
512
513 desc->flags = 0;
514 }
515
516 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
517
518 ring->queued = 0;
519 ring->cur = ring->next = 0;
520 ring->cur_encrypt = ring->next_encrypt = 0;
521 }
522
523 static void
524 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
525 {
526 struct rt2560_tx_data *data;
527 int i;
528
529 if (ring->desc != NULL) {
530 bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
531 BUS_DMASYNC_POSTWRITE);
532 bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
533 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
534 }
535
536 if (ring->desc_dmat != NULL)
537 bus_dma_tag_destroy(ring->desc_dmat);
538
539 if (ring->data != NULL) {
540 for (i = 0; i < ring->count; i++) {
541 data = &ring->data[i];
542
543 if (data->m != NULL) {
544 bus_dmamap_sync(ring->data_dmat, data->map,
545 BUS_DMASYNC_POSTWRITE);
546 bus_dmamap_unload(ring->data_dmat, data->map);
547 m_freem(data->m);
548 }
549
550 if (data->ni != NULL)
551 ieee80211_free_node(data->ni);
552
553 if (data->map != NULL)
554 bus_dmamap_destroy(ring->data_dmat, data->map);
555 }
556
557 free(ring->data, M_DEVBUF);
558 }
559
560 if (ring->data_dmat != NULL)
561 bus_dma_tag_destroy(ring->data_dmat);
562 }
563
564 static int
565 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
566 int count)
567 {
568 struct rt2560_rx_desc *desc;
569 struct rt2560_rx_data *data;
570 bus_addr_t physaddr;
571 int i, error;
572
573 ring->count = count;
574 ring->cur = ring->next = 0;
575 ring->cur_decrypt = 0;
576
577 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
578 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1,
579 count * RT2560_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
580 if (error != 0) {
581 device_printf(sc->sc_dev, "could not create desc DMA tag\n");
582 goto fail;
583 }
584
585 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
586 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
587 if (error != 0) {
588 device_printf(sc->sc_dev, "could not allocate DMA memory\n");
589 goto fail;
590 }
591
592 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
593 count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
594 0);
595 if (error != 0) {
596 device_printf(sc->sc_dev, "could not load desc DMA map\n");
597 goto fail;
598 }
599
600 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
601 M_NOWAIT | M_ZERO);
602 if (ring->data == NULL) {
603 device_printf(sc->sc_dev, "could not allocate soft data\n");
604 error = ENOMEM;
605 goto fail;
606 }
607
608 /*
609 * Pre-allocate Rx buffers and populate Rx ring.
610 */
611 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
612 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
613 NULL, &ring->data_dmat);
614 if (error != 0) {
615 device_printf(sc->sc_dev, "could not create data DMA tag\n");
616 goto fail;
617 }
618
619 for (i = 0; i < count; i++) {
620 desc = &sc->rxq.desc[i];
621 data = &sc->rxq.data[i];
622
623 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
624 if (error != 0) {
625 device_printf(sc->sc_dev, "could not create DMA map\n");
626 goto fail;
627 }
628
629 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
630 if (data->m == NULL) {
631 device_printf(sc->sc_dev,
632 "could not allocate rx mbuf\n");
633 error = ENOMEM;
634 goto fail;
635 }
636
637 error = bus_dmamap_load(ring->data_dmat, data->map,
638 mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
639 &physaddr, 0);
640 if (error != 0) {
641 device_printf(sc->sc_dev,
642 "could not load rx buf DMA map");
643 goto fail;
644 }
645
646 desc->flags = htole32(RT2560_RX_BUSY);
647 desc->physaddr = htole32(physaddr);
648 }
649
650 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
651
652 return 0;
653
654 fail: rt2560_free_rx_ring(sc, ring);
655 return error;
656 }
657
658 static void
659 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
660 {
661 int i;
662
663 for (i = 0; i < ring->count; i++) {
664 ring->desc[i].flags = htole32(RT2560_RX_BUSY);
665 ring->data[i].drop = 0;
666 }
667
668 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
669
670 ring->cur = ring->next = 0;
671 ring->cur_decrypt = 0;
672 }
673
674 static void
675 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
676 {
677 struct rt2560_rx_data *data;
678 int i;
679
680 if (ring->desc != NULL) {
681 bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
682 BUS_DMASYNC_POSTWRITE);
683 bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
684 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
685 }
686
687 if (ring->desc_dmat != NULL)
688 bus_dma_tag_destroy(ring->desc_dmat);
689
690 if (ring->data != NULL) {
691 for (i = 0; i < ring->count; i++) {
692 data = &ring->data[i];
693
694 if (data->m != NULL) {
695 bus_dmamap_sync(ring->data_dmat, data->map,
696 BUS_DMASYNC_POSTREAD);
697 bus_dmamap_unload(ring->data_dmat, data->map);
698 m_freem(data->m);
699 }
700
701 if (data->map != NULL)
702 bus_dmamap_destroy(ring->data_dmat, data->map);
703 }
704
705 free(ring->data, M_DEVBUF);
706 }
707
708 if (ring->data_dmat != NULL)
709 bus_dma_tag_destroy(ring->data_dmat);
710 }
711
712 static struct ieee80211_node *
713 rt2560_node_alloc(struct ieee80211_node_table *nt)
714 {
715 struct rt2560_node *rn;
716
717 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
718 M_NOWAIT | M_ZERO);
719
720 return (rn != NULL) ? &rn->ni : NULL;
721 }
722
723 static int
724 rt2560_media_change(struct ifnet *ifp)
725 {
726 struct rt2560_softc *sc = ifp->if_softc;
727 int error;
728
729 error = ieee80211_media_change(ifp);
730 if (error != ENETRESET)
731 return error;
732
733 if ((ifp->if_flags & IFF_UP) &&
734 (ifp->if_drv_flags & IFF_DRV_RUNNING))
735 rt2560_init(sc);
736
737 return 0;
738 }
739
740 /*
741 * This function is called periodically (every 200ms) during scanning to
742 * switch from one channel to another.
743 */
744 static void
745 rt2560_next_scan(void *arg)
746 {
747 struct rt2560_softc *sc = arg;
748 struct ieee80211com *ic = &sc->sc_ic;
749
750 if (ic->ic_state == IEEE80211_S_SCAN)
751 ieee80211_next_scan(ic);
752 }
753
754 /*
755 * This function is called for each node present in the node station table.
756 */
757 static void
758 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
759 {
760 struct rt2560_node *rn = (struct rt2560_node *)ni;
761
762 ral_rssadapt_updatestats(&rn->rssadapt);
763 }
764
765 /*
766 * This function is called periodically (every 100ms) in RUN state to update
767 * the rate adaptation statistics.
768 */
769 static void
770 rt2560_update_rssadapt(void *arg)
771 {
772 struct rt2560_softc *sc = arg;
773 struct ieee80211com *ic = &sc->sc_ic;
774
775 RAL_LOCK(sc);
776
777 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
778 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
779
780 RAL_UNLOCK(sc);
781 }
782
783 static int
784 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
785 {
786 struct rt2560_softc *sc = ic->ic_ifp->if_softc;
787 enum ieee80211_state ostate;
788 struct ieee80211_node *ni;
789 struct mbuf *m;
790 int error = 0;
791
792 ostate = ic->ic_state;
793 callout_stop(&sc->scan_ch);
794
795 switch (nstate) {
796 case IEEE80211_S_INIT:
797 callout_stop(&sc->rssadapt_ch);
798
799 if (ostate == IEEE80211_S_RUN) {
800 /* abort TSF synchronization */
801 RAL_WRITE(sc, RT2560_CSR14, 0);
802
803 /* turn association led off */
804 rt2560_update_led(sc, 0, 0);
805 }
806 break;
807
808 case IEEE80211_S_SCAN:
809 rt2560_set_chan(sc, ic->ic_curchan);
810 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
811 rt2560_next_scan, sc);
812 break;
813
814 case IEEE80211_S_AUTH:
815 rt2560_set_chan(sc, ic->ic_curchan);
816 break;
817
818 case IEEE80211_S_ASSOC:
819 rt2560_set_chan(sc, ic->ic_curchan);
820 break;
821
822 case IEEE80211_S_RUN:
823 rt2560_set_chan(sc, ic->ic_curchan);
824
825 ni = ic->ic_bss;
826
827 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
828 rt2560_update_plcp(sc);
829 rt2560_set_basicrates(sc);
830 rt2560_set_bssid(sc, ni->ni_bssid);
831 }
832
833 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
834 ic->ic_opmode == IEEE80211_M_IBSS) {
835 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
836 if (m == NULL) {
837 device_printf(sc->sc_dev,
838 "could not allocate beacon\n");
839 error = ENOBUFS;
840 break;
841 }
842
843 ieee80211_ref_node(ni);
844 error = rt2560_tx_bcn(sc, m, ni);
845 if (error != 0)
846 break;
847 }
848
849 /* turn assocation led on */
850 rt2560_update_led(sc, 1, 0);
851
852 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
853 callout_reset(&sc->rssadapt_ch, hz / 10,
854 rt2560_update_rssadapt, sc);
855
856 rt2560_enable_tsf_sync(sc);
857 }
858 break;
859 }
860
861 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
862 }
863
864 /*
865 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
866 * 93C66).
867 */
868 static uint16_t
869 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
870 {
871 uint32_t tmp;
872 uint16_t val;
873 int n;
874
875 /* clock C once before the first command */
876 RT2560_EEPROM_CTL(sc, 0);
877
878 RT2560_EEPROM_CTL(sc, RT2560_S);
879 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
880 RT2560_EEPROM_CTL(sc, RT2560_S);
881
882 /* write start bit (1) */
883 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
884 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
885
886 /* write READ opcode (10) */
887 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
888 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
889 RT2560_EEPROM_CTL(sc, RT2560_S);
890 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
891
892 /* write address (A5-A0 or A7-A0) */
893 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
894 for (; n >= 0; n--) {
895 RT2560_EEPROM_CTL(sc, RT2560_S |
896 (((addr >> n) & 1) << RT2560_SHIFT_D));
897 RT2560_EEPROM_CTL(sc, RT2560_S |
898 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
899 }
900
901 RT2560_EEPROM_CTL(sc, RT2560_S);
902
903 /* read data Q15-Q0 */
904 val = 0;
905 for (n = 15; n >= 0; n--) {
906 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
907 tmp = RAL_READ(sc, RT2560_CSR21);
908 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
909 RT2560_EEPROM_CTL(sc, RT2560_S);
910 }
911
912 RT2560_EEPROM_CTL(sc, 0);
913
914 /* clear Chip Select and clock C */
915 RT2560_EEPROM_CTL(sc, RT2560_S);
916 RT2560_EEPROM_CTL(sc, 0);
917 RT2560_EEPROM_CTL(sc, RT2560_C);
918
919 return val;
920 }
921
922 /*
923 * Some frames were processed by the hardware cipher engine and are ready for
924 * transmission.
925 */
926 static void
927 rt2560_encryption_intr(struct rt2560_softc *sc)
928 {
929 struct rt2560_tx_desc *desc;
930 int hw;
931
932 /* retrieve last descriptor index processed by cipher engine */
933 hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
934 hw /= RT2560_TX_DESC_SIZE;
935
936 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
937 BUS_DMASYNC_POSTREAD);
938
939 for (; sc->txq.next_encrypt != hw;) {
940 desc = &sc->txq.desc[sc->txq.next_encrypt];
941
942 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
943 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
944 break;
945
946 /* for TKIP, swap eiv field to fix a bug in ASIC */
947 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
948 RT2560_TX_CIPHER_TKIP)
949 desc->eiv = bswap32(desc->eiv);
950
951 /* mark the frame ready for transmission */
952 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
953
954 DPRINTFN(15, ("encryption done idx=%u\n",
955 sc->txq.next_encrypt));
956
957 sc->txq.next_encrypt =
958 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
959 }
960
961 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
962 BUS_DMASYNC_PREWRITE);
963
964 /* kick Tx */
965 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
966 }
967
968 static void
969 rt2560_tx_intr(struct rt2560_softc *sc)
970 {
971 struct ieee80211com *ic = &sc->sc_ic;
972 struct ifnet *ifp = ic->ic_ifp;
973 struct rt2560_tx_desc *desc;
974 struct rt2560_tx_data *data;
975 struct rt2560_node *rn;
976
977 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
978 BUS_DMASYNC_POSTREAD);
979
980 for (;;) {
981 desc = &sc->txq.desc[sc->txq.next];
982 data = &sc->txq.data[sc->txq.next];
983
984 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
985 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
986 !(le32toh(desc->flags) & RT2560_TX_VALID))
987 break;
988
989 rn = (struct rt2560_node *)data->ni;
990
991 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
992 case RT2560_TX_SUCCESS:
993 DPRINTFN(10, ("data frame sent successfully\n"));
994 if (data->id.id_node != NULL) {
995 ral_rssadapt_raise_rate(ic, &rn->rssadapt,
996 &data->id);
997 }
998 ifp->if_opackets++;
999 break;
1000
1001 case RT2560_TX_SUCCESS_RETRY:
1002 DPRINTFN(9, ("data frame sent after %u retries\n",
1003 (le32toh(desc->flags) >> 5) & 0x7));
1004 ifp->if_opackets++;
1005 break;
1006
1007 case RT2560_TX_FAIL_RETRY:
1008 DPRINTFN(9, ("sending data frame failed (too much "
1009 "retries)\n"));
1010 if (data->id.id_node != NULL) {
1011 ral_rssadapt_lower_rate(ic, data->ni,
1012 &rn->rssadapt, &data->id);
1013 }
1014 ifp->if_oerrors++;
1015 break;
1016
1017 case RT2560_TX_FAIL_INVALID:
1018 case RT2560_TX_FAIL_OTHER:
1019 default:
1020 device_printf(sc->sc_dev, "sending data frame failed "
1021 "0x%08x\n", le32toh(desc->flags));
1022 ifp->if_oerrors++;
1023 }
1024
1025 bus_dmamap_sync(sc->txq.data_dmat, data->map,
1026 BUS_DMASYNC_POSTWRITE);
1027 bus_dmamap_unload(sc->txq.data_dmat, data->map);
1028 m_freem(data->m);
1029 data->m = NULL;
1030 ieee80211_free_node(data->ni);
1031 data->ni = NULL;
1032
1033 /* descriptor is no longer valid */
1034 desc->flags &= ~htole32(RT2560_TX_VALID);
1035
1036 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1037
1038 sc->txq.queued--;
1039 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1040 }
1041
1042 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1043 BUS_DMASYNC_PREWRITE);
1044
1045 sc->sc_tx_timer = 0;
1046 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1047 rt2560_start(ifp);
1048 }
1049
1050 static void
1051 rt2560_prio_intr(struct rt2560_softc *sc)
1052 {
1053 struct ieee80211com *ic = &sc->sc_ic;
1054 struct ifnet *ifp = ic->ic_ifp;
1055 struct rt2560_tx_desc *desc;
1056 struct rt2560_tx_data *data;
1057
1058 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1059 BUS_DMASYNC_POSTREAD);
1060
1061 for (;;) {
1062 desc = &sc->prioq.desc[sc->prioq.next];
1063 data = &sc->prioq.data[sc->prioq.next];
1064
1065 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1066 !(le32toh(desc->flags) & RT2560_TX_VALID))
1067 break;
1068
1069 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1070 case RT2560_TX_SUCCESS:
1071 DPRINTFN(10, ("mgt frame sent successfully\n"));
1072 break;
1073
1074 case RT2560_TX_SUCCESS_RETRY:
1075 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1076 (le32toh(desc->flags) >> 5) & 0x7));
1077 break;
1078
1079 case RT2560_TX_FAIL_RETRY:
1080 DPRINTFN(9, ("sending mgt frame failed (too much "
1081 "retries)\n"));
1082 break;
1083
1084 case RT2560_TX_FAIL_INVALID:
1085 case RT2560_TX_FAIL_OTHER:
1086 default:
1087 device_printf(sc->sc_dev, "sending mgt frame failed "
1088 "0x%08x\n", le32toh(desc->flags));
1089 }
1090
1091 bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1092 BUS_DMASYNC_POSTWRITE);
1093 bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1094 m_freem(data->m);
1095 data->m = NULL;
1096 ieee80211_free_node(data->ni);
1097 data->ni = NULL;
1098
1099 /* descriptor is no longer valid */
1100 desc->flags &= ~htole32(RT2560_TX_VALID);
1101
1102 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1103
1104 sc->prioq.queued--;
1105 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1106 }
1107
1108 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1109 BUS_DMASYNC_PREWRITE);
1110
1111 sc->sc_tx_timer = 0;
1112 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1113 rt2560_start(ifp);
1114 }
1115
1116 /*
1117 * Some frames were processed by the hardware cipher engine and are ready for
1118 * transmission to the IEEE802.11 layer.
1119 */
1120 static void
1121 rt2560_decryption_intr(struct rt2560_softc *sc)
1122 {
1123 struct ieee80211com *ic = &sc->sc_ic;
1124 struct ifnet *ifp = ic->ic_ifp;
1125 struct rt2560_rx_desc *desc;
1126 struct rt2560_rx_data *data;
1127 bus_addr_t physaddr;
1128 struct ieee80211_frame *wh;
1129 struct ieee80211_node *ni;
1130 struct rt2560_node *rn;
1131 struct mbuf *mnew, *m;
1132 int hw, error;
1133
1134 /* retrieve last decriptor index processed by cipher engine */
1135 hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1136 hw /= RT2560_RX_DESC_SIZE;
1137
1138 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1139 BUS_DMASYNC_POSTREAD);
1140
1141 for (; sc->rxq.cur_decrypt != hw;) {
1142 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1143 data = &sc->rxq.data[sc->rxq.cur_decrypt];
1144
1145 if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1146 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1147 break;
1148
1149 if (data->drop) {
1150 ifp->if_ierrors++;
1151 goto skip;
1152 }
1153
1154 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1155 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1156 ifp->if_ierrors++;
1157 goto skip;
1158 }
1159
1160 /*
1161 * Try to allocate a new mbuf for this ring element and load it
1162 * before processing the current mbuf. If the ring element
1163 * cannot be loaded, drop the received packet and reuse the old
1164 * mbuf. In the unlikely case that the old mbuf can't be
1165 * reloaded either, explicitly panic.
1166 */
1167 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1168 if (mnew == NULL) {
1169 ifp->if_ierrors++;
1170 goto skip;
1171 }
1172
1173 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1174 BUS_DMASYNC_POSTREAD);
1175 bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1176
1177 error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1178 mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1179 &physaddr, 0);
1180 if (error != 0) {
1181 m_freem(mnew);
1182
1183 /* try to reload the old mbuf */
1184 error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1185 mtod(data->m, void *), MCLBYTES,
1186 rt2560_dma_map_addr, &physaddr, 0);
1187 if (error != 0) {
1188 /* very unlikely that it will fail... */
1189 panic("%s: could not load old rx mbuf",
1190 device_get_name(sc->sc_dev));
1191 }
1192 ifp->if_ierrors++;
1193 goto skip;
1194 }
1195
1196 /*
1197 * New mbuf successfully loaded, update Rx ring and continue
1198 * processing.
1199 */
1200 m = data->m;
1201 data->m = mnew;
1202 desc->physaddr = htole32(physaddr);
1203
1204 /* finalize mbuf */
1205 m->m_pkthdr.rcvif = ifp;
1206 m->m_pkthdr.len = m->m_len =
1207 (le32toh(desc->flags) >> 16) & 0xfff;
1208
1209 if (bpf_peers_present(sc->sc_drvbpf)) {
1210 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1211 uint32_t tsf_lo, tsf_hi;
1212
1213 /* get timestamp (low and high 32 bits) */
1214 tsf_hi = RAL_READ(sc, RT2560_CSR17);
1215 tsf_lo = RAL_READ(sc, RT2560_CSR16);
1216
1217 tap->wr_tsf =
1218 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1219 tap->wr_flags = 0;
1220 tap->wr_rate = rt2560_rxrate(desc);
1221 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1222 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1223 tap->wr_antenna = sc->rx_ant;
1224 tap->wr_antsignal = desc->rssi;
1225
1226 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1227 }
1228
1229 wh = mtod(m, struct ieee80211_frame *);
1230 ni = ieee80211_find_rxnode(ic,
1231 (struct ieee80211_frame_min *)wh);
1232
1233 /* send the frame to the 802.11 layer */
1234 ieee80211_input(ic, m, ni, desc->rssi, 0);
1235
1236 /* give rssi to the rate adatation algorithm */
1237 rn = (struct rt2560_node *)ni;
1238 ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1239
1240 /* node is no longer needed */
1241 ieee80211_free_node(ni);
1242
1243 skip: desc->flags = htole32(RT2560_RX_BUSY);
1244
1245 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1246
1247 sc->rxq.cur_decrypt =
1248 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1249 }
1250
1251 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1252 BUS_DMASYNC_PREWRITE);
1253 }
1254
1255 /*
1256 * Some frames were received. Pass them to the hardware cipher engine before
1257 * sending them to the 802.11 layer.
1258 */
1259 static void
1260 rt2560_rx_intr(struct rt2560_softc *sc)
1261 {
1262 struct rt2560_rx_desc *desc;
1263 struct rt2560_rx_data *data;
1264
1265 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1266 BUS_DMASYNC_POSTREAD);
1267
1268 for (;;) {
1269 desc = &sc->rxq.desc[sc->rxq.cur];
1270 data = &sc->rxq.data[sc->rxq.cur];
1271
1272 if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1273 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1274 break;
1275
1276 data->drop = 0;
1277
1278 if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1279 (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1280 /*
1281 * This should not happen since we did not request
1282 * to receive those frames when we filled RXCSR0.
1283 */
1284 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1285 le32toh(desc->flags)));
1286 data->drop = 1;
1287 }
1288
1289 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1290 DPRINTFN(5, ("bad length\n"));
1291 data->drop = 1;
1292 }
1293
1294 /* mark the frame for decryption */
1295 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1296
1297 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1298
1299 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1300 }
1301
1302 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1303 BUS_DMASYNC_PREWRITE);
1304
1305 /* kick decrypt */
1306 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1307 }
1308
1309 /*
1310 * This function is called periodically in IBSS mode when a new beacon must be
1311 * sent out.
1312 */
1313 static void
1314 rt2560_beacon_expire(struct rt2560_softc *sc)
1315 {
1316 struct ieee80211com *ic = &sc->sc_ic;
1317 struct rt2560_tx_data *data;
1318
1319 if (ic->ic_opmode != IEEE80211_M_IBSS &&
1320 ic->ic_opmode != IEEE80211_M_HOSTAP)
1321 return;
1322
1323 data = &sc->bcnq.data[sc->bcnq.next];
1324
1325 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1326 bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1327
1328 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1329
1330 if (bpf_peers_present(ic->ic_rawbpf))
1331 bpf_mtap(ic->ic_rawbpf, data->m);
1332
1333 rt2560_tx_bcn(sc, data->m, data->ni);
1334
1335 DPRINTFN(15, ("beacon expired\n"));
1336
1337 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1338 }
1339
1340 /* ARGSUSED */
1341 static void
1342 rt2560_wakeup_expire(struct rt2560_softc *sc)
1343 {
1344 DPRINTFN(2, ("wakeup expired\n"));
1345 }
1346
1347 void
1348 rt2560_intr(void *arg)
1349 {
1350 struct rt2560_softc *sc = arg;
1351 struct ifnet *ifp = sc->sc_ifp;
1352 uint32_t r;
1353
1354 RAL_LOCK(sc);
1355
1356 /* disable interrupts */
1357 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1358
1359 /* don't re-enable interrupts if we're shutting down */
1360 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1361 RAL_UNLOCK(sc);
1362 return;
1363 }
1364
1365 r = RAL_READ(sc, RT2560_CSR7);
1366 RAL_WRITE(sc, RT2560_CSR7, r);
1367
1368 if (r & RT2560_BEACON_EXPIRE)
1369 rt2560_beacon_expire(sc);
1370
1371 if (r & RT2560_WAKEUP_EXPIRE)
1372 rt2560_wakeup_expire(sc);
1373
1374 if (r & RT2560_ENCRYPTION_DONE)
1375 rt2560_encryption_intr(sc);
1376
1377 if (r & RT2560_TX_DONE)
1378 rt2560_tx_intr(sc);
1379
1380 if (r & RT2560_PRIO_DONE)
1381 rt2560_prio_intr(sc);
1382
1383 if (r & RT2560_DECRYPTION_DONE)
1384 rt2560_decryption_intr(sc);
1385
1386 if (r & RT2560_RX_DONE)
1387 rt2560_rx_intr(sc);
1388
1389 /* re-enable interrupts */
1390 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1391
1392 RAL_UNLOCK(sc);
1393 }
1394
1395 /* quickly determine if a given rate is CCK or OFDM */
1396 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1397
1398 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1399 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1400
1401 #define RAL_SIFS 10 /* us */
1402
1403 #define RT2560_TXRX_TURNAROUND 10 /* us */
1404
1405 /*
1406 * This function is only used by the Rx radiotap code.
1407 */
1408 static uint8_t
1409 rt2560_rxrate(struct rt2560_rx_desc *desc)
1410 {
1411 if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1412 /* reverse function of rt2560_plcp_signal */
1413 switch (desc->rate) {
1414 case 0xb: return 12;
1415 case 0xf: return 18;
1416 case 0xa: return 24;
1417 case 0xe: return 36;
1418 case 0x9: return 48;
1419 case 0xd: return 72;
1420 case 0x8: return 96;
1421 case 0xc: return 108;
1422 }
1423 } else {
1424 if (desc->rate == 10)
1425 return 2;
1426 if (desc->rate == 20)
1427 return 4;
1428 if (desc->rate == 55)
1429 return 11;
1430 if (desc->rate == 110)
1431 return 22;
1432 }
1433 return 2; /* should not get there */
1434 }
1435
1436 /*
1437 * Return the expected ack rate for a frame transmitted at rate `rate'.
1438 * XXX: this should depend on the destination node basic rate set.
1439 */
1440 static int
1441 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1442 {
1443 switch (rate) {
1444 /* CCK rates */
1445 case 2:
1446 return 2;
1447 case 4:
1448 case 11:
1449 case 22:
1450 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1451
1452 /* OFDM rates */
1453 case 12:
1454 case 18:
1455 return 12;
1456 case 24:
1457 case 36:
1458 return 24;
1459 case 48:
1460 case 72:
1461 case 96:
1462 case 108:
1463 return 48;
1464 }
1465
1466 /* default to 1Mbps */
1467 return 2;
1468 }
1469
1470 /*
1471 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1472 * The function automatically determines the operating mode depending on the
1473 * given rate. `flags' indicates whether short preamble is in use or not.
1474 */
1475 static uint16_t
1476 rt2560_txtime(int len, int rate, uint32_t flags)
1477 {
1478 uint16_t txtime;
1479
1480 if (RAL_RATE_IS_OFDM(rate)) {
1481 /* IEEE Std 802.11a-1999, pp. 37 */
1482 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1483 txtime = 16 + 4 + 4 * txtime + 6;
1484 } else {
1485 /* IEEE Std 802.11b-1999, pp. 28 */
1486 txtime = (16 * len + rate - 1) / rate;
1487 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1488 txtime += 72 + 24;
1489 else
1490 txtime += 144 + 48;
1491 }
1492
1493 return txtime;
1494 }
1495
1496 static uint8_t
1497 rt2560_plcp_signal(int rate)
1498 {
1499 switch (rate) {
1500 /* CCK rates (returned values are device-dependent) */
1501 case 2: return 0x0;
1502 case 4: return 0x1;
1503 case 11: return 0x2;
1504 case 22: return 0x3;
1505
1506 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1507 case 12: return 0xb;
1508 case 18: return 0xf;
1509 case 24: return 0xa;
1510 case 36: return 0xe;
1511 case 48: return 0x9;
1512 case 72: return 0xd;
1513 case 96: return 0x8;
1514 case 108: return 0xc;
1515
1516 /* unsupported rates (should not get there) */
1517 default: return 0xff;
1518 }
1519 }
1520
1521 static void
1522 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1523 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1524 {
1525 struct ieee80211com *ic = &sc->sc_ic;
1526 uint16_t plcp_length;
1527 int remainder;
1528
1529 desc->flags = htole32(flags);
1530 desc->flags |= htole32(len << 16);
1531 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1532 htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1533
1534 desc->physaddr = htole32(physaddr);
1535 desc->wme = htole16(
1536 RT2560_AIFSN(2) |
1537 RT2560_LOGCWMIN(3) |
1538 RT2560_LOGCWMAX(8));
1539
1540 /* setup PLCP fields */
1541 desc->plcp_signal = rt2560_plcp_signal(rate);
1542 desc->plcp_service = 4;
1543
1544 len += IEEE80211_CRC_LEN;
1545 if (RAL_RATE_IS_OFDM(rate)) {
1546 desc->flags |= htole32(RT2560_TX_OFDM);
1547
1548 plcp_length = len & 0xfff;
1549 desc->plcp_length_hi = plcp_length >> 6;
1550 desc->plcp_length_lo = plcp_length & 0x3f;
1551 } else {
1552 plcp_length = (16 * len + rate - 1) / rate;
1553 if (rate == 22) {
1554 remainder = (16 * len) % 22;
1555 if (remainder != 0 && remainder < 7)
1556 desc->plcp_service |= RT2560_PLCP_LENGEXT;
1557 }
1558 desc->plcp_length_hi = plcp_length >> 8;
1559 desc->plcp_length_lo = plcp_length & 0xff;
1560
1561 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1562 desc->plcp_signal |= 0x08;
1563 }
1564 }
1565
1566 static int
1567 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1568 struct ieee80211_node *ni)
1569 {
1570 struct ieee80211com *ic = &sc->sc_ic;
1571 struct rt2560_tx_desc *desc;
1572 struct rt2560_tx_data *data;
1573 bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1574 int nsegs, rate, error;
1575
1576 desc = &sc->bcnq.desc[sc->bcnq.cur];
1577 data = &sc->bcnq.data[sc->bcnq.cur];
1578
1579 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1580
1581 error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
1582 segs, &nsegs, BUS_DMA_NOWAIT);
1583 if (error != 0) {
1584 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1585 error);
1586 m_freem(m0);
1587 return error;
1588 }
1589
1590 if (bpf_peers_present(sc->sc_drvbpf)) {
1591 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1592
1593 tap->wt_flags = 0;
1594 tap->wt_rate = rate;
1595 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1596 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1597 tap->wt_antenna = sc->tx_ant;
1598
1599 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1600 }
1601
1602 data->m = m0;
1603 data->ni = ni;
1604
1605 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1606 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
1607
1608 DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1609 m0->m_pkthdr.len, sc->bcnq.cur, rate));
1610
1611 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1612 bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1613 BUS_DMASYNC_PREWRITE);
1614
1615 sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1616
1617 return 0;
1618 }
1619
1620 static int
1621 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1622 struct ieee80211_node *ni)
1623 {
1624 struct ieee80211com *ic = &sc->sc_ic;
1625 struct rt2560_tx_desc *desc;
1626 struct rt2560_tx_data *data;
1627 struct ieee80211_frame *wh;
1628 bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1629 uint16_t dur;
1630 uint32_t flags = 0;
1631 int nsegs, rate, error;
1632
1633 desc = &sc->prioq.desc[sc->prioq.cur];
1634 data = &sc->prioq.data[sc->prioq.cur];
1635
1636 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1637
1638 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1639 segs, &nsegs, 0);
1640 if (error != 0) {
1641 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1642 error);
1643 m_freem(m0);
1644 return error;
1645 }
1646
1647 if (bpf_peers_present(sc->sc_drvbpf)) {
1648 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1649
1650 tap->wt_flags = 0;
1651 tap->wt_rate = rate;
1652 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1653 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1654 tap->wt_antenna = sc->tx_ant;
1655
1656 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1657 }
1658
1659 data->m = m0;
1660 data->ni = ni;
1661
1662 wh = mtod(m0, struct ieee80211_frame *);
1663
1664 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1665 flags |= RT2560_TX_ACK;
1666
1667 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1668 RAL_SIFS;
1669 *(uint16_t *)wh->i_dur = htole16(dur);
1670
1671 /* tell hardware to add timestamp for probe responses */
1672 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1673 IEEE80211_FC0_TYPE_MGT &&
1674 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1675 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1676 flags |= RT2560_TX_TIMESTAMP;
1677 }
1678
1679 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1680 segs->ds_addr);
1681
1682 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1683 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1684 BUS_DMASYNC_PREWRITE);
1685
1686 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1687 m0->m_pkthdr.len, sc->prioq.cur, rate));
1688
1689 /* kick prio */
1690 sc->prioq.queued++;
1691 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1692 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1693
1694 return 0;
1695 }
1696
1697 /*
1698 * Build a RTS control frame.
1699 */
1700 static struct mbuf *
1701 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1702 uint16_t dur)
1703 {
1704 struct ieee80211_frame_rts *rts;
1705 struct mbuf *m;
1706
1707 MGETHDR(m, M_DONTWAIT, MT_DATA);
1708 if (m == NULL) {
1709 sc->sc_ic.ic_stats.is_tx_nobuf++;
1710 device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1711 return NULL;
1712 }
1713
1714 rts = mtod(m, struct ieee80211_frame_rts *);
1715
1716 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1717 IEEE80211_FC0_SUBTYPE_RTS;
1718 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1719 *(uint16_t *)rts->i_dur = htole16(dur);
1720 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1721 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1722
1723 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1724
1725 return m;
1726 }
1727
1728 static int
1729 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1730 struct ieee80211_node *ni)
1731 {
1732 struct ieee80211com *ic = &sc->sc_ic;
1733 struct rt2560_tx_desc *desc;
1734 struct rt2560_tx_data *data;
1735 struct rt2560_node *rn;
1736 struct ieee80211_rateset *rs;
1737 struct ieee80211_frame *wh;
1738 struct ieee80211_key *k;
1739 struct mbuf *mnew;
1740 bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1741 uint16_t dur;
1742 uint32_t flags = 0;
1743 int nsegs, rate, error;
1744
1745 wh = mtod(m0, struct ieee80211_frame *);
1746
1747 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1748 rs = &ic->ic_sup_rates[ic->ic_curmode];
1749 rate = rs->rs_rates[ic->ic_fixed_rate];
1750 } else {
1751 rs = &ni->ni_rates;
1752 rn = (struct rt2560_node *)ni;
1753 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1754 m0->m_pkthdr.len, NULL, 0);
1755 rate = rs->rs_rates[ni->ni_txrate];
1756 }
1757 rate &= IEEE80211_RATE_VAL;
1758
1759 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1760 k = ieee80211_crypto_encap(ic, ni, m0);
1761 if (k == NULL) {
1762 m_freem(m0);
1763 return ENOBUFS;
1764 }
1765
1766 /* packet header may have moved, reset our local pointer */
1767 wh = mtod(m0, struct ieee80211_frame *);
1768 }
1769
1770 /*
1771 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1772 * for directed frames only when the length of the MPDU is greater
1773 * than the length threshold indicated by [...]" ic_rtsthreshold.
1774 */
1775 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1776 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1777 struct mbuf *m;
1778 uint16_t dur;
1779 int rtsrate, ackrate;
1780
1781 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1782 ackrate = rt2560_ack_rate(ic, rate);
1783
1784 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1785 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1786 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1787 3 * RAL_SIFS;
1788
1789 m = rt2560_get_rts(sc, wh, dur);
1790
1791 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1792 data = &sc->txq.data[sc->txq.cur_encrypt];
1793
1794 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1795 m, segs, &nsegs, 0);
1796 if (error != 0) {
1797 device_printf(sc->sc_dev,
1798 "could not map mbuf (error %d)\n", error);
1799 m_freem(m);
1800 m_freem(m0);
1801 return error;
1802 }
1803
1804 /* avoid multiple free() of the same node for each fragment */
1805 ieee80211_ref_node(ni);
1806
1807 data->m = m;
1808 data->ni = ni;
1809
1810 /* RTS frames are not taken into account for rssadapt */
1811 data->id.id_node = NULL;
1812
1813 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1814 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1815 segs->ds_addr);
1816
1817 bus_dmamap_sync(sc->txq.data_dmat, data->map,
1818 BUS_DMASYNC_PREWRITE);
1819
1820 sc->txq.queued++;
1821 sc->txq.cur_encrypt =
1822 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1823
1824 /*
1825 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1826 * asynchronous data frame shall be transmitted after the CTS
1827 * frame and a SIFS period.
1828 */
1829 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1830 }
1831
1832 data = &sc->txq.data[sc->txq.cur_encrypt];
1833 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1834
1835 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
1836 segs, &nsegs, 0);
1837 if (error != 0 && error != EFBIG) {
1838 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1839 error);
1840 m_freem(m0);
1841 return error;
1842 }
1843 if (error != 0) {
1844 mnew = m_defrag(m0, M_DONTWAIT);
1845 if (mnew == NULL) {
1846 device_printf(sc->sc_dev,
1847 "could not defragment mbuf\n");
1848 m_freem(m0);
1849 return ENOBUFS;
1850 }
1851 m0 = mnew;
1852
1853 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1854 m0, segs, &nsegs, 0);
1855 if (error != 0) {
1856 device_printf(sc->sc_dev,
1857 "could not map mbuf (error %d)\n", error);
1858 m_freem(m0);
1859 return error;
1860 }
1861
1862 /* packet header may have moved, reset our local pointer */
1863 wh = mtod(m0, struct ieee80211_frame *);
1864 }
1865
1866 if (bpf_peers_present(sc->sc_drvbpf)) {
1867 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1868
1869 tap->wt_flags = 0;
1870 tap->wt_rate = rate;
1871 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1872 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1873 tap->wt_antenna = sc->tx_ant;
1874
1875 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1876 }
1877
1878 data->m = m0;
1879 data->ni = ni;
1880
1881 /* remember link conditions for rate adaptation algorithm */
1882 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1883 data->id.id_len = m0->m_pkthdr.len;
1884 data->id.id_rateidx = ni->ni_txrate;
1885 data->id.id_node = ni;
1886 data->id.id_rssi = ni->ni_rssi;
1887 } else
1888 data->id.id_node = NULL;
1889
1890 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1891 flags |= RT2560_TX_ACK;
1892
1893 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1894 ic->ic_flags) + RAL_SIFS;
1895 *(uint16_t *)wh->i_dur = htole16(dur);
1896 }
1897
1898 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1899 segs->ds_addr);
1900
1901 bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1902 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1903 BUS_DMASYNC_PREWRITE);
1904
1905 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1906 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1907
1908 /* kick encrypt */
1909 sc->txq.queued++;
1910 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1911 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1912
1913 return 0;
1914 }
1915
1916 static void
1917 rt2560_start(struct ifnet *ifp)
1918 {
1919 struct rt2560_softc *sc = ifp->if_softc;
1920 struct ieee80211com *ic = &sc->sc_ic;
1921 struct mbuf *m0;
1922 struct ether_header *eh;
1923 struct ieee80211_node *ni;
1924
1925 RAL_LOCK(sc);
1926
1927 /* prevent management frames from being sent if we're not ready */
1928 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1929 RAL_UNLOCK(sc);
1930 return;
1931 }
1932
1933 for (;;) {
1934 IF_POLL(&ic->ic_mgtq, m0);
1935 if (m0 != NULL) {
1936 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1937 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1938 break;
1939 }
1940 IF_DEQUEUE(&ic->ic_mgtq, m0);
1941
1942 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1943 m0->m_pkthdr.rcvif = NULL;
1944
1945 if (bpf_peers_present(ic->ic_rawbpf))
1946 bpf_mtap(ic->ic_rawbpf, m0);
1947
1948 if (rt2560_tx_mgt(sc, m0, ni) != 0)
1949 break;
1950
1951 } else {
1952 if (ic->ic_state != IEEE80211_S_RUN)
1953 break;
1954 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1955 if (m0 == NULL)
1956 break;
1957 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
1958 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1959 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1960 break;
1961 }
1962
1963 if (m0->m_len < sizeof (struct ether_header) &&
1964 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1965 continue;
1966
1967 eh = mtod(m0, struct ether_header *);
1968 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1969 if (ni == NULL) {
1970 m_freem(m0);
1971 continue;
1972 }
1973 BPF_MTAP(ifp, m0);
1974
1975 m0 = ieee80211_encap(ic, m0, ni);
1976 if (m0 == NULL) {
1977 ieee80211_free_node(ni);
1978 continue;
1979 }
1980
1981 if (bpf_peers_present(ic->ic_rawbpf))
1982 bpf_mtap(ic->ic_rawbpf, m0);
1983
1984 if (rt2560_tx_data(sc, m0, ni) != 0) {
1985 ieee80211_free_node(ni);
1986 ifp->if_oerrors++;
1987 break;
1988 }
1989 }
1990
1991 sc->sc_tx_timer = 5;
1992 ifp->if_timer = 1;
1993 }
1994
1995 RAL_UNLOCK(sc);
1996 }
1997
1998 static void
1999 rt2560_watchdog(struct ifnet *ifp)
2000 {
2001 struct rt2560_softc *sc = ifp->if_softc;
2002 struct ieee80211com *ic = &sc->sc_ic;
2003
2004 RAL_LOCK(sc);
2005
2006 ifp->if_timer = 0;
2007
2008 if (sc->sc_tx_timer > 0) {
2009 if (--sc->sc_tx_timer == 0) {
2010 device_printf(sc->sc_dev, "device timeout\n");
2011 rt2560_init(sc);
2012 ifp->if_oerrors++;
2013 RAL_UNLOCK(sc);
2014 return;
2015 }
2016 ifp->if_timer = 1;
2017 }
2018
2019 ieee80211_watchdog(ic);
2020
2021 RAL_UNLOCK(sc);
2022 }
2023
2024 /*
2025 * This function allows for fast channel switching in monitor mode (used by
2026 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2027 * generate a new beacon frame.
2028 */
2029 static int
2030 rt2560_reset(struct ifnet *ifp)
2031 {
2032 struct rt2560_softc *sc = ifp->if_softc;
2033 struct ieee80211com *ic = &sc->sc_ic;
2034
2035 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2036 return ENETRESET;
2037
2038 rt2560_set_chan(sc, ic->ic_curchan);
2039
2040 return 0;
2041 }
2042
2043 static int
2044 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2045 {
2046 struct rt2560_softc *sc = ifp->if_softc;
2047 struct ieee80211com *ic = &sc->sc_ic;
2048 int error = 0;
2049
2050 RAL_LOCK(sc);
2051
2052 switch (cmd) {
2053 case SIOCSIFFLAGS:
2054 if (ifp->if_flags & IFF_UP) {
2055 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2056 rt2560_update_promisc(sc);
2057 else
2058 rt2560_init(sc);
2059 } else {
2060 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2061 rt2560_stop(sc);
2062 }
2063 break;
2064
2065 default:
2066 error = ieee80211_ioctl(ic, cmd, data);
2067 }
2068
2069 if (error == ENETRESET) {
2070 if ((ifp->if_flags & IFF_UP) &&
2071 (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2072 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2073 rt2560_init(sc);
2074 error = 0;
2075 }
2076
2077 RAL_UNLOCK(sc);
2078
2079 return error;
2080 }
2081
2082 static void
2083 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2084 {
2085 uint32_t tmp;
2086 int ntries;
2087
2088 for (ntries = 0; ntries < 100; ntries++) {
2089 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2090 break;
2091 DELAY(1);
2092 }
2093 if (ntries == 100) {
2094 device_printf(sc->sc_dev, "could not write to BBP\n");
2095 return;
2096 }
2097
2098 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2099 RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2100
2101 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2102 }
2103
2104 static uint8_t
2105 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2106 {
2107 uint32_t val;
2108 int ntries;
2109
2110 val = RT2560_BBP_BUSY | reg << 8;
2111 RAL_WRITE(sc, RT2560_BBPCSR, val);
2112
2113 for (ntries = 0; ntries < 100; ntries++) {
2114 val = RAL_READ(sc, RT2560_BBPCSR);
2115 if (!(val & RT2560_BBP_BUSY))
2116 return val & 0xff;
2117 DELAY(1);
2118 }
2119
2120 device_printf(sc->sc_dev, "could not read from BBP\n");
2121 return 0;
2122 }
2123
2124 static void
2125 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2126 {
2127 uint32_t tmp;
2128 int ntries;
2129
2130 for (ntries = 0; ntries < 100; ntries++) {
2131 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2132 break;
2133 DELAY(1);
2134 }
2135 if (ntries == 100) {
2136 device_printf(sc->sc_dev, "could not write to RF\n");
2137 return;
2138 }
2139
2140 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2141 (reg & 0x3);
2142 RAL_WRITE(sc, RT2560_RFCSR, tmp);
2143
2144 /* remember last written value in sc */
2145 sc->rf_regs[reg] = val;
2146
2147 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2148 }
2149
2150 static void
2151 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2152 {
2153 struct ieee80211com *ic = &sc->sc_ic;
2154 uint8_t power, tmp;
2155 u_int i, chan;
2156
2157 chan = ieee80211_chan2ieee(ic, c);
2158 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2159 return;
2160
2161 if (IEEE80211_IS_CHAN_2GHZ(c))
2162 power = min(sc->txpow[chan - 1], 31);
2163 else
2164 power = 31;
2165
2166 /* adjust txpower using ifconfig settings */
2167 power -= (100 - ic->ic_txpowlimit) / 8;
2168
2169 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2170
2171 switch (sc->rf_rev) {
2172 case RT2560_RF_2522:
2173 rt2560_rf_write(sc, RAL_RF1, 0x00814);
2174 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2175 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2176 break;
2177
2178 case RT2560_RF_2523:
2179 rt2560_rf_write(sc, RAL_RF1, 0x08804);
2180 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2181 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2182 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2183 break;
2184
2185 case RT2560_RF_2524:
2186 rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2187 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2188 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2189 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2190 break;
2191
2192 case RT2560_RF_2525:
2193 rt2560_rf_write(sc, RAL_RF1, 0x08808);
2194 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2195 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2196 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2197
2198 rt2560_rf_write(sc, RAL_RF1, 0x08808);
2199 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2200 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2201 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2202 break;
2203
2204 case RT2560_RF_2525E:
2205 rt2560_rf_write(sc, RAL_RF1, 0x08808);
2206 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2207 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2208 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2209 break;
2210
2211 case RT2560_RF_2526:
2212 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2213 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2214 rt2560_rf_write(sc, RAL_RF1, 0x08804);
2215
2216 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2217 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2218 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2219 break;
2220
2221 /* dual-band RF */
2222 case RT2560_RF_5222:
2223 for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2224
2225 rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2226 rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2227 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2228 rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2229 break;
2230 }
2231
2232 if (ic->ic_state != IEEE80211_S_SCAN) {
2233 /* set Japan filter bit for channel 14 */
2234 tmp = rt2560_bbp_read(sc, 70);
2235
2236 tmp &= ~RT2560_JAPAN_FILTER;
2237 if (chan == 14)
2238 tmp |= RT2560_JAPAN_FILTER;
2239
2240 rt2560_bbp_write(sc, 70, tmp);
2241
2242 /* clear CRC errors */
2243 RAL_READ(sc, RT2560_CNT0);
2244 }
2245 }
2246
2247 #if 0
2248 /*
2249 * Disable RF auto-tuning.
2250 */
2251 static void
2252 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2253 {
2254 uint32_t tmp;
2255
2256 if (sc->rf_rev != RT2560_RF_2523) {
2257 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2258 rt2560_rf_write(sc, RAL_RF1, tmp);
2259 }
2260
2261 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2262 rt2560_rf_write(sc, RAL_RF3, tmp);
2263
2264 DPRINTFN(2, ("disabling RF autotune\n"));
2265 }
2266 #endif
2267
2268 /*
2269 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2270 * synchronization.
2271 */
2272 static void
2273 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2274 {
2275 struct ieee80211com *ic = &sc->sc_ic;
2276 uint16_t logcwmin, preload;
2277 uint32_t tmp;
2278
2279 /* first, disable TSF synchronization */
2280 RAL_WRITE(sc, RT2560_CSR14, 0);
2281
2282 tmp = 16 * ic->ic_bss->ni_intval;
2283 RAL_WRITE(sc, RT2560_CSR12, tmp);
2284
2285 RAL_WRITE(sc, RT2560_CSR13, 0);
2286
2287 logcwmin = 5;
2288 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2289 tmp = logcwmin << 16 | preload;
2290 RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2291
2292 /* finally, enable TSF synchronization */
2293 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2294 if (ic->ic_opmode == IEEE80211_M_STA)
2295 tmp |= RT2560_ENABLE_TSF_SYNC(1);
2296 else
2297 tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2298 RT2560_ENABLE_BEACON_GENERATOR;
2299 RAL_WRITE(sc, RT2560_CSR14, tmp);
2300
2301 DPRINTF(("enabling TSF synchronization\n"));
2302 }
2303
2304 static void
2305 rt2560_update_plcp(struct rt2560_softc *sc)
2306 {
2307 struct ieee80211com *ic = &sc->sc_ic;
2308
2309 /* no short preamble for 1Mbps */
2310 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2311
2312 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2313 /* values taken from the reference driver */
2314 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
2315 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2316 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
2317 } else {
2318 /* same values as above or'ed 0x8 */
2319 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
2320 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2321 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
2322 }
2323
2324 DPRINTF(("updating PLCP for %s preamble\n",
2325 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2326 }
2327
2328 /*
2329 * This function can be called by ieee80211_set_shortslottime(). Refer to
2330 * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2331 */
2332 static void
2333 rt2560_update_slot(struct ifnet *ifp)
2334 {
2335 struct rt2560_softc *sc = ifp->if_softc;
2336 struct ieee80211com *ic = &sc->sc_ic;
2337 uint8_t slottime;
2338 uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2339 uint32_t tmp;
2340
2341 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2342
2343 /* update the MAC slot boundaries */
2344 tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2345 tx_pifs = tx_sifs + slottime;
2346 tx_difs = tx_sifs + 2 * slottime;
2347 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2348
2349 tmp = RAL_READ(sc, RT2560_CSR11);
2350 tmp = (tmp & ~0x1f00) | slottime << 8;
2351 RAL_WRITE(sc, RT2560_CSR11, tmp);
2352
2353 tmp = tx_pifs << 16 | tx_sifs;
2354 RAL_WRITE(sc, RT2560_CSR18, tmp);
2355
2356 tmp = eifs << 16 | tx_difs;
2357 RAL_WRITE(sc, RT2560_CSR19, tmp);
2358
2359 DPRINTF(("setting slottime to %uus\n", slottime));
2360 }
2361
2362 static void
2363 rt2560_set_basicrates(struct rt2560_softc *sc)
2364 {
2365 struct ieee80211com *ic = &sc->sc_ic;
2366
2367 /* update basic rate set */
2368 if (ic->ic_curmode == IEEE80211_MODE_11B) {
2369 /* 11b basic rates: 1, 2Mbps */
2370 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2371 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2372 /* 11a basic rates: 6, 12, 24Mbps */
2373 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2374 } else {
2375 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2376 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2377 }
2378 }
2379
2380 static void
2381 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2382 {
2383 uint32_t tmp;
2384
2385 /* set ON period to 70ms and OFF period to 30ms */
2386 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2387 RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2388 }
2389
2390 static void
2391 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2392 {
2393 uint32_t tmp;
2394
2395 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2396 RAL_WRITE(sc, RT2560_CSR5, tmp);
2397
2398 tmp = bssid[4] | bssid[5] << 8;
2399 RAL_WRITE(sc, RT2560_CSR6, tmp);
2400
2401 DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2402 }
2403
2404 static void
2405 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2406 {
2407 uint32_t tmp;
2408
2409 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2410 RAL_WRITE(sc, RT2560_CSR3, tmp);
2411
2412 tmp = addr[4] | addr[5] << 8;
2413 RAL_WRITE(sc, RT2560_CSR4, tmp);
2414
2415 DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2416 }
2417
2418 static void
2419 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2420 {
2421 uint32_t tmp;
2422
2423 tmp = RAL_READ(sc, RT2560_CSR3);
2424 addr[0] = tmp & 0xff;
2425 addr[1] = (tmp >> 8) & 0xff;
2426 addr[2] = (tmp >> 16) & 0xff;
2427 addr[3] = (tmp >> 24);
2428
2429 tmp = RAL_READ(sc, RT2560_CSR4);
2430 addr[4] = tmp & 0xff;
2431 addr[5] = (tmp >> 8) & 0xff;
2432 }
2433
2434 static void
2435 rt2560_update_promisc(struct rt2560_softc *sc)
2436 {
2437 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2438 uint32_t tmp;
2439
2440 tmp = RAL_READ(sc, RT2560_RXCSR0);
2441
2442 tmp &= ~RT2560_DROP_NOT_TO_ME;
2443 if (!(ifp->if_flags & IFF_PROMISC))
2444 tmp |= RT2560_DROP_NOT_TO_ME;
2445
2446 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2447
2448 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2449 "entering" : "leaving"));
2450 }
2451
2452 static const char *
2453 rt2560_get_rf(int rev)
2454 {
2455 switch (rev) {
2456 case RT2560_RF_2522: return "RT2522";
2457 case RT2560_RF_2523: return "RT2523";
2458 case RT2560_RF_2524: return "RT2524";
2459 case RT2560_RF_2525: return "RT2525";
2460 case RT2560_RF_2525E: return "RT2525e";
2461 case RT2560_RF_2526: return "RT2526";
2462 case RT2560_RF_5222: return "RT5222";
2463 default: return "unknown";
2464 }
2465 }
2466
2467 static void
2468 rt2560_read_eeprom(struct rt2560_softc *sc)
2469 {
2470 uint16_t val;
2471 int i;
2472
2473 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2474 sc->rf_rev = (val >> 11) & 0x7;
2475 sc->hw_radio = (val >> 10) & 0x1;
2476 sc->led_mode = (val >> 6) & 0x7;
2477 sc->rx_ant = (val >> 4) & 0x3;
2478 sc->tx_ant = (val >> 2) & 0x3;
2479 sc->nb_ant = val & 0x3;
2480
2481 /* read default values for BBP registers */
2482 for (i = 0; i < 16; i++) {
2483 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2484 sc->bbp_prom[i].reg = val >> 8;
2485 sc->bbp_prom[i].val = val & 0xff;
2486 }
2487
2488 /* read Tx power for all b/g channels */
2489 for (i = 0; i < 14 / 2; i++) {
2490 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2491 sc->txpow[i * 2] = val >> 8;
2492 sc->txpow[i * 2 + 1] = val & 0xff;
2493 }
2494 }
2495
2496 static int
2497 rt2560_bbp_init(struct rt2560_softc *sc)
2498 {
2499 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2500 int i, ntries;
2501
2502 /* wait for BBP to be ready */
2503 for (ntries = 0; ntries < 100; ntries++) {
2504 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2505 break;
2506 DELAY(1);
2507 }
2508 if (ntries == 100) {
2509 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2510 return EIO;
2511 }
2512
2513 /* initialize BBP registers to default values */
2514 for (i = 0; i < N(rt2560_def_bbp); i++) {
2515 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2516 rt2560_def_bbp[i].val);
2517 }
2518 #if 0
2519 /* initialize BBP registers to values stored in EEPROM */
2520 for (i = 0; i < 16; i++) {
2521 if (sc->bbp_prom[i].reg == 0xff)
2522 continue;
2523 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2524 }
2525 #endif
2526
2527 return 0;
2528 #undef N
2529 }
2530
2531 static void
2532 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2533 {
2534 uint32_t tmp;
2535 uint8_t tx;
2536
2537 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2538 if (antenna == 1)
2539 tx |= RT2560_BBP_ANTA;
2540 else if (antenna == 2)
2541 tx |= RT2560_BBP_ANTB;
2542 else
2543 tx |= RT2560_BBP_DIVERSITY;
2544
2545 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2546 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2547 sc->rf_rev == RT2560_RF_5222)
2548 tx |= RT2560_BBP_FLIPIQ;
2549
2550 rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2551
2552 /* update values for CCK and OFDM in BBPCSR1 */
2553 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2554 tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2555 RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2556 }
2557
2558 static void
2559 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2560 {
2561 uint8_t rx;
2562
2563 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2564 if (antenna == 1)
2565 rx |= RT2560_BBP_ANTA;
2566 else if (antenna == 2)
2567 rx |= RT2560_BBP_ANTB;
2568 else
2569 rx |= RT2560_BBP_DIVERSITY;
2570
2571 /* need to force no I/Q flip for RF 2525e and 2526 */
2572 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2573 rx &= ~RT2560_BBP_FLIPIQ;
2574
2575 rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2576 }
2577
2578 static void
2579 rt2560_init(void *priv)
2580 {
2581 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2582 struct rt2560_softc *sc = priv;
2583 struct ieee80211com *ic = &sc->sc_ic;
2584 struct ifnet *ifp = ic->ic_ifp;
2585 uint32_t tmp;
2586 int i;
2587
2588 RAL_LOCK(sc);
2589
2590 rt2560_stop(sc);
2591
2592 /* setup tx rings */
2593 tmp = RT2560_PRIO_RING_COUNT << 24 |
2594 RT2560_ATIM_RING_COUNT << 16 |
2595 RT2560_TX_RING_COUNT << 8 |
2596 RT2560_TX_DESC_SIZE;
2597
2598 /* rings must be initialized in this exact order */
2599 RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2600 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2601 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2602 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2603 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2604
2605 /* setup rx ring */
2606 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2607
2608 RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2609 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2610
2611 /* initialize MAC registers to default values */
2612 for (i = 0; i < N(rt2560_def_mac); i++)
2613 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2614
2615 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2616 rt2560_set_macaddr(sc, ic->ic_myaddr);
2617
2618 /* set basic rate set (will be updated later) */
2619 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2620
2621 rt2560_set_txantenna(sc, sc->tx_ant);
2622 rt2560_set_rxantenna(sc, sc->rx_ant);
2623 rt2560_update_slot(ifp);
2624 rt2560_update_plcp(sc);
2625 rt2560_update_led(sc, 0, 0);
2626
2627 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2628 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2629
2630 if (rt2560_bbp_init(sc) != 0) {
2631 rt2560_stop(sc);
2632 RAL_UNLOCK(sc);
2633 return;
2634 }
2635
2636 /* set default BSS channel */
2637 rt2560_set_chan(sc, ic->ic_curchan);
2638
2639 /* kick Rx */
2640 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2641 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2642 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2643 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2644 tmp |= RT2560_DROP_TODS;
2645 if (!(ifp->if_flags & IFF_PROMISC))
2646 tmp |= RT2560_DROP_NOT_TO_ME;
2647 }
2648 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2649
2650 /* clear old FCS and Rx FIFO errors */
2651 RAL_READ(sc, RT2560_CNT0);
2652 RAL_READ(sc, RT2560_CNT4);
2653
2654 /* clear any pending interrupts */
2655 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2656
2657 /* enable interrupts */
2658 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2659
2660 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2661 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2662
2663 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2664 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2665 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2666 } else
2667 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2668
2669 RAL_UNLOCK(sc);
2670 #undef N
2671 }
2672
2673 void
2674 rt2560_stop(void *priv)
2675 {
2676 struct rt2560_softc *sc = priv;
2677 struct ieee80211com *ic = &sc->sc_ic;
2678 struct ifnet *ifp = ic->ic_ifp;
2679
2680 sc->sc_tx_timer = 0;
2681 ifp->if_timer = 0;
2682 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2683
2684 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2685
2686 /* abort Tx */
2687 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2688
2689 /* disable Rx */
2690 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2691
2692 /* reset ASIC (imply reset BBP) */
2693 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2694 RAL_WRITE(sc, RT2560_CSR1, 0);
2695
2696 /* disable interrupts */
2697 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2698
2699 /* reset Tx and Rx rings */
2700 rt2560_reset_tx_ring(sc, &sc->txq);
2701 rt2560_reset_tx_ring(sc, &sc->atimq);
2702 rt2560_reset_tx_ring(sc, &sc->prioq);
2703 rt2560_reset_tx_ring(sc, &sc->bcnq);
2704 rt2560_reset_rx_ring(sc, &sc->rxq);
2705 }
Cache object: d9a55e190f0a4af2acaece3a31a9c46b
|