FreeBSD/Linux Kernel Cross Reference
sys/dev/ral/rt2661.c
1 /* $FreeBSD$ */
2
3 /*-
4 * Copyright (c) 2006
5 * Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22
23 /*-
24 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
25 * http://www.ralinktech.com/
26 */
27
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <sys/rman.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_radiotap.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 #include <netinet/if_ether.h>
60
61 #include <dev/ral/if_ralrate.h>
62 #include <dev/ral/rt2661reg.h>
63 #include <dev/ral/rt2661var.h>
64 #include <dev/ral/rt2661_ucode.h>
65
66 #ifdef RAL_DEBUG
67 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0)
68 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0)
69 int ral_debug = 0;
70 SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level");
71 #else
72 #define DPRINTF(x)
73 #define DPRINTFN(n, x)
74 #endif
75
76 static void rt2661_dma_map_addr(void *, bus_dma_segment_t *, int,
77 int);
78 static int rt2661_alloc_tx_ring(struct rt2661_softc *,
79 struct rt2661_tx_ring *, int);
80 static void rt2661_reset_tx_ring(struct rt2661_softc *,
81 struct rt2661_tx_ring *);
82 static void rt2661_free_tx_ring(struct rt2661_softc *,
83 struct rt2661_tx_ring *);
84 static int rt2661_alloc_rx_ring(struct rt2661_softc *,
85 struct rt2661_rx_ring *, int);
86 static void rt2661_reset_rx_ring(struct rt2661_softc *,
87 struct rt2661_rx_ring *);
88 static void rt2661_free_rx_ring(struct rt2661_softc *,
89 struct rt2661_rx_ring *);
90 static struct ieee80211_node *rt2661_node_alloc(
91 struct ieee80211_node_table *);
92 static int rt2661_media_change(struct ifnet *);
93 static void rt2661_next_scan(void *);
94 static int rt2661_newstate(struct ieee80211com *,
95 enum ieee80211_state, int);
96 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
97 static void rt2661_rx_intr(struct rt2661_softc *);
98 static void rt2661_tx_intr(struct rt2661_softc *);
99 static void rt2661_tx_dma_intr(struct rt2661_softc *,
100 struct rt2661_tx_ring *);
101 static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
102 static void rt2661_mcu_wakeup(struct rt2661_softc *);
103 static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
104 static int rt2661_ack_rate(struct ieee80211com *, int);
105 static uint16_t rt2661_txtime(int, int, uint32_t);
106 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
107 static uint8_t rt2661_plcp_signal(int);
108 static void rt2661_setup_tx_desc(struct rt2661_softc *,
109 struct rt2661_tx_desc *, uint32_t, uint16_t, int,
110 int, const bus_dma_segment_t *, int, int);
111 static struct mbuf * rt2661_get_rts(struct rt2661_softc *,
112 struct ieee80211_frame *, uint16_t);
113 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
114 struct ieee80211_node *, int);
115 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
116 struct ieee80211_node *);
117 static void rt2661_start(struct ifnet *);
118 static void rt2661_watchdog(struct ifnet *);
119 static int rt2661_reset(struct ifnet *);
120 static int rt2661_ioctl(struct ifnet *, u_long, caddr_t);
121 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t,
122 uint8_t);
123 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
124 static void rt2661_rf_write(struct rt2661_softc *, uint8_t,
125 uint32_t);
126 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t,
127 uint16_t);
128 static void rt2661_select_antenna(struct rt2661_softc *);
129 static void rt2661_enable_mrr(struct rt2661_softc *);
130 static void rt2661_set_txpreamble(struct rt2661_softc *);
131 static void rt2661_set_basicrates(struct rt2661_softc *,
132 const struct ieee80211_rateset *);
133 static void rt2661_select_band(struct rt2661_softc *,
134 struct ieee80211_channel *);
135 static void rt2661_set_chan(struct rt2661_softc *,
136 struct ieee80211_channel *);
137 static void rt2661_set_bssid(struct rt2661_softc *,
138 const uint8_t *);
139 static void rt2661_set_macaddr(struct rt2661_softc *,
140 const uint8_t *);
141 static void rt2661_update_promisc(struct rt2661_softc *);
142 static int rt2661_wme_update(struct ieee80211com *) __unused;
143 static void rt2661_update_slot(struct ifnet *);
144 static const char *rt2661_get_rf(int);
145 static void rt2661_read_eeprom(struct rt2661_softc *);
146 static int rt2661_bbp_init(struct rt2661_softc *);
147 static void rt2661_init(void *);
148 static void rt2661_stop(void *);
149 static int rt2661_load_microcode(struct rt2661_softc *,
150 const uint8_t *, int);
151 #ifdef notyet
152 static void rt2661_rx_tune(struct rt2661_softc *);
153 static void rt2661_radar_start(struct rt2661_softc *);
154 static int rt2661_radar_stop(struct rt2661_softc *);
155 #endif
156 static int rt2661_prepare_beacon(struct rt2661_softc *);
157 static void rt2661_enable_tsf_sync(struct rt2661_softc *);
158 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
159
160 static const struct {
161 uint32_t reg;
162 uint32_t val;
163 } rt2661_def_mac[] = {
164 RT2661_DEF_MAC
165 };
166
167 static const struct {
168 uint8_t reg;
169 uint8_t val;
170 } rt2661_def_bbp[] = {
171 RT2661_DEF_BBP
172 };
173
174 static const struct rfprog {
175 uint8_t chan;
176 uint32_t r1, r2, r3, r4;
177 } rt2661_rf5225_1[] = {
178 RT2661_RF5225_1
179 }, rt2661_rf5225_2[] = {
180 RT2661_RF5225_2
181 };
182
183 int
184 rt2661_attach(device_t dev, int id)
185 {
186 struct rt2661_softc *sc = device_get_softc(dev);
187 struct ieee80211com *ic = &sc->sc_ic;
188 struct ifnet *ifp;
189 uint32_t val;
190 const uint8_t *ucode = NULL;
191 int error, i, ac, ntries, size = 0;
192
193 sc->sc_dev = dev;
194
195 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
196 MTX_DEF | MTX_RECURSE);
197
198 callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
199 callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
200
201 /* wait for NIC to initialize */
202 for (ntries = 0; ntries < 1000; ntries++) {
203 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
204 break;
205 DELAY(1000);
206 }
207 if (ntries == 1000) {
208 device_printf(sc->sc_dev,
209 "timeout waiting for NIC to initialize\n");
210 error = EIO;
211 goto fail1;
212 }
213
214 /* retrieve RF rev. no and various other things from EEPROM */
215 rt2661_read_eeprom(sc);
216
217 device_printf(dev, "MAC/BBP RT%X, RF %s\n", val,
218 rt2661_get_rf(sc->rf_rev));
219
220 /*
221 * Load 8051 microcode into NIC.
222 */
223 switch (id) {
224 case 0x0301:
225 ucode = rt2561s_ucode;
226 size = sizeof rt2561s_ucode;
227 break;
228 case 0x0302:
229 ucode = rt2561_ucode;
230 size = sizeof rt2561_ucode;
231 break;
232 case 0x0401:
233 ucode = rt2661_ucode;
234 size = sizeof rt2661_ucode;
235 break;
236 }
237
238 error = rt2661_load_microcode(sc, ucode, size);
239 if (error != 0) {
240 device_printf(sc->sc_dev, "could not load 8051 microcode\n");
241 goto fail1;
242 }
243
244 /*
245 * Allocate Tx and Rx rings.
246 */
247 for (ac = 0; ac < 4; ac++) {
248 error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
249 RT2661_TX_RING_COUNT);
250 if (error != 0) {
251 device_printf(sc->sc_dev,
252 "could not allocate Tx ring %d\n", ac);
253 goto fail2;
254 }
255 }
256
257 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
258 if (error != 0) {
259 device_printf(sc->sc_dev, "could not allocate Mgt ring\n");
260 goto fail2;
261 }
262
263 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
264 if (error != 0) {
265 device_printf(sc->sc_dev, "could not allocate Rx ring\n");
266 goto fail3;
267 }
268
269 ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
270 if (ifp == NULL) {
271 device_printf(sc->sc_dev, "can not if_alloc()\n");
272 error = ENOMEM;
273 goto fail4;
274 }
275
276 ifp->if_softc = sc;
277 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
278 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
279 ifp->if_init = rt2661_init;
280 ifp->if_ioctl = rt2661_ioctl;
281 ifp->if_start = rt2661_start;
282 ifp->if_watchdog = rt2661_watchdog;
283 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
284 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
285 IFQ_SET_READY(&ifp->if_snd);
286
287 ic->ic_ifp = ifp;
288 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
289 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
290 ic->ic_state = IEEE80211_S_INIT;
291
292 /* set device capabilities */
293 ic->ic_caps =
294 IEEE80211_C_IBSS | /* IBSS mode supported */
295 IEEE80211_C_MONITOR | /* monitor mode supported */
296 IEEE80211_C_HOSTAP | /* HostAp mode supported */
297 IEEE80211_C_TXPMGT | /* tx power management */
298 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
299 IEEE80211_C_SHSLOT | /* short slot time supported */
300 #ifdef notyet
301 IEEE80211_C_WME | /* 802.11e */
302 #endif
303 IEEE80211_C_WPA; /* 802.11i */
304
305 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
306 /* set supported .11a channels */
307 for (i = 36; i <= 64; i += 4) {
308 ic->ic_channels[i].ic_freq =
309 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
310 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
311 }
312 for (i = 100; i <= 140; i += 4) {
313 ic->ic_channels[i].ic_freq =
314 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
315 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
316 }
317 for (i = 149; i <= 165; i += 4) {
318 ic->ic_channels[i].ic_freq =
319 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
320 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
321 }
322 }
323
324 /* set supported .11b and .11g channels (1 through 14) */
325 for (i = 1; i <= 14; i++) {
326 ic->ic_channels[i].ic_freq =
327 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
328 ic->ic_channels[i].ic_flags =
329 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
330 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
331 }
332
333 ieee80211_ifattach(ic);
334 ic->ic_node_alloc = rt2661_node_alloc;
335 /* ic->ic_wme.wme_update = rt2661_wme_update;*/
336 ic->ic_updateslot = rt2661_update_slot;
337 ic->ic_reset = rt2661_reset;
338 /* enable s/w bmiss handling in sta mode */
339 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
340
341 /* override state transition machine */
342 sc->sc_newstate = ic->ic_newstate;
343 ic->ic_newstate = rt2661_newstate;
344 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
345
346 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
347 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
348
349 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
350 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
351 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
352
353 sc->sc_txtap_len = sizeof sc->sc_txtapu;
354 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
355 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
356
357 /*
358 * Add a few sysctl knobs.
359 */
360 sc->dwelltime = 200;
361
362 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
363 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
364 CTLFLAG_RW, &sc->dwelltime, 0,
365 "channel dwell time (ms) for AP/station scanning");
366
367 if (bootverbose)
368 ieee80211_announce(ic);
369
370 return 0;
371
372 fail4: rt2661_free_rx_ring(sc, &sc->rxq);
373 fail3: rt2661_free_tx_ring(sc, &sc->mgtq);
374 fail2: while (--ac >= 0)
375 rt2661_free_tx_ring(sc, &sc->txq[ac]);
376 fail1: mtx_destroy(&sc->sc_mtx);
377
378 return error;
379 }
380
381 int
382 rt2661_detach(void *xsc)
383 {
384 struct rt2661_softc *sc = xsc;
385 struct ieee80211com *ic = &sc->sc_ic;
386 struct ifnet *ifp = ic->ic_ifp;
387
388 rt2661_stop(sc);
389 callout_stop(&sc->scan_ch);
390 callout_stop(&sc->rssadapt_ch);
391
392 bpfdetach(ifp);
393 ieee80211_ifdetach(ic);
394
395 rt2661_free_tx_ring(sc, &sc->txq[0]);
396 rt2661_free_tx_ring(sc, &sc->txq[1]);
397 rt2661_free_tx_ring(sc, &sc->txq[2]);
398 rt2661_free_tx_ring(sc, &sc->txq[3]);
399 rt2661_free_tx_ring(sc, &sc->mgtq);
400 rt2661_free_rx_ring(sc, &sc->rxq);
401
402 if_free(ifp);
403
404 mtx_destroy(&sc->sc_mtx);
405
406 return 0;
407 }
408
409 void
410 rt2661_shutdown(void *xsc)
411 {
412 struct rt2661_softc *sc = xsc;
413
414 rt2661_stop(sc);
415 }
416
417 void
418 rt2661_suspend(void *xsc)
419 {
420 struct rt2661_softc *sc = xsc;
421
422 rt2661_stop(sc);
423 }
424
425 void
426 rt2661_resume(void *xsc)
427 {
428 struct rt2661_softc *sc = xsc;
429 struct ifnet *ifp = sc->sc_ic.ic_ifp;
430
431 if (ifp->if_flags & IFF_UP) {
432 ifp->if_init(ifp->if_softc);
433 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
434 ifp->if_start(ifp);
435 }
436 }
437
438 static void
439 rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
440 {
441 if (error != 0)
442 return;
443
444 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
445
446 *(bus_addr_t *)arg = segs[0].ds_addr;
447 }
448
449 static int
450 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
451 int count)
452 {
453 int i, error;
454
455 ring->count = count;
456 ring->queued = 0;
457 ring->cur = ring->next = ring->stat = 0;
458
459 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
460 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1,
461 count * RT2661_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
462 if (error != 0) {
463 device_printf(sc->sc_dev, "could not create desc DMA tag\n");
464 goto fail;
465 }
466
467 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
468 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
469 if (error != 0) {
470 device_printf(sc->sc_dev, "could not allocate DMA memory\n");
471 goto fail;
472 }
473
474 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
475 count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
476 0);
477 if (error != 0) {
478 device_printf(sc->sc_dev, "could not load desc DMA map\n");
479 goto fail;
480 }
481
482 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
483 M_NOWAIT | M_ZERO);
484 if (ring->data == NULL) {
485 device_printf(sc->sc_dev, "could not allocate soft data\n");
486 error = ENOMEM;
487 goto fail;
488 }
489
490 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
491 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2661_MAX_SCATTER,
492 MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
493 if (error != 0) {
494 device_printf(sc->sc_dev, "could not create data DMA tag\n");
495 goto fail;
496 }
497
498 for (i = 0; i < count; i++) {
499 error = bus_dmamap_create(ring->data_dmat, 0,
500 &ring->data[i].map);
501 if (error != 0) {
502 device_printf(sc->sc_dev, "could not create DMA map\n");
503 goto fail;
504 }
505 }
506
507 return 0;
508
509 fail: rt2661_free_tx_ring(sc, ring);
510 return error;
511 }
512
513 static void
514 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
515 {
516 struct rt2661_tx_desc *desc;
517 struct rt2661_tx_data *data;
518 int i;
519
520 for (i = 0; i < ring->count; i++) {
521 desc = &ring->desc[i];
522 data = &ring->data[i];
523
524 if (data->m != NULL) {
525 bus_dmamap_sync(ring->data_dmat, data->map,
526 BUS_DMASYNC_POSTWRITE);
527 bus_dmamap_unload(ring->data_dmat, data->map);
528 m_freem(data->m);
529 data->m = NULL;
530 }
531
532 if (data->ni != NULL) {
533 ieee80211_free_node(data->ni);
534 data->ni = NULL;
535 }
536
537 desc->flags = 0;
538 }
539
540 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
541
542 ring->queued = 0;
543 ring->cur = ring->next = ring->stat = 0;
544 }
545
546 static void
547 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
548 {
549 struct rt2661_tx_data *data;
550 int i;
551
552 if (ring->desc != NULL) {
553 bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
554 BUS_DMASYNC_POSTWRITE);
555 bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
556 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
557 }
558
559 if (ring->desc_dmat != NULL)
560 bus_dma_tag_destroy(ring->desc_dmat);
561
562 if (ring->data != NULL) {
563 for (i = 0; i < ring->count; i++) {
564 data = &ring->data[i];
565
566 if (data->m != NULL) {
567 bus_dmamap_sync(ring->data_dmat, data->map,
568 BUS_DMASYNC_POSTWRITE);
569 bus_dmamap_unload(ring->data_dmat, data->map);
570 m_freem(data->m);
571 }
572
573 if (data->ni != NULL)
574 ieee80211_free_node(data->ni);
575
576 if (data->map != NULL)
577 bus_dmamap_destroy(ring->data_dmat, data->map);
578 }
579
580 free(ring->data, M_DEVBUF);
581 }
582
583 if (ring->data_dmat != NULL)
584 bus_dma_tag_destroy(ring->data_dmat);
585 }
586
587 static int
588 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
589 int count)
590 {
591 struct rt2661_rx_desc *desc;
592 struct rt2661_rx_data *data;
593 bus_addr_t physaddr;
594 int i, error;
595
596 ring->count = count;
597 ring->cur = ring->next = 0;
598
599 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
600 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1,
601 count * RT2661_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
602 if (error != 0) {
603 device_printf(sc->sc_dev, "could not create desc DMA tag\n");
604 goto fail;
605 }
606
607 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
608 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
609 if (error != 0) {
610 device_printf(sc->sc_dev, "could not allocate DMA memory\n");
611 goto fail;
612 }
613
614 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
615 count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
616 0);
617 if (error != 0) {
618 device_printf(sc->sc_dev, "could not load desc DMA map\n");
619 goto fail;
620 }
621
622 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
623 M_NOWAIT | M_ZERO);
624 if (ring->data == NULL) {
625 device_printf(sc->sc_dev, "could not allocate soft data\n");
626 error = ENOMEM;
627 goto fail;
628 }
629
630 /*
631 * Pre-allocate Rx buffers and populate Rx ring.
632 */
633 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
634 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
635 NULL, &ring->data_dmat);
636 if (error != 0) {
637 device_printf(sc->sc_dev, "could not create data DMA tag\n");
638 goto fail;
639 }
640
641 for (i = 0; i < count; i++) {
642 desc = &sc->rxq.desc[i];
643 data = &sc->rxq.data[i];
644
645 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
646 if (error != 0) {
647 device_printf(sc->sc_dev, "could not create DMA map\n");
648 goto fail;
649 }
650
651 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
652 if (data->m == NULL) {
653 device_printf(sc->sc_dev,
654 "could not allocate rx mbuf\n");
655 error = ENOMEM;
656 goto fail;
657 }
658
659 error = bus_dmamap_load(ring->data_dmat, data->map,
660 mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr,
661 &physaddr, 0);
662 if (error != 0) {
663 device_printf(sc->sc_dev,
664 "could not load rx buf DMA map");
665 goto fail;
666 }
667
668 desc->flags = htole32(RT2661_RX_BUSY);
669 desc->physaddr = htole32(physaddr);
670 }
671
672 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
673
674 return 0;
675
676 fail: rt2661_free_rx_ring(sc, ring);
677 return error;
678 }
679
680 static void
681 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
682 {
683 int i;
684
685 for (i = 0; i < ring->count; i++)
686 ring->desc[i].flags = htole32(RT2661_RX_BUSY);
687
688 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
689
690 ring->cur = ring->next = 0;
691 }
692
693 static void
694 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
695 {
696 struct rt2661_rx_data *data;
697 int i;
698
699 if (ring->desc != NULL) {
700 bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
701 BUS_DMASYNC_POSTWRITE);
702 bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
703 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
704 }
705
706 if (ring->desc_dmat != NULL)
707 bus_dma_tag_destroy(ring->desc_dmat);
708
709 if (ring->data != NULL) {
710 for (i = 0; i < ring->count; i++) {
711 data = &ring->data[i];
712
713 if (data->m != NULL) {
714 bus_dmamap_sync(ring->data_dmat, data->map,
715 BUS_DMASYNC_POSTREAD);
716 bus_dmamap_unload(ring->data_dmat, data->map);
717 m_freem(data->m);
718 }
719
720 if (data->map != NULL)
721 bus_dmamap_destroy(ring->data_dmat, data->map);
722 }
723
724 free(ring->data, M_DEVBUF);
725 }
726
727 if (ring->data_dmat != NULL)
728 bus_dma_tag_destroy(ring->data_dmat);
729 }
730
731 static struct ieee80211_node *
732 rt2661_node_alloc(struct ieee80211_node_table *nt)
733 {
734 struct rt2661_node *rn;
735
736 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
737 M_NOWAIT | M_ZERO);
738
739 return (rn != NULL) ? &rn->ni : NULL;
740 }
741
742 static int
743 rt2661_media_change(struct ifnet *ifp)
744 {
745 struct rt2661_softc *sc = ifp->if_softc;
746 int error;
747
748 error = ieee80211_media_change(ifp);
749 if (error != ENETRESET)
750 return error;
751
752 if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
753 rt2661_init(sc);
754
755 return 0;
756 }
757
758 /*
759 * This function is called periodically (every 200ms) during scanning to
760 * switch from one channel to another.
761 */
762 static void
763 rt2661_next_scan(void *arg)
764 {
765 struct rt2661_softc *sc = arg;
766 struct ieee80211com *ic = &sc->sc_ic;
767
768 if (ic->ic_state == IEEE80211_S_SCAN)
769 ieee80211_next_scan(ic);
770 }
771
772 /*
773 * This function is called for each node present in the node station table.
774 */
775 static void
776 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
777 {
778 struct rt2661_node *rn = (struct rt2661_node *)ni;
779
780 ral_rssadapt_updatestats(&rn->rssadapt);
781 }
782
783 /*
784 * This function is called periodically (every 100ms) in RUN state to update
785 * the rate adaptation statistics.
786 */
787 static void
788 rt2661_update_rssadapt(void *arg)
789 {
790 struct rt2661_softc *sc = arg;
791 struct ieee80211com *ic = &sc->sc_ic;
792
793 RAL_LOCK(sc);
794
795 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
796 callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_update_rssadapt, sc);
797
798 RAL_UNLOCK(sc);
799 }
800
801 static int
802 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
803 {
804 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
805 enum ieee80211_state ostate;
806 struct ieee80211_node *ni;
807 uint32_t tmp;
808 int error = 0;
809
810 ostate = ic->ic_state;
811 callout_stop(&sc->scan_ch);
812
813 switch (nstate) {
814 case IEEE80211_S_INIT:
815 callout_stop(&sc->rssadapt_ch);
816
817 if (ostate == IEEE80211_S_RUN) {
818 /* abort TSF synchronization */
819 tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
820 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
821 }
822 break;
823
824 case IEEE80211_S_SCAN:
825 rt2661_set_chan(sc, ic->ic_curchan);
826 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
827 rt2661_next_scan, sc);
828 break;
829
830 case IEEE80211_S_AUTH:
831 case IEEE80211_S_ASSOC:
832 rt2661_set_chan(sc, ic->ic_curchan);
833 break;
834
835 case IEEE80211_S_RUN:
836 rt2661_set_chan(sc, ic->ic_curchan);
837
838 ni = ic->ic_bss;
839
840 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
841 rt2661_enable_mrr(sc);
842 rt2661_set_txpreamble(sc);
843 rt2661_set_basicrates(sc, &ni->ni_rates);
844 rt2661_set_bssid(sc, ni->ni_bssid);
845 }
846
847 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
848 ic->ic_opmode == IEEE80211_M_IBSS) {
849 if ((error = rt2661_prepare_beacon(sc)) != 0)
850 break;
851 }
852
853 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
854 callout_reset(&sc->rssadapt_ch, hz / 10,
855 rt2661_update_rssadapt, sc);
856 rt2661_enable_tsf_sync(sc);
857 }
858 break;
859 }
860
861 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
862 }
863
864 /*
865 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
866 * 93C66).
867 */
868 static uint16_t
869 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
870 {
871 uint32_t tmp;
872 uint16_t val;
873 int n;
874
875 /* clock C once before the first command */
876 RT2661_EEPROM_CTL(sc, 0);
877
878 RT2661_EEPROM_CTL(sc, RT2661_S);
879 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
880 RT2661_EEPROM_CTL(sc, RT2661_S);
881
882 /* write start bit (1) */
883 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
884 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
885
886 /* write READ opcode (10) */
887 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
888 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
889 RT2661_EEPROM_CTL(sc, RT2661_S);
890 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
891
892 /* write address (A5-A0 or A7-A0) */
893 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
894 for (; n >= 0; n--) {
895 RT2661_EEPROM_CTL(sc, RT2661_S |
896 (((addr >> n) & 1) << RT2661_SHIFT_D));
897 RT2661_EEPROM_CTL(sc, RT2661_S |
898 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
899 }
900
901 RT2661_EEPROM_CTL(sc, RT2661_S);
902
903 /* read data Q15-Q0 */
904 val = 0;
905 for (n = 15; n >= 0; n--) {
906 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
907 tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
908 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
909 RT2661_EEPROM_CTL(sc, RT2661_S);
910 }
911
912 RT2661_EEPROM_CTL(sc, 0);
913
914 /* clear Chip Select and clock C */
915 RT2661_EEPROM_CTL(sc, RT2661_S);
916 RT2661_EEPROM_CTL(sc, 0);
917 RT2661_EEPROM_CTL(sc, RT2661_C);
918
919 return val;
920 }
921
922 static void
923 rt2661_tx_intr(struct rt2661_softc *sc)
924 {
925 struct ieee80211com *ic = &sc->sc_ic;
926 struct ifnet *ifp = ic->ic_ifp;
927 struct rt2661_tx_ring *txq;
928 struct rt2661_tx_data *data;
929 struct rt2661_node *rn;
930 uint32_t val;
931 int qid, retrycnt;
932
933 for (;;) {
934 val = RAL_READ(sc, RT2661_STA_CSR4);
935 if (!(val & RT2661_TX_STAT_VALID))
936 break;
937
938 /* retrieve the queue in which this frame was sent */
939 qid = RT2661_TX_QID(val);
940 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
941
942 /* retrieve rate control algorithm context */
943 data = &txq->data[txq->stat];
944 rn = (struct rt2661_node *)data->ni;
945
946 /* if no frame has been sent, ignore */
947 if (rn == NULL)
948 continue;
949
950 switch (RT2661_TX_RESULT(val)) {
951 case RT2661_TX_SUCCESS:
952 retrycnt = RT2661_TX_RETRYCNT(val);
953
954 DPRINTFN(10, ("data frame sent successfully after "
955 "%d retries\n", retrycnt));
956 if (retrycnt == 0 && data->id.id_node != NULL) {
957 ral_rssadapt_raise_rate(ic, &rn->rssadapt,
958 &data->id);
959 }
960 ifp->if_opackets++;
961 break;
962
963 case RT2661_TX_RETRY_FAIL:
964 DPRINTFN(9, ("sending data frame failed (too much "
965 "retries)\n"));
966 if (data->id.id_node != NULL) {
967 ral_rssadapt_lower_rate(ic, data->ni,
968 &rn->rssadapt, &data->id);
969 }
970 ifp->if_oerrors++;
971 break;
972
973 default:
974 /* other failure */
975 device_printf(sc->sc_dev,
976 "sending data frame failed 0x%08x\n", val);
977 ifp->if_oerrors++;
978 }
979
980 ieee80211_free_node(data->ni);
981 data->ni = NULL;
982
983 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
984
985 txq->queued--;
986 if (++txq->stat >= txq->count) /* faster than % count */
987 txq->stat = 0;
988 }
989
990 sc->sc_tx_timer = 0;
991 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
992 rt2661_start(ifp);
993 }
994
995 static void
996 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
997 {
998 struct rt2661_tx_desc *desc;
999 struct rt2661_tx_data *data;
1000
1001 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD);
1002
1003 for (;;) {
1004 desc = &txq->desc[txq->next];
1005 data = &txq->data[txq->next];
1006
1007 if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1008 !(le32toh(desc->flags) & RT2661_TX_VALID))
1009 break;
1010
1011 bus_dmamap_sync(txq->data_dmat, data->map,
1012 BUS_DMASYNC_POSTWRITE);
1013 bus_dmamap_unload(txq->data_dmat, data->map);
1014 m_freem(data->m);
1015 data->m = NULL;
1016 /* node reference is released in rt2661_tx_intr() */
1017
1018 /* descriptor is no longer valid */
1019 desc->flags &= ~htole32(RT2661_TX_VALID);
1020
1021 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1022
1023 if (++txq->next >= txq->count) /* faster than % count */
1024 txq->next = 0;
1025 }
1026
1027 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1028 }
1029
1030 static void
1031 rt2661_rx_intr(struct rt2661_softc *sc)
1032 {
1033 struct ieee80211com *ic = &sc->sc_ic;
1034 struct ifnet *ifp = ic->ic_ifp;
1035 struct rt2661_rx_desc *desc;
1036 struct rt2661_rx_data *data;
1037 bus_addr_t physaddr;
1038 struct ieee80211_frame *wh;
1039 struct ieee80211_node *ni;
1040 struct rt2661_node *rn;
1041 struct mbuf *mnew, *m;
1042 int error;
1043
1044 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1045 BUS_DMASYNC_POSTREAD);
1046
1047 for (;;) {
1048 desc = &sc->rxq.desc[sc->rxq.cur];
1049 data = &sc->rxq.data[sc->rxq.cur];
1050
1051 if (le32toh(desc->flags) & RT2661_RX_BUSY)
1052 break;
1053
1054 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1055 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1056 /*
1057 * This should not happen since we did not request
1058 * to receive those frames when we filled TXRX_CSR0.
1059 */
1060 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1061 le32toh(desc->flags)));
1062 ifp->if_ierrors++;
1063 goto skip;
1064 }
1065
1066 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1067 ifp->if_ierrors++;
1068 goto skip;
1069 }
1070
1071 /*
1072 * Try to allocate a new mbuf for this ring element and load it
1073 * before processing the current mbuf. If the ring element
1074 * cannot be loaded, drop the received packet and reuse the old
1075 * mbuf. In the unlikely case that the old mbuf can't be
1076 * reloaded either, explicitly panic.
1077 */
1078 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1079 if (mnew == NULL) {
1080 ifp->if_ierrors++;
1081 goto skip;
1082 }
1083
1084 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1085 BUS_DMASYNC_POSTREAD);
1086 bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1087
1088 error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1089 mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr,
1090 &physaddr, 0);
1091 if (error != 0) {
1092 m_freem(mnew);
1093
1094 /* try to reload the old mbuf */
1095 error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1096 mtod(data->m, void *), MCLBYTES,
1097 rt2661_dma_map_addr, &physaddr, 0);
1098 if (error != 0) {
1099 /* very unlikely that it will fail... */
1100 panic("%s: could not load old rx mbuf",
1101 device_get_name(sc->sc_dev));
1102 }
1103 ifp->if_ierrors++;
1104 goto skip;
1105 }
1106
1107 /*
1108 * New mbuf successfully loaded, update Rx ring and continue
1109 * processing.
1110 */
1111 m = data->m;
1112 data->m = mnew;
1113 desc->physaddr = htole32(physaddr);
1114
1115 /* finalize mbuf */
1116 m->m_pkthdr.rcvif = ifp;
1117 m->m_pkthdr.len = m->m_len =
1118 (le32toh(desc->flags) >> 16) & 0xfff;
1119
1120 if (bpf_peers_present(sc->sc_drvbpf)) {
1121 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1122 uint32_t tsf_lo, tsf_hi;
1123
1124 /* get timestamp (low and high 32 bits) */
1125 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1126 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1127
1128 tap->wr_tsf =
1129 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1130 tap->wr_flags = 0;
1131 tap->wr_rate = rt2661_rxrate(desc);
1132 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1133 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1134 tap->wr_antsignal = desc->rssi;
1135
1136 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1137 }
1138
1139 wh = mtod(m, struct ieee80211_frame *);
1140 ni = ieee80211_find_rxnode(ic,
1141 (struct ieee80211_frame_min *)wh);
1142
1143 /* send the frame to the 802.11 layer */
1144 ieee80211_input(ic, m, ni, desc->rssi, 0);
1145
1146 /* give rssi to the rate adatation algorithm */
1147 rn = (struct rt2661_node *)ni;
1148 ral_rssadapt_input(ic, ni, &rn->rssadapt,
1149 rt2661_get_rssi(sc, desc->rssi));
1150
1151 /* node is no longer needed */
1152 ieee80211_free_node(ni);
1153
1154 skip: desc->flags |= htole32(RT2661_RX_BUSY);
1155
1156 DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1157
1158 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1159 }
1160
1161 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1162 BUS_DMASYNC_PREWRITE);
1163 }
1164
1165 /* ARGSUSED */
1166 static void
1167 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1168 {
1169 /* do nothing */
1170 }
1171
1172 static void
1173 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1174 {
1175 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1176
1177 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1178 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1179 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1180
1181 /* send wakeup command to MCU */
1182 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1183 }
1184
1185 static void
1186 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1187 {
1188 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1189 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1190 }
1191
1192 void
1193 rt2661_intr(void *arg)
1194 {
1195 struct rt2661_softc *sc = arg;
1196 struct ifnet *ifp = sc->sc_ifp;
1197 uint32_t r1, r2;
1198
1199 RAL_LOCK(sc);
1200
1201 /* disable MAC and MCU interrupts */
1202 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1203 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1204
1205 /* don't re-enable interrupts if we're shutting down */
1206 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1207 RAL_UNLOCK(sc);
1208 return;
1209 }
1210
1211 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1212 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1213
1214 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1215 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1216
1217 if (r1 & RT2661_MGT_DONE)
1218 rt2661_tx_dma_intr(sc, &sc->mgtq);
1219
1220 if (r1 & RT2661_RX_DONE)
1221 rt2661_rx_intr(sc);
1222
1223 if (r1 & RT2661_TX0_DMA_DONE)
1224 rt2661_tx_dma_intr(sc, &sc->txq[0]);
1225
1226 if (r1 & RT2661_TX1_DMA_DONE)
1227 rt2661_tx_dma_intr(sc, &sc->txq[1]);
1228
1229 if (r1 & RT2661_TX2_DMA_DONE)
1230 rt2661_tx_dma_intr(sc, &sc->txq[2]);
1231
1232 if (r1 & RT2661_TX3_DMA_DONE)
1233 rt2661_tx_dma_intr(sc, &sc->txq[3]);
1234
1235 if (r1 & RT2661_TX_DONE)
1236 rt2661_tx_intr(sc);
1237
1238 if (r2 & RT2661_MCU_CMD_DONE)
1239 rt2661_mcu_cmd_intr(sc);
1240
1241 if (r2 & RT2661_MCU_BEACON_EXPIRE)
1242 rt2661_mcu_beacon_expire(sc);
1243
1244 if (r2 & RT2661_MCU_WAKEUP)
1245 rt2661_mcu_wakeup(sc);
1246
1247 /* re-enable MAC and MCU interrupts */
1248 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1249 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1250
1251 RAL_UNLOCK(sc);
1252 }
1253
1254 /* quickly determine if a given rate is CCK or OFDM */
1255 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1256
1257 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1258 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1259
1260 #define RAL_SIFS 10 /* us */
1261
1262 /*
1263 * This function is only used by the Rx radiotap code. It returns the rate at
1264 * which a given frame was received.
1265 */
1266 static uint8_t
1267 rt2661_rxrate(struct rt2661_rx_desc *desc)
1268 {
1269 if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1270 /* reverse function of rt2661_plcp_signal */
1271 switch (desc->rate & 0xf) {
1272 case 0xb: return 12;
1273 case 0xf: return 18;
1274 case 0xa: return 24;
1275 case 0xe: return 36;
1276 case 0x9: return 48;
1277 case 0xd: return 72;
1278 case 0x8: return 96;
1279 case 0xc: return 108;
1280 }
1281 } else {
1282 if (desc->rate == 10)
1283 return 2;
1284 if (desc->rate == 20)
1285 return 4;
1286 if (desc->rate == 55)
1287 return 11;
1288 if (desc->rate == 110)
1289 return 22;
1290 }
1291 return 2; /* should not get there */
1292 }
1293
1294 /*
1295 * Return the expected ack rate for a frame transmitted at rate `rate'.
1296 * XXX: this should depend on the destination node basic rate set.
1297 */
1298 static int
1299 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1300 {
1301 switch (rate) {
1302 /* CCK rates */
1303 case 2:
1304 return 2;
1305 case 4:
1306 case 11:
1307 case 22:
1308 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1309
1310 /* OFDM rates */
1311 case 12:
1312 case 18:
1313 return 12;
1314 case 24:
1315 case 36:
1316 return 24;
1317 case 48:
1318 case 72:
1319 case 96:
1320 case 108:
1321 return 48;
1322 }
1323
1324 /* default to 1Mbps */
1325 return 2;
1326 }
1327
1328 /*
1329 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1330 * The function automatically determines the operating mode depending on the
1331 * given rate. `flags' indicates whether short preamble is in use or not.
1332 */
1333 static uint16_t
1334 rt2661_txtime(int len, int rate, uint32_t flags)
1335 {
1336 uint16_t txtime;
1337
1338 if (RAL_RATE_IS_OFDM(rate)) {
1339 /* IEEE Std 802.11a-1999, pp. 37 */
1340 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1341 txtime = 16 + 4 + 4 * txtime + 6;
1342 } else {
1343 /* IEEE Std 802.11b-1999, pp. 28 */
1344 txtime = (16 * len + rate - 1) / rate;
1345 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1346 txtime += 72 + 24;
1347 else
1348 txtime += 144 + 48;
1349 }
1350
1351 return txtime;
1352 }
1353
1354 static uint8_t
1355 rt2661_plcp_signal(int rate)
1356 {
1357 switch (rate) {
1358 /* CCK rates (returned values are device-dependent) */
1359 case 2: return 0x0;
1360 case 4: return 0x1;
1361 case 11: return 0x2;
1362 case 22: return 0x3;
1363
1364 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1365 case 12: return 0xb;
1366 case 18: return 0xf;
1367 case 24: return 0xa;
1368 case 36: return 0xe;
1369 case 48: return 0x9;
1370 case 72: return 0xd;
1371 case 96: return 0x8;
1372 case 108: return 0xc;
1373
1374 /* unsupported rates (should not get there) */
1375 default: return 0xff;
1376 }
1377 }
1378
1379 static void
1380 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1381 uint32_t flags, uint16_t xflags, int len, int rate,
1382 const bus_dma_segment_t *segs, int nsegs, int ac)
1383 {
1384 struct ieee80211com *ic = &sc->sc_ic;
1385 uint16_t plcp_length;
1386 int i, remainder;
1387
1388 desc->flags = htole32(flags);
1389 desc->flags |= htole32(len << 16);
1390 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1391
1392 desc->xflags = htole16(xflags);
1393 desc->xflags |= htole16(nsegs << 13);
1394
1395 desc->wme = htole16(
1396 RT2661_QID(ac) |
1397 RT2661_AIFSN(2) |
1398 RT2661_LOGCWMIN(4) |
1399 RT2661_LOGCWMAX(10));
1400
1401 /*
1402 * Remember in which queue this frame was sent. This field is driver
1403 * private data only. It will be made available by the NIC in STA_CSR4
1404 * on Tx interrupts.
1405 */
1406 desc->qid = ac;
1407
1408 /* setup PLCP fields */
1409 desc->plcp_signal = rt2661_plcp_signal(rate);
1410 desc->plcp_service = 4;
1411
1412 len += IEEE80211_CRC_LEN;
1413 if (RAL_RATE_IS_OFDM(rate)) {
1414 desc->flags |= htole32(RT2661_TX_OFDM);
1415
1416 plcp_length = len & 0xfff;
1417 desc->plcp_length_hi = plcp_length >> 6;
1418 desc->plcp_length_lo = plcp_length & 0x3f;
1419 } else {
1420 plcp_length = (16 * len + rate - 1) / rate;
1421 if (rate == 22) {
1422 remainder = (16 * len) % 22;
1423 if (remainder != 0 && remainder < 7)
1424 desc->plcp_service |= RT2661_PLCP_LENGEXT;
1425 }
1426 desc->plcp_length_hi = plcp_length >> 8;
1427 desc->plcp_length_lo = plcp_length & 0xff;
1428
1429 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1430 desc->plcp_signal |= 0x08;
1431 }
1432
1433 /* RT2x61 supports scatter with up to 5 segments */
1434 for (i = 0; i < nsegs; i++) {
1435 desc->addr[i] = htole32(segs[i].ds_addr);
1436 desc->len [i] = htole16(segs[i].ds_len);
1437 }
1438 }
1439
1440 static int
1441 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1442 struct ieee80211_node *ni)
1443 {
1444 struct ieee80211com *ic = &sc->sc_ic;
1445 struct rt2661_tx_desc *desc;
1446 struct rt2661_tx_data *data;
1447 struct ieee80211_frame *wh;
1448 bus_dma_segment_t segs[RT2661_MAX_SCATTER];
1449 uint16_t dur;
1450 uint32_t flags = 0; /* XXX HWSEQ */
1451 int nsegs, rate, error;
1452
1453 desc = &sc->mgtq.desc[sc->mgtq.cur];
1454 data = &sc->mgtq.data[sc->mgtq.cur];
1455
1456 /* send mgt frames at the lowest available rate */
1457 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1458
1459 error = bus_dmamap_load_mbuf_sg(sc->mgtq.data_dmat, data->map, m0,
1460 segs, &nsegs, 0);
1461 if (error != 0) {
1462 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1463 error);
1464 m_freem(m0);
1465 return error;
1466 }
1467
1468 if (bpf_peers_present(sc->sc_drvbpf)) {
1469 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1470
1471 tap->wt_flags = 0;
1472 tap->wt_rate = rate;
1473 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1474 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1475
1476 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1477 }
1478
1479 data->m = m0;
1480 data->ni = ni;
1481
1482 wh = mtod(m0, struct ieee80211_frame *);
1483
1484 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1485 flags |= RT2661_TX_NEED_ACK;
1486
1487 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1488 RAL_SIFS;
1489 *(uint16_t *)wh->i_dur = htole16(dur);
1490
1491 /* tell hardware to add timestamp in probe responses */
1492 if ((wh->i_fc[0] &
1493 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1494 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1495 flags |= RT2661_TX_TIMESTAMP;
1496 }
1497
1498 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1499 m0->m_pkthdr.len, rate, segs, nsegs, RT2661_QID_MGT);
1500
1501 bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1502 bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map,
1503 BUS_DMASYNC_PREWRITE);
1504
1505 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1506 m0->m_pkthdr.len, sc->mgtq.cur, rate));
1507
1508 /* kick mgt */
1509 sc->mgtq.queued++;
1510 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1511 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1512
1513 return 0;
1514 }
1515
1516 /*
1517 * Build a RTS control frame.
1518 */
1519 static struct mbuf *
1520 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1521 uint16_t dur)
1522 {
1523 struct ieee80211_frame_rts *rts;
1524 struct mbuf *m;
1525
1526 MGETHDR(m, M_DONTWAIT, MT_DATA);
1527 if (m == NULL) {
1528 sc->sc_ic.ic_stats.is_tx_nobuf++;
1529 device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1530 return NULL;
1531 }
1532
1533 rts = mtod(m, struct ieee80211_frame_rts *);
1534
1535 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1536 IEEE80211_FC0_SUBTYPE_RTS;
1537 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1538 *(uint16_t *)rts->i_dur = htole16(dur);
1539 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1540 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1541
1542 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1543
1544 return m;
1545 }
1546
1547 static int
1548 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1549 struct ieee80211_node *ni, int ac)
1550 {
1551 struct ieee80211com *ic = &sc->sc_ic;
1552 struct rt2661_tx_ring *txq = &sc->txq[ac];
1553 struct rt2661_tx_desc *desc;
1554 struct rt2661_tx_data *data;
1555 struct rt2661_node *rn;
1556 struct ieee80211_rateset *rs;
1557 struct ieee80211_frame *wh;
1558 struct ieee80211_key *k;
1559 const struct chanAccParams *cap;
1560 struct mbuf *mnew;
1561 bus_dma_segment_t segs[RT2661_MAX_SCATTER];
1562 uint16_t dur;
1563 uint32_t flags = 0;
1564 int error, nsegs, rate, noack = 0;
1565
1566 wh = mtod(m0, struct ieee80211_frame *);
1567
1568 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1569 rs = &ic->ic_sup_rates[ic->ic_curmode];
1570 rate = rs->rs_rates[ic->ic_fixed_rate];
1571 } else {
1572 rs = &ni->ni_rates;
1573 rn = (struct rt2661_node *)ni;
1574 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs,
1575 wh, m0->m_pkthdr.len, NULL, 0);
1576 rate = rs->rs_rates[ni->ni_txrate];
1577 }
1578 rate &= IEEE80211_RATE_VAL;
1579
1580 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
1581 cap = &ic->ic_wme.wme_chanParams;
1582 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1583 }
1584
1585 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1586 k = ieee80211_crypto_encap(ic, ni, m0);
1587 if (k == NULL) {
1588 m_freem(m0);
1589 return ENOBUFS;
1590 }
1591
1592 /* packet header may have moved, reset our local pointer */
1593 wh = mtod(m0, struct ieee80211_frame *);
1594 }
1595
1596 /*
1597 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1598 * for directed frames only when the length of the MPDU is greater
1599 * than the length threshold indicated by [...]" ic_rtsthreshold.
1600 */
1601 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1602 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1603 struct mbuf *m;
1604 uint16_t dur;
1605 int rtsrate, ackrate;
1606
1607 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1608 ackrate = rt2661_ack_rate(ic, rate);
1609
1610 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1611 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1612 /* XXX: noack (QoS)? */
1613 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1614 3 * RAL_SIFS;
1615
1616 m = rt2661_get_rts(sc, wh, dur);
1617
1618 desc = &txq->desc[txq->cur];
1619 data = &txq->data[txq->cur];
1620
1621 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m,
1622 segs, &nsegs, 0);
1623 if (error != 0) {
1624 device_printf(sc->sc_dev,
1625 "could not map mbuf (error %d)\n", error);
1626 m_freem(m);
1627 m_freem(m0);
1628 return error;
1629 }
1630
1631 /* avoid multiple free() of the same node for each fragment */
1632 ieee80211_ref_node(ni);
1633
1634 data->m = m;
1635 data->ni = ni;
1636
1637 /* RTS frames are not taken into account for rssadapt */
1638 data->id.id_node = NULL;
1639
1640 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1641 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, segs,
1642 nsegs, ac);
1643
1644 bus_dmamap_sync(txq->data_dmat, data->map,
1645 BUS_DMASYNC_PREWRITE);
1646
1647 txq->queued++;
1648 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1649
1650 /*
1651 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1652 * asynchronous data frame shall be transmitted after the CTS
1653 * frame and a SIFS period.
1654 */
1655 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1656 }
1657
1658 data = &txq->data[txq->cur];
1659 desc = &txq->desc[txq->cur];
1660
1661 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1662 &nsegs, 0);
1663 if (error != 0 && error != EFBIG) {
1664 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1665 error);
1666 m_freem(m0);
1667 return error;
1668 }
1669 if (error != 0) {
1670 mnew = m_defrag(m0, M_DONTWAIT);
1671 if (mnew == NULL) {
1672 device_printf(sc->sc_dev,
1673 "could not defragment mbuf\n");
1674 m_freem(m0);
1675 return ENOBUFS;
1676 }
1677 m0 = mnew;
1678
1679 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0,
1680 segs, &nsegs, 0);
1681 if (error != 0) {
1682 device_printf(sc->sc_dev,
1683 "could not map mbuf (error %d)\n", error);
1684 m_freem(m0);
1685 return error;
1686 }
1687
1688 /* packet header have moved, reset our local pointer */
1689 wh = mtod(m0, struct ieee80211_frame *);
1690 }
1691
1692 if (bpf_peers_present(sc->sc_drvbpf)) {
1693 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1694
1695 tap->wt_flags = 0;
1696 tap->wt_rate = rate;
1697 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1698 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1699
1700 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1701 }
1702
1703 data->m = m0;
1704 data->ni = ni;
1705
1706 /* remember link conditions for rate adaptation algorithm */
1707 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1708 data->id.id_len = m0->m_pkthdr.len;
1709 data->id.id_rateidx = ni->ni_txrate;
1710 data->id.id_node = ni;
1711 data->id.id_rssi = ni->ni_rssi;
1712 } else
1713 data->id.id_node = NULL;
1714
1715 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1716 flags |= RT2661_TX_NEED_ACK;
1717
1718 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1719 ic->ic_flags) + RAL_SIFS;
1720 *(uint16_t *)wh->i_dur = htole16(dur);
1721 }
1722
1723 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, segs,
1724 nsegs, ac);
1725
1726 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1727 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1728
1729 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1730 m0->m_pkthdr.len, txq->cur, rate));
1731
1732 /* kick Tx */
1733 txq->queued++;
1734 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1735 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac);
1736
1737 return 0;
1738 }
1739
1740 static void
1741 rt2661_start(struct ifnet *ifp)
1742 {
1743 struct rt2661_softc *sc = ifp->if_softc;
1744 struct ieee80211com *ic = &sc->sc_ic;
1745 struct mbuf *m0;
1746 struct ether_header *eh;
1747 struct ieee80211_node *ni;
1748 int ac;
1749
1750 RAL_LOCK(sc);
1751
1752 /* prevent management frames from being sent if we're not ready */
1753 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1754 RAL_UNLOCK(sc);
1755 return;
1756 }
1757
1758 for (;;) {
1759 IF_POLL(&ic->ic_mgtq, m0);
1760 if (m0 != NULL) {
1761 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1762 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1763 break;
1764 }
1765 IF_DEQUEUE(&ic->ic_mgtq, m0);
1766
1767 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1768 m0->m_pkthdr.rcvif = NULL;
1769
1770 if (bpf_peers_present(ic->ic_rawbpf))
1771 bpf_mtap(ic->ic_rawbpf, m0);
1772
1773 if (rt2661_tx_mgt(sc, m0, ni) != 0)
1774 break;
1775
1776 } else {
1777 if (ic->ic_state != IEEE80211_S_RUN)
1778 break;
1779
1780 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1781 if (m0 == NULL)
1782 break;
1783
1784 if (m0->m_len < sizeof (struct ether_header) &&
1785 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1786 continue;
1787
1788 eh = mtod(m0, struct ether_header *);
1789 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1790 if (ni == NULL) {
1791 m_freem(m0);
1792 ifp->if_oerrors++;
1793 continue;
1794 }
1795
1796 /* classify mbuf so we can find which tx ring to use */
1797 if (ieee80211_classify(ic, m0, ni) != 0) {
1798 m_freem(m0);
1799 ieee80211_free_node(ni);
1800 ifp->if_oerrors++;
1801 continue;
1802 }
1803
1804 /* no QoS encapsulation for EAPOL frames */
1805 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1806 M_WME_GETAC(m0) : WME_AC_BE;
1807
1808 if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) {
1809 /* there is no place left in this ring */
1810 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1811 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1812 break;
1813 }
1814
1815 BPF_MTAP(ifp, m0);
1816
1817 m0 = ieee80211_encap(ic, m0, ni);
1818 if (m0 == NULL) {
1819 ieee80211_free_node(ni);
1820 ifp->if_oerrors++;
1821 continue;
1822 }
1823
1824 if (bpf_peers_present(ic->ic_rawbpf))
1825 bpf_mtap(ic->ic_rawbpf, m0);
1826
1827 if (rt2661_tx_data(sc, m0, ni, ac) != 0) {
1828 ieee80211_free_node(ni);
1829 ifp->if_oerrors++;
1830 break;
1831 }
1832 }
1833
1834 sc->sc_tx_timer = 5;
1835 ifp->if_timer = 1;
1836 }
1837
1838 RAL_UNLOCK(sc);
1839 }
1840
1841 static void
1842 rt2661_watchdog(struct ifnet *ifp)
1843 {
1844 struct rt2661_softc *sc = ifp->if_softc;
1845 struct ieee80211com *ic = &sc->sc_ic;
1846
1847 RAL_LOCK(sc);
1848
1849 ifp->if_timer = 0;
1850
1851 if (sc->sc_tx_timer > 0) {
1852 if (--sc->sc_tx_timer == 0) {
1853 device_printf(sc->sc_dev, "device timeout\n");
1854 rt2661_init(sc);
1855 ifp->if_oerrors++;
1856 RAL_UNLOCK(sc);
1857 return;
1858 }
1859 ifp->if_timer = 1;
1860 }
1861
1862 ieee80211_watchdog(ic);
1863
1864 RAL_UNLOCK(sc);
1865 }
1866
1867 /*
1868 * This function allows for fast channel switching in monitor mode (used by
1869 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1870 * generate a new beacon frame.
1871 */
1872 static int
1873 rt2661_reset(struct ifnet *ifp)
1874 {
1875 struct rt2661_softc *sc = ifp->if_softc;
1876 struct ieee80211com *ic = &sc->sc_ic;
1877
1878 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1879 return ENETRESET;
1880
1881 rt2661_set_chan(sc, ic->ic_curchan);
1882
1883 return 0;
1884 }
1885
1886 static int
1887 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1888 {
1889 struct rt2661_softc *sc = ifp->if_softc;
1890 struct ieee80211com *ic = &sc->sc_ic;
1891 int error = 0;
1892
1893 RAL_LOCK(sc);
1894
1895 switch (cmd) {
1896 case SIOCSIFFLAGS:
1897 if (ifp->if_flags & IFF_UP) {
1898 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1899 rt2661_update_promisc(sc);
1900 else
1901 rt2661_init(sc);
1902 } else {
1903 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1904 rt2661_stop(sc);
1905 }
1906 break;
1907
1908 default:
1909 error = ieee80211_ioctl(ic, cmd, data);
1910 }
1911
1912 if (error == ENETRESET) {
1913 if ((ifp->if_flags & IFF_UP) &&
1914 (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1915 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1916 rt2661_init(sc);
1917 error = 0;
1918 }
1919
1920 RAL_UNLOCK(sc);
1921
1922 return error;
1923 }
1924
1925 static void
1926 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1927 {
1928 uint32_t tmp;
1929 int ntries;
1930
1931 for (ntries = 0; ntries < 100; ntries++) {
1932 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1933 break;
1934 DELAY(1);
1935 }
1936 if (ntries == 100) {
1937 device_printf(sc->sc_dev, "could not write to BBP\n");
1938 return;
1939 }
1940
1941 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
1942 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
1943
1944 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
1945 }
1946
1947 static uint8_t
1948 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
1949 {
1950 uint32_t val;
1951 int ntries;
1952
1953 for (ntries = 0; ntries < 100; ntries++) {
1954 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1955 break;
1956 DELAY(1);
1957 }
1958 if (ntries == 100) {
1959 device_printf(sc->sc_dev, "could not read from BBP\n");
1960 return 0;
1961 }
1962
1963 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
1964 RAL_WRITE(sc, RT2661_PHY_CSR3, val);
1965
1966 for (ntries = 0; ntries < 100; ntries++) {
1967 val = RAL_READ(sc, RT2661_PHY_CSR3);
1968 if (!(val & RT2661_BBP_BUSY))
1969 return val & 0xff;
1970 DELAY(1);
1971 }
1972
1973 device_printf(sc->sc_dev, "could not read from BBP\n");
1974 return 0;
1975 }
1976
1977 static void
1978 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
1979 {
1980 uint32_t tmp;
1981 int ntries;
1982
1983 for (ntries = 0; ntries < 100; ntries++) {
1984 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
1985 break;
1986 DELAY(1);
1987 }
1988 if (ntries == 100) {
1989 device_printf(sc->sc_dev, "could not write to RF\n");
1990 return;
1991 }
1992
1993 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
1994 (reg & 3);
1995 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
1996
1997 /* remember last written value in sc */
1998 sc->rf_regs[reg] = val;
1999
2000 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2001 }
2002
2003 static int
2004 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2005 {
2006 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2007 return EIO; /* there is already a command pending */
2008
2009 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2010 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2011
2012 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2013
2014 return 0;
2015 }
2016
2017 static void
2018 rt2661_select_antenna(struct rt2661_softc *sc)
2019 {
2020 uint8_t bbp4, bbp77;
2021 uint32_t tmp;
2022
2023 bbp4 = rt2661_bbp_read(sc, 4);
2024 bbp77 = rt2661_bbp_read(sc, 77);
2025
2026 /* TBD */
2027
2028 /* make sure Rx is disabled before switching antenna */
2029 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2030 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2031
2032 rt2661_bbp_write(sc, 4, bbp4);
2033 rt2661_bbp_write(sc, 77, bbp77);
2034
2035 /* restore Rx filter */
2036 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2037 }
2038
2039 /*
2040 * Enable multi-rate retries for frames sent at OFDM rates.
2041 * In 802.11b/g mode, allow fallback to CCK rates.
2042 */
2043 static void
2044 rt2661_enable_mrr(struct rt2661_softc *sc)
2045 {
2046 struct ieee80211com *ic = &sc->sc_ic;
2047 uint32_t tmp;
2048
2049 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2050
2051 tmp &= ~RT2661_MRR_CCK_FALLBACK;
2052 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2053 tmp |= RT2661_MRR_CCK_FALLBACK;
2054 tmp |= RT2661_MRR_ENABLED;
2055
2056 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2057 }
2058
2059 static void
2060 rt2661_set_txpreamble(struct rt2661_softc *sc)
2061 {
2062 uint32_t tmp;
2063
2064 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2065
2066 tmp &= ~RT2661_SHORT_PREAMBLE;
2067 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2068 tmp |= RT2661_SHORT_PREAMBLE;
2069
2070 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2071 }
2072
2073 static void
2074 rt2661_set_basicrates(struct rt2661_softc *sc,
2075 const struct ieee80211_rateset *rs)
2076 {
2077 #define RV(r) ((r) & IEEE80211_RATE_VAL)
2078 struct ieee80211com *ic = &sc->sc_ic;
2079 uint32_t mask = 0;
2080 uint8_t rate;
2081 int i, j;
2082
2083 for (i = 0; i < rs->rs_nrates; i++) {
2084 rate = rs->rs_rates[i];
2085
2086 if (!(rate & IEEE80211_RATE_BASIC))
2087 continue;
2088
2089 /*
2090 * Find h/w rate index. We know it exists because the rate
2091 * set has already been negotiated.
2092 */
2093 for (j = 0; ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates[j] != RV(rate); j++);
2094
2095 mask |= 1 << j;
2096 }
2097
2098 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2099
2100 DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2101 #undef RV
2102 }
2103
2104 /*
2105 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
2106 * driver.
2107 */
2108 static void
2109 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2110 {
2111 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2112 uint32_t tmp;
2113
2114 /* update all BBP registers that depend on the band */
2115 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2116 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
2117 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2118 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2119 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
2120 }
2121 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2122 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2123 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2124 }
2125
2126 rt2661_bbp_write(sc, 17, bbp17);
2127 rt2661_bbp_write(sc, 96, bbp96);
2128 rt2661_bbp_write(sc, 104, bbp104);
2129
2130 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2131 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2132 rt2661_bbp_write(sc, 75, 0x80);
2133 rt2661_bbp_write(sc, 86, 0x80);
2134 rt2661_bbp_write(sc, 88, 0x80);
2135 }
2136
2137 rt2661_bbp_write(sc, 35, bbp35);
2138 rt2661_bbp_write(sc, 97, bbp97);
2139 rt2661_bbp_write(sc, 98, bbp98);
2140
2141 tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2142 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2143 if (IEEE80211_IS_CHAN_2GHZ(c))
2144 tmp |= RT2661_PA_PE_2GHZ;
2145 else
2146 tmp |= RT2661_PA_PE_5GHZ;
2147 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2148 }
2149
2150 static void
2151 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2152 {
2153 struct ieee80211com *ic = &sc->sc_ic;
2154 const struct rfprog *rfprog;
2155 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2156 int8_t power;
2157 u_int i, chan;
2158
2159 chan = ieee80211_chan2ieee(ic, c);
2160 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2161 return;
2162
2163 /* select the appropriate RF settings based on what EEPROM says */
2164 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2165
2166 /* find the settings for this channel (we know it exists) */
2167 for (i = 0; rfprog[i].chan != chan; i++);
2168
2169 power = sc->txpow[i];
2170 if (power < 0) {
2171 bbp94 += power;
2172 power = 0;
2173 } else if (power > 31) {
2174 bbp94 += power - 31;
2175 power = 31;
2176 }
2177
2178 /*
2179 * If we are switching from the 2GHz band to the 5GHz band or
2180 * vice-versa, BBP registers need to be reprogrammed.
2181 */
2182 if (c->ic_flags != sc->sc_curchan->ic_flags) {
2183 rt2661_select_band(sc, c);
2184 rt2661_select_antenna(sc);
2185 }
2186 sc->sc_curchan = c;
2187
2188 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2189 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2190 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2191 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2192
2193 DELAY(200);
2194
2195 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2196 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2197 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2198 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2199
2200 DELAY(200);
2201
2202 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2203 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2204 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2205 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2206
2207 /* enable smart mode for MIMO-capable RFs */
2208 bbp3 = rt2661_bbp_read(sc, 3);
2209
2210 bbp3 &= ~RT2661_SMART_MODE;
2211 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2212 bbp3 |= RT2661_SMART_MODE;
2213
2214 rt2661_bbp_write(sc, 3, bbp3);
2215
2216 if (bbp94 != RT2661_BBPR94_DEFAULT)
2217 rt2661_bbp_write(sc, 94, bbp94);
2218
2219 /* 5GHz radio needs a 1ms delay here */
2220 if (IEEE80211_IS_CHAN_5GHZ(c))
2221 DELAY(1000);
2222 }
2223
2224 static void
2225 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2226 {
2227 uint32_t tmp;
2228
2229 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2230 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2231
2232 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2233 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2234 }
2235
2236 static void
2237 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2238 {
2239 uint32_t tmp;
2240
2241 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2242 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2243
2244 tmp = addr[4] | addr[5] << 8;
2245 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2246 }
2247
2248 static void
2249 rt2661_update_promisc(struct rt2661_softc *sc)
2250 {
2251 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2252 uint32_t tmp;
2253
2254 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2255
2256 tmp &= ~RT2661_DROP_NOT_TO_ME;
2257 if (!(ifp->if_flags & IFF_PROMISC))
2258 tmp |= RT2661_DROP_NOT_TO_ME;
2259
2260 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2261
2262 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2263 "entering" : "leaving"));
2264 }
2265
2266 /*
2267 * Update QoS (802.11e) settings for each h/w Tx ring.
2268 */
2269 static int
2270 rt2661_wme_update(struct ieee80211com *ic)
2271 {
2272 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2273 const struct wmeParams *wmep;
2274
2275 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2276
2277 /* XXX: not sure about shifts. */
2278 /* XXX: the reference driver plays with AC_VI settings too. */
2279
2280 /* update TxOp */
2281 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2282 wmep[WME_AC_BE].wmep_txopLimit << 16 |
2283 wmep[WME_AC_BK].wmep_txopLimit);
2284 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2285 wmep[WME_AC_VI].wmep_txopLimit << 16 |
2286 wmep[WME_AC_VO].wmep_txopLimit);
2287
2288 /* update CWmin */
2289 RAL_WRITE(sc, RT2661_CWMIN_CSR,
2290 wmep[WME_AC_BE].wmep_logcwmin << 12 |
2291 wmep[WME_AC_BK].wmep_logcwmin << 8 |
2292 wmep[WME_AC_VI].wmep_logcwmin << 4 |
2293 wmep[WME_AC_VO].wmep_logcwmin);
2294
2295 /* update CWmax */
2296 RAL_WRITE(sc, RT2661_CWMAX_CSR,
2297 wmep[WME_AC_BE].wmep_logcwmax << 12 |
2298 wmep[WME_AC_BK].wmep_logcwmax << 8 |
2299 wmep[WME_AC_VI].wmep_logcwmax << 4 |
2300 wmep[WME_AC_VO].wmep_logcwmax);
2301
2302 /* update Aifsn */
2303 RAL_WRITE(sc, RT2661_AIFSN_CSR,
2304 wmep[WME_AC_BE].wmep_aifsn << 12 |
2305 wmep[WME_AC_BK].wmep_aifsn << 8 |
2306 wmep[WME_AC_VI].wmep_aifsn << 4 |
2307 wmep[WME_AC_VO].wmep_aifsn);
2308
2309 return 0;
2310 }
2311
2312 static void
2313 rt2661_update_slot(struct ifnet *ifp)
2314 {
2315 struct rt2661_softc *sc = ifp->if_softc;
2316 struct ieee80211com *ic = &sc->sc_ic;
2317 uint8_t slottime;
2318 uint32_t tmp;
2319
2320 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2321
2322 tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2323 tmp = (tmp & ~0xff) | slottime;
2324 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2325 }
2326
2327 static const char *
2328 rt2661_get_rf(int rev)
2329 {
2330 switch (rev) {
2331 case RT2661_RF_5225: return "RT5225";
2332 case RT2661_RF_5325: return "RT5325 (MIMO XR)";
2333 case RT2661_RF_2527: return "RT2527";
2334 case RT2661_RF_2529: return "RT2529 (MIMO XR)";
2335 default: return "unknown";
2336 }
2337 }
2338
2339 static void
2340 rt2661_read_eeprom(struct rt2661_softc *sc)
2341 {
2342 struct ieee80211com *ic = &sc->sc_ic;
2343 uint16_t val;
2344 int i;
2345
2346 /* read MAC address */
2347 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2348 ic->ic_myaddr[0] = val & 0xff;
2349 ic->ic_myaddr[1] = val >> 8;
2350
2351 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2352 ic->ic_myaddr[2] = val & 0xff;
2353 ic->ic_myaddr[3] = val >> 8;
2354
2355 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2356 ic->ic_myaddr[4] = val & 0xff;
2357 ic->ic_myaddr[5] = val >> 8;
2358
2359 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2360 /* XXX: test if different from 0xffff? */
2361 sc->rf_rev = (val >> 11) & 0x1f;
2362 sc->hw_radio = (val >> 10) & 0x1;
2363 sc->rx_ant = (val >> 4) & 0x3;
2364 sc->tx_ant = (val >> 2) & 0x3;
2365 sc->nb_ant = val & 0x3;
2366
2367 DPRINTF(("RF revision=%d\n", sc->rf_rev));
2368
2369 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2370 sc->ext_5ghz_lna = (val >> 6) & 0x1;
2371 sc->ext_2ghz_lna = (val >> 4) & 0x1;
2372
2373 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2374 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2375
2376 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2377 if ((val & 0xff) != 0xff)
2378 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
2379
2380 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2381 if ((val & 0xff) != 0xff)
2382 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
2383
2384 /* adjust RSSI correction for external low-noise amplifier */
2385 if (sc->ext_2ghz_lna)
2386 sc->rssi_2ghz_corr -= 14;
2387 if (sc->ext_5ghz_lna)
2388 sc->rssi_5ghz_corr -= 14;
2389
2390 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2391 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2392
2393 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2394 if ((val >> 8) != 0xff)
2395 sc->rfprog = (val >> 8) & 0x3;
2396 if ((val & 0xff) != 0xff)
2397 sc->rffreq = val & 0xff;
2398
2399 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2400
2401 /* read Tx power for all a/b/g channels */
2402 for (i = 0; i < 19; i++) {
2403 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2404 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
2405 DPRINTF(("Channel=%d Tx power=%d\n",
2406 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2407 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
2408 DPRINTF(("Channel=%d Tx power=%d\n",
2409 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2410 }
2411
2412 /* read vendor-specific BBP values */
2413 for (i = 0; i < 16; i++) {
2414 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2415 if (val == 0 || val == 0xffff)
2416 continue; /* skip invalid entries */
2417 sc->bbp_prom[i].reg = val >> 8;
2418 sc->bbp_prom[i].val = val & 0xff;
2419 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2420 sc->bbp_prom[i].val));
2421 }
2422 }
2423
2424 static int
2425 rt2661_bbp_init(struct rt2661_softc *sc)
2426 {
2427 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2428 int i, ntries;
2429 uint8_t val;
2430
2431 /* wait for BBP to be ready */
2432 for (ntries = 0; ntries < 100; ntries++) {
2433 val = rt2661_bbp_read(sc, 0);
2434 if (val != 0 && val != 0xff)
2435 break;
2436 DELAY(100);
2437 }
2438 if (ntries == 100) {
2439 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2440 return EIO;
2441 }
2442
2443 /* initialize BBP registers to default values */
2444 for (i = 0; i < N(rt2661_def_bbp); i++) {
2445 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2446 rt2661_def_bbp[i].val);
2447 }
2448
2449 /* write vendor-specific BBP values (from EEPROM) */
2450 for (i = 0; i < 16; i++) {
2451 if (sc->bbp_prom[i].reg == 0)
2452 continue;
2453 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2454 }
2455
2456 return 0;
2457 #undef N
2458 }
2459
2460 static void
2461 rt2661_init(void *priv)
2462 {
2463 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2464 struct rt2661_softc *sc = priv;
2465 struct ieee80211com *ic = &sc->sc_ic;
2466 struct ifnet *ifp = ic->ic_ifp;
2467 uint32_t tmp, sta[3];
2468 int i, ntries;
2469
2470 RAL_LOCK(sc);
2471
2472 rt2661_stop(sc);
2473
2474 /* initialize Tx rings */
2475 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2476 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2477 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2478 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2479
2480 /* initialize Mgt ring */
2481 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2482
2483 /* initialize Rx ring */
2484 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2485
2486 /* initialize Tx rings sizes */
2487 RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2488 RT2661_TX_RING_COUNT << 24 |
2489 RT2661_TX_RING_COUNT << 16 |
2490 RT2661_TX_RING_COUNT << 8 |
2491 RT2661_TX_RING_COUNT);
2492
2493 RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2494 RT2661_TX_DESC_WSIZE << 16 |
2495 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
2496 RT2661_MGT_RING_COUNT);
2497
2498 /* initialize Rx rings */
2499 RAL_WRITE(sc, RT2661_RX_RING_CSR,
2500 RT2661_RX_DESC_BACK << 16 |
2501 RT2661_RX_DESC_WSIZE << 8 |
2502 RT2661_RX_RING_COUNT);
2503
2504 /* XXX: some magic here */
2505 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2506
2507 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2508 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2509
2510 /* load base address of Rx ring */
2511 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2512
2513 /* initialize MAC registers to default values */
2514 for (i = 0; i < N(rt2661_def_mac); i++)
2515 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2516
2517 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2518 rt2661_set_macaddr(sc, ic->ic_myaddr);
2519
2520 /* set host ready */
2521 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2522 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2523
2524 /* wait for BBP/RF to wakeup */
2525 for (ntries = 0; ntries < 1000; ntries++) {
2526 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2527 break;
2528 DELAY(1000);
2529 }
2530 if (ntries == 1000) {
2531 printf("timeout waiting for BBP/RF to wakeup\n");
2532 rt2661_stop(sc);
2533 RAL_UNLOCK(sc);
2534 return;
2535 }
2536
2537 if (rt2661_bbp_init(sc) != 0) {
2538 rt2661_stop(sc);
2539 RAL_UNLOCK(sc);
2540 return;
2541 }
2542
2543 /* select default channel */
2544 sc->sc_curchan = ic->ic_curchan;
2545 rt2661_select_band(sc, sc->sc_curchan);
2546 rt2661_select_antenna(sc);
2547 rt2661_set_chan(sc, sc->sc_curchan);
2548
2549 /* update Rx filter */
2550 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2551
2552 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2553 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2554 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2555 RT2661_DROP_ACKCTS;
2556 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2557 tmp |= RT2661_DROP_TODS;
2558 if (!(ifp->if_flags & IFF_PROMISC))
2559 tmp |= RT2661_DROP_NOT_TO_ME;
2560 }
2561
2562 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2563
2564 /* clear STA registers */
2565 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
2566
2567 /* initialize ASIC */
2568 RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2569
2570 /* clear any pending interrupt */
2571 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2572
2573 /* enable interrupts */
2574 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2575 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2576
2577 /* kick Rx */
2578 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2579
2580 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2581 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2582
2583 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2584 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2585 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2586 } else
2587 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2588
2589 RAL_UNLOCK(sc);
2590 #undef N
2591 }
2592
2593 void
2594 rt2661_stop(void *priv)
2595 {
2596 struct rt2661_softc *sc = priv;
2597 struct ieee80211com *ic = &sc->sc_ic;
2598 struct ifnet *ifp = ic->ic_ifp;
2599 uint32_t tmp;
2600
2601 sc->sc_tx_timer = 0;
2602 ifp->if_timer = 0;
2603 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2604
2605 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2606
2607 /* abort Tx (for all 5 Tx rings) */
2608 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2609
2610 /* disable Rx (value remains after reset!) */
2611 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2612 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2613
2614 /* reset ASIC */
2615 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2616 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2617
2618 /* disable interrupts */
2619 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff);
2620 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2621
2622 /* clear any pending interrupt */
2623 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2624 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2625
2626 /* reset Tx and Rx rings */
2627 rt2661_reset_tx_ring(sc, &sc->txq[0]);
2628 rt2661_reset_tx_ring(sc, &sc->txq[1]);
2629 rt2661_reset_tx_ring(sc, &sc->txq[2]);
2630 rt2661_reset_tx_ring(sc, &sc->txq[3]);
2631 rt2661_reset_tx_ring(sc, &sc->mgtq);
2632 rt2661_reset_rx_ring(sc, &sc->rxq);
2633 }
2634
2635 static int
2636 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2637 {
2638 int ntries;
2639
2640 /* reset 8051 */
2641 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2642
2643 /* cancel any pending Host to MCU command */
2644 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2645 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2646 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2647
2648 /* write 8051's microcode */
2649 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2650 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2651 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2652
2653 /* kick 8051's ass */
2654 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2655
2656 /* wait for 8051 to initialize */
2657 for (ntries = 0; ntries < 500; ntries++) {
2658 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2659 break;
2660 DELAY(100);
2661 }
2662 if (ntries == 500) {
2663 printf("timeout waiting for MCU to initialize\n");
2664 return EIO;
2665 }
2666 return 0;
2667 }
2668
2669 #ifdef notyet
2670 /*
2671 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2672 * false CCA count. This function is called periodically (every seconds) when
2673 * in the RUN state. Values taken from the reference driver.
2674 */
2675 static void
2676 rt2661_rx_tune(struct rt2661_softc *sc)
2677 {
2678 uint8_t bbp17;
2679 uint16_t cca;
2680 int lo, hi, dbm;
2681
2682 /*
2683 * Tuning range depends on operating band and on the presence of an
2684 * external low-noise amplifier.
2685 */
2686 lo = 0x20;
2687 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2688 lo += 0x08;
2689 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2690 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2691 lo += 0x10;
2692 hi = lo + 0x20;
2693
2694 /* retrieve false CCA count since last call (clear on read) */
2695 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2696
2697 if (dbm >= -35) {
2698 bbp17 = 0x60;
2699 } else if (dbm >= -58) {
2700 bbp17 = hi;
2701 } else if (dbm >= -66) {
2702 bbp17 = lo + 0x10;
2703 } else if (dbm >= -74) {
2704 bbp17 = lo + 0x08;
2705 } else {
2706 /* RSSI < -74dBm, tune using false CCA count */
2707
2708 bbp17 = sc->bbp17; /* current value */
2709
2710 hi -= 2 * (-74 - dbm);
2711 if (hi < lo)
2712 hi = lo;
2713
2714 if (bbp17 > hi) {
2715 bbp17 = hi;
2716
2717 } else if (cca > 512) {
2718 if (++bbp17 > hi)
2719 bbp17 = hi;
2720 } else if (cca < 100) {
2721 if (--bbp17 < lo)
2722 bbp17 = lo;
2723 }
2724 }
2725
2726 if (bbp17 != sc->bbp17) {
2727 rt2661_bbp_write(sc, 17, bbp17);
2728 sc->bbp17 = bbp17;
2729 }
2730 }
2731
2732 /*
2733 * Enter/Leave radar detection mode.
2734 * This is for 802.11h additional regulatory domains.
2735 */
2736 static void
2737 rt2661_radar_start(struct rt2661_softc *sc)
2738 {
2739 uint32_t tmp;
2740
2741 /* disable Rx */
2742 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2743 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2744
2745 rt2661_bbp_write(sc, 82, 0x20);
2746 rt2661_bbp_write(sc, 83, 0x00);
2747 rt2661_bbp_write(sc, 84, 0x40);
2748
2749 /* save current BBP registers values */
2750 sc->bbp18 = rt2661_bbp_read(sc, 18);
2751 sc->bbp21 = rt2661_bbp_read(sc, 21);
2752 sc->bbp22 = rt2661_bbp_read(sc, 22);
2753 sc->bbp16 = rt2661_bbp_read(sc, 16);
2754 sc->bbp17 = rt2661_bbp_read(sc, 17);
2755 sc->bbp64 = rt2661_bbp_read(sc, 64);
2756
2757 rt2661_bbp_write(sc, 18, 0xff);
2758 rt2661_bbp_write(sc, 21, 0x3f);
2759 rt2661_bbp_write(sc, 22, 0x3f);
2760 rt2661_bbp_write(sc, 16, 0xbd);
2761 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2762 rt2661_bbp_write(sc, 64, 0x21);
2763
2764 /* restore Rx filter */
2765 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2766 }
2767
2768 static int
2769 rt2661_radar_stop(struct rt2661_softc *sc)
2770 {
2771 uint8_t bbp66;
2772
2773 /* read radar detection result */
2774 bbp66 = rt2661_bbp_read(sc, 66);
2775
2776 /* restore BBP registers values */
2777 rt2661_bbp_write(sc, 16, sc->bbp16);
2778 rt2661_bbp_write(sc, 17, sc->bbp17);
2779 rt2661_bbp_write(sc, 18, sc->bbp18);
2780 rt2661_bbp_write(sc, 21, sc->bbp21);
2781 rt2661_bbp_write(sc, 22, sc->bbp22);
2782 rt2661_bbp_write(sc, 64, sc->bbp64);
2783
2784 return bbp66 == 1;
2785 }
2786 #endif
2787
2788 static int
2789 rt2661_prepare_beacon(struct rt2661_softc *sc)
2790 {
2791 struct ieee80211com *ic = &sc->sc_ic;
2792 struct ieee80211_beacon_offsets bo;
2793 struct rt2661_tx_desc desc;
2794 struct mbuf *m0;
2795 int rate;
2796
2797 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2798 if (m0 == NULL) {
2799 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2800 return ENOBUFS;
2801 }
2802
2803 /* send beacons at the lowest available rate */
2804 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2805
2806 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2807 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2808
2809 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2810 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2811
2812 /* copy beacon header and payload into NIC memory */
2813 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2814 mtod(m0, uint8_t *), m0->m_pkthdr.len);
2815
2816 m_freem(m0);
2817
2818 return 0;
2819 }
2820
2821 /*
2822 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2823 * and HostAP operating modes.
2824 */
2825 static void
2826 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2827 {
2828 struct ieee80211com *ic = &sc->sc_ic;
2829 uint32_t tmp;
2830
2831 if (ic->ic_opmode != IEEE80211_M_STA) {
2832 /*
2833 * Change default 16ms TBTT adjustment to 8ms.
2834 * Must be done before enabling beacon generation.
2835 */
2836 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2837 }
2838
2839 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2840
2841 /* set beacon interval (in 1/16ms unit) */
2842 tmp |= ic->ic_bss->ni_intval * 16;
2843
2844 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
2845 if (ic->ic_opmode == IEEE80211_M_STA)
2846 tmp |= RT2661_TSF_MODE(1);
2847 else
2848 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
2849
2850 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
2851 }
2852
2853 /*
2854 * Retrieve the "Received Signal Strength Indicator" from the raw values
2855 * contained in Rx descriptors. The computation depends on which band the
2856 * frame was received. Correction values taken from the reference driver.
2857 */
2858 static int
2859 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
2860 {
2861 int lna, agc, rssi;
2862
2863 lna = (raw >> 5) & 0x3;
2864 agc = raw & 0x1f;
2865
2866 rssi = 2 * agc;
2867
2868 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
2869 rssi += sc->rssi_2ghz_corr;
2870
2871 if (lna == 1)
2872 rssi -= 64;
2873 else if (lna == 2)
2874 rssi -= 74;
2875 else if (lna == 3)
2876 rssi -= 90;
2877 } else {
2878 rssi += sc->rssi_5ghz_corr;
2879
2880 if (lna == 1)
2881 rssi -= 64;
2882 else if (lna == 2)
2883 rssi -= 86;
2884 else if (lna == 3)
2885 rssi -= 100;
2886 }
2887 return rssi;
2888 }
Cache object: 4d4752822eefa83e9e65e24774acee26
|