1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2019 Conrad Meyer <cem@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/param.h>
32 #include <sys/domainset.h>
33 #include <sys/fail.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/queue.h>
40 #include <sys/random.h>
41 #include <sys/sdt.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/taskqueue.h>
45
46 #include <machine/atomic.h>
47 #include <machine/smp.h>
48
49 #include <dev/random/randomdev.h>
50 #include <dev/random/random_harvestq.h>
51
52 #include <dev/random/fenestrasX/fx_brng.h>
53 #include <dev/random/fenestrasX/fx_hash.h>
54 #include <dev/random/fenestrasX/fx_pool.h>
55 #include <dev/random/fenestrasX/fx_priv.h>
56 #include <dev/random/fenestrasX/fx_pub.h>
57
58 /*
59 * Timer-based reseed interval growth factor and limit in seconds. (§ 3.2)
60 */
61 #define FXENT_RESSED_INTVL_GFACT 3
62 #define FXENT_RESEED_INTVL_MAX 3600
63
64 /*
65 * Pool reseed schedule. Initially, only pool 0 is active. Until the timer
66 * interval reaches INTVL_MAX, only pool 0 is used.
67 *
68 * After reaching INTVL_MAX, pool k is either activated (if inactive) or used
69 * (if active) every 3^k timer reseeds. (§ 3.3)
70 *
71 * (Entropy harvesting only round robins across active pools.)
72 */
73 #define FXENT_RESEED_BASE 3
74
75 /*
76 * Number of bytes from high quality sources to allocate to pool 0 before
77 * normal round-robin allocation after each timer reseed. (§ 3.4)
78 */
79 #define FXENT_HI_SRC_POOL0_BYTES 32
80
81 /*
82 * § 3.1
83 *
84 * Low sources provide unconditioned entropy, such as mouse movements; high
85 * sources are assumed to provide high-quality random bytes. Pull sources are
86 * those which can be polled, i.e., anything randomdev calls a "random_source."
87 *
88 * In the whitepaper, low sources are pull. For us, at least in the existing
89 * design, low-quality sources push into some global ring buffer and then get
90 * forwarded into the RNG by a thread that continually polls. Presumably their
91 * design batches low entopy signals in some way (SHA512?) and only requests
92 * them dynamically on reseed. I'm not sure what the benefit is vs feeding
93 * into the pools directly.
94 */
95 enum fxrng_ent_access_cls {
96 FXRNG_PUSH,
97 FXRNG_PULL,
98 };
99 enum fxrng_ent_source_cls {
100 FXRNG_HI,
101 FXRNG_LO,
102 FXRNG_GARBAGE,
103 };
104 struct fxrng_ent_cls {
105 enum fxrng_ent_access_cls entc_axx_cls;
106 enum fxrng_ent_source_cls entc_src_cls;
107 };
108
109 static const struct fxrng_ent_cls fxrng_hi_pull = {
110 .entc_axx_cls = FXRNG_PULL,
111 .entc_src_cls = FXRNG_HI,
112 };
113 static const struct fxrng_ent_cls fxrng_hi_push = {
114 .entc_axx_cls = FXRNG_PUSH,
115 .entc_src_cls = FXRNG_HI,
116 };
117 static const struct fxrng_ent_cls fxrng_lo_push = {
118 .entc_axx_cls = FXRNG_PUSH,
119 .entc_src_cls = FXRNG_LO,
120 };
121 static const struct fxrng_ent_cls fxrng_garbage = {
122 .entc_axx_cls = FXRNG_PUSH,
123 .entc_src_cls = FXRNG_GARBAGE,
124 };
125
126 /*
127 * This table is a mapping of randomdev's current source abstractions to the
128 * designations above; at some point, if the design seems reasonable, it would
129 * make more sense to pull this up into the abstraction layer instead.
130 */
131 static const struct fxrng_ent_char {
132 const struct fxrng_ent_cls *entc_cls;
133 } fxrng_ent_char[ENTROPYSOURCE] = {
134 [RANDOM_CACHED] = {
135 .entc_cls = &fxrng_hi_push,
136 },
137 [RANDOM_ATTACH] = {
138 .entc_cls = &fxrng_lo_push,
139 },
140 [RANDOM_KEYBOARD] = {
141 .entc_cls = &fxrng_lo_push,
142 },
143 [RANDOM_MOUSE] = {
144 .entc_cls = &fxrng_lo_push,
145 },
146 [RANDOM_NET_TUN] = {
147 .entc_cls = &fxrng_lo_push,
148 },
149 [RANDOM_NET_ETHER] = {
150 .entc_cls = &fxrng_lo_push,
151 },
152 [RANDOM_NET_NG] = {
153 .entc_cls = &fxrng_lo_push,
154 },
155 [RANDOM_INTERRUPT] = {
156 .entc_cls = &fxrng_lo_push,
157 },
158 [RANDOM_SWI] = {
159 .entc_cls = &fxrng_lo_push,
160 },
161 [RANDOM_FS_ATIME] = {
162 .entc_cls = &fxrng_lo_push,
163 },
164 [RANDOM_UMA] = {
165 .entc_cls = &fxrng_lo_push,
166 },
167 [RANDOM_CALLOUT] = {
168 .entc_cls = &fxrng_lo_push,
169 },
170 [RANDOM_PURE_OCTEON] = {
171 .entc_cls = &fxrng_hi_push, /* Could be made pull. */
172 },
173 [RANDOM_PURE_SAFE] = {
174 .entc_cls = &fxrng_hi_push,
175 },
176 [RANDOM_PURE_GLXSB] = {
177 .entc_cls = &fxrng_hi_push,
178 },
179 [RANDOM_PURE_HIFN] = {
180 .entc_cls = &fxrng_hi_push,
181 },
182 [RANDOM_PURE_RDRAND] = {
183 .entc_cls = &fxrng_hi_pull,
184 },
185 [RANDOM_PURE_NEHEMIAH] = {
186 .entc_cls = &fxrng_hi_pull,
187 },
188 [RANDOM_PURE_RNDTEST] = {
189 .entc_cls = &fxrng_garbage,
190 },
191 [RANDOM_PURE_VIRTIO] = {
192 .entc_cls = &fxrng_hi_pull,
193 },
194 [RANDOM_PURE_BROADCOM] = {
195 .entc_cls = &fxrng_hi_push,
196 },
197 [RANDOM_PURE_CCP] = {
198 .entc_cls = &fxrng_hi_pull,
199 },
200 [RANDOM_PURE_DARN] = {
201 .entc_cls = &fxrng_hi_pull,
202 },
203 [RANDOM_PURE_TPM] = {
204 .entc_cls = &fxrng_hi_push,
205 },
206 [RANDOM_PURE_VMGENID] = {
207 .entc_cls = &fxrng_hi_push,
208 },
209 };
210
211 /* Useful for single-bit-per-source state. */
212 BITSET_DEFINE(fxrng_bits, ENTROPYSOURCE);
213
214 /* XXX Borrowed from not-yet-committed D22702. */
215 #ifndef BIT_TEST_SET_ATOMIC_ACQ
216 #define BIT_TEST_SET_ATOMIC_ACQ(_s, n, p) \
217 (atomic_testandset_acq_long( \
218 &(p)->__bits[__bitset_word((_s), (n))], (n)) != 0)
219 #endif
220 #define FXENT_TEST_SET_ATOMIC_ACQ(n, p) \
221 BIT_TEST_SET_ATOMIC_ACQ(ENTROPYSOURCE, n, p)
222
223 /* For special behavior on first-time entropy sources. (§ 3.1) */
224 static struct fxrng_bits __read_mostly fxrng_seen;
225
226 /* For special behavior for high-entropy sources after a reseed. (§ 3.4) */
227 _Static_assert(FXENT_HI_SRC_POOL0_BYTES <= UINT8_MAX, "");
228 static uint8_t __read_mostly fxrng_reseed_seen[ENTROPYSOURCE];
229
230 /* Entropy pools. Lock order is ENT -> RNG(root) -> RNG(leaf). */
231 static struct mtx fxent_pool_lk;
232 MTX_SYSINIT(fx_pool, &fxent_pool_lk, "fx entropy pool lock", MTX_DEF);
233 #define FXENT_LOCK() mtx_lock(&fxent_pool_lk)
234 #define FXENT_UNLOCK() mtx_unlock(&fxent_pool_lk)
235 #define FXENT_ASSERT(rng) mtx_assert(&fxent_pool_lk, MA_OWNED)
236 #define FXENT_ASSERT_NOT(rng) mtx_assert(&fxent_pool_lk, MA_NOTOWNED)
237 static struct fxrng_hash fxent_pool[FXRNG_NPOOLS];
238 static unsigned __read_mostly fxent_nactpools = 1;
239 static struct timeout_task fxent_reseed_timer;
240 static int __read_mostly fxent_timer_ready;
241
242 /*
243 * Track number of bytes of entropy harvested from high-quality sources prior
244 * to initial keying. The idea is to collect more jitter entropy when fewer
245 * high-quality bytes were available and less if we had other good sources. We
246 * want to provide always-on availability but don't necessarily have *any*
247 * great sources on some platforms.
248 *
249 * Like fxrng_ent_char: at some point, if the design seems reasonable, it would
250 * make more sense to pull this up into the abstraction layer instead.
251 *
252 * Jitter entropy is unimplemented for now.
253 */
254 static unsigned long fxrng_preseed_ent;
255
256 void
257 fxrng_pools_init(void)
258 {
259 size_t i;
260
261 for (i = 0; i < nitems(fxent_pool); i++)
262 fxrng_hash_init(&fxent_pool[i]);
263 }
264
265 static inline bool
266 fxrng_hi_source(enum random_entropy_source src)
267 {
268 return (fxrng_ent_char[src].entc_cls->entc_src_cls == FXRNG_HI);
269 }
270
271 /*
272 * A racy check that this high-entropy source's event should contribute to
273 * pool0 on the basis of per-source byte count. The check is racy for two
274 * reasons:
275 * - Performance: The vast majority of the time, we've already taken 32 bytes
276 * from any present high quality source and the racy check lets us avoid
277 * dirtying the cache for the global array.
278 * - Correctness: It's fine that the check is racy. The failure modes are:
279 * • False positive: We will detect when we take the lock.
280 * • False negative: We still collect the entropy; it just won't be
281 * preferentially placed in pool0 in this case.
282 */
283 static inline bool
284 fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)
285 {
286 return (atomic_load_acq_8(&fxrng_reseed_seen[src]) <
287 FXENT_HI_SRC_POOL0_BYTES);
288 }
289
290 /*
291 * Top level entropy processing API from randomdev.
292 *
293 * Invoked by the core randomdev subsystem both for preload entropy, "push"
294 * sources (like interrupts, keyboard, etc) and pull sources (RDRAND, etc).
295 */
296 void
297 fxrng_event_processor(struct harvest_event *event)
298 {
299 enum random_entropy_source src;
300 unsigned pool;
301 bool first_time, first_32;
302
303 src = event->he_source;
304
305 ASSERT_DEBUG(event->he_size <= sizeof(event->he_entropy),
306 "%s: he_size: %u > sizeof(he_entropy): %zu", __func__,
307 (unsigned)event->he_size, sizeof(event->he_entropy));
308
309 /*
310 * Zero bytes of source entropy doesn't count as observing this source
311 * for the first time. We still harvest the counter entropy.
312 */
313 first_time = event->he_size > 0 &&
314 !FXENT_TEST_SET_ATOMIC_ACQ(src, &fxrng_seen);
315 if (__predict_false(first_time)) {
316 /*
317 * "The first time [any source] provides entropy, it is used to
318 * directly reseed the root PRNG. The entropy pools are
319 * bypassed." (§ 3.1)
320 *
321 * Unlike Windows, we cannot rely on loader(8) seed material
322 * being present, so we perform initial keying in the kernel.
323 * We use brng_generation 0 to represent an unkeyed state.
324 *
325 * Prior to initial keying, it doesn't make sense to try to mix
326 * the entropy directly with the root PRNG state, as the root
327 * PRNG is unkeyed. Instead, we collect pre-keying dynamic
328 * entropy in pool0 and do not bump the root PRNG seed version
329 * or set its key. Initial keying will incorporate pool0 and
330 * bump the brng_generation (seed version).
331 *
332 * After initial keying, we do directly mix in first-time
333 * entropy sources. We use the root BRNG to generate 32 bytes
334 * and use fxrng_hash to mix it with the new entropy source and
335 * re-key with the first 256 bits of hash output.
336 */
337 FXENT_LOCK();
338 FXRNG_BRNG_LOCK(&fxrng_root);
339 if (__predict_true(fxrng_root.brng_generation > 0)) {
340 /* Bypass the pools: */
341 FXENT_UNLOCK();
342 fxrng_brng_src_reseed(event);
343 FXRNG_BRNG_ASSERT_NOT(&fxrng_root);
344 return;
345 }
346
347 /*
348 * Keying the root PRNG requires both FXENT_LOCK and the PRNG's
349 * lock, so we only need to hold on to the pool lock to prevent
350 * initial keying without this entropy.
351 */
352 FXRNG_BRNG_UNLOCK(&fxrng_root);
353
354 /* Root PRNG hasn't been keyed yet, just accumulate event. */
355 fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
356 sizeof(event->he_somecounter));
357 fxrng_hash_update(&fxent_pool[0], event->he_entropy,
358 event->he_size);
359
360 if (fxrng_hi_source(src)) {
361 /* Prevent overflow. */
362 if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
363 fxrng_preseed_ent += event->he_size;
364 }
365 FXENT_UNLOCK();
366 return;
367 }
368 /* !first_time */
369
370 /*
371 * "The first 32 bytes produced by a high entropy source after a reseed
372 * from the pools is always put in pool 0." (§ 3.4)
373 *
374 * The first-32-byte tracking data in fxrng_reseed_seen is reset in
375 * fxent_timer_reseed_npools() below.
376 */
377 first_32 = event->he_size > 0 &&
378 fxrng_hi_source(src) &&
379 atomic_load_acq_int(&fxent_nactpools) > 1 &&
380 fxrng_hi_pool0_eligible_racy(src);
381 if (__predict_false(first_32)) {
382 unsigned rem, seen;
383
384 FXENT_LOCK();
385 seen = fxrng_reseed_seen[src];
386 if (seen == FXENT_HI_SRC_POOL0_BYTES)
387 goto round_robin;
388
389 rem = FXENT_HI_SRC_POOL0_BYTES - seen;
390 rem = MIN(rem, event->he_size);
391
392 fxrng_reseed_seen[src] = seen + rem;
393
394 /*
395 * We put 'rem' bytes in pool0, and any remaining bytes are
396 * round-robin'd across other pools.
397 */
398 fxrng_hash_update(&fxent_pool[0],
399 ((uint8_t *)event->he_entropy) + event->he_size - rem,
400 rem);
401 if (rem == event->he_size) {
402 fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
403 sizeof(event->he_somecounter));
404 FXENT_UNLOCK();
405 return;
406 }
407
408 /*
409 * If fewer bytes were needed than this even provied, We only
410 * take the last rem bytes of the entropy buffer and leave the
411 * timecounter to be round-robin'd with the remaining entropy.
412 */
413 event->he_size -= rem;
414 goto round_robin;
415 }
416 /* !first_32 */
417
418 FXENT_LOCK();
419
420 round_robin:
421 FXENT_ASSERT();
422 pool = event->he_destination % fxent_nactpools;
423 fxrng_hash_update(&fxent_pool[pool], event->he_entropy,
424 event->he_size);
425 fxrng_hash_update(&fxent_pool[pool], &event->he_somecounter,
426 sizeof(event->he_somecounter));
427
428 if (__predict_false(fxrng_hi_source(src) &&
429 atomic_load_acq_64(&fxrng_root_generation) == 0)) {
430 /* Prevent overflow. */
431 if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
432 fxrng_preseed_ent += event->he_size;
433 }
434 FXENT_UNLOCK();
435 }
436
437 /*
438 * Top level "seeded" API/signal from randomdev.
439 *
440 * This is our warning that a request is coming: we need to be seeded. In
441 * fenestrasX, a request for random bytes _never_ fails. "We (ed: ditto) have
442 * observed that there are many callers that never check for the error code,
443 * even if they are generating cryptographic key material." (§ 1.6)
444 *
445 * If we returned 'false', both read_random(9) and chacha20_randomstir()
446 * (arc4random(9)) will blindly charge on with something almost certainly worse
447 * than what we've got, or are able to get quickly enough.
448 */
449 bool
450 fxrng_alg_seeded(void)
451 {
452 uint8_t hash[FXRNG_HASH_SZ];
453 sbintime_t sbt;
454
455 /* The vast majority of the time, we expect to already be seeded. */
456 if (__predict_true(atomic_load_acq_64(&fxrng_root_generation) != 0))
457 return (true);
458
459 /*
460 * Take the lock and recheck; only one thread needs to do the initial
461 * seeding work.
462 */
463 FXENT_LOCK();
464 if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
465 FXENT_UNLOCK();
466 return (true);
467 }
468 /* XXX Any one-off initial seeding goes here. */
469
470 fxrng_hash_finish(&fxent_pool[0], hash, sizeof(hash));
471 fxrng_hash_init(&fxent_pool[0]);
472
473 fxrng_brng_reseed(hash, sizeof(hash));
474 FXENT_UNLOCK();
475
476 randomdev_unblock();
477 explicit_bzero(hash, sizeof(hash));
478
479 /*
480 * This may be called too early for taskqueue_thread to be initialized.
481 * fxent_pool_timer_init will detect if we've already unblocked and
482 * queue the first timer reseed at that point.
483 */
484 if (atomic_load_acq_int(&fxent_timer_ready) != 0) {
485 sbt = SBT_1S;
486 taskqueue_enqueue_timeout_sbt(taskqueue_thread,
487 &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
488 }
489 return (true);
490 }
491
492 /*
493 * Timer-based reseeds and pool expansion.
494 */
495 static void
496 fxent_timer_reseed_npools(unsigned n)
497 {
498 /*
499 * 64 * 8 => moderately large 512 bytes. Could be static, as we are
500 * only used in a static context. On the other hand, this is in
501 * threadqueue TASK context and we're likely nearly at top of stack
502 * already.
503 */
504 uint8_t hash[FXRNG_HASH_SZ * FXRNG_NPOOLS];
505 unsigned i;
506
507 ASSERT_DEBUG(n > 0 && n <= FXRNG_NPOOLS, "n:%u", n);
508
509 FXENT_ASSERT();
510 /*
511 * Collect entropy from pools 0..n-1 by concatenating the output hashes
512 * and then feeding them into fxrng_brng_reseed, which will hash the
513 * aggregate together with the current root PRNG keystate to produce a
514 * new key. It will also bump the global generation counter
515 * appropriately.
516 */
517 for (i = 0; i < n; i++) {
518 fxrng_hash_finish(&fxent_pool[i], hash + i * FXRNG_HASH_SZ,
519 FXRNG_HASH_SZ);
520 fxrng_hash_init(&fxent_pool[i]);
521 }
522
523 fxrng_brng_reseed(hash, n * FXRNG_HASH_SZ);
524 explicit_bzero(hash, n * FXRNG_HASH_SZ);
525
526 /*
527 * "The first 32 bytes produced by a high entropy source after a reseed
528 * from the pools is always put in pool 0." (§ 3.4)
529 *
530 * So here we reset the tracking (somewhat naively given the majority
531 * of sources on most machines are not what we consider "high", but at
532 * 32 bytes it's smaller than a cache line), so the next 32 bytes are
533 * prioritized into pool0.
534 *
535 * See corresponding use of fxrng_reseed_seen in fxrng_event_processor.
536 */
537 memset(fxrng_reseed_seen, 0, sizeof(fxrng_reseed_seen));
538 FXENT_ASSERT();
539 }
540
541 static void
542 fxent_timer_reseed(void *ctx __unused, int pending __unused)
543 {
544 static unsigned reseed_intvl_sec = 1;
545 /* Only reseeds after FXENT_RESEED_INTVL_MAX is achieved. */
546 static uint64_t reseed_number = 1;
547
548 unsigned next_ival, i, k;
549 sbintime_t sbt;
550
551 if (reseed_intvl_sec < FXENT_RESEED_INTVL_MAX) {
552 next_ival = FXENT_RESSED_INTVL_GFACT * reseed_intvl_sec;
553 if (next_ival > FXENT_RESEED_INTVL_MAX)
554 next_ival = FXENT_RESEED_INTVL_MAX;
555 FXENT_LOCK();
556 fxent_timer_reseed_npools(1);
557 FXENT_UNLOCK();
558 } else {
559 /*
560 * The creation of entropy pools beyond 0 is enabled when the
561 * reseed interval hits the maximum. (§ 3.3)
562 */
563 next_ival = reseed_intvl_sec;
564
565 /*
566 * Pool 0 is used every reseed; pool 1..0 every 3rd reseed; and in
567 * general, pool n..0 every 3^n reseeds.
568 */
569 k = reseed_number;
570 reseed_number++;
571
572 /* Count how many pools, from [0, i), to use for reseed. */
573 for (i = 1; i < MIN(fxent_nactpools + 1, FXRNG_NPOOLS); i++) {
574 if ((k % FXENT_RESEED_BASE) != 0)
575 break;
576 k /= FXENT_RESEED_BASE;
577 }
578
579 /*
580 * If we haven't activated pool i yet, activate it and only
581 * reseed from [0, i-1). (§ 3.3)
582 */
583 FXENT_LOCK();
584 if (i == fxent_nactpools + 1) {
585 fxent_timer_reseed_npools(fxent_nactpools);
586 fxent_nactpools++;
587 } else {
588 /* Just reseed from [0, i). */
589 fxent_timer_reseed_npools(i);
590 }
591 FXENT_UNLOCK();
592 }
593
594 /* Schedule the next reseed. */
595 sbt = next_ival * SBT_1S;
596 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &fxent_reseed_timer,
597 -sbt, (sbt / 3), C_PREL(2));
598
599 reseed_intvl_sec = next_ival;
600 }
601
602 static void
603 fxent_pool_timer_init(void *dummy __unused)
604 {
605 sbintime_t sbt;
606
607 TIMEOUT_TASK_INIT(taskqueue_thread, &fxent_reseed_timer, 0,
608 fxent_timer_reseed, NULL);
609
610 if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
611 sbt = SBT_1S;
612 taskqueue_enqueue_timeout_sbt(taskqueue_thread,
613 &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
614 }
615 atomic_store_rel_int(&fxent_timer_ready, 1);
616 }
617 /* After taskqueue_thread is initialized in SI_SUB_TASKQ:SI_ORDER_SECOND. */
618 SYSINIT(fxent_pool_timer_init, SI_SUB_TASKQ, SI_ORDER_ANY,
619 fxent_pool_timer_init, NULL);
Cache object: 7b55948a63fe0fc2e2e5810209b9afb2
|