The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/random/fortuna.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2017 W. Dean Freeman
    3  * Copyright (c) 2013-2015 Mark R V Murray
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer
   11  *    in this position and unchanged.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   26  *
   27  */
   28 
   29 /*
   30  * This implementation of Fortuna is based on the descriptions found in
   31  * ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier
   32  * and Kohno ("FS&K").
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include <sys/param.h>
   39 #include <sys/limits.h>
   40 
   41 #ifdef _KERNEL
   42 #include <sys/fail.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/mutex.h>
   47 #include <sys/random.h>
   48 #include <sys/sdt.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/systm.h>
   51 
   52 #include <machine/cpu.h>
   53 #else /* !_KERNEL */
   54 #include <inttypes.h>
   55 #include <stdbool.h>
   56 #include <stdio.h>
   57 #include <stdlib.h>
   58 #include <string.h>
   59 #include <threads.h>
   60 
   61 #include "unit_test.h"
   62 #endif /* _KERNEL */
   63 
   64 #include <crypto/chacha20/chacha.h>
   65 #include <crypto/rijndael/rijndael-api-fst.h>
   66 #include <crypto/sha2/sha256.h>
   67 
   68 #include <dev/random/hash.h>
   69 #include <dev/random/randomdev.h>
   70 #ifdef _KERNEL
   71 #include <dev/random/random_harvestq.h>
   72 #endif
   73 #include <dev/random/uint128.h>
   74 #include <dev/random/fortuna.h>
   75 
   76 /* Defined in FS&K */
   77 #define RANDOM_FORTUNA_NPOOLS 32                /* The number of accumulation pools */
   78 #define RANDOM_FORTUNA_DEFPOOLSIZE 64           /* The default pool size/length for a (re)seed */
   79 #define RANDOM_FORTUNA_MAX_READ (1 << 20)       /* Max bytes from AES before rekeying */
   80 #define RANDOM_FORTUNA_BLOCKS_PER_KEY (1 << 16) /* Max blocks from AES before rekeying */
   81 CTASSERT(RANDOM_FORTUNA_BLOCKS_PER_KEY * RANDOM_BLOCKSIZE ==
   82     RANDOM_FORTUNA_MAX_READ);
   83 
   84 /*
   85  * The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above.
   86  * Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds,
   87  * and too small may compromise initial security but get faster reseeds.
   88  */
   89 #define RANDOM_FORTUNA_MINPOOLSIZE 16
   90 #define RANDOM_FORTUNA_MAXPOOLSIZE INT_MAX 
   91 CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE);
   92 CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE);
   93 
   94 /* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */
   95 CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t));
   96 CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE);
   97 
   98 /* Probes for dtrace(1) */
   99 #ifdef _KERNEL
  100 SDT_PROVIDER_DECLARE(random);
  101 SDT_PROVIDER_DEFINE(random);
  102 SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *");
  103 #endif /* _KERNEL */
  104 
  105 /*
  106  * This is the beastie that needs protecting. It contains all of the
  107  * state that we are excited about. Exactly one is instantiated.
  108  */
  109 static struct fortuna_state {
  110         struct fs_pool {                /* P_i */
  111                 u_int fsp_length;       /* Only the first one is used by Fortuna */
  112                 struct randomdev_hash fsp_hash;
  113         } fs_pool[RANDOM_FORTUNA_NPOOLS];
  114         u_int fs_reseedcount;           /* ReseedCnt */
  115         uint128_t fs_counter;           /* C */
  116         union randomdev_key fs_key;     /* K */
  117         u_int fs_minpoolsize;           /* Extras */
  118         /* Extras for the OS */
  119 #ifdef _KERNEL
  120         /* For use when 'pacing' the reseeds */
  121         sbintime_t fs_lasttime;
  122 #endif
  123         /* Reseed lock */
  124         mtx_t fs_mtx;
  125 } fortuna_state;
  126 
  127 /*
  128  * This knob enables or disables the "Concurrent Reads" Fortuna feature.
  129  *
  130  * The benefit of Concurrent Reads is improved concurrency in Fortuna.  That is
  131  * reflected in two related aspects:
  132  *
  133  * 1. Concurrent full-rate devrandom readers can achieve similar throughput to
  134  *    a single reader thread (at least up to a modest number of cores; the
  135  *    non-concurrent design falls over at 2 readers).
  136  *
  137  * 2. The rand_harvestq process spends much less time spinning when one or more
  138  *    readers is processing a large request.  Partially this is due to
  139  *    rand_harvestq / ra_event_processor design, which only passes one event at
  140  *    a time to the underlying algorithm.  Each time, Fortuna must take its
  141  *    global state mutex, potentially blocking on a reader.  Our adaptive
  142  *    mutexes assume that a lock holder currently on CPU will release the lock
  143  *    quickly, and spin if the owning thread is currently running.
  144  *
  145  *    (There is no reason rand_harvestq necessarily has to use the same lock as
  146  *    the generator, or that it must necessarily drop and retake locks
  147  *    repeatedly, but that is the current status quo.)
  148  *
  149  * The concern is that the reduced lock scope might results in a less safe
  150  * random(4) design.  However, the reduced-lock scope design is still
  151  * fundamentally Fortuna.  This is discussed below.
  152  *
  153  * Fortuna Read() only needs mutual exclusion between readers to correctly
  154  * update the shared read-side state: C, the 128-bit counter; and K, the
  155  * current cipher/PRF key.
  156  *
  157  * In the Fortuna design, the global counter C should provide an independent
  158  * range of values per request.
  159  *
  160  * Under lock, we can save a copy of C on the stack, and increment the global C
  161  * by the number of blocks a Read request will require.
  162  *
  163  * Still under lock, we can save a copy of the key K on the stack, and then
  164  * perform the usual key erasure K' <- Keystream(C, K, ...).  This does require
  165  * generating 256 bits (32 bytes) of cryptographic keystream output with the
  166  * global lock held, but that's all; none of the API keystream generation must
  167  * be performed under lock.
  168  *
  169  * At this point, we may unlock.
  170  *
  171  * Some example timelines below (to oversimplify, all requests are in units of
  172  * native blocks, and the keysize happens to be equal or less to the native
  173  * blocksize of the underlying cipher, and the same sequence of two requests
  174  * arrive in the same order).  The possibly expensive consumer keystream
  175  * generation portion is marked with '**'.
  176  *
  177  * Status Quo fortuna_read()           Reduced-scope locking
  178  * -------------------------           ---------------------
  179  * C=C_0, K=K_0                        C=C_0, K=K_0
  180  * <Thr 1 requests N blocks>           <Thr 1 requests N blocks>
  181  * 1:Lock()                            1:Lock()
  182  * <Thr 2 requests M blocks>           <Thr 2 requests M blocks>
  183  * 1:GenBytes()                        1:stack_C := C_0
  184  * 1:  Keystream(C_0, K_0, N)          1:stack_K := K_0
  185  * 1:    <N blocks generated>**        1:C' := C_0 + N
  186  * 1:    C' := C_0 + N                 1:K' := Keystream(C', K_0, 1)
  187  * 1:    <- Keystream                  1:  <1 block generated>
  188  * 1:  K' := Keystream(C', K_0, 1)     1:  C'' := C' + 1
  189  * 1:    <1 block generated>           1:  <- Keystream
  190  * 1:    C'' := C' + 1                 1:Unlock()
  191  * 1:    <- Keystream
  192  * 1:  <- GenBytes()
  193  * 1:Unlock()
  194  *
  195  * Just prior to unlock, shared state is identical:
  196  * ------------------------------------------------
  197  * C'' == C_0 + N + 1                  C'' == C_0 + N + 1
  198  * K' == keystream generated from      K' == keystream generated from
  199  *       C_0 + N, K_0.                       C_0 + N, K_0.
  200  * K_0 has been erased.                K_0 has been erased.
  201  *
  202  * After both designs unlock, the 2nd reader is unblocked.
  203  *
  204  * 2:Lock()                            2:Lock()
  205  * 2:GenBytes()                        2:stack_C' := C''
  206  * 2:  Keystream(C'', K', M)           2:stack_K' := K'
  207  * 2:    <M blocks generated>**        2:C''' := C'' + M
  208  * 2:    C''' := C'' + M               2:K'' := Keystream(C''', K', 1)
  209  * 2:    <- Keystream                  2:  <1 block generated>
  210  * 2:  K'' := Keystream(C''', K', 1)   2:  C'''' := C''' + 1
  211  * 2:    <1 block generated>           2:  <- Keystream
  212  * 2:    C'''' := C''' + 1             2:Unlock()
  213  * 2:    <- Keystream
  214  * 2:  <- GenBytes()
  215  * 2:Unlock()
  216  *
  217  * Just prior to unlock, global state is identical:
  218  * ------------------------------------------------------
  219  *
  220  * C'''' == (C_0 + N + 1) + M + 1      C'''' == (C_0 + N + 1) + M + 1
  221  * K'' == keystream generated from     K'' == keystream generated from
  222  *        C_0 + N + 1 + M, K'.                C_0 + N + 1 + M, K'.
  223  * K' has been erased.                 K' has been erased.
  224  *
  225  * Finally, in the new design, the two consumer threads can finish the
  226  * remainder of the generation at any time (including simultaneously):
  227  *
  228  *                                     1:  GenBytes()
  229  *                                     1:    Keystream(stack_C, stack_K, N)
  230  *                                     1:      <N blocks generated>**
  231  *                                     1:    <- Keystream
  232  *                                     1:  <- GenBytes
  233  *                                     1:ExplicitBzero(stack_C, stack_K)
  234  *
  235  *                                     2:  GenBytes()
  236  *                                     2:    Keystream(stack_C', stack_K', M)
  237  *                                     2:      <M blocks generated>**
  238  *                                     2:    <- Keystream
  239  *                                     2:  <- GenBytes
  240  *                                     2:ExplicitBzero(stack_C', stack_K')
  241  *
  242  * The generated user keystream for both threads is identical between the two
  243  * implementations:
  244  *
  245  * 1: Keystream(C_0, K_0, N)           1: Keystream(stack_C, stack_K, N)
  246  * 2: Keystream(C'', K', M)            2: Keystream(stack_C', stack_K', M)
  247  *
  248  * (stack_C == C_0; stack_K == K_0; stack_C' == C''; stack_K' == K'.)
  249  */
  250 static bool fortuna_concurrent_read __read_frequently = true;
  251 
  252 #ifdef _KERNEL
  253 static struct sysctl_ctx_list random_clist;
  254 RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE);
  255 #else
  256 static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE];
  257 #endif
  258 
  259 static void random_fortuna_pre_read(void);
  260 static void random_fortuna_read(uint8_t *, size_t);
  261 static bool random_fortuna_seeded(void);
  262 static bool random_fortuna_seeded_internal(void);
  263 static void random_fortuna_process_event(struct harvest_event *);
  264 
  265 static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount);
  266 
  267 #ifdef RANDOM_LOADABLE
  268 static
  269 #endif
  270 const struct random_algorithm random_alg_context = {
  271         .ra_ident = "Fortuna",
  272         .ra_pre_read = random_fortuna_pre_read,
  273         .ra_read = random_fortuna_read,
  274         .ra_seeded = random_fortuna_seeded,
  275         .ra_event_processor = random_fortuna_process_event,
  276         .ra_poolcount = RANDOM_FORTUNA_NPOOLS,
  277 };
  278 
  279 /* ARGSUSED */
  280 static void
  281 random_fortuna_init_alg(void *unused __unused)
  282 {
  283         int i;
  284 #ifdef _KERNEL
  285         struct sysctl_oid *random_fortuna_o;
  286 #endif
  287 
  288 #ifdef RANDOM_LOADABLE
  289         p_random_alg_context = &random_alg_context;
  290 #endif
  291 
  292         RANDOM_RESEED_INIT_LOCK();
  293         /*
  294          * Fortuna parameters. Do not adjust these unless you have
  295          * have a very good clue about what they do!
  296          */
  297         fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE;
  298 #ifdef _KERNEL
  299         fortuna_state.fs_lasttime = 0;
  300         random_fortuna_o = SYSCTL_ADD_NODE(&random_clist,
  301                 SYSCTL_STATIC_CHILDREN(_kern_random),
  302                 OID_AUTO, "fortuna", CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  303                 "Fortuna Parameters");
  304         SYSCTL_ADD_PROC(&random_clist,
  305             SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO, "minpoolsize",
  306             CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
  307             &fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE,
  308             random_check_uint_fs_minpoolsize, "IU",
  309             "Minimum pool size necessary to cause a reseed");
  310         KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup"));
  311 
  312         SYSCTL_ADD_BOOL(&random_clist, SYSCTL_CHILDREN(random_fortuna_o),
  313             OID_AUTO, "concurrent_read", CTLFLAG_RDTUN,
  314             &fortuna_concurrent_read, 0, "If non-zero, enable "
  315             "feature to improve concurrent Fortuna performance.");
  316 #endif
  317 
  318         /*-
  319          * FS&K - InitializePRNG()
  320          *      - P_i = \epsilon
  321          *      - ReseedCNT = 0
  322          */
  323         for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
  324                 randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
  325                 fortuna_state.fs_pool[i].fsp_length = 0;
  326         }
  327         fortuna_state.fs_reseedcount = 0;
  328         /*-
  329          * FS&K - InitializeGenerator()
  330          *      - C = 0
  331          *      - K = 0
  332          */
  333         fortuna_state.fs_counter = UINT128_ZERO;
  334         explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
  335 }
  336 SYSINIT(random_alg, SI_SUB_RANDOM, SI_ORDER_SECOND, random_fortuna_init_alg,
  337     NULL);
  338 
  339 /*-
  340  * FS&K - AddRandomEvent()
  341  * Process a single stochastic event off the harvest queue
  342  */
  343 static void
  344 random_fortuna_process_event(struct harvest_event *event)
  345 {
  346         u_int pl;
  347 
  348         RANDOM_RESEED_LOCK();
  349         /*-
  350          * FS&K - P_i = P_i|<harvested stuff>
  351          * Accumulate the event into the appropriate pool
  352          * where each event carries the destination information.
  353          *
  354          * The hash_init() and hash_finish() calls are done in
  355          * random_fortuna_pre_read().
  356          *
  357          * We must be locked against pool state modification which can happen
  358          * during accumulation/reseeding and reading/regating.
  359          */
  360         pl = event->he_destination % RANDOM_FORTUNA_NPOOLS;
  361         /*
  362          * If a VM generation ID changes (clone and play or VM rewind), we want
  363          * to incorporate that as soon as possible.  Override destingation pool
  364          * for immediate next use.
  365          */
  366         if (event->he_source == RANDOM_PURE_VMGENID)
  367                 pl = 0;
  368         /*
  369          * We ignore low entropy static/counter fields towards the end of the
  370          * he_event structure in order to increase measurable entropy when
  371          * conducting SP800-90B entropy analysis measurements of seed material
  372          * fed into PRNG.
  373          * -- wdf
  374          */
  375         KASSERT(event->he_size <= sizeof(event->he_entropy),
  376             ("%s: event->he_size: %hhu > sizeof(event->he_entropy): %zu\n",
  377             __func__, event->he_size, sizeof(event->he_entropy)));
  378         randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
  379             &event->he_somecounter, sizeof(event->he_somecounter));
  380         randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
  381             event->he_entropy, event->he_size);
  382 
  383         /*-
  384          * Don't wrap the length.  This is a "saturating" add.
  385          * XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0],
  386          * but it's been useful debugging to see them all.
  387          */
  388         fortuna_state.fs_pool[pl].fsp_length = MIN(RANDOM_FORTUNA_MAXPOOLSIZE,
  389             fortuna_state.fs_pool[pl].fsp_length +
  390             sizeof(event->he_somecounter) + event->he_size);
  391         RANDOM_RESEED_UNLOCK();
  392 }
  393 
  394 /*-
  395  * FS&K - Reseed()
  396  * This introduces new key material into the output generator.
  397  * Additionally it increments the output generator's counter
  398  * variable C. When C > 0, the output generator is seeded and
  399  * will deliver output.
  400  * The entropy_data buffer passed is a very specific size; the
  401  * product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE.
  402  */
  403 static void
  404 random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount)
  405 {
  406         struct randomdev_hash context;
  407         uint8_t hash[RANDOM_KEYSIZE];
  408         const void *keymaterial;
  409         size_t keysz;
  410         bool seeded;
  411 
  412         RANDOM_RESEED_ASSERT_LOCK_OWNED();
  413 
  414         seeded = random_fortuna_seeded_internal();
  415         if (seeded) {
  416                 randomdev_getkey(&fortuna_state.fs_key, &keymaterial, &keysz);
  417                 KASSERT(keysz == RANDOM_KEYSIZE, ("%s: key size %zu not %u",
  418                         __func__, keysz, (unsigned)RANDOM_KEYSIZE));
  419         }
  420 
  421         /*-
  422          * FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m))
  423          *      - C = C + 1
  424          */
  425         randomdev_hash_init(&context);
  426         randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE);
  427         if (seeded)
  428                 randomdev_hash_iterate(&context, keymaterial, keysz);
  429         randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount);
  430         randomdev_hash_finish(&context, hash);
  431         randomdev_hash_init(&context);
  432         randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE);
  433         randomdev_hash_finish(&context, hash);
  434         randomdev_encrypt_init(&fortuna_state.fs_key, hash);
  435         explicit_bzero(hash, sizeof(hash));
  436         /* Unblock the device if this is the first time we are reseeding. */
  437         if (uint128_is_zero(fortuna_state.fs_counter))
  438                 randomdev_unblock();
  439         uint128_increment(&fortuna_state.fs_counter);
  440 }
  441 
  442 /*-
  443  * FS&K - RandomData() (Part 1)
  444  * Used to return processed entropy from the PRNG. There is a pre_read
  445  * required to be present (but it can be a stub) in order to allow
  446  * specific actions at the begin of the read.
  447  */
  448 void
  449 random_fortuna_pre_read(void)
  450 {
  451 #ifdef _KERNEL
  452         sbintime_t now;
  453 #endif
  454         struct randomdev_hash context;
  455         uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS];
  456         uint8_t temp[RANDOM_KEYSIZE];
  457         u_int i;
  458 
  459         KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0"));
  460         RANDOM_RESEED_LOCK();
  461 #ifdef _KERNEL
  462         /* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
  463         now = getsbinuptime();
  464 #endif
  465 
  466         if (fortuna_state.fs_pool[0].fsp_length < fortuna_state.fs_minpoolsize
  467 #ifdef _KERNEL
  468             /*
  469              * FS&K - Use 'getsbinuptime()' to prevent reseed-spamming, but do
  470              * not block initial seeding (fs_lasttime == 0).
  471              */
  472             || (__predict_true(fortuna_state.fs_lasttime != 0) &&
  473                 now - fortuna_state.fs_lasttime <= SBT_1S/10)
  474 #endif
  475         ) {
  476                 RANDOM_RESEED_UNLOCK();
  477                 return;
  478         }
  479 
  480 #ifdef _KERNEL
  481         /*
  482          * When set, pretend we do not have enough entropy to reseed yet.
  483          */
  484         KFAIL_POINT_CODE(DEBUG_FP, random_fortuna_pre_read, {
  485                 if (RETURN_VALUE != 0) {
  486                         RANDOM_RESEED_UNLOCK();
  487                         return;
  488                 }
  489         });
  490 #endif
  491 
  492 #ifdef _KERNEL
  493         fortuna_state.fs_lasttime = now;
  494 #endif
  495 
  496         /* FS&K - ReseedCNT = ReseedCNT + 1 */
  497         fortuna_state.fs_reseedcount++;
  498         /* s = \epsilon at start */
  499         for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
  500                 /* FS&K - if Divides(ReseedCnt, 2^i) ... */
  501                 if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) {
  502                         /*-
  503                             * FS&K - temp = (P_i)
  504                             *      - P_i = \epsilon
  505                             *      - s = s|H(temp)
  506                             */
  507                         randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp);
  508                         randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
  509                         fortuna_state.fs_pool[i].fsp_length = 0;
  510                         randomdev_hash_init(&context);
  511                         randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE);
  512                         randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS);
  513                 } else
  514                         break;
  515         }
  516 #ifdef _KERNEL
  517         SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool);
  518 #endif
  519         /* FS&K */
  520         random_fortuna_reseed_internal(s, i);
  521         RANDOM_RESEED_UNLOCK();
  522 
  523         /* Clean up and secure */
  524         explicit_bzero(s, sizeof(s));
  525         explicit_bzero(temp, sizeof(temp));
  526 }
  527 
  528 /*
  529  * This is basically GenerateBlocks() from FS&K.
  530  *
  531  * It differs in two ways:
  532  *
  533  * 1. Chacha20 is tolerant of non-block-multiple request sizes, so we do not
  534  * need to handle any remainder bytes specially and can just pass the length
  535  * directly to the PRF construction; and
  536  *
  537  * 2. Chacha20 is a 512-bit block size cipher (whereas AES has 128-bit block
  538  * size, regardless of key size).  This means Chacha does not require re-keying
  539  * every 1MiB.  This is implied by the math in FS&K 9.4 and mentioned
  540  * explicitly in the conclusion, "If we had a block cipher with a 256-bit [or
  541  * greater] block size, then the collisions would not have been an issue at
  542  * all" (p. 144).
  543  *
  544  * 3. In conventional ("locked") mode, we produce a maximum of PAGE_SIZE output
  545  * at a time before dropping the lock, to not bully the lock especially.  This
  546  * has been the status quo since 2015 (r284959).
  547  *
  548  * The upstream caller random_fortuna_read is responsible for zeroing out
  549  * sensitive buffers provided as parameters to this routine.
  550  */
  551 enum {
  552         FORTUNA_UNLOCKED = false,
  553         FORTUNA_LOCKED = true
  554 };
  555 static void
  556 random_fortuna_genbytes(uint8_t *buf, size_t bytecount,
  557     uint8_t newkey[static RANDOM_KEYSIZE], uint128_t *p_counter,
  558     union randomdev_key *p_key, bool locked)
  559 {
  560         uint8_t remainder_buf[RANDOM_BLOCKSIZE];
  561         size_t chunk_size;
  562 
  563         if (locked)
  564                 RANDOM_RESEED_ASSERT_LOCK_OWNED();
  565         else
  566                 RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
  567 
  568         /*
  569          * Easy case: don't have to worry about bullying the global mutex,
  570          * don't have to worry about rekeying Chacha; API is byte-oriented.
  571          */
  572         if (!locked && random_chachamode) {
  573                 randomdev_keystream(p_key, p_counter, buf, bytecount);
  574                 return;
  575         }
  576 
  577         if (locked) {
  578                 /*
  579                  * While holding the global lock, limit PRF generation to
  580                  * mitigate, but not eliminate, bullying symptoms.
  581                  */
  582                 chunk_size = PAGE_SIZE;
  583         } else {
  584                 /*
  585                 * 128-bit block ciphers like AES must be re-keyed at 1MB
  586                 * intervals to avoid unacceptable statistical differentiation
  587                 * from true random data (FS&K 9.4, p. 143-144).
  588                 */
  589                 MPASS(!random_chachamode);
  590                 chunk_size = RANDOM_FORTUNA_MAX_READ;
  591         }
  592 
  593         chunk_size = MIN(bytecount, chunk_size);
  594         if (!random_chachamode)
  595                 chunk_size = rounddown(chunk_size, RANDOM_BLOCKSIZE);
  596 
  597         while (bytecount >= chunk_size && chunk_size > 0) {
  598                 randomdev_keystream(p_key, p_counter, buf, chunk_size);
  599 
  600                 buf += chunk_size;
  601                 bytecount -= chunk_size;
  602 
  603                 /* We have to rekey if there is any data remaining to be
  604                  * generated, in two scenarios:
  605                  *
  606                  * locked: we need to rekey before we unlock and release the
  607                  * global state to another consumer; or
  608                  *
  609                  * unlocked: we need to rekey because we're in AES mode and are
  610                  * required to rekey at chunk_size==1MB.  But we do not need to
  611                  * rekey during the last trailing <1MB chunk.
  612                  */
  613                 if (bytecount > 0) {
  614                         if (locked || chunk_size == RANDOM_FORTUNA_MAX_READ) {
  615                                 randomdev_keystream(p_key, p_counter, newkey,
  616                                     RANDOM_KEYSIZE);
  617                                 randomdev_encrypt_init(p_key, newkey);
  618                         }
  619 
  620                         /*
  621                          * If we're holding the global lock, yield it briefly
  622                          * now.
  623                          */
  624                         if (locked) {
  625                                 RANDOM_RESEED_UNLOCK();
  626                                 RANDOM_RESEED_LOCK();
  627                         }
  628 
  629                         /*
  630                          * At the trailing end, scale down chunk_size from 1MB or
  631                          * PAGE_SIZE to all remaining full blocks (AES) or all
  632                          * remaining bytes (Chacha).
  633                          */
  634                         if (bytecount < chunk_size) {
  635                                 if (random_chachamode)
  636                                         chunk_size = bytecount;
  637                                 else if (bytecount >= RANDOM_BLOCKSIZE)
  638                                         chunk_size = rounddown(bytecount,
  639                                             RANDOM_BLOCKSIZE);
  640                                 else
  641                                         break;
  642                         }
  643                 }
  644         }
  645 
  646         /*
  647          * Generate any partial AES block remaining into a temporary buffer and
  648          * copy the desired substring out.
  649          */
  650         if (bytecount > 0) {
  651                 MPASS(!random_chachamode);
  652 
  653                 randomdev_keystream(p_key, p_counter, remainder_buf,
  654                     sizeof(remainder_buf));
  655         }
  656 
  657         /*
  658          * In locked mode, re-key global K before dropping the lock, which we
  659          * don't need for memcpy/bzero below.
  660          */
  661         if (locked) {
  662                 randomdev_keystream(p_key, p_counter, newkey, RANDOM_KEYSIZE);
  663                 randomdev_encrypt_init(p_key, newkey);
  664                 RANDOM_RESEED_UNLOCK();
  665         }
  666 
  667         if (bytecount > 0) {
  668                 memcpy(buf, remainder_buf, bytecount);
  669                 explicit_bzero(remainder_buf, sizeof(remainder_buf));
  670         }
  671 }
  672 
  673 
  674 /*
  675  * Handle only "concurrency-enabled" Fortuna reads to simplify logic.
  676  *
  677  * Caller (random_fortuna_read) is responsible for zeroing out sensitive
  678  * buffers provided as parameters to this routine.
  679  */
  680 static void
  681 random_fortuna_read_concurrent(uint8_t *buf, size_t bytecount,
  682     uint8_t newkey[static RANDOM_KEYSIZE])
  683 {
  684         union randomdev_key key_copy;
  685         uint128_t counter_copy;
  686         size_t blockcount;
  687 
  688         MPASS(fortuna_concurrent_read);
  689 
  690         /*
  691          * Compute number of blocks required for the PRF request ('delta C').
  692          * We will step the global counter 'C' by this number under lock, and
  693          * then actually consume the counter values outside the lock.
  694          *
  695          * This ensures that contemporaneous but independent requests for
  696          * randomness receive distinct 'C' values and thus independent PRF
  697          * results.
  698          */
  699         if (random_chachamode) {
  700                 blockcount = howmany(bytecount, CHACHA_BLOCKLEN);
  701         } else {
  702                 blockcount = howmany(bytecount, RANDOM_BLOCKSIZE);
  703 
  704                 /*
  705                  * Need to account for the additional blocks generated by
  706                  * rekeying when updating the global fs_counter.
  707                  */
  708                 blockcount += RANDOM_KEYS_PER_BLOCK *
  709                     (blockcount / RANDOM_FORTUNA_BLOCKS_PER_KEY);
  710         }
  711 
  712         RANDOM_RESEED_LOCK();
  713         KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
  714 
  715         /*
  716          * Save the original counter and key values that will be used as the
  717          * PRF for this particular consumer.
  718          */
  719         memcpy(&counter_copy, &fortuna_state.fs_counter, sizeof(counter_copy));
  720         memcpy(&key_copy, &fortuna_state.fs_key, sizeof(key_copy));
  721 
  722         /*
  723          * Step the counter as if we had generated 'bytecount' blocks for this
  724          * consumer.  I.e., ensure that the next consumer gets an independent
  725          * range of counter values once we drop the global lock.
  726          */
  727         uint128_add64(&fortuna_state.fs_counter, blockcount);
  728 
  729         /*
  730          * We still need to Rekey the global 'K' between independent calls;
  731          * this is no different from conventional Fortuna.  Note that
  732          * 'randomdev_keystream()' will step the fs_counter 'C' appropriately
  733          * for the blocks needed for the 'newkey'.
  734          *
  735          * (This is part of PseudoRandomData() in FS&K, 9.4.4.)
  736          */
  737         randomdev_keystream(&fortuna_state.fs_key, &fortuna_state.fs_counter,
  738             newkey, RANDOM_KEYSIZE);
  739         randomdev_encrypt_init(&fortuna_state.fs_key, newkey);
  740 
  741         /*
  742          * We have everything we need to generate a unique PRF for this
  743          * consumer without touching global state.
  744          */
  745         RANDOM_RESEED_UNLOCK();
  746 
  747         random_fortuna_genbytes(buf, bytecount, newkey, &counter_copy,
  748             &key_copy, FORTUNA_UNLOCKED);
  749         RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
  750 
  751         explicit_bzero(&counter_copy, sizeof(counter_copy));
  752         explicit_bzero(&key_copy, sizeof(key_copy));
  753 }
  754 
  755 /*-
  756  * FS&K - RandomData() (Part 2)
  757  * Main read from Fortuna, continued. May be called multiple times after
  758  * the random_fortuna_pre_read() above.
  759  *
  760  * The supplied buf MAY not be a multiple of RANDOM_BLOCKSIZE in size; it is
  761  * the responsibility of the algorithm to accommodate partial block reads, if a
  762  * block output mode is used.
  763  */
  764 void
  765 random_fortuna_read(uint8_t *buf, size_t bytecount)
  766 {
  767         uint8_t newkey[RANDOM_KEYSIZE];
  768 
  769         if (fortuna_concurrent_read) {
  770                 random_fortuna_read_concurrent(buf, bytecount, newkey);
  771                 goto out;
  772         }
  773 
  774         RANDOM_RESEED_LOCK();
  775         KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
  776 
  777         random_fortuna_genbytes(buf, bytecount, newkey,
  778             &fortuna_state.fs_counter, &fortuna_state.fs_key, FORTUNA_LOCKED);
  779         /* Returns unlocked */
  780         RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
  781 
  782 out:
  783         explicit_bzero(newkey, sizeof(newkey));
  784 }
  785 
  786 #ifdef _KERNEL
  787 static bool block_seeded_status = false;
  788 SYSCTL_BOOL(_kern_random, OID_AUTO, block_seeded_status, CTLFLAG_RWTUN,
  789     &block_seeded_status, 0,
  790     "If non-zero, pretend Fortuna is in an unseeded state.  By setting "
  791     "this as a tunable, boot can be tested as if the random device is "
  792     "unavailable.");
  793 #endif
  794 
  795 static bool
  796 random_fortuna_seeded_internal(void)
  797 {
  798         return (!uint128_is_zero(fortuna_state.fs_counter));
  799 }
  800 
  801 static bool
  802 random_fortuna_seeded(void)
  803 {
  804 
  805 #ifdef _KERNEL
  806         if (block_seeded_status)
  807                 return (false);
  808 #endif
  809 
  810         if (__predict_true(random_fortuna_seeded_internal()))
  811                 return (true);
  812 
  813         /*
  814          * Maybe we have enough entropy in the zeroth pool but just haven't
  815          * kicked the initial seed step.  Do so now.
  816          */
  817         random_fortuna_pre_read();
  818 
  819         return (random_fortuna_seeded_internal());
  820 }

Cache object: ade8dcf5654cfef970bc1ff2b5695af9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.