The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/re/if_re.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998-2003
    3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/9.0/sys/dev/re/if_re.c 224506 2011-07-30 01:06:12Z yongari $");
   35 
   36 /*
   37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
   38  *
   39  * Written by Bill Paul <wpaul@windriver.com>
   40  * Senior Networking Software Engineer
   41  * Wind River Systems
   42  */
   43 
   44 /*
   45  * This driver is designed to support RealTek's next generation of
   46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
   47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
   48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
   49  *
   50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
   51  * with the older 8139 family, however it also supports a special
   52  * C+ mode of operation that provides several new performance enhancing
   53  * features. These include:
   54  *
   55  *      o Descriptor based DMA mechanism. Each descriptor represents
   56  *        a single packet fragment. Data buffers may be aligned on
   57  *        any byte boundary.
   58  *
   59  *      o 64-bit DMA
   60  *
   61  *      o TCP/IP checksum offload for both RX and TX
   62  *
   63  *      o High and normal priority transmit DMA rings
   64  *
   65  *      o VLAN tag insertion and extraction
   66  *
   67  *      o TCP large send (segmentation offload)
   68  *
   69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
   70  * programming API is fairly straightforward. The RX filtering, EEPROM
   71  * access and PHY access is the same as it is on the older 8139 series
   72  * chips.
   73  *
   74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
   75  * same programming API and feature set as the 8139C+ with the following
   76  * differences and additions:
   77  *
   78  *      o 1000Mbps mode
   79  *
   80  *      o Jumbo frames
   81  *
   82  *      o GMII and TBI ports/registers for interfacing with copper
   83  *        or fiber PHYs
   84  *
   85  *      o RX and TX DMA rings can have up to 1024 descriptors
   86  *        (the 8139C+ allows a maximum of 64)
   87  *
   88  *      o Slight differences in register layout from the 8139C+
   89  *
   90  * The TX start and timer interrupt registers are at different locations
   91  * on the 8169 than they are on the 8139C+. Also, the status word in the
   92  * RX descriptor has a slightly different bit layout. The 8169 does not
   93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
   94  * copper gigE PHY.
   95  *
   96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
   97  * (the 'S' stands for 'single-chip'). These devices have the same
   98  * programming API as the older 8169, but also have some vendor-specific
   99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
  100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
  101  *
  102  * This driver takes advantage of the RX and TX checksum offload and
  103  * VLAN tag insertion/extraction features. It also implements TX
  104  * interrupt moderation using the timer interrupt registers, which
  105  * significantly reduces TX interrupt load. There is also support
  106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
  107  * jumbo frames larger than 7440, so the max MTU possible with this
  108  * driver is 7422 bytes.
  109  */
  110 
  111 #ifdef HAVE_KERNEL_OPTION_HEADERS
  112 #include "opt_device_polling.h"
  113 #endif
  114 
  115 #include <sys/param.h>
  116 #include <sys/endian.h>
  117 #include <sys/systm.h>
  118 #include <sys/sockio.h>
  119 #include <sys/mbuf.h>
  120 #include <sys/malloc.h>
  121 #include <sys/module.h>
  122 #include <sys/kernel.h>
  123 #include <sys/socket.h>
  124 #include <sys/lock.h>
  125 #include <sys/mutex.h>
  126 #include <sys/sysctl.h>
  127 #include <sys/taskqueue.h>
  128 
  129 #include <net/if.h>
  130 #include <net/if_arp.h>
  131 #include <net/ethernet.h>
  132 #include <net/if_dl.h>
  133 #include <net/if_media.h>
  134 #include <net/if_types.h>
  135 #include <net/if_vlan_var.h>
  136 
  137 #include <net/bpf.h>
  138 
  139 #include <machine/bus.h>
  140 #include <machine/resource.h>
  141 #include <sys/bus.h>
  142 #include <sys/rman.h>
  143 
  144 #include <dev/mii/mii.h>
  145 #include <dev/mii/miivar.h>
  146 
  147 #include <dev/pci/pcireg.h>
  148 #include <dev/pci/pcivar.h>
  149 
  150 #include <pci/if_rlreg.h>
  151 
  152 MODULE_DEPEND(re, pci, 1, 1, 1);
  153 MODULE_DEPEND(re, ether, 1, 1, 1);
  154 MODULE_DEPEND(re, miibus, 1, 1, 1);
  155 
  156 /* "device miibus" required.  See GENERIC if you get errors here. */
  157 #include "miibus_if.h"
  158 
  159 /* Tunables. */
  160 static int intr_filter = 0;
  161 TUNABLE_INT("hw.re.intr_filter", &intr_filter);
  162 static int msi_disable = 0;
  163 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
  164 static int msix_disable = 0;
  165 TUNABLE_INT("hw.re.msix_disable", &msix_disable);
  166 static int prefer_iomap = 0;
  167 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
  168 
  169 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
  170 
  171 /*
  172  * Various supported device vendors/types and their names.
  173  */
  174 static struct rl_type re_devs[] = {
  175         { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
  176             "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
  177         { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
  178             "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
  179         { RT_VENDORID, RT_DEVICEID_8139, 0,
  180             "RealTek 8139C+ 10/100BaseTX" },
  181         { RT_VENDORID, RT_DEVICEID_8101E, 0,
  182             "RealTek 810xE PCIe 10/100baseTX" },
  183         { RT_VENDORID, RT_DEVICEID_8168, 0,
  184             "RealTek 8168/8111 B/C/CP/D/DP/E PCIe Gigabit Ethernet" },
  185         { RT_VENDORID, RT_DEVICEID_8169, 0,
  186             "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
  187         { RT_VENDORID, RT_DEVICEID_8169SC, 0,
  188             "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
  189         { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
  190             "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
  191         { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
  192             "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
  193         { USR_VENDORID, USR_DEVICEID_997902, 0,
  194             "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
  195 };
  196 
  197 static struct rl_hwrev re_hwrevs[] = {
  198         { RL_HWREV_8139, RL_8139,  "", RL_MTU },
  199         { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
  200         { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
  201         { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
  202         { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
  203         { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
  204         { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
  205         { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
  206         { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
  207         { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
  208         { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
  209         { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
  210         { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
  211         { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
  212         { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
  213         { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
  214         { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
  215         { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
  216         { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
  217         { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
  218         { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
  219         { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
  220         { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
  221         { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
  222         { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
  223         { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
  224         { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
  225         { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
  226         { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
  227         { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
  228         { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
  229         { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
  230         { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
  231         { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
  232         { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
  233         { 0, 0, NULL, 0 }
  234 };
  235 
  236 static int re_probe             (device_t);
  237 static int re_attach            (device_t);
  238 static int re_detach            (device_t);
  239 
  240 static int re_encap             (struct rl_softc *, struct mbuf **);
  241 
  242 static void re_dma_map_addr     (void *, bus_dma_segment_t *, int, int);
  243 static int re_allocmem          (device_t, struct rl_softc *);
  244 static __inline void re_discard_rxbuf
  245                                 (struct rl_softc *, int);
  246 static int re_newbuf            (struct rl_softc *, int);
  247 static int re_jumbo_newbuf      (struct rl_softc *, int);
  248 static int re_rx_list_init      (struct rl_softc *);
  249 static int re_jrx_list_init     (struct rl_softc *);
  250 static int re_tx_list_init      (struct rl_softc *);
  251 #ifdef RE_FIXUP_RX
  252 static __inline void re_fixup_rx
  253                                 (struct mbuf *);
  254 #endif
  255 static int re_rxeof             (struct rl_softc *, int *);
  256 static void re_txeof            (struct rl_softc *);
  257 #ifdef DEVICE_POLLING
  258 static int re_poll              (struct ifnet *, enum poll_cmd, int);
  259 static int re_poll_locked       (struct ifnet *, enum poll_cmd, int);
  260 #endif
  261 static int re_intr              (void *);
  262 static void re_intr_msi         (void *);
  263 static void re_tick             (void *);
  264 static void re_int_task         (void *, int);
  265 static void re_start            (struct ifnet *);
  266 static void re_start_locked     (struct ifnet *);
  267 static int re_ioctl             (struct ifnet *, u_long, caddr_t);
  268 static void re_init             (void *);
  269 static void re_init_locked      (struct rl_softc *);
  270 static void re_stop             (struct rl_softc *);
  271 static void re_watchdog         (struct rl_softc *);
  272 static int re_suspend           (device_t);
  273 static int re_resume            (device_t);
  274 static int re_shutdown          (device_t);
  275 static int re_ifmedia_upd       (struct ifnet *);
  276 static void re_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
  277 
  278 static void re_eeprom_putbyte   (struct rl_softc *, int);
  279 static void re_eeprom_getword   (struct rl_softc *, int, u_int16_t *);
  280 static void re_read_eeprom      (struct rl_softc *, caddr_t, int, int);
  281 static int re_gmii_readreg      (device_t, int, int);
  282 static int re_gmii_writereg     (device_t, int, int, int);
  283 
  284 static int re_miibus_readreg    (device_t, int, int);
  285 static int re_miibus_writereg   (device_t, int, int, int);
  286 static void re_miibus_statchg   (device_t);
  287 
  288 static void re_set_jumbo        (struct rl_softc *, int);
  289 static void re_set_rxmode               (struct rl_softc *);
  290 static void re_reset            (struct rl_softc *);
  291 static void re_setwol           (struct rl_softc *);
  292 static void re_clrwol           (struct rl_softc *);
  293 
  294 #ifdef RE_DIAG
  295 static int re_diag              (struct rl_softc *);
  296 #endif
  297 
  298 static void re_add_sysctls      (struct rl_softc *);
  299 static int re_sysctl_stats      (SYSCTL_HANDLER_ARGS);
  300 static int sysctl_int_range     (SYSCTL_HANDLER_ARGS, int, int);
  301 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
  302 
  303 static device_method_t re_methods[] = {
  304         /* Device interface */
  305         DEVMETHOD(device_probe,         re_probe),
  306         DEVMETHOD(device_attach,        re_attach),
  307         DEVMETHOD(device_detach,        re_detach),
  308         DEVMETHOD(device_suspend,       re_suspend),
  309         DEVMETHOD(device_resume,        re_resume),
  310         DEVMETHOD(device_shutdown,      re_shutdown),
  311 
  312         /* bus interface */
  313         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  314         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  315 
  316         /* MII interface */
  317         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
  318         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
  319         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
  320 
  321         { 0, 0 }
  322 };
  323 
  324 static driver_t re_driver = {
  325         "re",
  326         re_methods,
  327         sizeof(struct rl_softc)
  328 };
  329 
  330 static devclass_t re_devclass;
  331 
  332 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
  333 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
  334 
  335 #define EE_SET(x)                                       \
  336         CSR_WRITE_1(sc, RL_EECMD,                       \
  337                 CSR_READ_1(sc, RL_EECMD) | x)
  338 
  339 #define EE_CLR(x)                                       \
  340         CSR_WRITE_1(sc, RL_EECMD,                       \
  341                 CSR_READ_1(sc, RL_EECMD) & ~x)
  342 
  343 /*
  344  * Send a read command and address to the EEPROM, check for ACK.
  345  */
  346 static void
  347 re_eeprom_putbyte(struct rl_softc *sc, int addr)
  348 {
  349         int                     d, i;
  350 
  351         d = addr | (RL_9346_READ << sc->rl_eewidth);
  352 
  353         /*
  354          * Feed in each bit and strobe the clock.
  355          */
  356 
  357         for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
  358                 if (d & i) {
  359                         EE_SET(RL_EE_DATAIN);
  360                 } else {
  361                         EE_CLR(RL_EE_DATAIN);
  362                 }
  363                 DELAY(100);
  364                 EE_SET(RL_EE_CLK);
  365                 DELAY(150);
  366                 EE_CLR(RL_EE_CLK);
  367                 DELAY(100);
  368         }
  369 }
  370 
  371 /*
  372  * Read a word of data stored in the EEPROM at address 'addr.'
  373  */
  374 static void
  375 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
  376 {
  377         int                     i;
  378         u_int16_t               word = 0;
  379 
  380         /*
  381          * Send address of word we want to read.
  382          */
  383         re_eeprom_putbyte(sc, addr);
  384 
  385         /*
  386          * Start reading bits from EEPROM.
  387          */
  388         for (i = 0x8000; i; i >>= 1) {
  389                 EE_SET(RL_EE_CLK);
  390                 DELAY(100);
  391                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
  392                         word |= i;
  393                 EE_CLR(RL_EE_CLK);
  394                 DELAY(100);
  395         }
  396 
  397         *dest = word;
  398 }
  399 
  400 /*
  401  * Read a sequence of words from the EEPROM.
  402  */
  403 static void
  404 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
  405 {
  406         int                     i;
  407         u_int16_t               word = 0, *ptr;
  408 
  409         CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
  410 
  411         DELAY(100);
  412 
  413         for (i = 0; i < cnt; i++) {
  414                 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
  415                 re_eeprom_getword(sc, off + i, &word);
  416                 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
  417                 ptr = (u_int16_t *)(dest + (i * 2));
  418                 *ptr = word;
  419         }
  420 
  421         CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
  422 }
  423 
  424 static int
  425 re_gmii_readreg(device_t dev, int phy, int reg)
  426 {
  427         struct rl_softc         *sc;
  428         u_int32_t               rval;
  429         int                     i;
  430 
  431         sc = device_get_softc(dev);
  432 
  433         /* Let the rgephy driver read the GMEDIASTAT register */
  434 
  435         if (reg == RL_GMEDIASTAT) {
  436                 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
  437                 return (rval);
  438         }
  439 
  440         CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
  441 
  442         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
  443                 rval = CSR_READ_4(sc, RL_PHYAR);
  444                 if (rval & RL_PHYAR_BUSY)
  445                         break;
  446                 DELAY(25);
  447         }
  448 
  449         if (i == RL_PHY_TIMEOUT) {
  450                 device_printf(sc->rl_dev, "PHY read failed\n");
  451                 return (0);
  452         }
  453 
  454         /*
  455          * Controller requires a 20us delay to process next MDIO request.
  456          */
  457         DELAY(20);
  458 
  459         return (rval & RL_PHYAR_PHYDATA);
  460 }
  461 
  462 static int
  463 re_gmii_writereg(device_t dev, int phy, int reg, int data)
  464 {
  465         struct rl_softc         *sc;
  466         u_int32_t               rval;
  467         int                     i;
  468 
  469         sc = device_get_softc(dev);
  470 
  471         CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
  472             (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
  473 
  474         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
  475                 rval = CSR_READ_4(sc, RL_PHYAR);
  476                 if (!(rval & RL_PHYAR_BUSY))
  477                         break;
  478                 DELAY(25);
  479         }
  480 
  481         if (i == RL_PHY_TIMEOUT) {
  482                 device_printf(sc->rl_dev, "PHY write failed\n");
  483                 return (0);
  484         }
  485 
  486         /*
  487          * Controller requires a 20us delay to process next MDIO request.
  488          */
  489         DELAY(20);
  490 
  491         return (0);
  492 }
  493 
  494 static int
  495 re_miibus_readreg(device_t dev, int phy, int reg)
  496 {
  497         struct rl_softc         *sc;
  498         u_int16_t               rval = 0;
  499         u_int16_t               re8139_reg = 0;
  500 
  501         sc = device_get_softc(dev);
  502 
  503         if (sc->rl_type == RL_8169) {
  504                 rval = re_gmii_readreg(dev, phy, reg);
  505                 return (rval);
  506         }
  507 
  508         switch (reg) {
  509         case MII_BMCR:
  510                 re8139_reg = RL_BMCR;
  511                 break;
  512         case MII_BMSR:
  513                 re8139_reg = RL_BMSR;
  514                 break;
  515         case MII_ANAR:
  516                 re8139_reg = RL_ANAR;
  517                 break;
  518         case MII_ANER:
  519                 re8139_reg = RL_ANER;
  520                 break;
  521         case MII_ANLPAR:
  522                 re8139_reg = RL_LPAR;
  523                 break;
  524         case MII_PHYIDR1:
  525         case MII_PHYIDR2:
  526                 return (0);
  527         /*
  528          * Allow the rlphy driver to read the media status
  529          * register. If we have a link partner which does not
  530          * support NWAY, this is the register which will tell
  531          * us the results of parallel detection.
  532          */
  533         case RL_MEDIASTAT:
  534                 rval = CSR_READ_1(sc, RL_MEDIASTAT);
  535                 return (rval);
  536         default:
  537                 device_printf(sc->rl_dev, "bad phy register\n");
  538                 return (0);
  539         }
  540         rval = CSR_READ_2(sc, re8139_reg);
  541         if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
  542                 /* 8139C+ has different bit layout. */
  543                 rval &= ~(BMCR_LOOP | BMCR_ISO);
  544         }
  545         return (rval);
  546 }
  547 
  548 static int
  549 re_miibus_writereg(device_t dev, int phy, int reg, int data)
  550 {
  551         struct rl_softc         *sc;
  552         u_int16_t               re8139_reg = 0;
  553         int                     rval = 0;
  554 
  555         sc = device_get_softc(dev);
  556 
  557         if (sc->rl_type == RL_8169) {
  558                 rval = re_gmii_writereg(dev, phy, reg, data);
  559                 return (rval);
  560         }
  561 
  562         switch (reg) {
  563         case MII_BMCR:
  564                 re8139_reg = RL_BMCR;
  565                 if (sc->rl_type == RL_8139CPLUS) {
  566                         /* 8139C+ has different bit layout. */
  567                         data &= ~(BMCR_LOOP | BMCR_ISO);
  568                 }
  569                 break;
  570         case MII_BMSR:
  571                 re8139_reg = RL_BMSR;
  572                 break;
  573         case MII_ANAR:
  574                 re8139_reg = RL_ANAR;
  575                 break;
  576         case MII_ANER:
  577                 re8139_reg = RL_ANER;
  578                 break;
  579         case MII_ANLPAR:
  580                 re8139_reg = RL_LPAR;
  581                 break;
  582         case MII_PHYIDR1:
  583         case MII_PHYIDR2:
  584                 return (0);
  585                 break;
  586         default:
  587                 device_printf(sc->rl_dev, "bad phy register\n");
  588                 return (0);
  589         }
  590         CSR_WRITE_2(sc, re8139_reg, data);
  591         return (0);
  592 }
  593 
  594 static void
  595 re_miibus_statchg(device_t dev)
  596 {
  597         struct rl_softc         *sc;
  598         struct ifnet            *ifp;
  599         struct mii_data         *mii;
  600 
  601         sc = device_get_softc(dev);
  602         mii = device_get_softc(sc->rl_miibus);
  603         ifp = sc->rl_ifp;
  604         if (mii == NULL || ifp == NULL ||
  605             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  606                 return;
  607 
  608         sc->rl_flags &= ~RL_FLAG_LINK;
  609         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  610             (IFM_ACTIVE | IFM_AVALID)) {
  611                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  612                 case IFM_10_T:
  613                 case IFM_100_TX:
  614                         sc->rl_flags |= RL_FLAG_LINK;
  615                         break;
  616                 case IFM_1000_T:
  617                         if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
  618                                 break;
  619                         sc->rl_flags |= RL_FLAG_LINK;
  620                         break;
  621                 default:
  622                         break;
  623                 }
  624         }
  625         /*
  626          * RealTek controllers does not provide any interface to
  627          * Tx/Rx MACs for resolved speed, duplex and flow-control
  628          * parameters.
  629          */
  630 }
  631 
  632 /*
  633  * Set the RX configuration and 64-bit multicast hash filter.
  634  */
  635 static void
  636 re_set_rxmode(struct rl_softc *sc)
  637 {
  638         struct ifnet            *ifp;
  639         struct ifmultiaddr      *ifma;
  640         uint32_t                hashes[2] = { 0, 0 };
  641         uint32_t                h, rxfilt;
  642 
  643         RL_LOCK_ASSERT(sc);
  644 
  645         ifp = sc->rl_ifp;
  646 
  647         rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
  648 
  649         if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
  650                 if (ifp->if_flags & IFF_PROMISC)
  651                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
  652                 /*
  653                  * Unlike other hardwares, we have to explicitly set
  654                  * RL_RXCFG_RX_MULTI to receive multicast frames in
  655                  * promiscuous mode.
  656                  */
  657                 rxfilt |= RL_RXCFG_RX_MULTI;
  658                 hashes[0] = hashes[1] = 0xffffffff;
  659                 goto done;
  660         }
  661 
  662         if_maddr_rlock(ifp);
  663         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  664                 if (ifma->ifma_addr->sa_family != AF_LINK)
  665                         continue;
  666                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  667                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
  668                 if (h < 32)
  669                         hashes[0] |= (1 << h);
  670                 else
  671                         hashes[1] |= (1 << (h - 32));
  672         }
  673         if_maddr_runlock(ifp);
  674 
  675         if (hashes[0] != 0 || hashes[1] != 0) {
  676                 /*
  677                  * For some unfathomable reason, RealTek decided to
  678                  * reverse the order of the multicast hash registers
  679                  * in the PCI Express parts.  This means we have to
  680                  * write the hash pattern in reverse order for those
  681                  * devices.
  682                  */
  683                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
  684                         h = bswap32(hashes[0]);
  685                         hashes[0] = bswap32(hashes[1]);
  686                         hashes[1] = h;
  687                 }
  688                 rxfilt |= RL_RXCFG_RX_MULTI;
  689         }
  690 
  691 done:
  692         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
  693         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
  694         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
  695 }
  696 
  697 static void
  698 re_reset(struct rl_softc *sc)
  699 {
  700         int                     i;
  701 
  702         RL_LOCK_ASSERT(sc);
  703 
  704         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
  705 
  706         for (i = 0; i < RL_TIMEOUT; i++) {
  707                 DELAY(10);
  708                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
  709                         break;
  710         }
  711         if (i == RL_TIMEOUT)
  712                 device_printf(sc->rl_dev, "reset never completed!\n");
  713 
  714         if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
  715                 CSR_WRITE_1(sc, 0x82, 1);
  716         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
  717                 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
  718 }
  719 
  720 #ifdef RE_DIAG
  721 
  722 /*
  723  * The following routine is designed to test for a defect on some
  724  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
  725  * lines connected to the bus, however for a 32-bit only card, they
  726  * should be pulled high. The result of this defect is that the
  727  * NIC will not work right if you plug it into a 64-bit slot: DMA
  728  * operations will be done with 64-bit transfers, which will fail
  729  * because the 64-bit data lines aren't connected.
  730  *
  731  * There's no way to work around this (short of talking a soldering
  732  * iron to the board), however we can detect it. The method we use
  733  * here is to put the NIC into digital loopback mode, set the receiver
  734  * to promiscuous mode, and then try to send a frame. We then compare
  735  * the frame data we sent to what was received. If the data matches,
  736  * then the NIC is working correctly, otherwise we know the user has
  737  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
  738  * slot. In the latter case, there's no way the NIC can work correctly,
  739  * so we print out a message on the console and abort the device attach.
  740  */
  741 
  742 static int
  743 re_diag(struct rl_softc *sc)
  744 {
  745         struct ifnet            *ifp = sc->rl_ifp;
  746         struct mbuf             *m0;
  747         struct ether_header     *eh;
  748         struct rl_desc          *cur_rx;
  749         u_int16_t               status;
  750         u_int32_t               rxstat;
  751         int                     total_len, i, error = 0, phyaddr;
  752         u_int8_t                dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
  753         u_int8_t                src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
  754 
  755         /* Allocate a single mbuf */
  756         MGETHDR(m0, M_DONTWAIT, MT_DATA);
  757         if (m0 == NULL)
  758                 return (ENOBUFS);
  759 
  760         RL_LOCK(sc);
  761 
  762         /*
  763          * Initialize the NIC in test mode. This sets the chip up
  764          * so that it can send and receive frames, but performs the
  765          * following special functions:
  766          * - Puts receiver in promiscuous mode
  767          * - Enables digital loopback mode
  768          * - Leaves interrupts turned off
  769          */
  770 
  771         ifp->if_flags |= IFF_PROMISC;
  772         sc->rl_testmode = 1;
  773         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  774         re_init_locked(sc);
  775         sc->rl_flags |= RL_FLAG_LINK;
  776         if (sc->rl_type == RL_8169)
  777                 phyaddr = 1;
  778         else
  779                 phyaddr = 0;
  780 
  781         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
  782         for (i = 0; i < RL_TIMEOUT; i++) {
  783                 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
  784                 if (!(status & BMCR_RESET))
  785                         break;
  786         }
  787 
  788         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
  789         CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
  790 
  791         DELAY(100000);
  792 
  793         /* Put some data in the mbuf */
  794 
  795         eh = mtod(m0, struct ether_header *);
  796         bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
  797         bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
  798         eh->ether_type = htons(ETHERTYPE_IP);
  799         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
  800 
  801         /*
  802          * Queue the packet, start transmission.
  803          * Note: IF_HANDOFF() ultimately calls re_start() for us.
  804          */
  805 
  806         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
  807         RL_UNLOCK(sc);
  808         /* XXX: re_diag must not be called when in ALTQ mode */
  809         IF_HANDOFF(&ifp->if_snd, m0, ifp);
  810         RL_LOCK(sc);
  811         m0 = NULL;
  812 
  813         /* Wait for it to propagate through the chip */
  814 
  815         DELAY(100000);
  816         for (i = 0; i < RL_TIMEOUT; i++) {
  817                 status = CSR_READ_2(sc, RL_ISR);
  818                 CSR_WRITE_2(sc, RL_ISR, status);
  819                 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
  820                     (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
  821                         break;
  822                 DELAY(10);
  823         }
  824 
  825         if (i == RL_TIMEOUT) {
  826                 device_printf(sc->rl_dev,
  827                     "diagnostic failed, failed to receive packet in"
  828                     " loopback mode\n");
  829                 error = EIO;
  830                 goto done;
  831         }
  832 
  833         /*
  834          * The packet should have been dumped into the first
  835          * entry in the RX DMA ring. Grab it from there.
  836          */
  837 
  838         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
  839             sc->rl_ldata.rl_rx_list_map,
  840             BUS_DMASYNC_POSTREAD);
  841         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
  842             sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
  843             BUS_DMASYNC_POSTREAD);
  844         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
  845             sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
  846 
  847         m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
  848         sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
  849         eh = mtod(m0, struct ether_header *);
  850 
  851         cur_rx = &sc->rl_ldata.rl_rx_list[0];
  852         total_len = RL_RXBYTES(cur_rx);
  853         rxstat = le32toh(cur_rx->rl_cmdstat);
  854 
  855         if (total_len != ETHER_MIN_LEN) {
  856                 device_printf(sc->rl_dev,
  857                     "diagnostic failed, received short packet\n");
  858                 error = EIO;
  859                 goto done;
  860         }
  861 
  862         /* Test that the received packet data matches what we sent. */
  863 
  864         if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
  865             bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
  866             ntohs(eh->ether_type) != ETHERTYPE_IP) {
  867                 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
  868                 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
  869                     dst, ":", src, ":", ETHERTYPE_IP);
  870                 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
  871                     eh->ether_dhost, ":",  eh->ether_shost, ":",
  872                     ntohs(eh->ether_type));
  873                 device_printf(sc->rl_dev, "You may have a defective 32-bit "
  874                     "NIC plugged into a 64-bit PCI slot.\n");
  875                 device_printf(sc->rl_dev, "Please re-install the NIC in a "
  876                     "32-bit slot for proper operation.\n");
  877                 device_printf(sc->rl_dev, "Read the re(4) man page for more "
  878                     "details.\n");
  879                 error = EIO;
  880         }
  881 
  882 done:
  883         /* Turn interface off, release resources */
  884 
  885         sc->rl_testmode = 0;
  886         sc->rl_flags &= ~RL_FLAG_LINK;
  887         ifp->if_flags &= ~IFF_PROMISC;
  888         re_stop(sc);
  889         if (m0 != NULL)
  890                 m_freem(m0);
  891 
  892         RL_UNLOCK(sc);
  893 
  894         return (error);
  895 }
  896 
  897 #endif
  898 
  899 /*
  900  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
  901  * IDs against our list and return a device name if we find a match.
  902  */
  903 static int
  904 re_probe(device_t dev)
  905 {
  906         struct rl_type          *t;
  907         uint16_t                devid, vendor;
  908         uint16_t                revid, sdevid;
  909         int                     i;
  910 
  911         vendor = pci_get_vendor(dev);
  912         devid = pci_get_device(dev);
  913         revid = pci_get_revid(dev);
  914         sdevid = pci_get_subdevice(dev);
  915 
  916         if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
  917                 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
  918                         /*
  919                          * Only attach to rev. 3 of the Linksys EG1032 adapter.
  920                          * Rev. 2 is supported by sk(4).
  921                          */
  922                         return (ENXIO);
  923                 }
  924         }
  925 
  926         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
  927                 if (revid != 0x20) {
  928                         /* 8139, let rl(4) take care of this device. */
  929                         return (ENXIO);
  930                 }
  931         }
  932 
  933         t = re_devs;
  934         for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
  935                 if (vendor == t->rl_vid && devid == t->rl_did) {
  936                         device_set_desc(dev, t->rl_name);
  937                         return (BUS_PROBE_DEFAULT);
  938                 }
  939         }
  940 
  941         return (ENXIO);
  942 }
  943 
  944 /*
  945  * Map a single buffer address.
  946  */
  947 
  948 static void
  949 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  950 {
  951         bus_addr_t              *addr;
  952 
  953         if (error)
  954                 return;
  955 
  956         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
  957         addr = arg;
  958         *addr = segs->ds_addr;
  959 }
  960 
  961 static int
  962 re_allocmem(device_t dev, struct rl_softc *sc)
  963 {
  964         bus_addr_t              lowaddr;
  965         bus_size_t              rx_list_size, tx_list_size;
  966         int                     error;
  967         int                     i;
  968 
  969         rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
  970         tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
  971 
  972         /*
  973          * Allocate the parent bus DMA tag appropriate for PCI.
  974          * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
  975          * register should be set. However some RealTek chips are known
  976          * to be buggy on DAC handling, therefore disable DAC by limiting
  977          * DMA address space to 32bit. PCIe variants of RealTek chips
  978          * may not have the limitation.
  979          */
  980         lowaddr = BUS_SPACE_MAXADDR;
  981         if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
  982                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
  983         error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
  984             lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
  985             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
  986             NULL, NULL, &sc->rl_parent_tag);
  987         if (error) {
  988                 device_printf(dev, "could not allocate parent DMA tag\n");
  989                 return (error);
  990         }
  991 
  992         /*
  993          * Allocate map for TX mbufs.
  994          */
  995         error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
  996             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
  997             NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
  998             NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
  999         if (error) {
 1000                 device_printf(dev, "could not allocate TX DMA tag\n");
 1001                 return (error);
 1002         }
 1003 
 1004         /*
 1005          * Allocate map for RX mbufs.
 1006          */
 1007 
 1008         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
 1009                 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
 1010                     0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 1011                     MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
 1012                     &sc->rl_ldata.rl_jrx_mtag);
 1013                 if (error) {
 1014                         device_printf(dev,
 1015                             "could not allocate jumbo RX DMA tag\n");
 1016                         return (error);
 1017                 }
 1018         }
 1019         error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
 1020             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 1021             MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
 1022         if (error) {
 1023                 device_printf(dev, "could not allocate RX DMA tag\n");
 1024                 return (error);
 1025         }
 1026 
 1027         /*
 1028          * Allocate map for TX descriptor list.
 1029          */
 1030         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
 1031             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
 1032             NULL, tx_list_size, 1, tx_list_size, 0,
 1033             NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
 1034         if (error) {
 1035                 device_printf(dev, "could not allocate TX DMA ring tag\n");
 1036                 return (error);
 1037         }
 1038 
 1039         /* Allocate DMA'able memory for the TX ring */
 1040 
 1041         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
 1042             (void **)&sc->rl_ldata.rl_tx_list,
 1043             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
 1044             &sc->rl_ldata.rl_tx_list_map);
 1045         if (error) {
 1046                 device_printf(dev, "could not allocate TX DMA ring\n");
 1047                 return (error);
 1048         }
 1049 
 1050         /* Load the map for the TX ring. */
 1051 
 1052         sc->rl_ldata.rl_tx_list_addr = 0;
 1053         error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
 1054              sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
 1055              tx_list_size, re_dma_map_addr,
 1056              &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
 1057         if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
 1058                 device_printf(dev, "could not load TX DMA ring\n");
 1059                 return (ENOMEM);
 1060         }
 1061 
 1062         /* Create DMA maps for TX buffers */
 1063 
 1064         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
 1065                 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
 1066                     &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
 1067                 if (error) {
 1068                         device_printf(dev, "could not create DMA map for TX\n");
 1069                         return (error);
 1070                 }
 1071         }
 1072 
 1073         /*
 1074          * Allocate map for RX descriptor list.
 1075          */
 1076         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
 1077             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
 1078             NULL, rx_list_size, 1, rx_list_size, 0,
 1079             NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
 1080         if (error) {
 1081                 device_printf(dev, "could not create RX DMA ring tag\n");
 1082                 return (error);
 1083         }
 1084 
 1085         /* Allocate DMA'able memory for the RX ring */
 1086 
 1087         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
 1088             (void **)&sc->rl_ldata.rl_rx_list,
 1089             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
 1090             &sc->rl_ldata.rl_rx_list_map);
 1091         if (error) {
 1092                 device_printf(dev, "could not allocate RX DMA ring\n");
 1093                 return (error);
 1094         }
 1095 
 1096         /* Load the map for the RX ring. */
 1097 
 1098         sc->rl_ldata.rl_rx_list_addr = 0;
 1099         error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
 1100              sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
 1101              rx_list_size, re_dma_map_addr,
 1102              &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
 1103         if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
 1104                 device_printf(dev, "could not load RX DMA ring\n");
 1105                 return (ENOMEM);
 1106         }
 1107 
 1108         /* Create DMA maps for RX buffers */
 1109 
 1110         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
 1111                 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
 1112                     &sc->rl_ldata.rl_jrx_sparemap);
 1113                 if (error) {
 1114                         device_printf(dev,
 1115                             "could not create spare DMA map for jumbo RX\n");
 1116                         return (error);
 1117                 }
 1118                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
 1119                         error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
 1120                             &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
 1121                         if (error) {
 1122                                 device_printf(dev,
 1123                                     "could not create DMA map for jumbo RX\n");
 1124                                 return (error);
 1125                         }
 1126                 }
 1127         }
 1128         error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
 1129             &sc->rl_ldata.rl_rx_sparemap);
 1130         if (error) {
 1131                 device_printf(dev, "could not create spare DMA map for RX\n");
 1132                 return (error);
 1133         }
 1134         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
 1135                 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
 1136                     &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
 1137                 if (error) {
 1138                         device_printf(dev, "could not create DMA map for RX\n");
 1139                         return (error);
 1140                 }
 1141         }
 1142 
 1143         /* Create DMA map for statistics. */
 1144         error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
 1145             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 1146             sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
 1147             &sc->rl_ldata.rl_stag);
 1148         if (error) {
 1149                 device_printf(dev, "could not create statistics DMA tag\n");
 1150                 return (error);
 1151         }
 1152         /* Allocate DMA'able memory for statistics. */
 1153         error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
 1154             (void **)&sc->rl_ldata.rl_stats,
 1155             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
 1156             &sc->rl_ldata.rl_smap);
 1157         if (error) {
 1158                 device_printf(dev,
 1159                     "could not allocate statistics DMA memory\n");
 1160                 return (error);
 1161         }
 1162         /* Load the map for statistics. */
 1163         sc->rl_ldata.rl_stats_addr = 0;
 1164         error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
 1165             sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
 1166              &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
 1167         if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
 1168                 device_printf(dev, "could not load statistics DMA memory\n");
 1169                 return (ENOMEM);
 1170         }
 1171 
 1172         return (0);
 1173 }
 1174 
 1175 /*
 1176  * Attach the interface. Allocate softc structures, do ifmedia
 1177  * setup and ethernet/BPF attach.
 1178  */
 1179 static int
 1180 re_attach(device_t dev)
 1181 {
 1182         u_char                  eaddr[ETHER_ADDR_LEN];
 1183         u_int16_t               as[ETHER_ADDR_LEN / 2];
 1184         struct rl_softc         *sc;
 1185         struct ifnet            *ifp;
 1186         struct rl_hwrev         *hw_rev;
 1187         int                     hwrev;
 1188         u_int16_t               devid, re_did = 0;
 1189         int                     error = 0, i, phy, rid;
 1190         int                     msic, msixc, reg;
 1191         uint8_t                 cfg;
 1192 
 1193         sc = device_get_softc(dev);
 1194         sc->rl_dev = dev;
 1195 
 1196         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1197             MTX_DEF);
 1198         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
 1199 
 1200         /*
 1201          * Map control/status registers.
 1202          */
 1203         pci_enable_busmaster(dev);
 1204 
 1205         devid = pci_get_device(dev);
 1206         /*
 1207          * Prefer memory space register mapping over IO space.
 1208          * Because RTL8169SC does not seem to work when memory mapping
 1209          * is used always activate io mapping.
 1210          */
 1211         if (devid == RT_DEVICEID_8169SC)
 1212                 prefer_iomap = 1;
 1213         if (prefer_iomap == 0) {
 1214                 sc->rl_res_id = PCIR_BAR(1);
 1215                 sc->rl_res_type = SYS_RES_MEMORY;
 1216                 /* RTL8168/8101E seems to use different BARs. */
 1217                 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
 1218                         sc->rl_res_id = PCIR_BAR(2);
 1219         } else {
 1220                 sc->rl_res_id = PCIR_BAR(0);
 1221                 sc->rl_res_type = SYS_RES_IOPORT;
 1222         }
 1223         sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
 1224             &sc->rl_res_id, RF_ACTIVE);
 1225         if (sc->rl_res == NULL && prefer_iomap == 0) {
 1226                 sc->rl_res_id = PCIR_BAR(0);
 1227                 sc->rl_res_type = SYS_RES_IOPORT;
 1228                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
 1229                     &sc->rl_res_id, RF_ACTIVE);
 1230         }
 1231         if (sc->rl_res == NULL) {
 1232                 device_printf(dev, "couldn't map ports/memory\n");
 1233                 error = ENXIO;
 1234                 goto fail;
 1235         }
 1236 
 1237         sc->rl_btag = rman_get_bustag(sc->rl_res);
 1238         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
 1239 
 1240         msic = pci_msi_count(dev);
 1241         msixc = pci_msix_count(dev);
 1242         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0)
 1243                 sc->rl_flags |= RL_FLAG_PCIE;
 1244         if (bootverbose) {
 1245                 device_printf(dev, "MSI count : %d\n", msic);
 1246                 device_printf(dev, "MSI-X count : %d\n", msixc);
 1247         }
 1248         if (msix_disable > 0)
 1249                 msixc = 0;
 1250         if (msi_disable > 0)
 1251                 msic = 0;
 1252         /* Prefer MSI-X to MSI. */
 1253         if (msixc > 0) {
 1254                 msixc = 1;
 1255                 rid = PCIR_BAR(4);
 1256                 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
 1257                     &rid, RF_ACTIVE);
 1258                 if (sc->rl_res_pba == NULL) {
 1259                         device_printf(sc->rl_dev,
 1260                             "could not allocate MSI-X PBA resource\n");
 1261                 }
 1262                 if (sc->rl_res_pba != NULL &&
 1263                     pci_alloc_msix(dev, &msixc) == 0) {
 1264                         if (msixc == 1) {
 1265                                 device_printf(dev, "Using %d MSI-X message\n",
 1266                                     msixc);
 1267                                 sc->rl_flags |= RL_FLAG_MSIX;
 1268                         } else
 1269                                 pci_release_msi(dev);
 1270                 }
 1271                 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
 1272                         if (sc->rl_res_pba != NULL)
 1273                                 bus_release_resource(dev, SYS_RES_MEMORY, rid,
 1274                                     sc->rl_res_pba);
 1275                         sc->rl_res_pba = NULL;
 1276                         msixc = 0;
 1277                 }
 1278         }
 1279         /* Prefer MSI to INTx. */
 1280         if (msixc == 0 && msic > 0) {
 1281                 msic = 1;
 1282                 if (pci_alloc_msi(dev, &msic) == 0) {
 1283                         if (msic == RL_MSI_MESSAGES) {
 1284                                 device_printf(dev, "Using %d MSI message\n",
 1285                                     msic);
 1286                                 sc->rl_flags |= RL_FLAG_MSI;
 1287                                 /* Explicitly set MSI enable bit. */
 1288                                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 1289                                 cfg = CSR_READ_1(sc, RL_CFG2);
 1290                                 cfg |= RL_CFG2_MSI;
 1291                                 CSR_WRITE_1(sc, RL_CFG2, cfg);
 1292                                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 1293                         } else
 1294                                 pci_release_msi(dev);
 1295                 }
 1296                 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
 1297                         msic = 0;
 1298         }
 1299 
 1300         /* Allocate interrupt */
 1301         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
 1302                 rid = 0;
 1303                 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1304                     RF_SHAREABLE | RF_ACTIVE);
 1305                 if (sc->rl_irq[0] == NULL) {
 1306                         device_printf(dev, "couldn't allocate IRQ resources\n");
 1307                         error = ENXIO;
 1308                         goto fail;
 1309                 }
 1310         } else {
 1311                 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
 1312                         sc->rl_irq[i] = bus_alloc_resource_any(dev,
 1313                             SYS_RES_IRQ, &rid, RF_ACTIVE);
 1314                         if (sc->rl_irq[i] == NULL) {
 1315                                 device_printf(dev,
 1316                                     "couldn't llocate IRQ resources for "
 1317                                     "message %d\n", rid);
 1318                                 error = ENXIO;
 1319                                 goto fail;
 1320                         }
 1321                 }
 1322         }
 1323 
 1324         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
 1325                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 1326                 cfg = CSR_READ_1(sc, RL_CFG2);
 1327                 if ((cfg & RL_CFG2_MSI) != 0) {
 1328                         device_printf(dev, "turning off MSI enable bit.\n");
 1329                         cfg &= ~RL_CFG2_MSI;
 1330                         CSR_WRITE_1(sc, RL_CFG2, cfg);
 1331                 }
 1332                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 1333         }
 1334 
 1335         hw_rev = re_hwrevs;
 1336         hwrev = CSR_READ_4(sc, RL_TXCFG);
 1337         switch (hwrev & 0x70000000) {
 1338         case 0x00000000:
 1339         case 0x10000000:
 1340                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
 1341                 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
 1342                 break;
 1343         default:
 1344                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
 1345                 hwrev &= RL_TXCFG_HWREV;
 1346                 break;
 1347         }
 1348         device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
 1349         while (hw_rev->rl_desc != NULL) {
 1350                 if (hw_rev->rl_rev == hwrev) {
 1351                         sc->rl_type = hw_rev->rl_type;
 1352                         sc->rl_hwrev = hw_rev;
 1353                         break;
 1354                 }
 1355                 hw_rev++;
 1356         }
 1357         if (hw_rev->rl_desc == NULL) {
 1358                 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
 1359                 error = ENXIO;
 1360                 goto fail;
 1361         }
 1362 
 1363         switch (hw_rev->rl_rev) {
 1364         case RL_HWREV_8139CPLUS:
 1365                 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
 1366                 break;
 1367         case RL_HWREV_8100E:
 1368         case RL_HWREV_8101E:
 1369                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
 1370                 break;
 1371         case RL_HWREV_8102E:
 1372         case RL_HWREV_8102EL:
 1373         case RL_HWREV_8102EL_SPIN1:
 1374                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
 1375                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
 1376                     RL_FLAG_AUTOPAD;
 1377                 break;
 1378         case RL_HWREV_8103E:
 1379                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
 1380                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
 1381                     RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
 1382                 break;
 1383         case RL_HWREV_8401E:
 1384         case RL_HWREV_8105E:
 1385                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
 1386                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
 1387                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
 1388                 break;
 1389         case RL_HWREV_8168B_SPIN1:
 1390         case RL_HWREV_8168B_SPIN2:
 1391                 sc->rl_flags |= RL_FLAG_WOLRXENB;
 1392                 /* FALLTHROUGH */
 1393         case RL_HWREV_8168B_SPIN3:
 1394                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
 1395                 break;
 1396         case RL_HWREV_8168C_SPIN2:
 1397                 sc->rl_flags |= RL_FLAG_MACSLEEP;
 1398                 /* FALLTHROUGH */
 1399         case RL_HWREV_8168C:
 1400                 if ((hwrev & 0x00700000) == 0x00200000)
 1401                         sc->rl_flags |= RL_FLAG_MACSLEEP;
 1402                 /* FALLTHROUGH */
 1403         case RL_HWREV_8168CP:
 1404         case RL_HWREV_8168D:
 1405         case RL_HWREV_8168DP:
 1406                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
 1407                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
 1408                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
 1409                 break;
 1410         case RL_HWREV_8168E:
 1411                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
 1412                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
 1413                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
 1414                 break;
 1415         case RL_HWREV_8168E_VL:
 1416                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
 1417                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
 1418                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
 1419                 break;
 1420         case RL_HWREV_8169_8110SB:
 1421         case RL_HWREV_8169_8110SBL:
 1422         case RL_HWREV_8169_8110SC:
 1423         case RL_HWREV_8169_8110SCE:
 1424                 sc->rl_flags |= RL_FLAG_PHYWAKE;
 1425                 /* FALLTHROUGH */
 1426         case RL_HWREV_8169:
 1427         case RL_HWREV_8169S:
 1428         case RL_HWREV_8110S:
 1429                 sc->rl_flags |= RL_FLAG_MACRESET;
 1430                 break;
 1431         default:
 1432                 break;
 1433         }
 1434 
 1435         /* Reset the adapter. */
 1436         RL_LOCK(sc);
 1437         re_reset(sc);
 1438         RL_UNLOCK(sc);
 1439 
 1440         /* Enable PME. */
 1441         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 1442         cfg = CSR_READ_1(sc, RL_CFG1);
 1443         cfg |= RL_CFG1_PME;
 1444         CSR_WRITE_1(sc, RL_CFG1, cfg);
 1445         cfg = CSR_READ_1(sc, RL_CFG5);
 1446         cfg &= RL_CFG5_PME_STS;
 1447         CSR_WRITE_1(sc, RL_CFG5, cfg);
 1448         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 1449 
 1450         if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
 1451                 /*
 1452                  * XXX Should have a better way to extract station
 1453                  * address from EEPROM.
 1454                  */
 1455                 for (i = 0; i < ETHER_ADDR_LEN; i++)
 1456                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
 1457         } else {
 1458                 sc->rl_eewidth = RL_9356_ADDR_LEN;
 1459                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
 1460                 if (re_did != 0x8129)
 1461                         sc->rl_eewidth = RL_9346_ADDR_LEN;
 1462 
 1463                 /*
 1464                  * Get station address from the EEPROM.
 1465                  */
 1466                 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
 1467                 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
 1468                         as[i] = le16toh(as[i]);
 1469                 bcopy(as, eaddr, sizeof(eaddr));
 1470         }
 1471 
 1472         if (sc->rl_type == RL_8169) {
 1473                 /* Set RX length mask and number of descriptors. */
 1474                 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
 1475                 sc->rl_txstart = RL_GTXSTART;
 1476                 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
 1477                 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
 1478         } else {
 1479                 /* Set RX length mask and number of descriptors. */
 1480                 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
 1481                 sc->rl_txstart = RL_TXSTART;
 1482                 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
 1483                 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
 1484         }
 1485 
 1486         error = re_allocmem(dev, sc);
 1487         if (error)
 1488                 goto fail;
 1489         re_add_sysctls(sc);
 1490 
 1491         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
 1492         if (ifp == NULL) {
 1493                 device_printf(dev, "can not if_alloc()\n");
 1494                 error = ENOSPC;
 1495                 goto fail;
 1496         }
 1497 
 1498         /* Take controller out of deep sleep mode. */
 1499         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
 1500                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
 1501                         CSR_WRITE_1(sc, RL_GPIO,
 1502                             CSR_READ_1(sc, RL_GPIO) | 0x01);
 1503                 else
 1504                         CSR_WRITE_1(sc, RL_GPIO,
 1505                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
 1506         }
 1507 
 1508         /* Take PHY out of power down mode. */
 1509         if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
 1510                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
 1511                 if (hw_rev->rl_rev == RL_HWREV_8401E)
 1512                         CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
 1513         }
 1514         if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
 1515                 re_gmii_writereg(dev, 1, 0x1f, 0);
 1516                 re_gmii_writereg(dev, 1, 0x0e, 0);
 1517         }
 1518 
 1519 #define RE_PHYAD_INTERNAL        0
 1520 
 1521         /* Do MII setup. */
 1522         phy = RE_PHYAD_INTERNAL;
 1523         if (sc->rl_type == RL_8169)
 1524                 phy = 1;
 1525         error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
 1526             re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
 1527         if (error != 0) {
 1528                 device_printf(dev, "attaching PHYs failed\n");
 1529                 goto fail;
 1530         }
 1531 
 1532         ifp->if_softc = sc;
 1533         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1534         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1535         ifp->if_ioctl = re_ioctl;
 1536         ifp->if_start = re_start;
 1537         /*
 1538          * RTL8168/8111C generates wrong IP checksummed frame if the
 1539          * packet has IP options so disable TX IP checksum offloading.
 1540          */
 1541         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
 1542             sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2)
 1543                 ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
 1544         else
 1545                 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
 1546         ifp->if_hwassist |= CSUM_TSO;
 1547         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
 1548         ifp->if_capenable = ifp->if_capabilities;
 1549         ifp->if_init = re_init;
 1550         IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
 1551         ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
 1552         IFQ_SET_READY(&ifp->if_snd);
 1553 
 1554         TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
 1555 
 1556         /*
 1557          * Call MI attach routine.
 1558          */
 1559         ether_ifattach(ifp, eaddr);
 1560 
 1561         /* VLAN capability setup */
 1562         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
 1563         if (ifp->if_capabilities & IFCAP_HWCSUM)
 1564                 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
 1565         /* Enable WOL if PM is supported. */
 1566         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
 1567                 ifp->if_capabilities |= IFCAP_WOL;
 1568         ifp->if_capenable = ifp->if_capabilities;
 1569         /*
 1570          * Don't enable TSO by default.  It is known to generate
 1571          * corrupted TCP segments(bad TCP options) under certain
 1572          * circumtances.
 1573          */
 1574         ifp->if_hwassist &= ~CSUM_TSO;
 1575         ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
 1576 #ifdef DEVICE_POLLING
 1577         ifp->if_capabilities |= IFCAP_POLLING;
 1578 #endif
 1579         /*
 1580          * Tell the upper layer(s) we support long frames.
 1581          * Must appear after the call to ether_ifattach() because
 1582          * ether_ifattach() sets ifi_hdrlen to the default value.
 1583          */
 1584         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 1585 
 1586 #ifdef RE_DIAG
 1587         /*
 1588          * Perform hardware diagnostic on the original RTL8169.
 1589          * Some 32-bit cards were incorrectly wired and would
 1590          * malfunction if plugged into a 64-bit slot.
 1591          */
 1592 
 1593         if (hwrev == RL_HWREV_8169) {
 1594                 error = re_diag(sc);
 1595                 if (error) {
 1596                         device_printf(dev,
 1597                         "attach aborted due to hardware diag failure\n");
 1598                         ether_ifdetach(ifp);
 1599                         goto fail;
 1600                 }
 1601         }
 1602 #endif
 1603 
 1604 #ifdef RE_TX_MODERATION
 1605         intr_filter = 1;
 1606 #endif
 1607         /* Hook interrupt last to avoid having to lock softc */
 1608         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
 1609             intr_filter == 0) {
 1610                 error = bus_setup_intr(dev, sc->rl_irq[0],
 1611                     INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
 1612                     &sc->rl_intrhand[0]);
 1613         } else {
 1614                 error = bus_setup_intr(dev, sc->rl_irq[0],
 1615                     INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
 1616                     &sc->rl_intrhand[0]);
 1617         }
 1618         if (error) {
 1619                 device_printf(dev, "couldn't set up irq\n");
 1620                 ether_ifdetach(ifp);
 1621         }
 1622 
 1623 fail:
 1624 
 1625         if (error)
 1626                 re_detach(dev);
 1627 
 1628         return (error);
 1629 }
 1630 
 1631 /*
 1632  * Shutdown hardware and free up resources. This can be called any
 1633  * time after the mutex has been initialized. It is called in both
 1634  * the error case in attach and the normal detach case so it needs
 1635  * to be careful about only freeing resources that have actually been
 1636  * allocated.
 1637  */
 1638 static int
 1639 re_detach(device_t dev)
 1640 {
 1641         struct rl_softc         *sc;
 1642         struct ifnet            *ifp;
 1643         int                     i, rid;
 1644 
 1645         sc = device_get_softc(dev);
 1646         ifp = sc->rl_ifp;
 1647         KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
 1648 
 1649         /* These should only be active if attach succeeded */
 1650         if (device_is_attached(dev)) {
 1651 #ifdef DEVICE_POLLING
 1652                 if (ifp->if_capenable & IFCAP_POLLING)
 1653                         ether_poll_deregister(ifp);
 1654 #endif
 1655                 RL_LOCK(sc);
 1656 #if 0
 1657                 sc->suspended = 1;
 1658 #endif
 1659                 re_stop(sc);
 1660                 RL_UNLOCK(sc);
 1661                 callout_drain(&sc->rl_stat_callout);
 1662                 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
 1663                 /*
 1664                  * Force off the IFF_UP flag here, in case someone
 1665                  * still had a BPF descriptor attached to this
 1666                  * interface. If they do, ether_ifdetach() will cause
 1667                  * the BPF code to try and clear the promisc mode
 1668                  * flag, which will bubble down to re_ioctl(),
 1669                  * which will try to call re_init() again. This will
 1670                  * turn the NIC back on and restart the MII ticker,
 1671                  * which will panic the system when the kernel tries
 1672                  * to invoke the re_tick() function that isn't there
 1673                  * anymore.
 1674                  */
 1675                 ifp->if_flags &= ~IFF_UP;
 1676                 ether_ifdetach(ifp);
 1677         }
 1678         if (sc->rl_miibus)
 1679                 device_delete_child(dev, sc->rl_miibus);
 1680         bus_generic_detach(dev);
 1681 
 1682         /*
 1683          * The rest is resource deallocation, so we should already be
 1684          * stopped here.
 1685          */
 1686 
 1687         if (sc->rl_intrhand[0] != NULL) {
 1688                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
 1689                 sc->rl_intrhand[0] = NULL;
 1690         }
 1691         if (ifp != NULL)
 1692                 if_free(ifp);
 1693         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
 1694                 rid = 0;
 1695         else
 1696                 rid = 1;
 1697         if (sc->rl_irq[0] != NULL) {
 1698                 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
 1699                 sc->rl_irq[0] = NULL;
 1700         }
 1701         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
 1702                 pci_release_msi(dev);
 1703         if (sc->rl_res_pba) {
 1704                 rid = PCIR_BAR(4);
 1705                 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
 1706         }
 1707         if (sc->rl_res)
 1708                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
 1709                     sc->rl_res);
 1710 
 1711         /* Unload and free the RX DMA ring memory and map */
 1712 
 1713         if (sc->rl_ldata.rl_rx_list_tag) {
 1714                 if (sc->rl_ldata.rl_rx_list_map)
 1715                         bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
 1716                             sc->rl_ldata.rl_rx_list_map);
 1717                 if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
 1718                         bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
 1719                             sc->rl_ldata.rl_rx_list,
 1720                             sc->rl_ldata.rl_rx_list_map);
 1721                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
 1722         }
 1723 
 1724         /* Unload and free the TX DMA ring memory and map */
 1725 
 1726         if (sc->rl_ldata.rl_tx_list_tag) {
 1727                 if (sc->rl_ldata.rl_tx_list_map)
 1728                         bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
 1729                             sc->rl_ldata.rl_tx_list_map);
 1730                 if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
 1731                         bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
 1732                             sc->rl_ldata.rl_tx_list,
 1733                             sc->rl_ldata.rl_tx_list_map);
 1734                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
 1735         }
 1736 
 1737         /* Destroy all the RX and TX buffer maps */
 1738 
 1739         if (sc->rl_ldata.rl_tx_mtag) {
 1740                 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
 1741                         if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
 1742                                 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
 1743                                     sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
 1744                 }
 1745                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
 1746         }
 1747         if (sc->rl_ldata.rl_rx_mtag) {
 1748                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
 1749                         if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
 1750                                 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
 1751                                     sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
 1752                 }
 1753                 if (sc->rl_ldata.rl_rx_sparemap)
 1754                         bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
 1755                             sc->rl_ldata.rl_rx_sparemap);
 1756                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
 1757         }
 1758         if (sc->rl_ldata.rl_jrx_mtag) {
 1759                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
 1760                         if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
 1761                                 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
 1762                                     sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
 1763                 }
 1764                 if (sc->rl_ldata.rl_jrx_sparemap)
 1765                         bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
 1766                             sc->rl_ldata.rl_jrx_sparemap);
 1767                 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
 1768         }
 1769         /* Unload and free the stats buffer and map */
 1770 
 1771         if (sc->rl_ldata.rl_stag) {
 1772                 if (sc->rl_ldata.rl_smap)
 1773                         bus_dmamap_unload(sc->rl_ldata.rl_stag,
 1774                             sc->rl_ldata.rl_smap);
 1775                 if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
 1776                         bus_dmamem_free(sc->rl_ldata.rl_stag,
 1777                             sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
 1778                 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
 1779         }
 1780 
 1781         if (sc->rl_parent_tag)
 1782                 bus_dma_tag_destroy(sc->rl_parent_tag);
 1783 
 1784         mtx_destroy(&sc->rl_mtx);
 1785 
 1786         return (0);
 1787 }
 1788 
 1789 static __inline void
 1790 re_discard_rxbuf(struct rl_softc *sc, int idx)
 1791 {
 1792         struct rl_desc          *desc;
 1793         struct rl_rxdesc        *rxd;
 1794         uint32_t                cmdstat;
 1795 
 1796         if (sc->rl_ifp->if_mtu > RL_MTU &&
 1797             (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
 1798                 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
 1799         else
 1800                 rxd = &sc->rl_ldata.rl_rx_desc[idx];
 1801         desc = &sc->rl_ldata.rl_rx_list[idx];
 1802         desc->rl_vlanctl = 0;
 1803         cmdstat = rxd->rx_size;
 1804         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
 1805                 cmdstat |= RL_RDESC_CMD_EOR;
 1806         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
 1807 }
 1808 
 1809 static int
 1810 re_newbuf(struct rl_softc *sc, int idx)
 1811 {
 1812         struct mbuf             *m;
 1813         struct rl_rxdesc        *rxd;
 1814         bus_dma_segment_t       segs[1];
 1815         bus_dmamap_t            map;
 1816         struct rl_desc          *desc;
 1817         uint32_t                cmdstat;
 1818         int                     error, nsegs;
 1819 
 1820         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1821         if (m == NULL)
 1822                 return (ENOBUFS);
 1823 
 1824         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1825 #ifdef RE_FIXUP_RX
 1826         /*
 1827          * This is part of an evil trick to deal with non-x86 platforms.
 1828          * The RealTek chip requires RX buffers to be aligned on 64-bit
 1829          * boundaries, but that will hose non-x86 machines. To get around
 1830          * this, we leave some empty space at the start of each buffer
 1831          * and for non-x86 hosts, we copy the buffer back six bytes
 1832          * to achieve word alignment. This is slightly more efficient
 1833          * than allocating a new buffer, copying the contents, and
 1834          * discarding the old buffer.
 1835          */
 1836         m_adj(m, RE_ETHER_ALIGN);
 1837 #endif
 1838         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
 1839             sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
 1840         if (error != 0) {
 1841                 m_freem(m);
 1842                 return (ENOBUFS);
 1843         }
 1844         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
 1845 
 1846         rxd = &sc->rl_ldata.rl_rx_desc[idx];
 1847         if (rxd->rx_m != NULL) {
 1848                 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
 1849                     BUS_DMASYNC_POSTREAD);
 1850                 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
 1851         }
 1852 
 1853         rxd->rx_m = m;
 1854         map = rxd->rx_dmamap;
 1855         rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
 1856         rxd->rx_size = segs[0].ds_len;
 1857         sc->rl_ldata.rl_rx_sparemap = map;
 1858         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
 1859             BUS_DMASYNC_PREREAD);
 1860 
 1861         desc = &sc->rl_ldata.rl_rx_list[idx];
 1862         desc->rl_vlanctl = 0;
 1863         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
 1864         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
 1865         cmdstat = segs[0].ds_len;
 1866         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
 1867                 cmdstat |= RL_RDESC_CMD_EOR;
 1868         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
 1869 
 1870         return (0);
 1871 }
 1872 
 1873 static int
 1874 re_jumbo_newbuf(struct rl_softc *sc, int idx)
 1875 {
 1876         struct mbuf             *m;
 1877         struct rl_rxdesc        *rxd;
 1878         bus_dma_segment_t       segs[1];
 1879         bus_dmamap_t            map;
 1880         struct rl_desc          *desc;
 1881         uint32_t                cmdstat;
 1882         int                     error, nsegs;
 1883 
 1884         m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
 1885         if (m == NULL)
 1886                 return (ENOBUFS);
 1887         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
 1888 #ifdef RE_FIXUP_RX
 1889         m_adj(m, RE_ETHER_ALIGN);
 1890 #endif
 1891         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
 1892             sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
 1893         if (error != 0) {
 1894                 m_freem(m);
 1895                 return (ENOBUFS);
 1896         }
 1897         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
 1898 
 1899         rxd = &sc->rl_ldata.rl_jrx_desc[idx];
 1900         if (rxd->rx_m != NULL) {
 1901                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
 1902                     BUS_DMASYNC_POSTREAD);
 1903                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
 1904         }
 1905 
 1906         rxd->rx_m = m;
 1907         map = rxd->rx_dmamap;
 1908         rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
 1909         rxd->rx_size = segs[0].ds_len;
 1910         sc->rl_ldata.rl_jrx_sparemap = map;
 1911         bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
 1912             BUS_DMASYNC_PREREAD);
 1913 
 1914         desc = &sc->rl_ldata.rl_rx_list[idx];
 1915         desc->rl_vlanctl = 0;
 1916         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
 1917         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
 1918         cmdstat = segs[0].ds_len;
 1919         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
 1920                 cmdstat |= RL_RDESC_CMD_EOR;
 1921         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
 1922 
 1923         return (0);
 1924 }
 1925 
 1926 #ifdef RE_FIXUP_RX
 1927 static __inline void
 1928 re_fixup_rx(struct mbuf *m)
 1929 {
 1930         int                     i;
 1931         uint16_t                *src, *dst;
 1932 
 1933         src = mtod(m, uint16_t *);
 1934         dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
 1935 
 1936         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
 1937                 *dst++ = *src++;
 1938 
 1939         m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
 1940 }
 1941 #endif
 1942 
 1943 static int
 1944 re_tx_list_init(struct rl_softc *sc)
 1945 {
 1946         struct rl_desc          *desc;
 1947         int                     i;
 1948 
 1949         RL_LOCK_ASSERT(sc);
 1950 
 1951         bzero(sc->rl_ldata.rl_tx_list,
 1952             sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
 1953         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
 1954                 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
 1955         /* Set EOR. */
 1956         desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
 1957         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
 1958 
 1959         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
 1960             sc->rl_ldata.rl_tx_list_map,
 1961             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1962 
 1963         sc->rl_ldata.rl_tx_prodidx = 0;
 1964         sc->rl_ldata.rl_tx_considx = 0;
 1965         sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
 1966 
 1967         return (0);
 1968 }
 1969 
 1970 static int
 1971 re_rx_list_init(struct rl_softc *sc)
 1972 {
 1973         int                     error, i;
 1974 
 1975         bzero(sc->rl_ldata.rl_rx_list,
 1976             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
 1977         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
 1978                 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
 1979                 if ((error = re_newbuf(sc, i)) != 0)
 1980                         return (error);
 1981         }
 1982 
 1983         /* Flush the RX descriptors */
 1984 
 1985         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
 1986             sc->rl_ldata.rl_rx_list_map,
 1987             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
 1988 
 1989         sc->rl_ldata.rl_rx_prodidx = 0;
 1990         sc->rl_head = sc->rl_tail = NULL;
 1991         sc->rl_int_rx_act = 0;
 1992 
 1993         return (0);
 1994 }
 1995 
 1996 static int
 1997 re_jrx_list_init(struct rl_softc *sc)
 1998 {
 1999         int                     error, i;
 2000 
 2001         bzero(sc->rl_ldata.rl_rx_list,
 2002             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
 2003         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
 2004                 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
 2005                 if ((error = re_jumbo_newbuf(sc, i)) != 0)
 2006                         return (error);
 2007         }
 2008 
 2009         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
 2010             sc->rl_ldata.rl_rx_list_map,
 2011             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2012 
 2013         sc->rl_ldata.rl_rx_prodidx = 0;
 2014         sc->rl_head = sc->rl_tail = NULL;
 2015         sc->rl_int_rx_act = 0;
 2016 
 2017         return (0);
 2018 }
 2019 
 2020 /*
 2021  * RX handler for C+ and 8169. For the gigE chips, we support
 2022  * the reception of jumbo frames that have been fragmented
 2023  * across multiple 2K mbuf cluster buffers.
 2024  */
 2025 static int
 2026 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
 2027 {
 2028         struct mbuf             *m;
 2029         struct ifnet            *ifp;
 2030         int                     i, rxerr, total_len;
 2031         struct rl_desc          *cur_rx;
 2032         u_int32_t               rxstat, rxvlan;
 2033         int                     jumbo, maxpkt = 16, rx_npkts = 0;
 2034 
 2035         RL_LOCK_ASSERT(sc);
 2036 
 2037         ifp = sc->rl_ifp;
 2038         if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
 2039                 jumbo = 1;
 2040         else
 2041                 jumbo = 0;
 2042 
 2043         /* Invalidate the descriptor memory */
 2044 
 2045         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
 2046             sc->rl_ldata.rl_rx_list_map,
 2047             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2048 
 2049         for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
 2050             i = RL_RX_DESC_NXT(sc, i)) {
 2051                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 2052                         break;
 2053                 cur_rx = &sc->rl_ldata.rl_rx_list[i];
 2054                 rxstat = le32toh(cur_rx->rl_cmdstat);
 2055                 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
 2056                         break;
 2057                 total_len = rxstat & sc->rl_rxlenmask;
 2058                 rxvlan = le32toh(cur_rx->rl_vlanctl);
 2059                 if (jumbo != 0)
 2060                         m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
 2061                 else
 2062                         m = sc->rl_ldata.rl_rx_desc[i].rx_m;
 2063 
 2064                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
 2065                     (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
 2066                     (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
 2067                         /*
 2068                          * RTL8168C or later controllers do not
 2069                          * support multi-fragment packet.
 2070                          */
 2071                         re_discard_rxbuf(sc, i);
 2072                         continue;
 2073                 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
 2074                         if (re_newbuf(sc, i) != 0) {
 2075                                 /*
 2076                                  * If this is part of a multi-fragment packet,
 2077                                  * discard all the pieces.
 2078                                  */
 2079                                 if (sc->rl_head != NULL) {
 2080                                         m_freem(sc->rl_head);
 2081                                         sc->rl_head = sc->rl_tail = NULL;
 2082                                 }
 2083                                 re_discard_rxbuf(sc, i);
 2084                                 continue;
 2085                         }
 2086                         m->m_len = RE_RX_DESC_BUFLEN;
 2087                         if (sc->rl_head == NULL)
 2088                                 sc->rl_head = sc->rl_tail = m;
 2089                         else {
 2090                                 m->m_flags &= ~M_PKTHDR;
 2091                                 sc->rl_tail->m_next = m;
 2092                                 sc->rl_tail = m;
 2093                         }
 2094                         continue;
 2095                 }
 2096 
 2097                 /*
 2098                  * NOTE: for the 8139C+, the frame length field
 2099                  * is always 12 bits in size, but for the gigE chips,
 2100                  * it is 13 bits (since the max RX frame length is 16K).
 2101                  * Unfortunately, all 32 bits in the status word
 2102                  * were already used, so to make room for the extra
 2103                  * length bit, RealTek took out the 'frame alignment
 2104                  * error' bit and shifted the other status bits
 2105                  * over one slot. The OWN, EOR, FS and LS bits are
 2106                  * still in the same places. We have already extracted
 2107                  * the frame length and checked the OWN bit, so rather
 2108                  * than using an alternate bit mapping, we shift the
 2109                  * status bits one space to the right so we can evaluate
 2110                  * them using the 8169 status as though it was in the
 2111                  * same format as that of the 8139C+.
 2112                  */
 2113                 if (sc->rl_type == RL_8169)
 2114                         rxstat >>= 1;
 2115 
 2116                 /*
 2117                  * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
 2118                  * set, but if CRC is clear, it will still be a valid frame.
 2119                  */
 2120                 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
 2121                         rxerr = 1;
 2122                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
 2123                             total_len > 8191 &&
 2124                             (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
 2125                                 rxerr = 0;
 2126                         if (rxerr != 0) {
 2127                                 ifp->if_ierrors++;
 2128                                 /*
 2129                                  * If this is part of a multi-fragment packet,
 2130                                  * discard all the pieces.
 2131                                  */
 2132                                 if (sc->rl_head != NULL) {
 2133                                         m_freem(sc->rl_head);
 2134                                         sc->rl_head = sc->rl_tail = NULL;
 2135                                 }
 2136                                 re_discard_rxbuf(sc, i);
 2137                                 continue;
 2138                         }
 2139                 }
 2140 
 2141                 /*
 2142                  * If allocating a replacement mbuf fails,
 2143                  * reload the current one.
 2144                  */
 2145                 if (jumbo != 0)
 2146                         rxerr = re_jumbo_newbuf(sc, i);
 2147                 else
 2148                         rxerr = re_newbuf(sc, i);
 2149                 if (rxerr != 0) {
 2150                         ifp->if_iqdrops++;
 2151                         if (sc->rl_head != NULL) {
 2152                                 m_freem(sc->rl_head);
 2153                                 sc->rl_head = sc->rl_tail = NULL;
 2154                         }
 2155                         re_discard_rxbuf(sc, i);
 2156                         continue;
 2157                 }
 2158 
 2159                 if (sc->rl_head != NULL) {
 2160                         if (jumbo != 0)
 2161                                 m->m_len = total_len;
 2162                         else {
 2163                                 m->m_len = total_len % RE_RX_DESC_BUFLEN;
 2164                                 if (m->m_len == 0)
 2165                                         m->m_len = RE_RX_DESC_BUFLEN;
 2166                         }
 2167                         /*
 2168                          * Special case: if there's 4 bytes or less
 2169                          * in this buffer, the mbuf can be discarded:
 2170                          * the last 4 bytes is the CRC, which we don't
 2171                          * care about anyway.
 2172                          */
 2173                         if (m->m_len <= ETHER_CRC_LEN) {
 2174                                 sc->rl_tail->m_len -=
 2175                                     (ETHER_CRC_LEN - m->m_len);
 2176                                 m_freem(m);
 2177                         } else {
 2178                                 m->m_len -= ETHER_CRC_LEN;
 2179                                 m->m_flags &= ~M_PKTHDR;
 2180                                 sc->rl_tail->m_next = m;
 2181                         }
 2182                         m = sc->rl_head;
 2183                         sc->rl_head = sc->rl_tail = NULL;
 2184                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
 2185                 } else
 2186                         m->m_pkthdr.len = m->m_len =
 2187                             (total_len - ETHER_CRC_LEN);
 2188 
 2189 #ifdef RE_FIXUP_RX
 2190                 re_fixup_rx(m);
 2191 #endif
 2192                 ifp->if_ipackets++;
 2193                 m->m_pkthdr.rcvif = ifp;
 2194 
 2195                 /* Do RX checksumming if enabled */
 2196 
 2197                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 2198                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
 2199                                 /* Check IP header checksum */
 2200                                 if (rxstat & RL_RDESC_STAT_PROTOID)
 2201                                         m->m_pkthdr.csum_flags |=
 2202                                             CSUM_IP_CHECKED;
 2203                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
 2204                                         m->m_pkthdr.csum_flags |=
 2205                                             CSUM_IP_VALID;
 2206 
 2207                                 /* Check TCP/UDP checksum */
 2208                                 if ((RL_TCPPKT(rxstat) &&
 2209                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
 2210                                     (RL_UDPPKT(rxstat) &&
 2211                                      !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
 2212                                         m->m_pkthdr.csum_flags |=
 2213                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
 2214                                         m->m_pkthdr.csum_data = 0xffff;
 2215                                 }
 2216                         } else {
 2217                                 /*
 2218                                  * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
 2219                                  */
 2220                                 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
 2221                                     (rxvlan & RL_RDESC_IPV4))
 2222                                         m->m_pkthdr.csum_flags |=
 2223                                             CSUM_IP_CHECKED;
 2224                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
 2225                                     (rxvlan & RL_RDESC_IPV4))
 2226                                         m->m_pkthdr.csum_flags |=
 2227                                             CSUM_IP_VALID;
 2228                                 if (((rxstat & RL_RDESC_STAT_TCP) &&
 2229                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
 2230                                     ((rxstat & RL_RDESC_STAT_UDP) &&
 2231                                     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
 2232                                         m->m_pkthdr.csum_flags |=
 2233                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
 2234                                         m->m_pkthdr.csum_data = 0xffff;
 2235                                 }
 2236                         }
 2237                 }
 2238                 maxpkt--;
 2239                 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
 2240                         m->m_pkthdr.ether_vtag =
 2241                             bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
 2242                         m->m_flags |= M_VLANTAG;
 2243                 }
 2244                 RL_UNLOCK(sc);
 2245                 (*ifp->if_input)(ifp, m);
 2246                 RL_LOCK(sc);
 2247                 rx_npkts++;
 2248         }
 2249 
 2250         /* Flush the RX DMA ring */
 2251 
 2252         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
 2253             sc->rl_ldata.rl_rx_list_map,
 2254             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
 2255 
 2256         sc->rl_ldata.rl_rx_prodidx = i;
 2257 
 2258         if (rx_npktsp != NULL)
 2259                 *rx_npktsp = rx_npkts;
 2260         if (maxpkt)
 2261                 return (EAGAIN);
 2262 
 2263         return (0);
 2264 }
 2265 
 2266 static void
 2267 re_txeof(struct rl_softc *sc)
 2268 {
 2269         struct ifnet            *ifp;
 2270         struct rl_txdesc        *txd;
 2271         u_int32_t               txstat;
 2272         int                     cons;
 2273 
 2274         cons = sc->rl_ldata.rl_tx_considx;
 2275         if (cons == sc->rl_ldata.rl_tx_prodidx)
 2276                 return;
 2277 
 2278         ifp = sc->rl_ifp;
 2279         /* Invalidate the TX descriptor list */
 2280         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
 2281             sc->rl_ldata.rl_tx_list_map,
 2282             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2283 
 2284         for (; cons != sc->rl_ldata.rl_tx_prodidx;
 2285             cons = RL_TX_DESC_NXT(sc, cons)) {
 2286                 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
 2287                 if (txstat & RL_TDESC_STAT_OWN)
 2288                         break;
 2289                 /*
 2290                  * We only stash mbufs in the last descriptor
 2291                  * in a fragment chain, which also happens to
 2292                  * be the only place where the TX status bits
 2293                  * are valid.
 2294                  */
 2295                 if (txstat & RL_TDESC_CMD_EOF) {
 2296                         txd = &sc->rl_ldata.rl_tx_desc[cons];
 2297                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
 2298                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2299                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
 2300                             txd->tx_dmamap);
 2301                         KASSERT(txd->tx_m != NULL,
 2302                             ("%s: freeing NULL mbufs!", __func__));
 2303                         m_freem(txd->tx_m);
 2304                         txd->tx_m = NULL;
 2305                         if (txstat & (RL_TDESC_STAT_EXCESSCOL|
 2306                             RL_TDESC_STAT_COLCNT))
 2307                                 ifp->if_collisions++;
 2308                         if (txstat & RL_TDESC_STAT_TXERRSUM)
 2309                                 ifp->if_oerrors++;
 2310                         else
 2311                                 ifp->if_opackets++;
 2312                 }
 2313                 sc->rl_ldata.rl_tx_free++;
 2314                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2315         }
 2316         sc->rl_ldata.rl_tx_considx = cons;
 2317 
 2318         /* No changes made to the TX ring, so no flush needed */
 2319 
 2320         if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
 2321 #ifdef RE_TX_MODERATION
 2322                 /*
 2323                  * If not all descriptors have been reaped yet, reload
 2324                  * the timer so that we will eventually get another
 2325                  * interrupt that will cause us to re-enter this routine.
 2326                  * This is done in case the transmitter has gone idle.
 2327                  */
 2328                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
 2329 #endif
 2330         } else
 2331                 sc->rl_watchdog_timer = 0;
 2332 }
 2333 
 2334 static void
 2335 re_tick(void *xsc)
 2336 {
 2337         struct rl_softc         *sc;
 2338         struct mii_data         *mii;
 2339 
 2340         sc = xsc;
 2341 
 2342         RL_LOCK_ASSERT(sc);
 2343 
 2344         mii = device_get_softc(sc->rl_miibus);
 2345         mii_tick(mii);
 2346         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
 2347                 re_miibus_statchg(sc->rl_dev);
 2348         /*
 2349          * Reclaim transmitted frames here. Technically it is not
 2350          * necessary to do here but it ensures periodic reclamation
 2351          * regardless of Tx completion interrupt which seems to be
 2352          * lost on PCIe based controllers under certain situations.
 2353          */
 2354         re_txeof(sc);
 2355         re_watchdog(sc);
 2356         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
 2357 }
 2358 
 2359 #ifdef DEVICE_POLLING
 2360 static int
 2361 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 2362 {
 2363         struct rl_softc *sc = ifp->if_softc;
 2364         int rx_npkts = 0;
 2365 
 2366         RL_LOCK(sc);
 2367         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 2368                 rx_npkts = re_poll_locked(ifp, cmd, count);
 2369         RL_UNLOCK(sc);
 2370         return (rx_npkts);
 2371 }
 2372 
 2373 static int
 2374 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
 2375 {
 2376         struct rl_softc *sc = ifp->if_softc;
 2377         int rx_npkts;
 2378 
 2379         RL_LOCK_ASSERT(sc);
 2380 
 2381         sc->rxcycles = count;
 2382         re_rxeof(sc, &rx_npkts);
 2383         re_txeof(sc);
 2384 
 2385         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2386                 re_start_locked(ifp);
 2387 
 2388         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
 2389                 u_int16_t       status;
 2390 
 2391                 status = CSR_READ_2(sc, RL_ISR);
 2392                 if (status == 0xffff)
 2393                         return (rx_npkts);
 2394                 if (status)
 2395                         CSR_WRITE_2(sc, RL_ISR, status);
 2396                 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
 2397                     (sc->rl_flags & RL_FLAG_PCIE))
 2398                         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
 2399 
 2400                 /*
 2401                  * XXX check behaviour on receiver stalls.
 2402                  */
 2403 
 2404                 if (status & RL_ISR_SYSTEM_ERR) {
 2405                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2406                         re_init_locked(sc);
 2407                 }
 2408         }
 2409         return (rx_npkts);
 2410 }
 2411 #endif /* DEVICE_POLLING */
 2412 
 2413 static int
 2414 re_intr(void *arg)
 2415 {
 2416         struct rl_softc         *sc;
 2417         uint16_t                status;
 2418 
 2419         sc = arg;
 2420 
 2421         status = CSR_READ_2(sc, RL_ISR);
 2422         if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
 2423                 return (FILTER_STRAY);
 2424         CSR_WRITE_2(sc, RL_IMR, 0);
 2425 
 2426         taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
 2427 
 2428         return (FILTER_HANDLED);
 2429 }
 2430 
 2431 static void
 2432 re_int_task(void *arg, int npending)
 2433 {
 2434         struct rl_softc         *sc;
 2435         struct ifnet            *ifp;
 2436         u_int16_t               status;
 2437         int                     rval = 0;
 2438 
 2439         sc = arg;
 2440         ifp = sc->rl_ifp;
 2441 
 2442         RL_LOCK(sc);
 2443 
 2444         status = CSR_READ_2(sc, RL_ISR);
 2445         CSR_WRITE_2(sc, RL_ISR, status);
 2446 
 2447         if (sc->suspended ||
 2448             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 2449                 RL_UNLOCK(sc);
 2450                 return;
 2451         }
 2452 
 2453 #ifdef DEVICE_POLLING
 2454         if  (ifp->if_capenable & IFCAP_POLLING) {
 2455                 RL_UNLOCK(sc);
 2456                 return;
 2457         }
 2458 #endif
 2459 
 2460         if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
 2461                 rval = re_rxeof(sc, NULL);
 2462 
 2463         /*
 2464          * Some chips will ignore a second TX request issued
 2465          * while an existing transmission is in progress. If
 2466          * the transmitter goes idle but there are still
 2467          * packets waiting to be sent, we need to restart the
 2468          * channel here to flush them out. This only seems to
 2469          * be required with the PCIe devices.
 2470          */
 2471         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
 2472             (sc->rl_flags & RL_FLAG_PCIE))
 2473                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
 2474         if (status & (
 2475 #ifdef RE_TX_MODERATION
 2476             RL_ISR_TIMEOUT_EXPIRED|
 2477 #else
 2478             RL_ISR_TX_OK|
 2479 #endif
 2480             RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
 2481                 re_txeof(sc);
 2482 
 2483         if (status & RL_ISR_SYSTEM_ERR) {
 2484                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2485                 re_init_locked(sc);
 2486         }
 2487 
 2488         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2489                 re_start_locked(ifp);
 2490 
 2491         RL_UNLOCK(sc);
 2492 
 2493         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
 2494                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
 2495                 return;
 2496         }
 2497 
 2498         CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
 2499 }
 2500 
 2501 static void
 2502 re_intr_msi(void *xsc)
 2503 {
 2504         struct rl_softc         *sc;
 2505         struct ifnet            *ifp;
 2506         uint16_t                intrs, status;
 2507 
 2508         sc = xsc;
 2509         RL_LOCK(sc);
 2510 
 2511         ifp = sc->rl_ifp;
 2512 #ifdef DEVICE_POLLING
 2513         if (ifp->if_capenable & IFCAP_POLLING) {
 2514                 RL_UNLOCK(sc);
 2515                 return;
 2516         }
 2517 #endif
 2518         /* Disable interrupts. */
 2519         CSR_WRITE_2(sc, RL_IMR, 0);
 2520         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 2521                 RL_UNLOCK(sc);
 2522                 return;
 2523         }
 2524 
 2525         intrs = RL_INTRS_CPLUS;
 2526         status = CSR_READ_2(sc, RL_ISR);
 2527         CSR_WRITE_2(sc, RL_ISR, status);
 2528         if (sc->rl_int_rx_act > 0) {
 2529                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
 2530                     RL_ISR_RX_OVERRUN);
 2531                 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
 2532                     RL_ISR_RX_OVERRUN);
 2533         }
 2534 
 2535         if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
 2536             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
 2537                 re_rxeof(sc, NULL);
 2538                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2539                         if (sc->rl_int_rx_mod != 0 &&
 2540                             (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
 2541                             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
 2542                                 /* Rearm one-shot timer. */
 2543                                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
 2544                                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
 2545                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
 2546                                 sc->rl_int_rx_act = 1;
 2547                         } else {
 2548                                 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
 2549                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
 2550                                 sc->rl_int_rx_act = 0;
 2551                         }
 2552                 }
 2553         }
 2554 
 2555         /*
 2556          * Some chips will ignore a second TX request issued
 2557          * while an existing transmission is in progress. If
 2558          * the transmitter goes idle but there are still
 2559          * packets waiting to be sent, we need to restart the
 2560          * channel here to flush them out. This only seems to
 2561          * be required with the PCIe devices.
 2562          */
 2563         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
 2564             (sc->rl_flags & RL_FLAG_PCIE))
 2565                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
 2566         if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
 2567                 re_txeof(sc);
 2568 
 2569         if (status & RL_ISR_SYSTEM_ERR) {
 2570                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2571                 re_init_locked(sc);
 2572         }
 2573 
 2574         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2575                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2576                         re_start_locked(ifp);
 2577                 CSR_WRITE_2(sc, RL_IMR, intrs);
 2578         }
 2579         RL_UNLOCK(sc);
 2580 }
 2581 
 2582 static int
 2583 re_encap(struct rl_softc *sc, struct mbuf **m_head)
 2584 {
 2585         struct rl_txdesc        *txd, *txd_last;
 2586         bus_dma_segment_t       segs[RL_NTXSEGS];
 2587         bus_dmamap_t            map;
 2588         struct mbuf             *m_new;
 2589         struct rl_desc          *desc;
 2590         int                     nsegs, prod;
 2591         int                     i, error, ei, si;
 2592         int                     padlen;
 2593         uint32_t                cmdstat, csum_flags, vlanctl;
 2594 
 2595         RL_LOCK_ASSERT(sc);
 2596         M_ASSERTPKTHDR((*m_head));
 2597 
 2598         /*
 2599          * With some of the RealTek chips, using the checksum offload
 2600          * support in conjunction with the autopadding feature results
 2601          * in the transmission of corrupt frames. For example, if we
 2602          * need to send a really small IP fragment that's less than 60
 2603          * bytes in size, and IP header checksumming is enabled, the
 2604          * resulting ethernet frame that appears on the wire will
 2605          * have garbled payload. To work around this, if TX IP checksum
 2606          * offload is enabled, we always manually pad short frames out
 2607          * to the minimum ethernet frame size.
 2608          */
 2609         if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
 2610             (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
 2611             ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
 2612                 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
 2613                 if (M_WRITABLE(*m_head) == 0) {
 2614                         /* Get a writable copy. */
 2615                         m_new = m_dup(*m_head, M_DONTWAIT);
 2616                         m_freem(*m_head);
 2617                         if (m_new == NULL) {
 2618                                 *m_head = NULL;
 2619                                 return (ENOBUFS);
 2620                         }
 2621                         *m_head = m_new;
 2622                 }
 2623                 if ((*m_head)->m_next != NULL ||
 2624                     M_TRAILINGSPACE(*m_head) < padlen) {
 2625                         m_new = m_defrag(*m_head, M_DONTWAIT);
 2626                         if (m_new == NULL) {
 2627                                 m_freem(*m_head);
 2628                                 *m_head = NULL;
 2629                                 return (ENOBUFS);
 2630                         }
 2631                 } else
 2632                         m_new = *m_head;
 2633 
 2634                 /*
 2635                  * Manually pad short frames, and zero the pad space
 2636                  * to avoid leaking data.
 2637                  */
 2638                 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
 2639                 m_new->m_pkthdr.len += padlen;
 2640                 m_new->m_len = m_new->m_pkthdr.len;
 2641                 *m_head = m_new;
 2642         }
 2643 
 2644         prod = sc->rl_ldata.rl_tx_prodidx;
 2645         txd = &sc->rl_ldata.rl_tx_desc[prod];
 2646         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
 2647             *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
 2648         if (error == EFBIG) {
 2649                 m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
 2650                 if (m_new == NULL) {
 2651                         m_freem(*m_head);
 2652                         *m_head = NULL;
 2653                         return (ENOBUFS);
 2654                 }
 2655                 *m_head = m_new;
 2656                 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
 2657                     txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
 2658                 if (error != 0) {
 2659                         m_freem(*m_head);
 2660                         *m_head = NULL;
 2661                         return (error);
 2662                 }
 2663         } else if (error != 0)
 2664                 return (error);
 2665         if (nsegs == 0) {
 2666                 m_freem(*m_head);
 2667                 *m_head = NULL;
 2668                 return (EIO);
 2669         }
 2670 
 2671         /* Check for number of available descriptors. */
 2672         if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
 2673                 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
 2674                 return (ENOBUFS);
 2675         }
 2676 
 2677         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
 2678             BUS_DMASYNC_PREWRITE);
 2679 
 2680         /*
 2681          * Set up checksum offload. Note: checksum offload bits must
 2682          * appear in all descriptors of a multi-descriptor transmit
 2683          * attempt. This is according to testing done with an 8169
 2684          * chip. This is a requirement.
 2685          */
 2686         vlanctl = 0;
 2687         csum_flags = 0;
 2688         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 2689                 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
 2690                         csum_flags |= RL_TDESC_CMD_LGSEND;
 2691                         vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
 2692                             RL_TDESC_CMD_MSSVALV2_SHIFT);
 2693                 } else {
 2694                         csum_flags |= RL_TDESC_CMD_LGSEND |
 2695                             ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
 2696                             RL_TDESC_CMD_MSSVAL_SHIFT);
 2697                 }
 2698         } else {
 2699                 /*
 2700                  * Unconditionally enable IP checksum if TCP or UDP
 2701                  * checksum is required. Otherwise, TCP/UDP checksum
 2702                  * does't make effects.
 2703                  */
 2704                 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
 2705                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
 2706                                 csum_flags |= RL_TDESC_CMD_IPCSUM;
 2707                                 if (((*m_head)->m_pkthdr.csum_flags &
 2708                                     CSUM_TCP) != 0)
 2709                                         csum_flags |= RL_TDESC_CMD_TCPCSUM;
 2710                                 if (((*m_head)->m_pkthdr.csum_flags &
 2711                                     CSUM_UDP) != 0)
 2712                                         csum_flags |= RL_TDESC_CMD_UDPCSUM;
 2713                         } else {
 2714                                 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
 2715                                 if (((*m_head)->m_pkthdr.csum_flags &
 2716                                     CSUM_TCP) != 0)
 2717                                         vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
 2718                                 if (((*m_head)->m_pkthdr.csum_flags &
 2719                                     CSUM_UDP) != 0)
 2720                                         vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
 2721                         }
 2722                 }
 2723         }
 2724 
 2725         /*
 2726          * Set up hardware VLAN tagging. Note: vlan tag info must
 2727          * appear in all descriptors of a multi-descriptor
 2728          * transmission attempt.
 2729          */
 2730         if ((*m_head)->m_flags & M_VLANTAG)
 2731                 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
 2732                     RL_TDESC_VLANCTL_TAG;
 2733 
 2734         si = prod;
 2735         for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
 2736                 desc = &sc->rl_ldata.rl_tx_list[prod];
 2737                 desc->rl_vlanctl = htole32(vlanctl);
 2738                 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
 2739                 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
 2740                 cmdstat = segs[i].ds_len;
 2741                 if (i != 0)
 2742                         cmdstat |= RL_TDESC_CMD_OWN;
 2743                 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
 2744                         cmdstat |= RL_TDESC_CMD_EOR;
 2745                 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
 2746                 sc->rl_ldata.rl_tx_free--;
 2747         }
 2748         /* Update producer index. */
 2749         sc->rl_ldata.rl_tx_prodidx = prod;
 2750 
 2751         /* Set EOF on the last descriptor. */
 2752         ei = RL_TX_DESC_PRV(sc, prod);
 2753         desc = &sc->rl_ldata.rl_tx_list[ei];
 2754         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
 2755 
 2756         desc = &sc->rl_ldata.rl_tx_list[si];
 2757         /* Set SOF and transfer ownership of packet to the chip. */
 2758         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
 2759 
 2760         /*
 2761          * Insure that the map for this transmission
 2762          * is placed at the array index of the last descriptor
 2763          * in this chain.  (Swap last and first dmamaps.)
 2764          */
 2765         txd_last = &sc->rl_ldata.rl_tx_desc[ei];
 2766         map = txd->tx_dmamap;
 2767         txd->tx_dmamap = txd_last->tx_dmamap;
 2768         txd_last->tx_dmamap = map;
 2769         txd_last->tx_m = *m_head;
 2770 
 2771         return (0);
 2772 }
 2773 
 2774 static void
 2775 re_start(struct ifnet *ifp)
 2776 {
 2777         struct rl_softc         *sc;
 2778 
 2779         sc = ifp->if_softc;
 2780         RL_LOCK(sc);
 2781         re_start_locked(ifp);
 2782         RL_UNLOCK(sc);
 2783 }
 2784 
 2785 /*
 2786  * Main transmit routine for C+ and gigE NICs.
 2787  */
 2788 static void
 2789 re_start_locked(struct ifnet *ifp)
 2790 {
 2791         struct rl_softc         *sc;
 2792         struct mbuf             *m_head;
 2793         int                     queued;
 2794 
 2795         sc = ifp->if_softc;
 2796 
 2797         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 2798             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
 2799                 return;
 2800 
 2801         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 2802             sc->rl_ldata.rl_tx_free > 1;) {
 2803                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 2804                 if (m_head == NULL)
 2805                         break;
 2806 
 2807                 if (re_encap(sc, &m_head) != 0) {
 2808                         if (m_head == NULL)
 2809                                 break;
 2810                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 2811                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2812                         break;
 2813                 }
 2814 
 2815                 /*
 2816                  * If there's a BPF listener, bounce a copy of this frame
 2817                  * to him.
 2818                  */
 2819                 ETHER_BPF_MTAP(ifp, m_head);
 2820 
 2821                 queued++;
 2822         }
 2823 
 2824         if (queued == 0) {
 2825 #ifdef RE_TX_MODERATION
 2826                 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
 2827                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
 2828 #endif
 2829                 return;
 2830         }
 2831 
 2832         /* Flush the TX descriptors */
 2833 
 2834         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
 2835             sc->rl_ldata.rl_tx_list_map,
 2836             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
 2837 
 2838         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
 2839 
 2840 #ifdef RE_TX_MODERATION
 2841         /*
 2842          * Use the countdown timer for interrupt moderation.
 2843          * 'TX done' interrupts are disabled. Instead, we reset the
 2844          * countdown timer, which will begin counting until it hits
 2845          * the value in the TIMERINT register, and then trigger an
 2846          * interrupt. Each time we write to the TIMERCNT register,
 2847          * the timer count is reset to 0.
 2848          */
 2849         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
 2850 #endif
 2851 
 2852         /*
 2853          * Set a timeout in case the chip goes out to lunch.
 2854          */
 2855         sc->rl_watchdog_timer = 5;
 2856 }
 2857 
 2858 static void
 2859 re_set_jumbo(struct rl_softc *sc, int jumbo)
 2860 {
 2861 
 2862         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
 2863                 pci_set_max_read_req(sc->rl_dev, 4096);
 2864                 return;
 2865         }
 2866 
 2867         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
 2868         if (jumbo != 0) {
 2869                 CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) |
 2870                     RL_CFG3_JUMBO_EN0);
 2871                 switch (sc->rl_hwrev->rl_rev) {
 2872                 case RL_HWREV_8168DP:
 2873                         break;
 2874                 case RL_HWREV_8168E:
 2875                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
 2876                             0x01);
 2877                         break;
 2878                 default:
 2879                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
 2880                             RL_CFG4_JUMBO_EN1);
 2881                 }
 2882         } else {
 2883                 CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) &
 2884                     ~RL_CFG3_JUMBO_EN0);
 2885                 switch (sc->rl_hwrev->rl_rev) {
 2886                 case RL_HWREV_8168DP:
 2887                         break;
 2888                 case RL_HWREV_8168E:
 2889                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
 2890                             ~0x01);
 2891                         break;
 2892                 default:
 2893                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
 2894                             ~RL_CFG4_JUMBO_EN1);
 2895                 }
 2896         }
 2897         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 2898 
 2899         switch (sc->rl_hwrev->rl_rev) {
 2900         case RL_HWREV_8168DP:
 2901                 pci_set_max_read_req(sc->rl_dev, 4096);
 2902                 break;
 2903         default:
 2904                 if (jumbo != 0)
 2905                         pci_set_max_read_req(sc->rl_dev, 512);
 2906                 else
 2907                         pci_set_max_read_req(sc->rl_dev, 4096);
 2908         }
 2909 }
 2910 
 2911 static void
 2912 re_init(void *xsc)
 2913 {
 2914         struct rl_softc         *sc = xsc;
 2915 
 2916         RL_LOCK(sc);
 2917         re_init_locked(sc);
 2918         RL_UNLOCK(sc);
 2919 }
 2920 
 2921 static void
 2922 re_init_locked(struct rl_softc *sc)
 2923 {
 2924         struct ifnet            *ifp = sc->rl_ifp;
 2925         struct mii_data         *mii;
 2926         uint32_t                reg;
 2927         uint16_t                cfg;
 2928         union {
 2929                 uint32_t align_dummy;
 2930                 u_char eaddr[ETHER_ADDR_LEN];
 2931         } eaddr;
 2932 
 2933         RL_LOCK_ASSERT(sc);
 2934 
 2935         mii = device_get_softc(sc->rl_miibus);
 2936 
 2937         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2938                 return;
 2939 
 2940         /*
 2941          * Cancel pending I/O and free all RX/TX buffers.
 2942          */
 2943         re_stop(sc);
 2944 
 2945         /* Put controller into known state. */
 2946         re_reset(sc);
 2947 
 2948         /*
 2949          * For C+ mode, initialize the RX descriptors and mbufs.
 2950          */
 2951         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
 2952                 if (ifp->if_mtu > RL_MTU) {
 2953                         if (re_jrx_list_init(sc) != 0) {
 2954                                 device_printf(sc->rl_dev,
 2955                                     "no memory for jumbo RX buffers\n");
 2956                                 re_stop(sc);
 2957                                 return;
 2958                         }
 2959                         /* Disable checksum offloading for jumbo frames. */
 2960                         ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
 2961                         ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
 2962                 } else {
 2963                         if (re_rx_list_init(sc) != 0) {
 2964                                 device_printf(sc->rl_dev,
 2965                                     "no memory for RX buffers\n");
 2966                                 re_stop(sc);
 2967                                 return;
 2968                         }
 2969                 }
 2970                 re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
 2971         } else {
 2972                 if (re_rx_list_init(sc) != 0) {
 2973                         device_printf(sc->rl_dev, "no memory for RX buffers\n");
 2974                         re_stop(sc);
 2975                         return;
 2976                 }
 2977                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
 2978                     pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
 2979                         if (ifp->if_mtu > RL_MTU)
 2980                                 pci_set_max_read_req(sc->rl_dev, 512);
 2981                         else
 2982                                 pci_set_max_read_req(sc->rl_dev, 4096);
 2983                 }
 2984         }
 2985         re_tx_list_init(sc);
 2986 
 2987         /*
 2988          * Enable C+ RX and TX mode, as well as VLAN stripping and
 2989          * RX checksum offload. We must configure the C+ register
 2990          * before all others.
 2991          */
 2992         cfg = RL_CPLUSCMD_PCI_MRW;
 2993         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 2994                 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
 2995         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 2996                 cfg |= RL_CPLUSCMD_VLANSTRIP;
 2997         if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
 2998                 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
 2999                 /* XXX magic. */
 3000                 cfg |= 0x0001;
 3001         } else
 3002                 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
 3003         CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
 3004         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
 3005             sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
 3006                 reg = 0x000fff00;
 3007                 if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
 3008                         reg |= 0x000000ff;
 3009                 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
 3010                         reg |= 0x00f00000;
 3011                 CSR_WRITE_4(sc, 0x7c, reg);
 3012                 /* Disable interrupt mitigation. */
 3013                 CSR_WRITE_2(sc, 0xe2, 0);
 3014         }
 3015         /*
 3016          * Disable TSO if interface MTU size is greater than MSS
 3017          * allowed in controller.
 3018          */
 3019         if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
 3020                 ifp->if_capenable &= ~IFCAP_TSO4;
 3021                 ifp->if_hwassist &= ~CSUM_TSO;
 3022         }
 3023 
 3024         /*
 3025          * Init our MAC address.  Even though the chipset
 3026          * documentation doesn't mention it, we need to enter "Config
 3027          * register write enable" mode to modify the ID registers.
 3028          */
 3029         /* Copy MAC address on stack to align. */
 3030         bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
 3031         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
 3032         CSR_WRITE_4(sc, RL_IDR0,
 3033             htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
 3034         CSR_WRITE_4(sc, RL_IDR4,
 3035             htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
 3036         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 3037 
 3038         /*
 3039          * Load the addresses of the RX and TX lists into the chip.
 3040          */
 3041 
 3042         CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
 3043             RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
 3044         CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
 3045             RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
 3046 
 3047         CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
 3048             RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
 3049         CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
 3050             RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
 3051 
 3052         /*
 3053          * Enable transmit and receive.
 3054          */
 3055         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
 3056 
 3057         /*
 3058          * Set the initial TX configuration.
 3059          */
 3060         if (sc->rl_testmode) {
 3061                 if (sc->rl_type == RL_8169)
 3062                         CSR_WRITE_4(sc, RL_TXCFG,
 3063                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
 3064                 else
 3065                         CSR_WRITE_4(sc, RL_TXCFG,
 3066                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
 3067         } else
 3068                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
 3069 
 3070         CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
 3071 
 3072         /*
 3073          * Set the initial RX configuration.
 3074          */
 3075         re_set_rxmode(sc);
 3076 
 3077         /* Configure interrupt moderation. */
 3078         if (sc->rl_type == RL_8169) {
 3079                 /* Magic from vendor. */
 3080                 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
 3081         }
 3082 
 3083 #ifdef DEVICE_POLLING
 3084         /*
 3085          * Disable interrupts if we are polling.
 3086          */
 3087         if (ifp->if_capenable & IFCAP_POLLING)
 3088                 CSR_WRITE_2(sc, RL_IMR, 0);
 3089         else    /* otherwise ... */
 3090 #endif
 3091 
 3092         /*
 3093          * Enable interrupts.
 3094          */
 3095         if (sc->rl_testmode)
 3096                 CSR_WRITE_2(sc, RL_IMR, 0);
 3097         else
 3098                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
 3099         CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
 3100 
 3101         /* Set initial TX threshold */
 3102         sc->rl_txthresh = RL_TX_THRESH_INIT;
 3103 
 3104         /* Start RX/TX process. */
 3105         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
 3106 #ifdef notdef
 3107         /* Enable receiver and transmitter. */
 3108         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
 3109 #endif
 3110 
 3111         /*
 3112          * Initialize the timer interrupt register so that
 3113          * a timer interrupt will be generated once the timer
 3114          * reaches a certain number of ticks. The timer is
 3115          * reloaded on each transmit.
 3116          */
 3117 #ifdef RE_TX_MODERATION
 3118         /*
 3119          * Use timer interrupt register to moderate TX interrupt
 3120          * moderation, which dramatically improves TX frame rate.
 3121          */
 3122         if (sc->rl_type == RL_8169)
 3123                 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
 3124         else
 3125                 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
 3126 #else
 3127         /*
 3128          * Use timer interrupt register to moderate RX interrupt
 3129          * moderation.
 3130          */
 3131         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
 3132             intr_filter == 0) {
 3133                 if (sc->rl_type == RL_8169)
 3134                         CSR_WRITE_4(sc, RL_TIMERINT_8169,
 3135                             RL_USECS(sc->rl_int_rx_mod));
 3136         } else {
 3137                 if (sc->rl_type == RL_8169)
 3138                         CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
 3139         }
 3140 #endif
 3141 
 3142         /*
 3143          * For 8169 gigE NICs, set the max allowed RX packet
 3144          * size so we can receive jumbo frames.
 3145          */
 3146         if (sc->rl_type == RL_8169) {
 3147                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
 3148                         /*
 3149                          * For controllers that use new jumbo frame scheme,
 3150                          * set maximum size of jumbo frame depedning on
 3151                          * controller revisions.
 3152                          */
 3153                         if (ifp->if_mtu > RL_MTU)
 3154                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
 3155                                     sc->rl_hwrev->rl_max_mtu +
 3156                                     ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
 3157                                     ETHER_CRC_LEN);
 3158                         else
 3159                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
 3160                                     RE_RX_DESC_BUFLEN);
 3161                 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
 3162                     sc->rl_hwrev->rl_max_mtu == RL_MTU) {
 3163                         /* RTL810x has no jumbo frame support. */
 3164                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
 3165                 } else
 3166                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
 3167         }
 3168 
 3169         if (sc->rl_testmode)
 3170                 return;
 3171 
 3172         mii_mediachg(mii);
 3173 
 3174         CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
 3175 
 3176         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3177         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3178 
 3179         sc->rl_flags &= ~RL_FLAG_LINK;
 3180         sc->rl_watchdog_timer = 0;
 3181         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
 3182 }
 3183 
 3184 /*
 3185  * Set media options.
 3186  */
 3187 static int
 3188 re_ifmedia_upd(struct ifnet *ifp)
 3189 {
 3190         struct rl_softc         *sc;
 3191         struct mii_data         *mii;
 3192         int                     error;
 3193 
 3194         sc = ifp->if_softc;
 3195         mii = device_get_softc(sc->rl_miibus);
 3196         RL_LOCK(sc);
 3197         error = mii_mediachg(mii);
 3198         RL_UNLOCK(sc);
 3199 
 3200         return (error);
 3201 }
 3202 
 3203 /*
 3204  * Report current media status.
 3205  */
 3206 static void
 3207 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3208 {
 3209         struct rl_softc         *sc;
 3210         struct mii_data         *mii;
 3211 
 3212         sc = ifp->if_softc;
 3213         mii = device_get_softc(sc->rl_miibus);
 3214 
 3215         RL_LOCK(sc);
 3216         mii_pollstat(mii);
 3217         RL_UNLOCK(sc);
 3218         ifmr->ifm_active = mii->mii_media_active;
 3219         ifmr->ifm_status = mii->mii_media_status;
 3220 }
 3221 
 3222 static int
 3223 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3224 {
 3225         struct rl_softc         *sc = ifp->if_softc;
 3226         struct ifreq            *ifr = (struct ifreq *) data;
 3227         struct mii_data         *mii;
 3228         uint32_t                rev;
 3229         int                     error = 0;
 3230 
 3231         switch (command) {
 3232         case SIOCSIFMTU:
 3233                 if (ifr->ifr_mtu < ETHERMIN ||
 3234                     ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
 3235                         error = EINVAL;
 3236                         break;
 3237                 }
 3238                 RL_LOCK(sc);
 3239                 if (ifp->if_mtu != ifr->ifr_mtu) {
 3240                         ifp->if_mtu = ifr->ifr_mtu;
 3241                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
 3242                             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 3243                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3244                                 re_init_locked(sc);
 3245                         }
 3246                         if (ifp->if_mtu > RL_TSO_MTU &&
 3247                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
 3248                                 ifp->if_capenable &= ~(IFCAP_TSO4 |
 3249                                     IFCAP_VLAN_HWTSO);
 3250                                 ifp->if_hwassist &= ~CSUM_TSO;
 3251                         }
 3252                         VLAN_CAPABILITIES(ifp);
 3253                 }
 3254                 RL_UNLOCK(sc);
 3255                 break;
 3256         case SIOCSIFFLAGS:
 3257                 RL_LOCK(sc);
 3258                 if ((ifp->if_flags & IFF_UP) != 0) {
 3259                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 3260                                 if (((ifp->if_flags ^ sc->rl_if_flags)
 3261                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 3262                                         re_set_rxmode(sc);
 3263                         } else
 3264                                 re_init_locked(sc);
 3265                 } else {
 3266                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 3267                                 re_stop(sc);
 3268                 }
 3269                 sc->rl_if_flags = ifp->if_flags;
 3270                 RL_UNLOCK(sc);
 3271                 break;
 3272         case SIOCADDMULTI:
 3273         case SIOCDELMULTI:
 3274                 RL_LOCK(sc);
 3275                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 3276                         re_set_rxmode(sc);
 3277                 RL_UNLOCK(sc);
 3278                 break;
 3279         case SIOCGIFMEDIA:
 3280         case SIOCSIFMEDIA:
 3281                 mii = device_get_softc(sc->rl_miibus);
 3282                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 3283                 break;
 3284         case SIOCSIFCAP:
 3285             {
 3286                 int mask, reinit;
 3287 
 3288                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 3289                 reinit = 0;
 3290 #ifdef DEVICE_POLLING
 3291                 if (mask & IFCAP_POLLING) {
 3292                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 3293                                 error = ether_poll_register(re_poll, ifp);
 3294                                 if (error)
 3295                                         return (error);
 3296                                 RL_LOCK(sc);
 3297                                 /* Disable interrupts */
 3298                                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
 3299                                 ifp->if_capenable |= IFCAP_POLLING;
 3300                                 RL_UNLOCK(sc);
 3301                         } else {
 3302                                 error = ether_poll_deregister(ifp);
 3303                                 /* Enable interrupts. */
 3304                                 RL_LOCK(sc);
 3305                                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
 3306                                 ifp->if_capenable &= ~IFCAP_POLLING;
 3307                                 RL_UNLOCK(sc);
 3308                         }
 3309                 }
 3310 #endif /* DEVICE_POLLING */
 3311                 if ((mask & IFCAP_TXCSUM) != 0 &&
 3312                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 3313                         ifp->if_capenable ^= IFCAP_TXCSUM;
 3314                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
 3315                                 rev = sc->rl_hwrev->rl_rev;
 3316                                 if (rev == RL_HWREV_8168C ||
 3317                                     rev == RL_HWREV_8168C_SPIN2)
 3318                                         ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
 3319                                 else
 3320                                         ifp->if_hwassist |= RE_CSUM_FEATURES;
 3321                         } else
 3322                                 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
 3323                         reinit = 1;
 3324                 }
 3325                 if ((mask & IFCAP_RXCSUM) != 0 &&
 3326                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
 3327                         ifp->if_capenable ^= IFCAP_RXCSUM;
 3328                         reinit = 1;
 3329                 }
 3330                 if ((mask & IFCAP_TSO4) != 0 &&
 3331                     (ifp->if_capabilities & IFCAP_TSO) != 0) {
 3332                         ifp->if_capenable ^= IFCAP_TSO4;
 3333                         if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
 3334                                 ifp->if_hwassist |= CSUM_TSO;
 3335                         else
 3336                                 ifp->if_hwassist &= ~CSUM_TSO;
 3337                         if (ifp->if_mtu > RL_TSO_MTU &&
 3338                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
 3339                                 ifp->if_capenable &= ~IFCAP_TSO4;
 3340                                 ifp->if_hwassist &= ~CSUM_TSO;
 3341                         }
 3342                 }
 3343                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 3344                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 3345                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 3346                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 3347                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 3348                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 3349                         /* TSO over VLAN requires VLAN hardware tagging. */
 3350                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 3351                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 3352                         reinit = 1;
 3353                 }
 3354                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
 3355                     (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
 3356                     IFCAP_VLAN_HWTSO)) != 0)
 3357                                 reinit = 1;
 3358                 if ((mask & IFCAP_WOL) != 0 &&
 3359                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
 3360                         if ((mask & IFCAP_WOL_UCAST) != 0)
 3361                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
 3362                         if ((mask & IFCAP_WOL_MCAST) != 0)
 3363                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
 3364                         if ((mask & IFCAP_WOL_MAGIC) != 0)
 3365                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 3366                 }
 3367                 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3368                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3369                         re_init(sc);
 3370                 }
 3371                 VLAN_CAPABILITIES(ifp);
 3372             }
 3373                 break;
 3374         default:
 3375                 error = ether_ioctl(ifp, command, data);
 3376                 break;
 3377         }
 3378 
 3379         return (error);
 3380 }
 3381 
 3382 static void
 3383 re_watchdog(struct rl_softc *sc)
 3384 {
 3385         struct ifnet            *ifp;
 3386 
 3387         RL_LOCK_ASSERT(sc);
 3388 
 3389         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
 3390                 return;
 3391 
 3392         ifp = sc->rl_ifp;
 3393         re_txeof(sc);
 3394         if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
 3395                 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
 3396                     "-- recovering\n");
 3397                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3398                         re_start_locked(ifp);
 3399                 return;
 3400         }
 3401 
 3402         if_printf(ifp, "watchdog timeout\n");
 3403         ifp->if_oerrors++;
 3404 
 3405         re_rxeof(sc, NULL);
 3406         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3407         re_init_locked(sc);
 3408         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3409                 re_start_locked(ifp);
 3410 }
 3411 
 3412 /*
 3413  * Stop the adapter and free any mbufs allocated to the
 3414  * RX and TX lists.
 3415  */
 3416 static void
 3417 re_stop(struct rl_softc *sc)
 3418 {
 3419         int                     i;
 3420         struct ifnet            *ifp;
 3421         struct rl_txdesc        *txd;
 3422         struct rl_rxdesc        *rxd;
 3423 
 3424         RL_LOCK_ASSERT(sc);
 3425 
 3426         ifp = sc->rl_ifp;
 3427 
 3428         sc->rl_watchdog_timer = 0;
 3429         callout_stop(&sc->rl_stat_callout);
 3430         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3431 
 3432         if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
 3433                 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
 3434                     RL_CMD_RX_ENB);
 3435         else
 3436                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
 3437         DELAY(1000);
 3438         CSR_WRITE_2(sc, RL_IMR, 0x0000);
 3439         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
 3440 
 3441         if (sc->rl_head != NULL) {
 3442                 m_freem(sc->rl_head);
 3443                 sc->rl_head = sc->rl_tail = NULL;
 3444         }
 3445 
 3446         /* Free the TX list buffers. */
 3447 
 3448         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
 3449                 txd = &sc->rl_ldata.rl_tx_desc[i];
 3450                 if (txd->tx_m != NULL) {
 3451                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
 3452                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 3453                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
 3454                             txd->tx_dmamap);
 3455                         m_freem(txd->tx_m);
 3456                         txd->tx_m = NULL;
 3457                 }
 3458         }
 3459 
 3460         /* Free the RX list buffers. */
 3461 
 3462         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
 3463                 rxd = &sc->rl_ldata.rl_rx_desc[i];
 3464                 if (rxd->rx_m != NULL) {
 3465                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
 3466                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
 3467                         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
 3468                             rxd->rx_dmamap);
 3469                         m_freem(rxd->rx_m);
 3470                         rxd->rx_m = NULL;
 3471                 }
 3472         }
 3473 }
 3474 
 3475 /*
 3476  * Device suspend routine.  Stop the interface and save some PCI
 3477  * settings in case the BIOS doesn't restore them properly on
 3478  * resume.
 3479  */
 3480 static int
 3481 re_suspend(device_t dev)
 3482 {
 3483         struct rl_softc         *sc;
 3484 
 3485         sc = device_get_softc(dev);
 3486 
 3487         RL_LOCK(sc);
 3488         re_stop(sc);
 3489         re_setwol(sc);
 3490         sc->suspended = 1;
 3491         RL_UNLOCK(sc);
 3492 
 3493         return (0);
 3494 }
 3495 
 3496 /*
 3497  * Device resume routine.  Restore some PCI settings in case the BIOS
 3498  * doesn't, re-enable busmastering, and restart the interface if
 3499  * appropriate.
 3500  */
 3501 static int
 3502 re_resume(device_t dev)
 3503 {
 3504         struct rl_softc         *sc;
 3505         struct ifnet            *ifp;
 3506 
 3507         sc = device_get_softc(dev);
 3508 
 3509         RL_LOCK(sc);
 3510 
 3511         ifp = sc->rl_ifp;
 3512         /* Take controller out of sleep mode. */
 3513         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
 3514                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
 3515                         CSR_WRITE_1(sc, RL_GPIO,
 3516                             CSR_READ_1(sc, RL_GPIO) | 0x01);
 3517         }
 3518 
 3519         /*
 3520          * Clear WOL matching such that normal Rx filtering
 3521          * wouldn't interfere with WOL patterns.
 3522          */
 3523         re_clrwol(sc);
 3524 
 3525         /* reinitialize interface if necessary */
 3526         if (ifp->if_flags & IFF_UP)
 3527                 re_init_locked(sc);
 3528 
 3529         sc->suspended = 0;
 3530         RL_UNLOCK(sc);
 3531 
 3532         return (0);
 3533 }
 3534 
 3535 /*
 3536  * Stop all chip I/O so that the kernel's probe routines don't
 3537  * get confused by errant DMAs when rebooting.
 3538  */
 3539 static int
 3540 re_shutdown(device_t dev)
 3541 {
 3542         struct rl_softc         *sc;
 3543 
 3544         sc = device_get_softc(dev);
 3545 
 3546         RL_LOCK(sc);
 3547         re_stop(sc);
 3548         /*
 3549          * Mark interface as down since otherwise we will panic if
 3550          * interrupt comes in later on, which can happen in some
 3551          * cases.
 3552          */
 3553         sc->rl_ifp->if_flags &= ~IFF_UP;
 3554         re_setwol(sc);
 3555         RL_UNLOCK(sc);
 3556 
 3557         return (0);
 3558 }
 3559 
 3560 static void
 3561 re_setwol(struct rl_softc *sc)
 3562 {
 3563         struct ifnet            *ifp;
 3564         int                     pmc;
 3565         uint16_t                pmstat;
 3566         uint8_t                 v;
 3567 
 3568         RL_LOCK_ASSERT(sc);
 3569 
 3570         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
 3571                 return;
 3572 
 3573         ifp = sc->rl_ifp;
 3574         /* Put controller into sleep mode. */
 3575         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
 3576                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
 3577                         CSR_WRITE_1(sc, RL_GPIO,
 3578                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
 3579         }
 3580         if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
 3581             (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
 3582                 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
 3583         /* Enable config register write. */
 3584         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 3585 
 3586         /* Enable PME. */
 3587         v = CSR_READ_1(sc, RL_CFG1);
 3588         v &= ~RL_CFG1_PME;
 3589         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 3590                 v |= RL_CFG1_PME;
 3591         CSR_WRITE_1(sc, RL_CFG1, v);
 3592 
 3593         v = CSR_READ_1(sc, RL_CFG3);
 3594         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
 3595         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 3596                 v |= RL_CFG3_WOL_MAGIC;
 3597         CSR_WRITE_1(sc, RL_CFG3, v);
 3598 
 3599         /* Config register write done. */
 3600         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 3601 
 3602         v = CSR_READ_1(sc, RL_CFG5);
 3603         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
 3604         v &= ~RL_CFG5_WOL_LANWAKE;
 3605         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
 3606                 v |= RL_CFG5_WOL_UCAST;
 3607         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 3608                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
 3609         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 3610                 v |= RL_CFG5_WOL_LANWAKE;
 3611         CSR_WRITE_1(sc, RL_CFG5, v);
 3612 
 3613         if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
 3614             (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
 3615                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
 3616         /*
 3617          * It seems that hardware resets its link speed to 100Mbps in
 3618          * power down mode so switching to 100Mbps in driver is not
 3619          * needed.
 3620          */
 3621 
 3622         /* Request PME if WOL is requested. */
 3623         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
 3624         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 3625         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 3626                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 3627         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 3628 }
 3629 
 3630 static void
 3631 re_clrwol(struct rl_softc *sc)
 3632 {
 3633         int                     pmc;
 3634         uint8_t                 v;
 3635 
 3636         RL_LOCK_ASSERT(sc);
 3637 
 3638         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
 3639                 return;
 3640 
 3641         /* Enable config register write. */
 3642         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 3643 
 3644         v = CSR_READ_1(sc, RL_CFG3);
 3645         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
 3646         CSR_WRITE_1(sc, RL_CFG3, v);
 3647 
 3648         /* Config register write done. */
 3649         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 3650 
 3651         v = CSR_READ_1(sc, RL_CFG5);
 3652         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
 3653         v &= ~RL_CFG5_WOL_LANWAKE;
 3654         CSR_WRITE_1(sc, RL_CFG5, v);
 3655 }
 3656 
 3657 static void
 3658 re_add_sysctls(struct rl_softc *sc)
 3659 {
 3660         struct sysctl_ctx_list  *ctx;
 3661         struct sysctl_oid_list  *children;
 3662         int                     error;
 3663 
 3664         ctx = device_get_sysctl_ctx(sc->rl_dev);
 3665         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
 3666 
 3667         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
 3668             CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
 3669             "Statistics Information");
 3670         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
 3671                 return;
 3672 
 3673         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
 3674             CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
 3675             sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
 3676         /* Pull in device tunables. */
 3677         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
 3678         error = resource_int_value(device_get_name(sc->rl_dev),
 3679             device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
 3680         if (error == 0) {
 3681                 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
 3682                     sc->rl_int_rx_mod > RL_TIMER_MAX) {
 3683                         device_printf(sc->rl_dev, "int_rx_mod value out of "
 3684                             "range; using default: %d\n",
 3685                             RL_TIMER_DEFAULT);
 3686                         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
 3687                 }
 3688         }
 3689 
 3690 }
 3691 
 3692 static int
 3693 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
 3694 {
 3695         struct rl_softc         *sc;
 3696         struct rl_stats         *stats;
 3697         int                     error, i, result;
 3698 
 3699         result = -1;
 3700         error = sysctl_handle_int(oidp, &result, 0, req);
 3701         if (error || req->newptr == NULL)
 3702                 return (error);
 3703 
 3704         if (result == 1) {
 3705                 sc = (struct rl_softc *)arg1;
 3706                 RL_LOCK(sc);
 3707                 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 3708                         RL_UNLOCK(sc);
 3709                         goto done;
 3710                 }
 3711                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
 3712                     sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
 3713                 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
 3714                     RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
 3715                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
 3716                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
 3717                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
 3718                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
 3719                     RL_DUMPSTATS_START));
 3720                 for (i = RL_TIMEOUT; i > 0; i--) {
 3721                         if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
 3722                             RL_DUMPSTATS_START) == 0)
 3723                                 break;
 3724                         DELAY(1000);
 3725                 }
 3726                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
 3727                     sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
 3728                 RL_UNLOCK(sc);
 3729                 if (i == 0) {
 3730                         device_printf(sc->rl_dev,
 3731                             "DUMP statistics request timedout\n");
 3732                         return (ETIMEDOUT);
 3733                 }
 3734 done:
 3735                 stats = sc->rl_ldata.rl_stats;
 3736                 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
 3737                 printf("Tx frames : %ju\n",
 3738                     (uintmax_t)le64toh(stats->rl_tx_pkts));
 3739                 printf("Rx frames : %ju\n",
 3740                     (uintmax_t)le64toh(stats->rl_rx_pkts));
 3741                 printf("Tx errors : %ju\n",
 3742                     (uintmax_t)le64toh(stats->rl_tx_errs));
 3743                 printf("Rx errors : %u\n",
 3744                     le32toh(stats->rl_rx_errs));
 3745                 printf("Rx missed frames : %u\n",
 3746                     (uint32_t)le16toh(stats->rl_missed_pkts));
 3747                 printf("Rx frame alignment errs : %u\n",
 3748                     (uint32_t)le16toh(stats->rl_rx_framealign_errs));
 3749                 printf("Tx single collisions : %u\n",
 3750                     le32toh(stats->rl_tx_onecoll));
 3751                 printf("Tx multiple collisions : %u\n",
 3752                     le32toh(stats->rl_tx_multicolls));
 3753                 printf("Rx unicast frames : %ju\n",
 3754                     (uintmax_t)le64toh(stats->rl_rx_ucasts));
 3755                 printf("Rx broadcast frames : %ju\n",
 3756                     (uintmax_t)le64toh(stats->rl_rx_bcasts));
 3757                 printf("Rx multicast frames : %u\n",
 3758                     le32toh(stats->rl_rx_mcasts));
 3759                 printf("Tx aborts : %u\n",
 3760                     (uint32_t)le16toh(stats->rl_tx_aborts));
 3761                 printf("Tx underruns : %u\n",
 3762                     (uint32_t)le16toh(stats->rl_rx_underruns));
 3763         }
 3764 
 3765         return (error);
 3766 }
 3767 
 3768 static int
 3769 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 3770 {
 3771         int error, value;
 3772 
 3773         if (arg1 == NULL)
 3774                 return (EINVAL);
 3775         value = *(int *)arg1;
 3776         error = sysctl_handle_int(oidp, &value, 0, req);
 3777         if (error || req->newptr == NULL)
 3778                 return (error);
 3779         if (value < low || value > high)
 3780                 return (EINVAL);
 3781         *(int *)arg1 = value;
 3782 
 3783         return (0);
 3784 }
 3785 
 3786 static int
 3787 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
 3788 {
 3789 
 3790         return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
 3791             RL_TIMER_MAX));
 3792 }

Cache object: d1f7fd69182c7d18f851354f87c0d073


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.