The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/safe/safe.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
    3  * Copyright (c) 2003 Global Technology Associates, Inc.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/11.2/sys/dev/safe/safe.c 331722 2018-03-29 02:50:57Z eadler $");
   30 
   31 /*
   32  * SafeNet SafeXcel-1141 hardware crypto accelerator
   33  */
   34 #include "opt_safe.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/proc.h>
   39 #include <sys/errno.h>
   40 #include <sys/malloc.h>
   41 #include <sys/kernel.h>
   42 #include <sys/mbuf.h>
   43 #include <sys/module.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/endian.h>
   48 
   49 #include <vm/vm.h>
   50 #include <vm/pmap.h>
   51 
   52 #include <machine/bus.h>
   53 #include <machine/resource.h>
   54 #include <sys/bus.h>
   55 #include <sys/rman.h>
   56 
   57 #include <crypto/sha1.h>
   58 #include <opencrypto/cryptodev.h>
   59 #include <opencrypto/cryptosoft.h>
   60 #include <sys/md5.h>
   61 #include <sys/random.h>
   62 #include <sys/kobj.h>
   63 
   64 #include "cryptodev_if.h"
   65 
   66 #include <dev/pci/pcivar.h>
   67 #include <dev/pci/pcireg.h>
   68 
   69 #ifdef SAFE_RNDTEST
   70 #include <dev/rndtest/rndtest.h>
   71 #endif
   72 #include <dev/safe/safereg.h>
   73 #include <dev/safe/safevar.h>
   74 
   75 #ifndef bswap32
   76 #define bswap32 NTOHL
   77 #endif
   78 
   79 /*
   80  * Prototypes and count for the pci_device structure
   81  */
   82 static  int safe_probe(device_t);
   83 static  int safe_attach(device_t);
   84 static  int safe_detach(device_t);
   85 static  int safe_suspend(device_t);
   86 static  int safe_resume(device_t);
   87 static  int safe_shutdown(device_t);
   88 
   89 static  int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
   90 static  int safe_freesession(device_t, u_int64_t);
   91 static  int safe_process(device_t, struct cryptop *, int);
   92 
   93 static device_method_t safe_methods[] = {
   94         /* Device interface */
   95         DEVMETHOD(device_probe,         safe_probe),
   96         DEVMETHOD(device_attach,        safe_attach),
   97         DEVMETHOD(device_detach,        safe_detach),
   98         DEVMETHOD(device_suspend,       safe_suspend),
   99         DEVMETHOD(device_resume,        safe_resume),
  100         DEVMETHOD(device_shutdown,      safe_shutdown),
  101 
  102         /* crypto device methods */
  103         DEVMETHOD(cryptodev_newsession, safe_newsession),
  104         DEVMETHOD(cryptodev_freesession,safe_freesession),
  105         DEVMETHOD(cryptodev_process,    safe_process),
  106 
  107         DEVMETHOD_END
  108 };
  109 static driver_t safe_driver = {
  110         "safe",
  111         safe_methods,
  112         sizeof (struct safe_softc)
  113 };
  114 static devclass_t safe_devclass;
  115 
  116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
  117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
  118 #ifdef SAFE_RNDTEST
  119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
  120 #endif
  121 
  122 static  void safe_intr(void *);
  123 static  void safe_callback(struct safe_softc *, struct safe_ringentry *);
  124 static  void safe_feed(struct safe_softc *, struct safe_ringentry *);
  125 static  void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
  126 #ifndef SAFE_NO_RNG
  127 static  void safe_rng_init(struct safe_softc *);
  128 static  void safe_rng(void *);
  129 #endif /* SAFE_NO_RNG */
  130 static  int safe_dma_malloc(struct safe_softc *, bus_size_t,
  131                 struct safe_dma_alloc *, int);
  132 #define safe_dma_sync(_dma, _flags) \
  133         bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
  134 static  void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
  135 static  int safe_dmamap_aligned(const struct safe_operand *);
  136 static  int safe_dmamap_uniform(const struct safe_operand *);
  137 
  138 static  void safe_reset_board(struct safe_softc *);
  139 static  void safe_init_board(struct safe_softc *);
  140 static  void safe_init_pciregs(device_t dev);
  141 static  void safe_cleanchip(struct safe_softc *);
  142 static  void safe_totalreset(struct safe_softc *);
  143 
  144 static  int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
  145 
  146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
  147     "SafeNet driver parameters");
  148 
  149 #ifdef SAFE_DEBUG
  150 static  void safe_dump_dmastatus(struct safe_softc *, const char *);
  151 static  void safe_dump_ringstate(struct safe_softc *, const char *);
  152 static  void safe_dump_intrstate(struct safe_softc *, const char *);
  153 static  void safe_dump_request(struct safe_softc *, const char *,
  154                 struct safe_ringentry *);
  155 
  156 static  struct safe_softc *safec;               /* for use by hw.safe.dump */
  157 
  158 static  int safe_debug = 0;
  159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
  160             0, "control debugging msgs");
  161 #define DPRINTF(_x)     if (safe_debug) printf _x
  162 #else
  163 #define DPRINTF(_x)
  164 #endif
  165 
  166 #define READ_REG(sc,r) \
  167         bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
  168 
  169 #define WRITE_REG(sc,reg,val) \
  170         bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
  171 
  172 struct safe_stats safestats;
  173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
  174             safe_stats, "driver statistics");
  175 #ifndef SAFE_NO_RNG
  176 static  int safe_rnginterval = 1;               /* poll once a second */
  177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
  178             0, "RNG polling interval (secs)");
  179 static  int safe_rngbufsize = 16;               /* 64 bytes each poll  */
  180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
  181             0, "RNG polling buffer size (32-bit words)");
  182 static  int safe_rngmaxalarm = 8;               /* max alarms before reset */
  183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
  184             0, "RNG max alarms before reset");
  185 #endif /* SAFE_NO_RNG */
  186 
  187 static int
  188 safe_probe(device_t dev)
  189 {
  190         if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
  191             pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
  192                 return (BUS_PROBE_DEFAULT);
  193         return (ENXIO);
  194 }
  195 
  196 static const char*
  197 safe_partname(struct safe_softc *sc)
  198 {
  199         /* XXX sprintf numbers when not decoded */
  200         switch (pci_get_vendor(sc->sc_dev)) {
  201         case PCI_VENDOR_SAFENET:
  202                 switch (pci_get_device(sc->sc_dev)) {
  203                 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
  204                 }
  205                 return "SafeNet unknown-part";
  206         }
  207         return "Unknown-vendor unknown-part";
  208 }
  209 
  210 #ifndef SAFE_NO_RNG
  211 static void
  212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
  213 {
  214         /* MarkM: FIX!! Check that this does not swamp the harvester! */
  215         random_harvest_queue(buf, count, count*NBBY/2, RANDOM_PURE_SAFE);
  216 }
  217 #endif /* SAFE_NO_RNG */
  218 
  219 static int
  220 safe_attach(device_t dev)
  221 {
  222         struct safe_softc *sc = device_get_softc(dev);
  223         u_int32_t raddr;
  224         u_int32_t i, devinfo;
  225         int rid;
  226 
  227         bzero(sc, sizeof (*sc));
  228         sc->sc_dev = dev;
  229 
  230         /* XXX handle power management */
  231 
  232         pci_enable_busmaster(dev);
  233 
  234         /* 
  235          * Setup memory-mapping of PCI registers.
  236          */
  237         rid = BS_BAR;
  238         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  239                                            RF_ACTIVE);
  240         if (sc->sc_sr == NULL) {
  241                 device_printf(dev, "cannot map register space\n");
  242                 goto bad;
  243         }
  244         sc->sc_st = rman_get_bustag(sc->sc_sr);
  245         sc->sc_sh = rman_get_bushandle(sc->sc_sr);
  246 
  247         /*
  248          * Arrange interrupt line.
  249          */
  250         rid = 0;
  251         sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  252                                             RF_SHAREABLE|RF_ACTIVE);
  253         if (sc->sc_irq == NULL) {
  254                 device_printf(dev, "could not map interrupt\n");
  255                 goto bad1;
  256         }
  257         /*
  258          * NB: Network code assumes we are blocked with splimp()
  259          *     so make sure the IRQ is mapped appropriately.
  260          */
  261         if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
  262                            NULL, safe_intr, sc, &sc->sc_ih)) {
  263                 device_printf(dev, "could not establish interrupt\n");
  264                 goto bad2;
  265         }
  266 
  267         sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
  268         if (sc->sc_cid < 0) {
  269                 device_printf(dev, "could not get crypto driver id\n");
  270                 goto bad3;
  271         }
  272 
  273         sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
  274                 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
  275 
  276         /*
  277          * Setup DMA descriptor area.
  278          */
  279         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
  280                                1,                       /* alignment */
  281                                SAFE_DMA_BOUNDARY,       /* boundary */
  282                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
  283                                BUS_SPACE_MAXADDR,       /* highaddr */
  284                                NULL, NULL,              /* filter, filterarg */
  285                                SAFE_MAX_DMA,            /* maxsize */
  286                                SAFE_MAX_PART,           /* nsegments */
  287                                SAFE_MAX_SSIZE,          /* maxsegsize */
  288                                BUS_DMA_ALLOCNOW,        /* flags */
  289                                NULL, NULL,              /* locking */
  290                                &sc->sc_srcdmat)) {
  291                 device_printf(dev, "cannot allocate DMA tag\n");
  292                 goto bad4;
  293         }
  294         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
  295                                1,                       /* alignment */
  296                                SAFE_MAX_DSIZE,          /* boundary */
  297                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
  298                                BUS_SPACE_MAXADDR,       /* highaddr */
  299                                NULL, NULL,              /* filter, filterarg */
  300                                SAFE_MAX_DMA,            /* maxsize */
  301                                SAFE_MAX_PART,           /* nsegments */
  302                                SAFE_MAX_DSIZE,          /* maxsegsize */
  303                                BUS_DMA_ALLOCNOW,        /* flags */
  304                                NULL, NULL,              /* locking */
  305                                &sc->sc_dstdmat)) {
  306                 device_printf(dev, "cannot allocate DMA tag\n");
  307                 goto bad4;
  308         }
  309 
  310         /*
  311          * Allocate packet engine descriptors.
  312          */
  313         if (safe_dma_malloc(sc,
  314             SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
  315             &sc->sc_ringalloc, 0)) {
  316                 device_printf(dev, "cannot allocate PE descriptor ring\n");
  317                 bus_dma_tag_destroy(sc->sc_srcdmat);
  318                 goto bad4;
  319         }
  320         /*
  321          * Hookup the static portion of all our data structures.
  322          */
  323         sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
  324         sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
  325         sc->sc_front = sc->sc_ring;
  326         sc->sc_back = sc->sc_ring;
  327         raddr = sc->sc_ringalloc.dma_paddr;
  328         bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
  329         for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
  330                 struct safe_ringentry *re = &sc->sc_ring[i];
  331 
  332                 re->re_desc.d_sa = raddr +
  333                         offsetof(struct safe_ringentry, re_sa);
  334                 re->re_sa.sa_staterec = raddr +
  335                         offsetof(struct safe_ringentry, re_sastate);
  336 
  337                 raddr += sizeof (struct safe_ringentry);
  338         }
  339         mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
  340                 "packet engine ring", MTX_DEF);
  341 
  342         /*
  343          * Allocate scatter and gather particle descriptors.
  344          */
  345         if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
  346             &sc->sc_spalloc, 0)) {
  347                 device_printf(dev, "cannot allocate source particle "
  348                         "descriptor ring\n");
  349                 mtx_destroy(&sc->sc_ringmtx);
  350                 safe_dma_free(sc, &sc->sc_ringalloc);
  351                 bus_dma_tag_destroy(sc->sc_srcdmat);
  352                 goto bad4;
  353         }
  354         sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
  355         sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
  356         sc->sc_spfree = sc->sc_spring;
  357         bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
  358 
  359         if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
  360             &sc->sc_dpalloc, 0)) {
  361                 device_printf(dev, "cannot allocate destination particle "
  362                         "descriptor ring\n");
  363                 mtx_destroy(&sc->sc_ringmtx);
  364                 safe_dma_free(sc, &sc->sc_spalloc);
  365                 safe_dma_free(sc, &sc->sc_ringalloc);
  366                 bus_dma_tag_destroy(sc->sc_dstdmat);
  367                 goto bad4;
  368         }
  369         sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
  370         sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
  371         sc->sc_dpfree = sc->sc_dpring;
  372         bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
  373 
  374         device_printf(sc->sc_dev, "%s", safe_partname(sc));
  375 
  376         devinfo = READ_REG(sc, SAFE_DEVINFO);
  377         if (devinfo & SAFE_DEVINFO_RNG) {
  378                 sc->sc_flags |= SAFE_FLAGS_RNG;
  379                 printf(" rng");
  380         }
  381         if (devinfo & SAFE_DEVINFO_PKEY) {
  382 #if 0
  383                 printf(" key");
  384                 sc->sc_flags |= SAFE_FLAGS_KEY;
  385                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
  386                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
  387 #endif
  388         }
  389         if (devinfo & SAFE_DEVINFO_DES) {
  390                 printf(" des/3des");
  391                 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
  392                 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
  393         }
  394         if (devinfo & SAFE_DEVINFO_AES) {
  395                 printf(" aes");
  396                 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
  397         }
  398         if (devinfo & SAFE_DEVINFO_MD5) {
  399                 printf(" md5");
  400                 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
  401         }
  402         if (devinfo & SAFE_DEVINFO_SHA1) {
  403                 printf(" sha1");
  404                 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
  405         }
  406         printf(" null");
  407         crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
  408         crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
  409         /* XXX other supported algorithms */
  410         printf("\n");
  411 
  412         safe_reset_board(sc);           /* reset h/w */
  413         safe_init_pciregs(dev);         /* init pci settings */
  414         safe_init_board(sc);            /* init h/w */
  415 
  416 #ifndef SAFE_NO_RNG
  417         if (sc->sc_flags & SAFE_FLAGS_RNG) {
  418 #ifdef SAFE_RNDTEST
  419                 sc->sc_rndtest = rndtest_attach(dev);
  420                 if (sc->sc_rndtest)
  421                         sc->sc_harvest = rndtest_harvest;
  422                 else
  423                         sc->sc_harvest = default_harvest;
  424 #else
  425                 sc->sc_harvest = default_harvest;
  426 #endif
  427                 safe_rng_init(sc);
  428 
  429                 callout_init(&sc->sc_rngto, 1);
  430                 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
  431         }
  432 #endif /* SAFE_NO_RNG */
  433 #ifdef SAFE_DEBUG
  434         safec = sc;                     /* for use by hw.safe.dump */
  435 #endif
  436         return (0);
  437 bad4:
  438         crypto_unregister_all(sc->sc_cid);
  439 bad3:
  440         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
  441 bad2:
  442         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
  443 bad1:
  444         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
  445 bad:
  446         return (ENXIO);
  447 }
  448 
  449 /*
  450  * Detach a device that successfully probed.
  451  */
  452 static int
  453 safe_detach(device_t dev)
  454 {
  455         struct safe_softc *sc = device_get_softc(dev);
  456 
  457         /* XXX wait/abort active ops */
  458 
  459         WRITE_REG(sc, SAFE_HI_MASK, 0);         /* disable interrupts */
  460 
  461         callout_stop(&sc->sc_rngto);
  462 
  463         crypto_unregister_all(sc->sc_cid);
  464 
  465 #ifdef SAFE_RNDTEST
  466         if (sc->sc_rndtest)
  467                 rndtest_detach(sc->sc_rndtest);
  468 #endif
  469 
  470         safe_cleanchip(sc);
  471         safe_dma_free(sc, &sc->sc_dpalloc);
  472         safe_dma_free(sc, &sc->sc_spalloc);
  473         mtx_destroy(&sc->sc_ringmtx);
  474         safe_dma_free(sc, &sc->sc_ringalloc);
  475 
  476         bus_generic_detach(dev);
  477         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
  478         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
  479 
  480         bus_dma_tag_destroy(sc->sc_srcdmat);
  481         bus_dma_tag_destroy(sc->sc_dstdmat);
  482         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
  483 
  484         return (0);
  485 }
  486 
  487 /*
  488  * Stop all chip i/o so that the kernel's probe routines don't
  489  * get confused by errant DMAs when rebooting.
  490  */
  491 static int
  492 safe_shutdown(device_t dev)
  493 {
  494 #ifdef notyet
  495         safe_stop(device_get_softc(dev));
  496 #endif
  497         return (0);
  498 }
  499 
  500 /*
  501  * Device suspend routine.
  502  */
  503 static int
  504 safe_suspend(device_t dev)
  505 {
  506         struct safe_softc *sc = device_get_softc(dev);
  507 
  508 #ifdef notyet
  509         /* XXX stop the device and save PCI settings */
  510 #endif
  511         sc->sc_suspended = 1;
  512 
  513         return (0);
  514 }
  515 
  516 static int
  517 safe_resume(device_t dev)
  518 {
  519         struct safe_softc *sc = device_get_softc(dev);
  520 
  521 #ifdef notyet
  522         /* XXX retore PCI settings and start the device */
  523 #endif
  524         sc->sc_suspended = 0;
  525         return (0);
  526 }
  527 
  528 /*
  529  * SafeXcel Interrupt routine
  530  */
  531 static void
  532 safe_intr(void *arg)
  533 {
  534         struct safe_softc *sc = arg;
  535         volatile u_int32_t stat;
  536 
  537         stat = READ_REG(sc, SAFE_HM_STAT);
  538         if (stat == 0)                  /* shared irq, not for us */
  539                 return;
  540 
  541         WRITE_REG(sc, SAFE_HI_CLR, stat);       /* IACK */
  542 
  543         if ((stat & SAFE_INT_PE_DDONE)) {
  544                 /*
  545                  * Descriptor(s) done; scan the ring and
  546                  * process completed operations.
  547                  */
  548                 mtx_lock(&sc->sc_ringmtx);
  549                 while (sc->sc_back != sc->sc_front) {
  550                         struct safe_ringentry *re = sc->sc_back;
  551 #ifdef SAFE_DEBUG
  552                         if (safe_debug) {
  553                                 safe_dump_ringstate(sc, __func__);
  554                                 safe_dump_request(sc, __func__, re);
  555                         }
  556 #endif
  557                         /*
  558                          * safe_process marks ring entries that were allocated
  559                          * but not used with a csr of zero.  This insures the
  560                          * ring front pointer never needs to be set backwards
  561                          * in the event that an entry is allocated but not used
  562                          * because of a setup error.
  563                          */
  564                         if (re->re_desc.d_csr != 0) {
  565                                 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
  566                                         break;
  567                                 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
  568                                         break;
  569                                 sc->sc_nqchip--;
  570                                 safe_callback(sc, re);
  571                         }
  572                         if (++(sc->sc_back) == sc->sc_ringtop)
  573                                 sc->sc_back = sc->sc_ring;
  574                 }
  575                 mtx_unlock(&sc->sc_ringmtx);
  576         }
  577 
  578         /*
  579          * Check to see if we got any DMA Error
  580          */
  581         if (stat & SAFE_INT_PE_ERROR) {
  582                 DPRINTF(("dmaerr dmastat %08x\n",
  583                         READ_REG(sc, SAFE_PE_DMASTAT)));
  584                 safestats.st_dmaerr++;
  585                 safe_totalreset(sc);
  586 #if 0
  587                 safe_feed(sc);
  588 #endif
  589         }
  590 
  591         if (sc->sc_needwakeup) {                /* XXX check high watermark */
  592                 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
  593                 DPRINTF(("%s: wakeup crypto %x\n", __func__,
  594                         sc->sc_needwakeup));
  595                 sc->sc_needwakeup &= ~wakeup;
  596                 crypto_unblock(sc->sc_cid, wakeup);
  597         }
  598 }
  599 
  600 /*
  601  * safe_feed() - post a request to chip
  602  */
  603 static void
  604 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
  605 {
  606         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
  607         if (re->re_dst_map != NULL)
  608                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
  609                         BUS_DMASYNC_PREREAD);
  610         /* XXX have no smaller granularity */
  611         safe_dma_sync(&sc->sc_ringalloc,
  612                 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  613         safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
  614         safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
  615 
  616 #ifdef SAFE_DEBUG
  617         if (safe_debug) {
  618                 safe_dump_ringstate(sc, __func__);
  619                 safe_dump_request(sc, __func__, re);
  620         }
  621 #endif
  622         sc->sc_nqchip++;
  623         if (sc->sc_nqchip > safestats.st_maxqchip)
  624                 safestats.st_maxqchip = sc->sc_nqchip;
  625         /* poke h/w to check descriptor ring, any value can be written */
  626         WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
  627 }
  628 
  629 #define N(a)    (sizeof(a) / sizeof (a[0]))
  630 static void
  631 safe_setup_enckey(struct safe_session *ses, caddr_t key)
  632 {
  633         int i;
  634 
  635         bcopy(key, ses->ses_key, ses->ses_klen / 8);
  636 
  637         /* PE is little-endian, insure proper byte order */
  638         for (i = 0; i < N(ses->ses_key); i++)
  639                 ses->ses_key[i] = htole32(ses->ses_key[i]);
  640 }
  641 
  642 static void
  643 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
  644 {
  645         MD5_CTX md5ctx;
  646         SHA1_CTX sha1ctx;
  647         int i;
  648 
  649 
  650         for (i = 0; i < klen; i++)
  651                 key[i] ^= HMAC_IPAD_VAL;
  652 
  653         if (algo == CRYPTO_MD5_HMAC) {
  654                 MD5Init(&md5ctx);
  655                 MD5Update(&md5ctx, key, klen);
  656                 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
  657                 bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
  658         } else {
  659                 SHA1Init(&sha1ctx);
  660                 SHA1Update(&sha1ctx, key, klen);
  661                 SHA1Update(&sha1ctx, hmac_ipad_buffer,
  662                     SHA1_HMAC_BLOCK_LEN - klen);
  663                 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
  664         }
  665 
  666         for (i = 0; i < klen; i++)
  667                 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
  668 
  669         if (algo == CRYPTO_MD5_HMAC) {
  670                 MD5Init(&md5ctx);
  671                 MD5Update(&md5ctx, key, klen);
  672                 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
  673                 bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
  674         } else {
  675                 SHA1Init(&sha1ctx);
  676                 SHA1Update(&sha1ctx, key, klen);
  677                 SHA1Update(&sha1ctx, hmac_opad_buffer,
  678                     SHA1_HMAC_BLOCK_LEN - klen);
  679                 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
  680         }
  681 
  682         for (i = 0; i < klen; i++)
  683                 key[i] ^= HMAC_OPAD_VAL;
  684 
  685         /* PE is little-endian, insure proper byte order */
  686         for (i = 0; i < N(ses->ses_hminner); i++) {
  687                 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
  688                 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
  689         }
  690 }
  691 #undef N
  692 
  693 /*
  694  * Allocate a new 'session' and return an encoded session id.  'sidp'
  695  * contains our registration id, and should contain an encoded session
  696  * id on successful allocation.
  697  */
  698 static int
  699 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
  700 {
  701         struct safe_softc *sc = device_get_softc(dev);
  702         struct cryptoini *c, *encini = NULL, *macini = NULL;
  703         struct safe_session *ses = NULL;
  704         int sesn;
  705 
  706         if (sidp == NULL || cri == NULL || sc == NULL)
  707                 return (EINVAL);
  708 
  709         for (c = cri; c != NULL; c = c->cri_next) {
  710                 if (c->cri_alg == CRYPTO_MD5_HMAC ||
  711                     c->cri_alg == CRYPTO_SHA1_HMAC ||
  712                     c->cri_alg == CRYPTO_NULL_HMAC) {
  713                         if (macini)
  714                                 return (EINVAL);
  715                         macini = c;
  716                 } else if (c->cri_alg == CRYPTO_DES_CBC ||
  717                     c->cri_alg == CRYPTO_3DES_CBC ||
  718                     c->cri_alg == CRYPTO_AES_CBC ||
  719                     c->cri_alg == CRYPTO_NULL_CBC) {
  720                         if (encini)
  721                                 return (EINVAL);
  722                         encini = c;
  723                 } else
  724                         return (EINVAL);
  725         }
  726         if (encini == NULL && macini == NULL)
  727                 return (EINVAL);
  728         if (encini) {                   /* validate key length */
  729                 switch (encini->cri_alg) {
  730                 case CRYPTO_DES_CBC:
  731                         if (encini->cri_klen != 64)
  732                                 return (EINVAL);
  733                         break;
  734                 case CRYPTO_3DES_CBC:
  735                         if (encini->cri_klen != 192)
  736                                 return (EINVAL);
  737                         break;
  738                 case CRYPTO_AES_CBC:
  739                         if (encini->cri_klen != 128 &&
  740                             encini->cri_klen != 192 &&
  741                             encini->cri_klen != 256)
  742                                 return (EINVAL);
  743                         break;
  744                 }
  745         }
  746 
  747         if (sc->sc_sessions == NULL) {
  748                 ses = sc->sc_sessions = (struct safe_session *)malloc(
  749                     sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
  750                 if (ses == NULL)
  751                         return (ENOMEM);
  752                 sesn = 0;
  753                 sc->sc_nsessions = 1;
  754         } else {
  755                 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
  756                         if (sc->sc_sessions[sesn].ses_used == 0) {
  757                                 ses = &sc->sc_sessions[sesn];
  758                                 break;
  759                         }
  760                 }
  761 
  762                 if (ses == NULL) {
  763                         sesn = sc->sc_nsessions;
  764                         ses = (struct safe_session *)malloc((sesn + 1) *
  765                             sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
  766                         if (ses == NULL)
  767                                 return (ENOMEM);
  768                         bcopy(sc->sc_sessions, ses, sesn *
  769                             sizeof(struct safe_session));
  770                         bzero(sc->sc_sessions, sesn *
  771                             sizeof(struct safe_session));
  772                         free(sc->sc_sessions, M_DEVBUF);
  773                         sc->sc_sessions = ses;
  774                         ses = &sc->sc_sessions[sesn];
  775                         sc->sc_nsessions++;
  776                 }
  777         }
  778 
  779         bzero(ses, sizeof(struct safe_session));
  780         ses->ses_used = 1;
  781 
  782         if (encini) {
  783                 /* get an IV */
  784                 /* XXX may read fewer than requested */
  785                 read_random(ses->ses_iv, sizeof(ses->ses_iv));
  786 
  787                 ses->ses_klen = encini->cri_klen;
  788                 if (encini->cri_key != NULL)
  789                         safe_setup_enckey(ses, encini->cri_key);
  790         }
  791 
  792         if (macini) {
  793                 ses->ses_mlen = macini->cri_mlen;
  794                 if (ses->ses_mlen == 0) {
  795                         if (macini->cri_alg == CRYPTO_MD5_HMAC)
  796                                 ses->ses_mlen = MD5_HASH_LEN;
  797                         else
  798                                 ses->ses_mlen = SHA1_HASH_LEN;
  799                 }
  800 
  801                 if (macini->cri_key != NULL) {
  802                         safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
  803                             macini->cri_klen / 8);
  804                 }
  805         }
  806 
  807         *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
  808         return (0);
  809 }
  810 
  811 /*
  812  * Deallocate a session.
  813  */
  814 static int
  815 safe_freesession(device_t dev, u_int64_t tid)
  816 {
  817         struct safe_softc *sc = device_get_softc(dev);
  818         int session, ret;
  819         u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
  820 
  821         if (sc == NULL)
  822                 return (EINVAL);
  823 
  824         session = SAFE_SESSION(sid);
  825         if (session < sc->sc_nsessions) {
  826                 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
  827                 ret = 0;
  828         } else
  829                 ret = EINVAL;
  830         return (ret);
  831 }
  832 
  833 static void
  834 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
  835 {
  836         struct safe_operand *op = arg;
  837 
  838         DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
  839                 (u_int) mapsize, nsegs, error));
  840         if (error != 0)
  841                 return;
  842         op->mapsize = mapsize;
  843         op->nsegs = nsegs;
  844         bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
  845 }
  846 
  847 static int
  848 safe_process(device_t dev, struct cryptop *crp, int hint)
  849 {
  850         struct safe_softc *sc = device_get_softc(dev);
  851         int err = 0, i, nicealign, uniform;
  852         struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
  853         int bypass, oplen, ivsize;
  854         caddr_t iv;
  855         int16_t coffset;
  856         struct safe_session *ses;
  857         struct safe_ringentry *re;
  858         struct safe_sarec *sa;
  859         struct safe_pdesc *pd;
  860         u_int32_t cmd0, cmd1, staterec;
  861 
  862         if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
  863                 safestats.st_invalid++;
  864                 return (EINVAL);
  865         }
  866         if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
  867                 safestats.st_badsession++;
  868                 return (EINVAL);
  869         }
  870 
  871         mtx_lock(&sc->sc_ringmtx);
  872         if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
  873                 safestats.st_ringfull++;
  874                 sc->sc_needwakeup |= CRYPTO_SYMQ;
  875                 mtx_unlock(&sc->sc_ringmtx);
  876                 return (ERESTART);
  877         }
  878         re = sc->sc_front;
  879 
  880         staterec = re->re_sa.sa_staterec;       /* save */
  881         /* NB: zero everything but the PE descriptor */
  882         bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
  883         re->re_sa.sa_staterec = staterec;       /* restore */
  884 
  885         re->re_crp = crp;
  886         re->re_sesn = SAFE_SESSION(crp->crp_sid);
  887 
  888         if (crp->crp_flags & CRYPTO_F_IMBUF) {
  889                 re->re_src_m = (struct mbuf *)crp->crp_buf;
  890                 re->re_dst_m = (struct mbuf *)crp->crp_buf;
  891         } else if (crp->crp_flags & CRYPTO_F_IOV) {
  892                 re->re_src_io = (struct uio *)crp->crp_buf;
  893                 re->re_dst_io = (struct uio *)crp->crp_buf;
  894         } else {
  895                 safestats.st_badflags++;
  896                 err = EINVAL;
  897                 goto errout;    /* XXX we don't handle contiguous blocks! */
  898         }
  899 
  900         sa = &re->re_sa;
  901         ses = &sc->sc_sessions[re->re_sesn];
  902 
  903         crd1 = crp->crp_desc;
  904         if (crd1 == NULL) {
  905                 safestats.st_nodesc++;
  906                 err = EINVAL;
  907                 goto errout;
  908         }
  909         crd2 = crd1->crd_next;
  910 
  911         cmd0 = SAFE_SA_CMD0_BASIC;              /* basic group operation */
  912         cmd1 = 0;
  913         if (crd2 == NULL) {
  914                 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
  915                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
  916                     crd1->crd_alg == CRYPTO_NULL_HMAC) {
  917                         maccrd = crd1;
  918                         enccrd = NULL;
  919                         cmd0 |= SAFE_SA_CMD0_OP_HASH;
  920                 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
  921                     crd1->crd_alg == CRYPTO_3DES_CBC ||
  922                     crd1->crd_alg == CRYPTO_AES_CBC ||
  923                     crd1->crd_alg == CRYPTO_NULL_CBC) {
  924                         maccrd = NULL;
  925                         enccrd = crd1;
  926                         cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
  927                 } else {
  928                         safestats.st_badalg++;
  929                         err = EINVAL;
  930                         goto errout;
  931                 }
  932         } else {
  933                 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
  934                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
  935                     crd1->crd_alg == CRYPTO_NULL_HMAC) &&
  936                     (crd2->crd_alg == CRYPTO_DES_CBC ||
  937                         crd2->crd_alg == CRYPTO_3DES_CBC ||
  938                         crd2->crd_alg == CRYPTO_AES_CBC ||
  939                         crd2->crd_alg == CRYPTO_NULL_CBC) &&
  940                     ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
  941                         maccrd = crd1;
  942                         enccrd = crd2;
  943                 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
  944                     crd1->crd_alg == CRYPTO_3DES_CBC ||
  945                     crd1->crd_alg == CRYPTO_AES_CBC ||
  946                     crd1->crd_alg == CRYPTO_NULL_CBC) &&
  947                     (crd2->crd_alg == CRYPTO_MD5_HMAC ||
  948                         crd2->crd_alg == CRYPTO_SHA1_HMAC ||
  949                         crd2->crd_alg == CRYPTO_NULL_HMAC) &&
  950                     (crd1->crd_flags & CRD_F_ENCRYPT)) {
  951                         enccrd = crd1;
  952                         maccrd = crd2;
  953                 } else {
  954                         safestats.st_badalg++;
  955                         err = EINVAL;
  956                         goto errout;
  957                 }
  958                 cmd0 |= SAFE_SA_CMD0_OP_BOTH;
  959         }
  960 
  961         if (enccrd) {
  962                 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
  963                         safe_setup_enckey(ses, enccrd->crd_key);
  964 
  965                 if (enccrd->crd_alg == CRYPTO_DES_CBC) {
  966                         cmd0 |= SAFE_SA_CMD0_DES;
  967                         cmd1 |= SAFE_SA_CMD1_CBC;
  968                         ivsize = 2*sizeof(u_int32_t);
  969                 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
  970                         cmd0 |= SAFE_SA_CMD0_3DES;
  971                         cmd1 |= SAFE_SA_CMD1_CBC;
  972                         ivsize = 2*sizeof(u_int32_t);
  973                 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
  974                         cmd0 |= SAFE_SA_CMD0_AES;
  975                         cmd1 |= SAFE_SA_CMD1_CBC;
  976                         if (ses->ses_klen == 128)
  977                              cmd1 |=  SAFE_SA_CMD1_AES128;
  978                         else if (ses->ses_klen == 192)
  979                              cmd1 |=  SAFE_SA_CMD1_AES192;
  980                         else
  981                              cmd1 |=  SAFE_SA_CMD1_AES256;
  982                         ivsize = 4*sizeof(u_int32_t);
  983                 } else {
  984                         cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
  985                         ivsize = 0;
  986                 }
  987 
  988                 /*
  989                  * Setup encrypt/decrypt state.  When using basic ops
  990                  * we can't use an inline IV because hash/crypt offset
  991                  * must be from the end of the IV to the start of the
  992                  * crypt data and this leaves out the preceding header
  993                  * from the hash calculation.  Instead we place the IV
  994                  * in the state record and set the hash/crypt offset to
  995                  * copy both the header+IV.
  996                  */
  997                 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
  998                         cmd0 |= SAFE_SA_CMD0_OUTBOUND;
  999 
 1000                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
 1001                                 iv = enccrd->crd_iv;
 1002                         else
 1003                                 iv = (caddr_t) ses->ses_iv;
 1004                         if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
 1005                                 crypto_copyback(crp->crp_flags, crp->crp_buf,
 1006                                     enccrd->crd_inject, ivsize, iv);
 1007                         }
 1008                         bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
 1009                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
 1010                         re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
 1011                 } else {
 1012                         cmd0 |= SAFE_SA_CMD0_INBOUND;
 1013 
 1014                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
 1015                                 bcopy(enccrd->crd_iv,
 1016                                         re->re_sastate.sa_saved_iv, ivsize);
 1017                         } else {
 1018                                 crypto_copydata(crp->crp_flags, crp->crp_buf,
 1019                                     enccrd->crd_inject, ivsize,
 1020                                     (caddr_t)re->re_sastate.sa_saved_iv);
 1021                         }
 1022                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
 1023                 }
 1024                 /*
 1025                  * For basic encryption use the zero pad algorithm.
 1026                  * This pads results to an 8-byte boundary and
 1027                  * suppresses padding verification for inbound (i.e.
 1028                  * decrypt) operations.
 1029                  *
 1030                  * NB: Not sure if the 8-byte pad boundary is a problem.
 1031                  */
 1032                 cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
 1033 
 1034                 /* XXX assert key bufs have the same size */
 1035                 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
 1036         }
 1037 
 1038         if (maccrd) {
 1039                 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
 1040                         safe_setup_mackey(ses, maccrd->crd_alg,
 1041                             maccrd->crd_key, maccrd->crd_klen / 8);
 1042                 }
 1043 
 1044                 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
 1045                         cmd0 |= SAFE_SA_CMD0_MD5;
 1046                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
 1047                 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
 1048                         cmd0 |= SAFE_SA_CMD0_SHA1;
 1049                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
 1050                 } else {
 1051                         cmd0 |= SAFE_SA_CMD0_HASH_NULL;
 1052                 }
 1053                 /*
 1054                  * Digest data is loaded from the SA and the hash
 1055                  * result is saved to the state block where we
 1056                  * retrieve it for return to the caller.
 1057                  */
 1058                 /* XXX assert digest bufs have the same size */
 1059                 bcopy(ses->ses_hminner, sa->sa_indigest,
 1060                         sizeof(sa->sa_indigest));
 1061                 bcopy(ses->ses_hmouter, sa->sa_outdigest,
 1062                         sizeof(sa->sa_outdigest));
 1063 
 1064                 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
 1065                 re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
 1066         }
 1067 
 1068         if (enccrd && maccrd) {
 1069                 /*
 1070                  * The offset from hash data to the start of
 1071                  * crypt data is the difference in the skips.
 1072                  */
 1073                 bypass = maccrd->crd_skip;
 1074                 coffset = enccrd->crd_skip - maccrd->crd_skip;
 1075                 if (coffset < 0) {
 1076                         DPRINTF(("%s: hash does not precede crypt; "
 1077                                 "mac skip %u enc skip %u\n",
 1078                                 __func__, maccrd->crd_skip, enccrd->crd_skip));
 1079                         safestats.st_skipmismatch++;
 1080                         err = EINVAL;
 1081                         goto errout;
 1082                 }
 1083                 oplen = enccrd->crd_skip + enccrd->crd_len;
 1084                 if (maccrd->crd_skip + maccrd->crd_len != oplen) {
 1085                         DPRINTF(("%s: hash amount %u != crypt amount %u\n",
 1086                                 __func__, maccrd->crd_skip + maccrd->crd_len,
 1087                                 oplen));
 1088                         safestats.st_lenmismatch++;
 1089                         err = EINVAL;
 1090                         goto errout;
 1091                 }
 1092 #ifdef SAFE_DEBUG
 1093                 if (safe_debug) {
 1094                         printf("mac: skip %d, len %d, inject %d\n",
 1095                             maccrd->crd_skip, maccrd->crd_len,
 1096                             maccrd->crd_inject);
 1097                         printf("enc: skip %d, len %d, inject %d\n",
 1098                             enccrd->crd_skip, enccrd->crd_len,
 1099                             enccrd->crd_inject);
 1100                         printf("bypass %d coffset %d oplen %d\n",
 1101                                 bypass, coffset, oplen);
 1102                 }
 1103 #endif
 1104                 if (coffset & 3) {      /* offset must be 32-bit aligned */
 1105                         DPRINTF(("%s: coffset %u misaligned\n",
 1106                                 __func__, coffset));
 1107                         safestats.st_coffmisaligned++;
 1108                         err = EINVAL;
 1109                         goto errout;
 1110                 }
 1111                 coffset >>= 2;
 1112                 if (coffset > 255) {    /* offset must be <256 dwords */
 1113                         DPRINTF(("%s: coffset %u too big\n",
 1114                                 __func__, coffset));
 1115                         safestats.st_cofftoobig++;
 1116                         err = EINVAL;
 1117                         goto errout;
 1118                 }
 1119                 /*
 1120                  * Tell the hardware to copy the header to the output.
 1121                  * The header is defined as the data from the end of
 1122                  * the bypass to the start of data to be encrypted. 
 1123                  * Typically this is the inline IV.  Note that you need
 1124                  * to do this even if src+dst are the same; it appears
 1125                  * that w/o this bit the crypted data is written
 1126                  * immediately after the bypass data.
 1127                  */
 1128                 cmd1 |= SAFE_SA_CMD1_HDRCOPY;
 1129                 /*
 1130                  * Disable IP header mutable bit handling.  This is
 1131                  * needed to get correct HMAC calculations.
 1132                  */
 1133                 cmd1 |= SAFE_SA_CMD1_MUTABLE;
 1134         } else {
 1135                 if (enccrd) {
 1136                         bypass = enccrd->crd_skip;
 1137                         oplen = bypass + enccrd->crd_len;
 1138                 } else {
 1139                         bypass = maccrd->crd_skip;
 1140                         oplen = bypass + maccrd->crd_len;
 1141                 }
 1142                 coffset = 0;
 1143         }
 1144         /* XXX verify multiple of 4 when using s/g */
 1145         if (bypass > 96) {              /* bypass offset must be <= 96 bytes */
 1146                 DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
 1147                 safestats.st_bypasstoobig++;
 1148                 err = EINVAL;
 1149                 goto errout;
 1150         }
 1151 
 1152         if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
 1153                 safestats.st_nomap++;
 1154                 err = ENOMEM;
 1155                 goto errout;
 1156         }
 1157         if (crp->crp_flags & CRYPTO_F_IMBUF) {
 1158                 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
 1159                     re->re_src_m, safe_op_cb,
 1160                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
 1161                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
 1162                         re->re_src_map = NULL;
 1163                         safestats.st_noload++;
 1164                         err = ENOMEM;
 1165                         goto errout;
 1166                 }
 1167         } else if (crp->crp_flags & CRYPTO_F_IOV) {
 1168                 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
 1169                     re->re_src_io, safe_op_cb,
 1170                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
 1171                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
 1172                         re->re_src_map = NULL;
 1173                         safestats.st_noload++;
 1174                         err = ENOMEM;
 1175                         goto errout;
 1176                 }
 1177         }
 1178         nicealign = safe_dmamap_aligned(&re->re_src);
 1179         uniform = safe_dmamap_uniform(&re->re_src);
 1180 
 1181         DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
 1182                 nicealign, uniform, re->re_src.nsegs));
 1183         if (re->re_src.nsegs > 1) {
 1184                 re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
 1185                         ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
 1186                 for (i = 0; i < re->re_src_nsegs; i++) {
 1187                         /* NB: no need to check if there's space */
 1188                         pd = sc->sc_spfree;
 1189                         if (++(sc->sc_spfree) == sc->sc_springtop)
 1190                                 sc->sc_spfree = sc->sc_spring;
 1191 
 1192                         KASSERT((pd->pd_flags&3) == 0 ||
 1193                                 (pd->pd_flags&3) == SAFE_PD_DONE,
 1194                                 ("bogus source particle descriptor; flags %x",
 1195                                 pd->pd_flags));
 1196                         pd->pd_addr = re->re_src_segs[i].ds_addr;
 1197                         pd->pd_size = re->re_src_segs[i].ds_len;
 1198                         pd->pd_flags = SAFE_PD_READY;
 1199                 }
 1200                 cmd0 |= SAFE_SA_CMD0_IGATHER;
 1201         } else {
 1202                 /*
 1203                  * No need for gather, reference the operand directly.
 1204                  */
 1205                 re->re_desc.d_src = re->re_src_segs[0].ds_addr;
 1206         }
 1207 
 1208         if (enccrd == NULL && maccrd != NULL) {
 1209                 /*
 1210                  * Hash op; no destination needed.
 1211                  */
 1212         } else {
 1213                 if (crp->crp_flags & CRYPTO_F_IOV) {
 1214                         if (!nicealign) {
 1215                                 safestats.st_iovmisaligned++;
 1216                                 err = EINVAL;
 1217                                 goto errout;
 1218                         }
 1219                         if (uniform != 1) {
 1220                                 /*
 1221                                  * Source is not suitable for direct use as
 1222                                  * the destination.  Create a new scatter/gather
 1223                                  * list based on the destination requirements
 1224                                  * and check if that's ok.
 1225                                  */
 1226                                 if (bus_dmamap_create(sc->sc_dstdmat,
 1227                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
 1228                                         safestats.st_nomap++;
 1229                                         err = ENOMEM;
 1230                                         goto errout;
 1231                                 }
 1232                                 if (bus_dmamap_load_uio(sc->sc_dstdmat,
 1233                                     re->re_dst_map, re->re_dst_io,
 1234                                     safe_op_cb, &re->re_dst,
 1235                                     BUS_DMA_NOWAIT) != 0) {
 1236                                         bus_dmamap_destroy(sc->sc_dstdmat,
 1237                                                 re->re_dst_map);
 1238                                         re->re_dst_map = NULL;
 1239                                         safestats.st_noload++;
 1240                                         err = ENOMEM;
 1241                                         goto errout;
 1242                                 }
 1243                                 uniform = safe_dmamap_uniform(&re->re_dst);
 1244                                 if (!uniform) {
 1245                                         /*
 1246                                          * There's no way to handle the DMA
 1247                                          * requirements with this uio.  We
 1248                                          * could create a separate DMA area for
 1249                                          * the result and then copy it back,
 1250                                          * but for now we just bail and return
 1251                                          * an error.  Note that uio requests
 1252                                          * > SAFE_MAX_DSIZE are handled because
 1253                                          * the DMA map and segment list for the
 1254                                          * destination wil result in a
 1255                                          * destination particle list that does
 1256                                          * the necessary scatter DMA.
 1257                                          */ 
 1258                                         safestats.st_iovnotuniform++;
 1259                                         err = EINVAL;
 1260                                         goto errout;
 1261                                 }
 1262                         } else
 1263                                 re->re_dst = re->re_src;
 1264                 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
 1265                         if (nicealign && uniform == 1) {
 1266                                 /*
 1267                                  * Source layout is suitable for direct
 1268                                  * sharing of the DMA map and segment list.
 1269                                  */
 1270                                 re->re_dst = re->re_src;
 1271                         } else if (nicealign && uniform == 2) {
 1272                                 /*
 1273                                  * The source is properly aligned but requires a
 1274                                  * different particle list to handle DMA of the
 1275                                  * result.  Create a new map and do the load to
 1276                                  * create the segment list.  The particle
 1277                                  * descriptor setup code below will handle the
 1278                                  * rest.
 1279                                  */
 1280                                 if (bus_dmamap_create(sc->sc_dstdmat,
 1281                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
 1282                                         safestats.st_nomap++;
 1283                                         err = ENOMEM;
 1284                                         goto errout;
 1285                                 }
 1286                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
 1287                                     re->re_dst_map, re->re_dst_m,
 1288                                     safe_op_cb, &re->re_dst,
 1289                                     BUS_DMA_NOWAIT) != 0) {
 1290                                         bus_dmamap_destroy(sc->sc_dstdmat,
 1291                                                 re->re_dst_map);
 1292                                         re->re_dst_map = NULL;
 1293                                         safestats.st_noload++;
 1294                                         err = ENOMEM;
 1295                                         goto errout;
 1296                                 }
 1297                         } else {                /* !(aligned and/or uniform) */
 1298                                 int totlen, len;
 1299                                 struct mbuf *m, *top, **mp;
 1300 
 1301                                 /*
 1302                                  * DMA constraints require that we allocate a
 1303                                  * new mbuf chain for the destination.  We
 1304                                  * allocate an entire new set of mbufs of
 1305                                  * optimal/required size and then tell the
 1306                                  * hardware to copy any bits that are not
 1307                                  * created as a byproduct of the operation.
 1308                                  */
 1309                                 if (!nicealign)
 1310                                         safestats.st_unaligned++;
 1311                                 if (!uniform)
 1312                                         safestats.st_notuniform++;
 1313                                 totlen = re->re_src_mapsize;
 1314                                 if (re->re_src_m->m_flags & M_PKTHDR) {
 1315                                         len = MHLEN;
 1316                                         MGETHDR(m, M_NOWAIT, MT_DATA);
 1317                                         if (m && !m_dup_pkthdr(m, re->re_src_m,
 1318                                             M_NOWAIT)) {
 1319                                                 m_free(m);
 1320                                                 m = NULL;
 1321                                         }
 1322                                 } else {
 1323                                         len = MLEN;
 1324                                         MGET(m, M_NOWAIT, MT_DATA);
 1325                                 }
 1326                                 if (m == NULL) {
 1327                                         safestats.st_nombuf++;
 1328                                         err = sc->sc_nqchip ? ERESTART : ENOMEM;
 1329                                         goto errout;
 1330                                 }
 1331                                 if (totlen >= MINCLSIZE) {
 1332                                         if (!(MCLGET(m, M_NOWAIT))) {
 1333                                                 m_free(m);
 1334                                                 safestats.st_nomcl++;
 1335                                                 err = sc->sc_nqchip ?
 1336                                                         ERESTART : ENOMEM;
 1337                                                 goto errout;
 1338                                         }
 1339                                         len = MCLBYTES;
 1340                                 }
 1341                                 m->m_len = len;
 1342                                 top = NULL;
 1343                                 mp = &top;
 1344 
 1345                                 while (totlen > 0) {
 1346                                         if (top) {
 1347                                                 MGET(m, M_NOWAIT, MT_DATA);
 1348                                                 if (m == NULL) {
 1349                                                         m_freem(top);
 1350                                                         safestats.st_nombuf++;
 1351                                                         err = sc->sc_nqchip ?
 1352                                                             ERESTART : ENOMEM;
 1353                                                         goto errout;
 1354                                                 }
 1355                                                 len = MLEN;
 1356                                         }
 1357                                         if (top && totlen >= MINCLSIZE) {
 1358                                                 if (!(MCLGET(m, M_NOWAIT))) {
 1359                                                         *mp = m;
 1360                                                         m_freem(top);
 1361                                                         safestats.st_nomcl++;
 1362                                                         err = sc->sc_nqchip ?
 1363                                                             ERESTART : ENOMEM;
 1364                                                         goto errout;
 1365                                                 }
 1366                                                 len = MCLBYTES;
 1367                                         }
 1368                                         m->m_len = len = min(totlen, len);
 1369                                         totlen -= len;
 1370                                         *mp = m;
 1371                                         mp = &m->m_next;
 1372                                 }
 1373                                 re->re_dst_m = top;
 1374                                 if (bus_dmamap_create(sc->sc_dstdmat, 
 1375                                     BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
 1376                                         safestats.st_nomap++;
 1377                                         err = ENOMEM;
 1378                                         goto errout;
 1379                                 }
 1380                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
 1381                                     re->re_dst_map, re->re_dst_m,
 1382                                     safe_op_cb, &re->re_dst,
 1383                                     BUS_DMA_NOWAIT) != 0) {
 1384                                         bus_dmamap_destroy(sc->sc_dstdmat,
 1385                                         re->re_dst_map);
 1386                                         re->re_dst_map = NULL;
 1387                                         safestats.st_noload++;
 1388                                         err = ENOMEM;
 1389                                         goto errout;
 1390                                 }
 1391                                 if (re->re_src.mapsize > oplen) {
 1392                                         /*
 1393                                          * There's data following what the
 1394                                          * hardware will copy for us.  If this
 1395                                          * isn't just the ICV (that's going to
 1396                                          * be written on completion), copy it
 1397                                          * to the new mbufs
 1398                                          */
 1399                                         if (!(maccrd &&
 1400                                             (re->re_src.mapsize-oplen) == 12 &&
 1401                                             maccrd->crd_inject == oplen))
 1402                                                 safe_mcopy(re->re_src_m,
 1403                                                            re->re_dst_m,
 1404                                                            oplen);
 1405                                         else
 1406                                                 safestats.st_noicvcopy++;
 1407                                 }
 1408                         }
 1409                 } else {
 1410                         safestats.st_badflags++;
 1411                         err = EINVAL;
 1412                         goto errout;
 1413                 }
 1414 
 1415                 if (re->re_dst.nsegs > 1) {
 1416                         re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
 1417                             ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
 1418                         for (i = 0; i < re->re_dst_nsegs; i++) {
 1419                                 pd = sc->sc_dpfree;
 1420                                 KASSERT((pd->pd_flags&3) == 0 ||
 1421                                         (pd->pd_flags&3) == SAFE_PD_DONE,
 1422                                         ("bogus dest particle descriptor; flags %x",
 1423                                                 pd->pd_flags));
 1424                                 if (++(sc->sc_dpfree) == sc->sc_dpringtop)
 1425                                         sc->sc_dpfree = sc->sc_dpring;
 1426                                 pd->pd_addr = re->re_dst_segs[i].ds_addr;
 1427                                 pd->pd_flags = SAFE_PD_READY;
 1428                         }
 1429                         cmd0 |= SAFE_SA_CMD0_OSCATTER;
 1430                 } else {
 1431                         /*
 1432                          * No need for scatter, reference the operand directly.
 1433                          */
 1434                         re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
 1435                 }
 1436         }
 1437 
 1438         /*
 1439          * All done with setup; fillin the SA command words
 1440          * and the packet engine descriptor.  The operation
 1441          * is now ready for submission to the hardware.
 1442          */
 1443         sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
 1444         sa->sa_cmd1 = cmd1
 1445                     | (coffset << SAFE_SA_CMD1_OFFSET_S)
 1446                     | SAFE_SA_CMD1_SAREV1       /* Rev 1 SA data structure */
 1447                     | SAFE_SA_CMD1_SRPCI
 1448                     ;
 1449         /*
 1450          * NB: the order of writes is important here.  In case the
 1451          * chip is scanning the ring because of an outstanding request
 1452          * it might nab this one too.  In that case we need to make
 1453          * sure the setup is complete before we write the length
 1454          * field of the descriptor as it signals the descriptor is
 1455          * ready for processing.
 1456          */
 1457         re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
 1458         if (maccrd)
 1459                 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
 1460         re->re_desc.d_len = oplen
 1461                           | SAFE_PE_LEN_READY
 1462                           | (bypass << SAFE_PE_LEN_BYPASS_S)
 1463                           ;
 1464 
 1465         safestats.st_ipackets++;
 1466         safestats.st_ibytes += oplen;
 1467 
 1468         if (++(sc->sc_front) == sc->sc_ringtop)
 1469                 sc->sc_front = sc->sc_ring;
 1470 
 1471         /* XXX honor batching */
 1472         safe_feed(sc, re);
 1473         mtx_unlock(&sc->sc_ringmtx);
 1474         return (0);
 1475 
 1476 errout:
 1477         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
 1478                 m_freem(re->re_dst_m);
 1479 
 1480         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
 1481                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
 1482                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
 1483         }
 1484         if (re->re_src_map != NULL) {
 1485                 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
 1486                 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
 1487         }
 1488         mtx_unlock(&sc->sc_ringmtx);
 1489         if (err != ERESTART) {
 1490                 crp->crp_etype = err;
 1491                 crypto_done(crp);
 1492         } else {
 1493                 sc->sc_needwakeup |= CRYPTO_SYMQ;
 1494         }
 1495         return (err);
 1496 }
 1497 
 1498 static void
 1499 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
 1500 {
 1501         struct cryptop *crp = (struct cryptop *)re->re_crp;
 1502         struct cryptodesc *crd;
 1503 
 1504         safestats.st_opackets++;
 1505         safestats.st_obytes += re->re_dst.mapsize;
 1506 
 1507         safe_dma_sync(&sc->sc_ringalloc,
 1508                 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 1509         if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
 1510                 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
 1511                         re->re_desc.d_csr,
 1512                         re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
 1513                 safestats.st_peoperr++;
 1514                 crp->crp_etype = EIO;           /* something more meaningful? */
 1515         }
 1516         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
 1517                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
 1518                     BUS_DMASYNC_POSTREAD);
 1519                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
 1520                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
 1521         }
 1522         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
 1523         bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
 1524         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
 1525 
 1526         /* 
 1527          * If result was written to a differet mbuf chain, swap
 1528          * it in as the return value and reclaim the original.
 1529          */
 1530         if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
 1531                 m_freem(re->re_src_m);
 1532                 crp->crp_buf = (caddr_t)re->re_dst_m;
 1533         }
 1534 
 1535         if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
 1536                 /* copy out IV for future use */
 1537                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
 1538                         int ivsize;
 1539 
 1540                         if (crd->crd_alg == CRYPTO_DES_CBC ||
 1541                             crd->crd_alg == CRYPTO_3DES_CBC) {
 1542                                 ivsize = 2*sizeof(u_int32_t);
 1543                         } else if (crd->crd_alg == CRYPTO_AES_CBC) {
 1544                                 ivsize = 4*sizeof(u_int32_t);
 1545                         } else
 1546                                 continue;
 1547                         crypto_copydata(crp->crp_flags, crp->crp_buf,
 1548                             crd->crd_skip + crd->crd_len - ivsize, ivsize,
 1549                             (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
 1550                         break;
 1551                 }
 1552         }
 1553 
 1554         if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
 1555                 /* copy out ICV result */
 1556                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
 1557                         if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
 1558                             crd->crd_alg == CRYPTO_SHA1_HMAC ||
 1559                             crd->crd_alg == CRYPTO_NULL_HMAC))
 1560                                 continue;
 1561                         if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
 1562                                 /*
 1563                                  * SHA-1 ICV's are byte-swapped; fix 'em up
 1564                                  * before copy them to their destination.
 1565                                  */
 1566                                 re->re_sastate.sa_saved_indigest[0] =
 1567                                     bswap32(re->re_sastate.sa_saved_indigest[0]);
 1568                                 re->re_sastate.sa_saved_indigest[1] =
 1569                                     bswap32(re->re_sastate.sa_saved_indigest[1]);
 1570                                 re->re_sastate.sa_saved_indigest[2] =
 1571                                     bswap32(re->re_sastate.sa_saved_indigest[2]);
 1572                         }
 1573                         crypto_copyback(crp->crp_flags, crp->crp_buf,
 1574                             crd->crd_inject,
 1575                             sc->sc_sessions[re->re_sesn].ses_mlen,
 1576                             (caddr_t)re->re_sastate.sa_saved_indigest);
 1577                         break;
 1578                 }
 1579         }
 1580         crypto_done(crp);
 1581 }
 1582 
 1583 /*
 1584  * Copy all data past offset from srcm to dstm.
 1585  */
 1586 static void
 1587 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
 1588 {
 1589         u_int j, dlen, slen;
 1590         caddr_t dptr, sptr;
 1591 
 1592         /*
 1593          * Advance src and dst to offset.
 1594          */
 1595         j = offset;
 1596         while (j >= 0) {
 1597                 if (srcm->m_len > j)
 1598                         break;
 1599                 j -= srcm->m_len;
 1600                 srcm = srcm->m_next;
 1601                 if (srcm == NULL)
 1602                         return;
 1603         }
 1604         sptr = mtod(srcm, caddr_t) + j;
 1605         slen = srcm->m_len - j;
 1606 
 1607         j = offset;
 1608         while (j >= 0) {
 1609                 if (dstm->m_len > j)
 1610                         break;
 1611                 j -= dstm->m_len;
 1612                 dstm = dstm->m_next;
 1613                 if (dstm == NULL)
 1614                         return;
 1615         }
 1616         dptr = mtod(dstm, caddr_t) + j;
 1617         dlen = dstm->m_len - j;
 1618 
 1619         /*
 1620          * Copy everything that remains.
 1621          */
 1622         for (;;) {
 1623                 j = min(slen, dlen);
 1624                 bcopy(sptr, dptr, j);
 1625                 if (slen == j) {
 1626                         srcm = srcm->m_next;
 1627                         if (srcm == NULL)
 1628                                 return;
 1629                         sptr = srcm->m_data;
 1630                         slen = srcm->m_len;
 1631                 } else
 1632                         sptr += j, slen -= j;
 1633                 if (dlen == j) {
 1634                         dstm = dstm->m_next;
 1635                         if (dstm == NULL)
 1636                                 return;
 1637                         dptr = dstm->m_data;
 1638                         dlen = dstm->m_len;
 1639                 } else
 1640                         dptr += j, dlen -= j;
 1641         }
 1642 }
 1643 
 1644 #ifndef SAFE_NO_RNG
 1645 #define SAFE_RNG_MAXWAIT        1000
 1646 
 1647 static void
 1648 safe_rng_init(struct safe_softc *sc)
 1649 {
 1650         u_int32_t w, v;
 1651         int i;
 1652 
 1653         WRITE_REG(sc, SAFE_RNG_CTRL, 0);
 1654         /* use default value according to the manual */
 1655         WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);    /* magic from SafeNet */
 1656         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 1657 
 1658         /*
 1659          * There is a bug in rev 1.0 of the 1140 that when the RNG
 1660          * is brought out of reset the ready status flag does not
 1661          * work until the RNG has finished its internal initialization.
 1662          *
 1663          * So in order to determine the device is through its
 1664          * initialization we must read the data register, using the
 1665          * status reg in the read in case it is initialized.  Then read
 1666          * the data register until it changes from the first read.
 1667          * Once it changes read the data register until it changes
 1668          * again.  At this time the RNG is considered initialized. 
 1669          * This could take between 750ms - 1000ms in time.
 1670          */
 1671         i = 0;
 1672         w = READ_REG(sc, SAFE_RNG_OUT);
 1673         do {
 1674                 v = READ_REG(sc, SAFE_RNG_OUT);
 1675                 if (v != w) {
 1676                         w = v;
 1677                         break;
 1678                 }
 1679                 DELAY(10);
 1680         } while (++i < SAFE_RNG_MAXWAIT);
 1681 
 1682         /* Wait Until data changes again */
 1683         i = 0;
 1684         do {
 1685                 v = READ_REG(sc, SAFE_RNG_OUT);
 1686                 if (v != w)
 1687                         break;
 1688                 DELAY(10);
 1689         } while (++i < SAFE_RNG_MAXWAIT);
 1690 }
 1691 
 1692 static __inline void
 1693 safe_rng_disable_short_cycle(struct safe_softc *sc)
 1694 {
 1695         WRITE_REG(sc, SAFE_RNG_CTRL,
 1696                 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
 1697 }
 1698 
 1699 static __inline void
 1700 safe_rng_enable_short_cycle(struct safe_softc *sc)
 1701 {
 1702         WRITE_REG(sc, SAFE_RNG_CTRL, 
 1703                 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
 1704 }
 1705 
 1706 static __inline u_int32_t
 1707 safe_rng_read(struct safe_softc *sc)
 1708 {
 1709         int i;
 1710 
 1711         i = 0;
 1712         while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
 1713                 ;
 1714         return READ_REG(sc, SAFE_RNG_OUT);
 1715 }
 1716 
 1717 static void
 1718 safe_rng(void *arg)
 1719 {
 1720         struct safe_softc *sc = arg;
 1721         u_int32_t buf[SAFE_RNG_MAXBUFSIZ];      /* NB: maybe move to softc */
 1722         u_int maxwords;
 1723         int i;
 1724 
 1725         safestats.st_rng++;
 1726         /*
 1727          * Fetch the next block of data.
 1728          */
 1729         maxwords = safe_rngbufsize;
 1730         if (maxwords > SAFE_RNG_MAXBUFSIZ)
 1731                 maxwords = SAFE_RNG_MAXBUFSIZ;
 1732 retry:
 1733         for (i = 0; i < maxwords; i++)
 1734                 buf[i] = safe_rng_read(sc);
 1735         /*
 1736          * Check the comparator alarm count and reset the h/w if
 1737          * it exceeds our threshold.  This guards against the
 1738          * hardware oscillators resonating with external signals.
 1739          */
 1740         if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
 1741                 u_int32_t freq_inc, w;
 1742 
 1743                 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
 1744                         READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
 1745                 safestats.st_rngalarm++;
 1746                 safe_rng_enable_short_cycle(sc);
 1747                 freq_inc = 18;
 1748                 for (i = 0; i < 64; i++) {
 1749                         w = READ_REG(sc, SAFE_RNG_CNFG);
 1750                         freq_inc = ((w + freq_inc) & 0x3fL);
 1751                         w = ((w & ~0x3fL) | freq_inc);
 1752                         WRITE_REG(sc, SAFE_RNG_CNFG, w);
 1753 
 1754                         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 1755 
 1756                         (void) safe_rng_read(sc);
 1757                         DELAY(25);
 1758 
 1759                         if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
 1760                                 safe_rng_disable_short_cycle(sc);
 1761                                 goto retry;
 1762                         }
 1763                         freq_inc = 1;
 1764                 }
 1765                 safe_rng_disable_short_cycle(sc);
 1766         } else
 1767                 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 1768 
 1769         (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
 1770         callout_reset(&sc->sc_rngto,
 1771                 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
 1772 }
 1773 #endif /* SAFE_NO_RNG */
 1774 
 1775 static void
 1776 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1777 {
 1778         bus_addr_t *paddr = (bus_addr_t*) arg;
 1779         *paddr = segs->ds_addr;
 1780 }
 1781 
 1782 static int
 1783 safe_dma_malloc(
 1784         struct safe_softc *sc,
 1785         bus_size_t size,
 1786         struct safe_dma_alloc *dma,
 1787         int mapflags
 1788 )
 1789 {
 1790         int r;
 1791 
 1792         r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),     /* parent */
 1793                                sizeof(u_int32_t), 0,    /* alignment, bounds */
 1794                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
 1795                                BUS_SPACE_MAXADDR,       /* highaddr */
 1796                                NULL, NULL,              /* filter, filterarg */
 1797                                size,                    /* maxsize */
 1798                                1,                       /* nsegments */
 1799                                size,                    /* maxsegsize */
 1800                                BUS_DMA_ALLOCNOW,        /* flags */
 1801                                NULL, NULL,              /* locking */
 1802                                &dma->dma_tag);
 1803         if (r != 0) {
 1804                 device_printf(sc->sc_dev, "safe_dma_malloc: "
 1805                         "bus_dma_tag_create failed; error %u\n", r);
 1806                 goto fail_0;
 1807         }
 1808 
 1809         r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
 1810                              BUS_DMA_NOWAIT, &dma->dma_map);
 1811         if (r != 0) {
 1812                 device_printf(sc->sc_dev, "safe_dma_malloc: "
 1813                         "bus_dmammem_alloc failed; size %ju, error %u\n",
 1814                         (uintmax_t)size, r);
 1815                 goto fail_1;
 1816         }
 1817 
 1818         r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
 1819                             size,
 1820                             safe_dmamap_cb,
 1821                             &dma->dma_paddr,
 1822                             mapflags | BUS_DMA_NOWAIT);
 1823         if (r != 0) {
 1824                 device_printf(sc->sc_dev, "safe_dma_malloc: "
 1825                         "bus_dmamap_load failed; error %u\n", r);
 1826                 goto fail_2;
 1827         }
 1828 
 1829         dma->dma_size = size;
 1830         return (0);
 1831 
 1832         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
 1833 fail_2:
 1834         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
 1835 fail_1:
 1836         bus_dma_tag_destroy(dma->dma_tag);
 1837 fail_0:
 1838         dma->dma_tag = NULL;
 1839         return (r);
 1840 }
 1841 
 1842 static void
 1843 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
 1844 {
 1845         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
 1846         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
 1847         bus_dma_tag_destroy(dma->dma_tag);
 1848 }
 1849 
 1850 /*
 1851  * Resets the board.  Values in the regesters are left as is
 1852  * from the reset (i.e. initial values are assigned elsewhere).
 1853  */
 1854 static void
 1855 safe_reset_board(struct safe_softc *sc)
 1856 {
 1857         u_int32_t v;
 1858         /*
 1859          * Reset the device.  The manual says no delay
 1860          * is needed between marking and clearing reset.
 1861          */
 1862         v = READ_REG(sc, SAFE_PE_DMACFG) &~
 1863                 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
 1864                  SAFE_PE_DMACFG_SGRESET);
 1865         WRITE_REG(sc, SAFE_PE_DMACFG, v
 1866                                     | SAFE_PE_DMACFG_PERESET
 1867                                     | SAFE_PE_DMACFG_PDRRESET
 1868                                     | SAFE_PE_DMACFG_SGRESET);
 1869         WRITE_REG(sc, SAFE_PE_DMACFG, v);
 1870 }
 1871 
 1872 /*
 1873  * Initialize registers we need to touch only once.
 1874  */
 1875 static void
 1876 safe_init_board(struct safe_softc *sc)
 1877 {
 1878         u_int32_t v, dwords;
 1879 
 1880         v = READ_REG(sc, SAFE_PE_DMACFG);
 1881         v &=~ SAFE_PE_DMACFG_PEMODE;
 1882         v |= SAFE_PE_DMACFG_FSENA               /* failsafe enable */
 1883           |  SAFE_PE_DMACFG_GPRPCI              /* gather ring on PCI */
 1884           |  SAFE_PE_DMACFG_SPRPCI              /* scatter ring on PCI */
 1885           |  SAFE_PE_DMACFG_ESDESC              /* endian-swap descriptors */
 1886           |  SAFE_PE_DMACFG_ESSA                /* endian-swap SA's */
 1887           |  SAFE_PE_DMACFG_ESPDESC             /* endian-swap part. desc's */
 1888           ;
 1889         WRITE_REG(sc, SAFE_PE_DMACFG, v);
 1890 #if 0
 1891         /* XXX select byte swap based on host byte order */
 1892         WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
 1893 #endif
 1894         if (sc->sc_chiprev == SAFE_REV(1,0)) {
 1895                 /*
 1896                  * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
 1897                  * "target mode transfers" done while the chip is DMA'ing
 1898                  * >1020 bytes cause the hardware to lockup.  To avoid this
 1899                  * we reduce the max PCI transfer size and use small source
 1900                  * particle descriptors (<= 256 bytes).
 1901                  */
 1902                 WRITE_REG(sc, SAFE_DMA_CFG, 256);
 1903                 device_printf(sc->sc_dev,
 1904                         "Reduce max DMA size to %u words for rev %u.%u WAR\n",
 1905                         (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
 1906                         SAFE_REV_MAJ(sc->sc_chiprev),
 1907                         SAFE_REV_MIN(sc->sc_chiprev));
 1908         }
 1909 
 1910         /* NB: operands+results are overlaid */
 1911         WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
 1912         WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
 1913         /*
 1914          * Configure ring entry size and number of items in the ring.
 1915          */
 1916         KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
 1917                 ("PE ring entry not 32-bit aligned!"));
 1918         dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
 1919         WRITE_REG(sc, SAFE_PE_RINGCFG,
 1920                 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
 1921         WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);     /* disable polling */
 1922 
 1923         WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
 1924         WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
 1925         WRITE_REG(sc, SAFE_PE_PARTSIZE,
 1926                 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
 1927         /*
 1928          * NB: destination particles are fixed size.  We use
 1929          *     an mbuf cluster and require all results go to
 1930          *     clusters or smaller.
 1931          */
 1932         WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
 1933 
 1934         /* it's now safe to enable PE mode, do it */
 1935         WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
 1936 
 1937         /*
 1938          * Configure hardware to use level-triggered interrupts and
 1939          * to interrupt after each descriptor is processed.
 1940          */
 1941         WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
 1942         WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
 1943         WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
 1944 }
 1945 
 1946 /*
 1947  * Init PCI registers
 1948  */
 1949 static void
 1950 safe_init_pciregs(device_t dev)
 1951 {
 1952 }
 1953 
 1954 /*
 1955  * Clean up after a chip crash.
 1956  * It is assumed that the caller in splimp()
 1957  */
 1958 static void
 1959 safe_cleanchip(struct safe_softc *sc)
 1960 {
 1961 
 1962         if (sc->sc_nqchip != 0) {
 1963                 struct safe_ringentry *re = sc->sc_back;
 1964 
 1965                 while (re != sc->sc_front) {
 1966                         if (re->re_desc.d_csr != 0)
 1967                                 safe_free_entry(sc, re);
 1968                         if (++re == sc->sc_ringtop)
 1969                                 re = sc->sc_ring;
 1970                 }
 1971                 sc->sc_back = re;
 1972                 sc->sc_nqchip = 0;
 1973         }
 1974 }
 1975 
 1976 /*
 1977  * free a safe_q
 1978  * It is assumed that the caller is within splimp().
 1979  */
 1980 static int
 1981 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
 1982 {
 1983         struct cryptop *crp;
 1984 
 1985         /*
 1986          * Free header MCR
 1987          */
 1988         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
 1989                 m_freem(re->re_dst_m);
 1990 
 1991         crp = (struct cryptop *)re->re_crp;
 1992         
 1993         re->re_desc.d_csr = 0;
 1994         
 1995         crp->crp_etype = EFAULT;
 1996         crypto_done(crp);
 1997         return(0);
 1998 }
 1999 
 2000 /*
 2001  * Routine to reset the chip and clean up.
 2002  * It is assumed that the caller is in splimp()
 2003  */
 2004 static void
 2005 safe_totalreset(struct safe_softc *sc)
 2006 {
 2007         safe_reset_board(sc);
 2008         safe_init_board(sc);
 2009         safe_cleanchip(sc);
 2010 }
 2011 
 2012 /*
 2013  * Is the operand suitable aligned for direct DMA.  Each
 2014  * segment must be aligned on a 32-bit boundary and all
 2015  * but the last segment must be a multiple of 4 bytes.
 2016  */
 2017 static int
 2018 safe_dmamap_aligned(const struct safe_operand *op)
 2019 {
 2020         int i;
 2021 
 2022         for (i = 0; i < op->nsegs; i++) {
 2023                 if (op->segs[i].ds_addr & 3)
 2024                         return (0);
 2025                 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
 2026                         return (0);
 2027         }
 2028         return (1);
 2029 }
 2030 
 2031 /*
 2032  * Is the operand suitable for direct DMA as the destination
 2033  * of an operation.  The hardware requires that each ``particle''
 2034  * but the last in an operation result have the same size.  We
 2035  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
 2036  * 0 if some segment is not a multiple of of this size, 1 if all
 2037  * segments are exactly this size, or 2 if segments are at worst
 2038  * a multple of this size.
 2039  */
 2040 static int
 2041 safe_dmamap_uniform(const struct safe_operand *op)
 2042 {
 2043         int result = 1;
 2044 
 2045         if (op->nsegs > 0) {
 2046                 int i;
 2047 
 2048                 for (i = 0; i < op->nsegs-1; i++) {
 2049                         if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
 2050                                 return (0);
 2051                         if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
 2052                                 result = 2;
 2053                 }
 2054         }
 2055         return (result);
 2056 }
 2057 
 2058 #ifdef SAFE_DEBUG
 2059 static void
 2060 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
 2061 {
 2062         printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
 2063                 , tag
 2064                 , READ_REG(sc, SAFE_DMA_ENDIAN)
 2065                 , READ_REG(sc, SAFE_DMA_SRCADDR)
 2066                 , READ_REG(sc, SAFE_DMA_DSTADDR)
 2067                 , READ_REG(sc, SAFE_DMA_STAT)
 2068         );
 2069 }
 2070 
 2071 static void
 2072 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
 2073 {
 2074         printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
 2075                 , tag
 2076                 , READ_REG(sc, SAFE_HI_CFG)
 2077                 , READ_REG(sc, SAFE_HI_MASK)
 2078                 , READ_REG(sc, SAFE_HI_DESC_CNT)
 2079                 , READ_REG(sc, SAFE_HU_STAT)
 2080                 , READ_REG(sc, SAFE_HM_STAT)
 2081         );
 2082 }
 2083 
 2084 static void
 2085 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
 2086 {
 2087         u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
 2088 
 2089         /* NB: assume caller has lock on ring */
 2090         printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
 2091                 tag,
 2092                 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
 2093                 (unsigned long)(sc->sc_back - sc->sc_ring),
 2094                 (unsigned long)(sc->sc_front - sc->sc_ring));
 2095 }
 2096 
 2097 static void
 2098 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
 2099 {
 2100         int ix, nsegs;
 2101 
 2102         ix = re - sc->sc_ring;
 2103         printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
 2104                 , tag
 2105                 , re, ix
 2106                 , re->re_desc.d_csr
 2107                 , re->re_desc.d_src
 2108                 , re->re_desc.d_dst
 2109                 , re->re_desc.d_sa
 2110                 , re->re_desc.d_len
 2111         );
 2112         if (re->re_src.nsegs > 1) {
 2113                 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
 2114                         sizeof(struct safe_pdesc);
 2115                 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
 2116                         printf(" spd[%u] %p: %p size %u flags %x"
 2117                                 , ix, &sc->sc_spring[ix]
 2118                                 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
 2119                                 , sc->sc_spring[ix].pd_size
 2120                                 , sc->sc_spring[ix].pd_flags
 2121                         );
 2122                         if (sc->sc_spring[ix].pd_size == 0)
 2123                                 printf(" (zero!)");
 2124                         printf("\n");
 2125                         if (++ix == SAFE_TOTAL_SPART)
 2126                                 ix = 0;
 2127                 }
 2128         }
 2129         if (re->re_dst.nsegs > 1) {
 2130                 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
 2131                         sizeof(struct safe_pdesc);
 2132                 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
 2133                         printf(" dpd[%u] %p: %p flags %x\n"
 2134                                 , ix, &sc->sc_dpring[ix]
 2135                                 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
 2136                                 , sc->sc_dpring[ix].pd_flags
 2137                         );
 2138                         if (++ix == SAFE_TOTAL_DPART)
 2139                                 ix = 0;
 2140                 }
 2141         }
 2142         printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
 2143                 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
 2144         printf("sa: key %x %x %x %x %x %x %x %x\n"
 2145                 , re->re_sa.sa_key[0]
 2146                 , re->re_sa.sa_key[1]
 2147                 , re->re_sa.sa_key[2]
 2148                 , re->re_sa.sa_key[3]
 2149                 , re->re_sa.sa_key[4]
 2150                 , re->re_sa.sa_key[5]
 2151                 , re->re_sa.sa_key[6]
 2152                 , re->re_sa.sa_key[7]
 2153         );
 2154         printf("sa: indigest %x %x %x %x %x\n"
 2155                 , re->re_sa.sa_indigest[0]
 2156                 , re->re_sa.sa_indigest[1]
 2157                 , re->re_sa.sa_indigest[2]
 2158                 , re->re_sa.sa_indigest[3]
 2159                 , re->re_sa.sa_indigest[4]
 2160         );
 2161         printf("sa: outdigest %x %x %x %x %x\n"
 2162                 , re->re_sa.sa_outdigest[0]
 2163                 , re->re_sa.sa_outdigest[1]
 2164                 , re->re_sa.sa_outdigest[2]
 2165                 , re->re_sa.sa_outdigest[3]
 2166                 , re->re_sa.sa_outdigest[4]
 2167         );
 2168         printf("sr: iv %x %x %x %x\n"
 2169                 , re->re_sastate.sa_saved_iv[0]
 2170                 , re->re_sastate.sa_saved_iv[1]
 2171                 , re->re_sastate.sa_saved_iv[2]
 2172                 , re->re_sastate.sa_saved_iv[3]
 2173         );
 2174         printf("sr: hashbc %u indigest %x %x %x %x %x\n"
 2175                 , re->re_sastate.sa_saved_hashbc
 2176                 , re->re_sastate.sa_saved_indigest[0]
 2177                 , re->re_sastate.sa_saved_indigest[1]
 2178                 , re->re_sastate.sa_saved_indigest[2]
 2179                 , re->re_sastate.sa_saved_indigest[3]
 2180                 , re->re_sastate.sa_saved_indigest[4]
 2181         );
 2182 }
 2183 
 2184 static void
 2185 safe_dump_ring(struct safe_softc *sc, const char *tag)
 2186 {
 2187         mtx_lock(&sc->sc_ringmtx);
 2188         printf("\nSafeNet Ring State:\n");
 2189         safe_dump_intrstate(sc, tag);
 2190         safe_dump_dmastatus(sc, tag);
 2191         safe_dump_ringstate(sc, tag);
 2192         if (sc->sc_nqchip) {
 2193                 struct safe_ringentry *re = sc->sc_back;
 2194                 do {
 2195                         safe_dump_request(sc, tag, re);
 2196                         if (++re == sc->sc_ringtop)
 2197                                 re = sc->sc_ring;
 2198                 } while (re != sc->sc_front);
 2199         }
 2200         mtx_unlock(&sc->sc_ringmtx);
 2201 }
 2202 
 2203 static int
 2204 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
 2205 {
 2206         char dmode[64];
 2207         int error;
 2208 
 2209         strncpy(dmode, "", sizeof(dmode) - 1);
 2210         dmode[sizeof(dmode) - 1] = '\0';
 2211         error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
 2212 
 2213         if (error == 0 && req->newptr != NULL) {
 2214                 struct safe_softc *sc = safec;
 2215 
 2216                 if (!sc)
 2217                         return EINVAL;
 2218                 if (strncmp(dmode, "dma", 3) == 0)
 2219                         safe_dump_dmastatus(sc, "safe0");
 2220                 else if (strncmp(dmode, "int", 3) == 0)
 2221                         safe_dump_intrstate(sc, "safe0");
 2222                 else if (strncmp(dmode, "ring", 4) == 0)
 2223                         safe_dump_ring(sc, "safe0");
 2224                 else
 2225                         return EINVAL;
 2226         }
 2227         return error;
 2228 }
 2229 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
 2230         0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
 2231 #endif /* SAFE_DEBUG */

Cache object: 10953254ffff2061306a83453a8ba453


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.