The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/safe/safe.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
    3  * Copyright (c) 2003 Global Technology Associates, Inc.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/9.2/sys/dev/safe/safe.c 254364 2013-08-15 12:19:16Z scottl $");
   30 
   31 /*
   32  * SafeNet SafeXcel-1141 hardware crypto accelerator
   33  */
   34 #include "opt_safe.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/proc.h>
   39 #include <sys/errno.h>
   40 #include <sys/malloc.h>
   41 #include <sys/kernel.h>
   42 #include <sys/mbuf.h>
   43 #include <sys/module.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/endian.h>
   48 
   49 #include <vm/vm.h>
   50 #include <vm/pmap.h>
   51 
   52 #include <machine/bus.h>
   53 #include <machine/resource.h>
   54 #include <sys/bus.h>
   55 #include <sys/rman.h>
   56 
   57 #include <crypto/sha1.h>
   58 #include <opencrypto/cryptodev.h>
   59 #include <opencrypto/cryptosoft.h>
   60 #include <sys/md5.h>
   61 #include <sys/random.h>
   62 #include <sys/kobj.h>
   63 
   64 #include "cryptodev_if.h"
   65 
   66 #include <dev/pci/pcivar.h>
   67 #include <dev/pci/pcireg.h>
   68 
   69 #ifdef SAFE_RNDTEST
   70 #include <dev/rndtest/rndtest.h>
   71 #endif
   72 #include <dev/safe/safereg.h>
   73 #include <dev/safe/safevar.h>
   74 
   75 #ifndef bswap32
   76 #define bswap32 NTOHL
   77 #endif
   78 
   79 /*
   80  * Prototypes and count for the pci_device structure
   81  */
   82 static  int safe_probe(device_t);
   83 static  int safe_attach(device_t);
   84 static  int safe_detach(device_t);
   85 static  int safe_suspend(device_t);
   86 static  int safe_resume(device_t);
   87 static  int safe_shutdown(device_t);
   88 
   89 static  int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
   90 static  int safe_freesession(device_t, u_int64_t);
   91 static  int safe_process(device_t, struct cryptop *, int);
   92 
   93 static device_method_t safe_methods[] = {
   94         /* Device interface */
   95         DEVMETHOD(device_probe,         safe_probe),
   96         DEVMETHOD(device_attach,        safe_attach),
   97         DEVMETHOD(device_detach,        safe_detach),
   98         DEVMETHOD(device_suspend,       safe_suspend),
   99         DEVMETHOD(device_resume,        safe_resume),
  100         DEVMETHOD(device_shutdown,      safe_shutdown),
  101 
  102         /* crypto device methods */
  103         DEVMETHOD(cryptodev_newsession, safe_newsession),
  104         DEVMETHOD(cryptodev_freesession,safe_freesession),
  105         DEVMETHOD(cryptodev_process,    safe_process),
  106 
  107         DEVMETHOD_END
  108 };
  109 static driver_t safe_driver = {
  110         "safe",
  111         safe_methods,
  112         sizeof (struct safe_softc)
  113 };
  114 static devclass_t safe_devclass;
  115 
  116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
  117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
  118 #ifdef SAFE_RNDTEST
  119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
  120 #endif
  121 
  122 static  void safe_intr(void *);
  123 static  void safe_callback(struct safe_softc *, struct safe_ringentry *);
  124 static  void safe_feed(struct safe_softc *, struct safe_ringentry *);
  125 static  void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
  126 #ifndef SAFE_NO_RNG
  127 static  void safe_rng_init(struct safe_softc *);
  128 static  void safe_rng(void *);
  129 #endif /* SAFE_NO_RNG */
  130 static  int safe_dma_malloc(struct safe_softc *, bus_size_t,
  131                 struct safe_dma_alloc *, int);
  132 #define safe_dma_sync(_dma, _flags) \
  133         bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
  134 static  void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
  135 static  int safe_dmamap_aligned(const struct safe_operand *);
  136 static  int safe_dmamap_uniform(const struct safe_operand *);
  137 
  138 static  void safe_reset_board(struct safe_softc *);
  139 static  void safe_init_board(struct safe_softc *);
  140 static  void safe_init_pciregs(device_t dev);
  141 static  void safe_cleanchip(struct safe_softc *);
  142 static  void safe_totalreset(struct safe_softc *);
  143 
  144 static  int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
  145 
  146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
  147     "SafeNet driver parameters");
  148 
  149 #ifdef SAFE_DEBUG
  150 static  void safe_dump_dmastatus(struct safe_softc *, const char *);
  151 static  void safe_dump_ringstate(struct safe_softc *, const char *);
  152 static  void safe_dump_intrstate(struct safe_softc *, const char *);
  153 static  void safe_dump_request(struct safe_softc *, const char *,
  154                 struct safe_ringentry *);
  155 
  156 static  struct safe_softc *safec;               /* for use by hw.safe.dump */
  157 
  158 static  int safe_debug = 0;
  159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
  160             0, "control debugging msgs");
  161 #define DPRINTF(_x)     if (safe_debug) printf _x
  162 #else
  163 #define DPRINTF(_x)
  164 #endif
  165 
  166 #define READ_REG(sc,r) \
  167         bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
  168 
  169 #define WRITE_REG(sc,reg,val) \
  170         bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
  171 
  172 struct safe_stats safestats;
  173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
  174             safe_stats, "driver statistics");
  175 #ifndef SAFE_NO_RNG
  176 static  int safe_rnginterval = 1;               /* poll once a second */
  177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
  178             0, "RNG polling interval (secs)");
  179 static  int safe_rngbufsize = 16;               /* 64 bytes each poll  */
  180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
  181             0, "RNG polling buffer size (32-bit words)");
  182 static  int safe_rngmaxalarm = 8;               /* max alarms before reset */
  183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
  184             0, "RNG max alarms before reset");
  185 #endif /* SAFE_NO_RNG */
  186 
  187 static int
  188 safe_probe(device_t dev)
  189 {
  190         if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
  191             pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
  192                 return (BUS_PROBE_DEFAULT);
  193         return (ENXIO);
  194 }
  195 
  196 static const char*
  197 safe_partname(struct safe_softc *sc)
  198 {
  199         /* XXX sprintf numbers when not decoded */
  200         switch (pci_get_vendor(sc->sc_dev)) {
  201         case PCI_VENDOR_SAFENET:
  202                 switch (pci_get_device(sc->sc_dev)) {
  203                 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
  204                 }
  205                 return "SafeNet unknown-part";
  206         }
  207         return "Unknown-vendor unknown-part";
  208 }
  209 
  210 #ifndef SAFE_NO_RNG
  211 static void
  212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
  213 {
  214         random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
  215 }
  216 #endif /* SAFE_NO_RNG */
  217 
  218 static int
  219 safe_attach(device_t dev)
  220 {
  221         struct safe_softc *sc = device_get_softc(dev);
  222         u_int32_t raddr;
  223         u_int32_t i, devinfo;
  224         int rid;
  225 
  226         bzero(sc, sizeof (*sc));
  227         sc->sc_dev = dev;
  228 
  229         /* XXX handle power management */
  230 
  231         pci_enable_busmaster(dev);
  232 
  233         /* 
  234          * Setup memory-mapping of PCI registers.
  235          */
  236         rid = BS_BAR;
  237         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  238                                            RF_ACTIVE);
  239         if (sc->sc_sr == NULL) {
  240                 device_printf(dev, "cannot map register space\n");
  241                 goto bad;
  242         }
  243         sc->sc_st = rman_get_bustag(sc->sc_sr);
  244         sc->sc_sh = rman_get_bushandle(sc->sc_sr);
  245 
  246         /*
  247          * Arrange interrupt line.
  248          */
  249         rid = 0;
  250         sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  251                                             RF_SHAREABLE|RF_ACTIVE);
  252         if (sc->sc_irq == NULL) {
  253                 device_printf(dev, "could not map interrupt\n");
  254                 goto bad1;
  255         }
  256         /*
  257          * NB: Network code assumes we are blocked with splimp()
  258          *     so make sure the IRQ is mapped appropriately.
  259          */
  260         if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
  261                            NULL, safe_intr, sc, &sc->sc_ih)) {
  262                 device_printf(dev, "could not establish interrupt\n");
  263                 goto bad2;
  264         }
  265 
  266         sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
  267         if (sc->sc_cid < 0) {
  268                 device_printf(dev, "could not get crypto driver id\n");
  269                 goto bad3;
  270         }
  271 
  272         sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
  273                 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
  274 
  275         /*
  276          * Setup DMA descriptor area.
  277          */
  278         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
  279                                1,                       /* alignment */
  280                                SAFE_DMA_BOUNDARY,       /* boundary */
  281                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
  282                                BUS_SPACE_MAXADDR,       /* highaddr */
  283                                NULL, NULL,              /* filter, filterarg */
  284                                SAFE_MAX_DMA,            /* maxsize */
  285                                SAFE_MAX_PART,           /* nsegments */
  286                                SAFE_MAX_SSIZE,          /* maxsegsize */
  287                                BUS_DMA_ALLOCNOW,        /* flags */
  288                                NULL, NULL,              /* locking */
  289                                &sc->sc_srcdmat)) {
  290                 device_printf(dev, "cannot allocate DMA tag\n");
  291                 goto bad4;
  292         }
  293         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
  294                                1,                       /* alignment */
  295                                SAFE_MAX_DSIZE,          /* boundary */
  296                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
  297                                BUS_SPACE_MAXADDR,       /* highaddr */
  298                                NULL, NULL,              /* filter, filterarg */
  299                                SAFE_MAX_DMA,            /* maxsize */
  300                                SAFE_MAX_PART,           /* nsegments */
  301                                SAFE_MAX_DSIZE,          /* maxsegsize */
  302                                BUS_DMA_ALLOCNOW,        /* flags */
  303                                NULL, NULL,              /* locking */
  304                                &sc->sc_dstdmat)) {
  305                 device_printf(dev, "cannot allocate DMA tag\n");
  306                 goto bad4;
  307         }
  308 
  309         /*
  310          * Allocate packet engine descriptors.
  311          */
  312         if (safe_dma_malloc(sc,
  313             SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
  314             &sc->sc_ringalloc, 0)) {
  315                 device_printf(dev, "cannot allocate PE descriptor ring\n");
  316                 bus_dma_tag_destroy(sc->sc_srcdmat);
  317                 goto bad4;
  318         }
  319         /*
  320          * Hookup the static portion of all our data structures.
  321          */
  322         sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
  323         sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
  324         sc->sc_front = sc->sc_ring;
  325         sc->sc_back = sc->sc_ring;
  326         raddr = sc->sc_ringalloc.dma_paddr;
  327         bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
  328         for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
  329                 struct safe_ringentry *re = &sc->sc_ring[i];
  330 
  331                 re->re_desc.d_sa = raddr +
  332                         offsetof(struct safe_ringentry, re_sa);
  333                 re->re_sa.sa_staterec = raddr +
  334                         offsetof(struct safe_ringentry, re_sastate);
  335 
  336                 raddr += sizeof (struct safe_ringentry);
  337         }
  338         mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
  339                 "packet engine ring", MTX_DEF);
  340 
  341         /*
  342          * Allocate scatter and gather particle descriptors.
  343          */
  344         if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
  345             &sc->sc_spalloc, 0)) {
  346                 device_printf(dev, "cannot allocate source particle "
  347                         "descriptor ring\n");
  348                 mtx_destroy(&sc->sc_ringmtx);
  349                 safe_dma_free(sc, &sc->sc_ringalloc);
  350                 bus_dma_tag_destroy(sc->sc_srcdmat);
  351                 goto bad4;
  352         }
  353         sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
  354         sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
  355         sc->sc_spfree = sc->sc_spring;
  356         bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
  357 
  358         if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
  359             &sc->sc_dpalloc, 0)) {
  360                 device_printf(dev, "cannot allocate destination particle "
  361                         "descriptor ring\n");
  362                 mtx_destroy(&sc->sc_ringmtx);
  363                 safe_dma_free(sc, &sc->sc_spalloc);
  364                 safe_dma_free(sc, &sc->sc_ringalloc);
  365                 bus_dma_tag_destroy(sc->sc_dstdmat);
  366                 goto bad4;
  367         }
  368         sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
  369         sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
  370         sc->sc_dpfree = sc->sc_dpring;
  371         bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
  372 
  373         device_printf(sc->sc_dev, "%s", safe_partname(sc));
  374 
  375         devinfo = READ_REG(sc, SAFE_DEVINFO);
  376         if (devinfo & SAFE_DEVINFO_RNG) {
  377                 sc->sc_flags |= SAFE_FLAGS_RNG;
  378                 printf(" rng");
  379         }
  380         if (devinfo & SAFE_DEVINFO_PKEY) {
  381 #if 0
  382                 printf(" key");
  383                 sc->sc_flags |= SAFE_FLAGS_KEY;
  384                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
  385                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
  386 #endif
  387         }
  388         if (devinfo & SAFE_DEVINFO_DES) {
  389                 printf(" des/3des");
  390                 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
  391                 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
  392         }
  393         if (devinfo & SAFE_DEVINFO_AES) {
  394                 printf(" aes");
  395                 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
  396         }
  397         if (devinfo & SAFE_DEVINFO_MD5) {
  398                 printf(" md5");
  399                 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
  400         }
  401         if (devinfo & SAFE_DEVINFO_SHA1) {
  402                 printf(" sha1");
  403                 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
  404         }
  405         printf(" null");
  406         crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
  407         crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
  408         /* XXX other supported algorithms */
  409         printf("\n");
  410 
  411         safe_reset_board(sc);           /* reset h/w */
  412         safe_init_pciregs(dev);         /* init pci settings */
  413         safe_init_board(sc);            /* init h/w */
  414 
  415 #ifndef SAFE_NO_RNG
  416         if (sc->sc_flags & SAFE_FLAGS_RNG) {
  417 #ifdef SAFE_RNDTEST
  418                 sc->sc_rndtest = rndtest_attach(dev);
  419                 if (sc->sc_rndtest)
  420                         sc->sc_harvest = rndtest_harvest;
  421                 else
  422                         sc->sc_harvest = default_harvest;
  423 #else
  424                 sc->sc_harvest = default_harvest;
  425 #endif
  426                 safe_rng_init(sc);
  427 
  428                 callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
  429                 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
  430         }
  431 #endif /* SAFE_NO_RNG */
  432 #ifdef SAFE_DEBUG
  433         safec = sc;                     /* for use by hw.safe.dump */
  434 #endif
  435         return (0);
  436 bad4:
  437         crypto_unregister_all(sc->sc_cid);
  438 bad3:
  439         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
  440 bad2:
  441         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
  442 bad1:
  443         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
  444 bad:
  445         return (ENXIO);
  446 }
  447 
  448 /*
  449  * Detach a device that successfully probed.
  450  */
  451 static int
  452 safe_detach(device_t dev)
  453 {
  454         struct safe_softc *sc = device_get_softc(dev);
  455 
  456         /* XXX wait/abort active ops */
  457 
  458         WRITE_REG(sc, SAFE_HI_MASK, 0);         /* disable interrupts */
  459 
  460         callout_stop(&sc->sc_rngto);
  461 
  462         crypto_unregister_all(sc->sc_cid);
  463 
  464 #ifdef SAFE_RNDTEST
  465         if (sc->sc_rndtest)
  466                 rndtest_detach(sc->sc_rndtest);
  467 #endif
  468 
  469         safe_cleanchip(sc);
  470         safe_dma_free(sc, &sc->sc_dpalloc);
  471         safe_dma_free(sc, &sc->sc_spalloc);
  472         mtx_destroy(&sc->sc_ringmtx);
  473         safe_dma_free(sc, &sc->sc_ringalloc);
  474 
  475         bus_generic_detach(dev);
  476         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
  477         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
  478 
  479         bus_dma_tag_destroy(sc->sc_srcdmat);
  480         bus_dma_tag_destroy(sc->sc_dstdmat);
  481         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
  482 
  483         return (0);
  484 }
  485 
  486 /*
  487  * Stop all chip i/o so that the kernel's probe routines don't
  488  * get confused by errant DMAs when rebooting.
  489  */
  490 static int
  491 safe_shutdown(device_t dev)
  492 {
  493 #ifdef notyet
  494         safe_stop(device_get_softc(dev));
  495 #endif
  496         return (0);
  497 }
  498 
  499 /*
  500  * Device suspend routine.
  501  */
  502 static int
  503 safe_suspend(device_t dev)
  504 {
  505         struct safe_softc *sc = device_get_softc(dev);
  506 
  507 #ifdef notyet
  508         /* XXX stop the device and save PCI settings */
  509 #endif
  510         sc->sc_suspended = 1;
  511 
  512         return (0);
  513 }
  514 
  515 static int
  516 safe_resume(device_t dev)
  517 {
  518         struct safe_softc *sc = device_get_softc(dev);
  519 
  520 #ifdef notyet
  521         /* XXX retore PCI settings and start the device */
  522 #endif
  523         sc->sc_suspended = 0;
  524         return (0);
  525 }
  526 
  527 /*
  528  * SafeXcel Interrupt routine
  529  */
  530 static void
  531 safe_intr(void *arg)
  532 {
  533         struct safe_softc *sc = arg;
  534         volatile u_int32_t stat;
  535 
  536         stat = READ_REG(sc, SAFE_HM_STAT);
  537         if (stat == 0)                  /* shared irq, not for us */
  538                 return;
  539 
  540         WRITE_REG(sc, SAFE_HI_CLR, stat);       /* IACK */
  541 
  542         if ((stat & SAFE_INT_PE_DDONE)) {
  543                 /*
  544                  * Descriptor(s) done; scan the ring and
  545                  * process completed operations.
  546                  */
  547                 mtx_lock(&sc->sc_ringmtx);
  548                 while (sc->sc_back != sc->sc_front) {
  549                         struct safe_ringentry *re = sc->sc_back;
  550 #ifdef SAFE_DEBUG
  551                         if (safe_debug) {
  552                                 safe_dump_ringstate(sc, __func__);
  553                                 safe_dump_request(sc, __func__, re);
  554                         }
  555 #endif
  556                         /*
  557                          * safe_process marks ring entries that were allocated
  558                          * but not used with a csr of zero.  This insures the
  559                          * ring front pointer never needs to be set backwards
  560                          * in the event that an entry is allocated but not used
  561                          * because of a setup error.
  562                          */
  563                         if (re->re_desc.d_csr != 0) {
  564                                 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
  565                                         break;
  566                                 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
  567                                         break;
  568                                 sc->sc_nqchip--;
  569                                 safe_callback(sc, re);
  570                         }
  571                         if (++(sc->sc_back) == sc->sc_ringtop)
  572                                 sc->sc_back = sc->sc_ring;
  573                 }
  574                 mtx_unlock(&sc->sc_ringmtx);
  575         }
  576 
  577         /*
  578          * Check to see if we got any DMA Error
  579          */
  580         if (stat & SAFE_INT_PE_ERROR) {
  581                 DPRINTF(("dmaerr dmastat %08x\n",
  582                         READ_REG(sc, SAFE_PE_DMASTAT)));
  583                 safestats.st_dmaerr++;
  584                 safe_totalreset(sc);
  585 #if 0
  586                 safe_feed(sc);
  587 #endif
  588         }
  589 
  590         if (sc->sc_needwakeup) {                /* XXX check high watermark */
  591                 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
  592                 DPRINTF(("%s: wakeup crypto %x\n", __func__,
  593                         sc->sc_needwakeup));
  594                 sc->sc_needwakeup &= ~wakeup;
  595                 crypto_unblock(sc->sc_cid, wakeup);
  596         }
  597 }
  598 
  599 /*
  600  * safe_feed() - post a request to chip
  601  */
  602 static void
  603 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
  604 {
  605         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
  606         if (re->re_dst_map != NULL)
  607                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
  608                         BUS_DMASYNC_PREREAD);
  609         /* XXX have no smaller granularity */
  610         safe_dma_sync(&sc->sc_ringalloc,
  611                 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  612         safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
  613         safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
  614 
  615 #ifdef SAFE_DEBUG
  616         if (safe_debug) {
  617                 safe_dump_ringstate(sc, __func__);
  618                 safe_dump_request(sc, __func__, re);
  619         }
  620 #endif
  621         sc->sc_nqchip++;
  622         if (sc->sc_nqchip > safestats.st_maxqchip)
  623                 safestats.st_maxqchip = sc->sc_nqchip;
  624         /* poke h/w to check descriptor ring, any value can be written */
  625         WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
  626 }
  627 
  628 #define N(a)    (sizeof(a) / sizeof (a[0]))
  629 static void
  630 safe_setup_enckey(struct safe_session *ses, caddr_t key)
  631 {
  632         int i;
  633 
  634         bcopy(key, ses->ses_key, ses->ses_klen / 8);
  635 
  636         /* PE is little-endian, insure proper byte order */
  637         for (i = 0; i < N(ses->ses_key); i++)
  638                 ses->ses_key[i] = htole32(ses->ses_key[i]);
  639 }
  640 
  641 static void
  642 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
  643 {
  644         MD5_CTX md5ctx;
  645         SHA1_CTX sha1ctx;
  646         int i;
  647 
  648 
  649         for (i = 0; i < klen; i++)
  650                 key[i] ^= HMAC_IPAD_VAL;
  651 
  652         if (algo == CRYPTO_MD5_HMAC) {
  653                 MD5Init(&md5ctx);
  654                 MD5Update(&md5ctx, key, klen);
  655                 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
  656                 bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
  657         } else {
  658                 SHA1Init(&sha1ctx);
  659                 SHA1Update(&sha1ctx, key, klen);
  660                 SHA1Update(&sha1ctx, hmac_ipad_buffer,
  661                     SHA1_HMAC_BLOCK_LEN - klen);
  662                 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
  663         }
  664 
  665         for (i = 0; i < klen; i++)
  666                 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
  667 
  668         if (algo == CRYPTO_MD5_HMAC) {
  669                 MD5Init(&md5ctx);
  670                 MD5Update(&md5ctx, key, klen);
  671                 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
  672                 bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
  673         } else {
  674                 SHA1Init(&sha1ctx);
  675                 SHA1Update(&sha1ctx, key, klen);
  676                 SHA1Update(&sha1ctx, hmac_opad_buffer,
  677                     SHA1_HMAC_BLOCK_LEN - klen);
  678                 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
  679         }
  680 
  681         for (i = 0; i < klen; i++)
  682                 key[i] ^= HMAC_OPAD_VAL;
  683 
  684         /* PE is little-endian, insure proper byte order */
  685         for (i = 0; i < N(ses->ses_hminner); i++) {
  686                 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
  687                 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
  688         }
  689 }
  690 #undef N
  691 
  692 /*
  693  * Allocate a new 'session' and return an encoded session id.  'sidp'
  694  * contains our registration id, and should contain an encoded session
  695  * id on successful allocation.
  696  */
  697 static int
  698 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
  699 {
  700         struct safe_softc *sc = device_get_softc(dev);
  701         struct cryptoini *c, *encini = NULL, *macini = NULL;
  702         struct safe_session *ses = NULL;
  703         int sesn;
  704 
  705         if (sidp == NULL || cri == NULL || sc == NULL)
  706                 return (EINVAL);
  707 
  708         for (c = cri; c != NULL; c = c->cri_next) {
  709                 if (c->cri_alg == CRYPTO_MD5_HMAC ||
  710                     c->cri_alg == CRYPTO_SHA1_HMAC ||
  711                     c->cri_alg == CRYPTO_NULL_HMAC) {
  712                         if (macini)
  713                                 return (EINVAL);
  714                         macini = c;
  715                 } else if (c->cri_alg == CRYPTO_DES_CBC ||
  716                     c->cri_alg == CRYPTO_3DES_CBC ||
  717                     c->cri_alg == CRYPTO_AES_CBC ||
  718                     c->cri_alg == CRYPTO_NULL_CBC) {
  719                         if (encini)
  720                                 return (EINVAL);
  721                         encini = c;
  722                 } else
  723                         return (EINVAL);
  724         }
  725         if (encini == NULL && macini == NULL)
  726                 return (EINVAL);
  727         if (encini) {                   /* validate key length */
  728                 switch (encini->cri_alg) {
  729                 case CRYPTO_DES_CBC:
  730                         if (encini->cri_klen != 64)
  731                                 return (EINVAL);
  732                         break;
  733                 case CRYPTO_3DES_CBC:
  734                         if (encini->cri_klen != 192)
  735                                 return (EINVAL);
  736                         break;
  737                 case CRYPTO_AES_CBC:
  738                         if (encini->cri_klen != 128 &&
  739                             encini->cri_klen != 192 &&
  740                             encini->cri_klen != 256)
  741                                 return (EINVAL);
  742                         break;
  743                 }
  744         }
  745 
  746         if (sc->sc_sessions == NULL) {
  747                 ses = sc->sc_sessions = (struct safe_session *)malloc(
  748                     sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
  749                 if (ses == NULL)
  750                         return (ENOMEM);
  751                 sesn = 0;
  752                 sc->sc_nsessions = 1;
  753         } else {
  754                 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
  755                         if (sc->sc_sessions[sesn].ses_used == 0) {
  756                                 ses = &sc->sc_sessions[sesn];
  757                                 break;
  758                         }
  759                 }
  760 
  761                 if (ses == NULL) {
  762                         sesn = sc->sc_nsessions;
  763                         ses = (struct safe_session *)malloc((sesn + 1) *
  764                             sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
  765                         if (ses == NULL)
  766                                 return (ENOMEM);
  767                         bcopy(sc->sc_sessions, ses, sesn *
  768                             sizeof(struct safe_session));
  769                         bzero(sc->sc_sessions, sesn *
  770                             sizeof(struct safe_session));
  771                         free(sc->sc_sessions, M_DEVBUF);
  772                         sc->sc_sessions = ses;
  773                         ses = &sc->sc_sessions[sesn];
  774                         sc->sc_nsessions++;
  775                 }
  776         }
  777 
  778         bzero(ses, sizeof(struct safe_session));
  779         ses->ses_used = 1;
  780 
  781         if (encini) {
  782                 /* get an IV */
  783                 /* XXX may read fewer than requested */
  784                 read_random(ses->ses_iv, sizeof(ses->ses_iv));
  785 
  786                 ses->ses_klen = encini->cri_klen;
  787                 if (encini->cri_key != NULL)
  788                         safe_setup_enckey(ses, encini->cri_key);
  789         }
  790 
  791         if (macini) {
  792                 ses->ses_mlen = macini->cri_mlen;
  793                 if (ses->ses_mlen == 0) {
  794                         if (macini->cri_alg == CRYPTO_MD5_HMAC)
  795                                 ses->ses_mlen = MD5_HASH_LEN;
  796                         else
  797                                 ses->ses_mlen = SHA1_HASH_LEN;
  798                 }
  799 
  800                 if (macini->cri_key != NULL) {
  801                         safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
  802                             macini->cri_klen / 8);
  803                 }
  804         }
  805 
  806         *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
  807         return (0);
  808 }
  809 
  810 /*
  811  * Deallocate a session.
  812  */
  813 static int
  814 safe_freesession(device_t dev, u_int64_t tid)
  815 {
  816         struct safe_softc *sc = device_get_softc(dev);
  817         int session, ret;
  818         u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
  819 
  820         if (sc == NULL)
  821                 return (EINVAL);
  822 
  823         session = SAFE_SESSION(sid);
  824         if (session < sc->sc_nsessions) {
  825                 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
  826                 ret = 0;
  827         } else
  828                 ret = EINVAL;
  829         return (ret);
  830 }
  831 
  832 static void
  833 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
  834 {
  835         struct safe_operand *op = arg;
  836 
  837         DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
  838                 (u_int) mapsize, nsegs, error));
  839         if (error != 0)
  840                 return;
  841         op->mapsize = mapsize;
  842         op->nsegs = nsegs;
  843         bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
  844 }
  845 
  846 static int
  847 safe_process(device_t dev, struct cryptop *crp, int hint)
  848 {
  849         struct safe_softc *sc = device_get_softc(dev);
  850         int err = 0, i, nicealign, uniform;
  851         struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
  852         int bypass, oplen, ivsize;
  853         caddr_t iv;
  854         int16_t coffset;
  855         struct safe_session *ses;
  856         struct safe_ringentry *re;
  857         struct safe_sarec *sa;
  858         struct safe_pdesc *pd;
  859         u_int32_t cmd0, cmd1, staterec;
  860 
  861         if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
  862                 safestats.st_invalid++;
  863                 return (EINVAL);
  864         }
  865         if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
  866                 safestats.st_badsession++;
  867                 return (EINVAL);
  868         }
  869 
  870         mtx_lock(&sc->sc_ringmtx);
  871         if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
  872                 safestats.st_ringfull++;
  873                 sc->sc_needwakeup |= CRYPTO_SYMQ;
  874                 mtx_unlock(&sc->sc_ringmtx);
  875                 return (ERESTART);
  876         }
  877         re = sc->sc_front;
  878 
  879         staterec = re->re_sa.sa_staterec;       /* save */
  880         /* NB: zero everything but the PE descriptor */
  881         bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
  882         re->re_sa.sa_staterec = staterec;       /* restore */
  883 
  884         re->re_crp = crp;
  885         re->re_sesn = SAFE_SESSION(crp->crp_sid);
  886 
  887         if (crp->crp_flags & CRYPTO_F_IMBUF) {
  888                 re->re_src_m = (struct mbuf *)crp->crp_buf;
  889                 re->re_dst_m = (struct mbuf *)crp->crp_buf;
  890         } else if (crp->crp_flags & CRYPTO_F_IOV) {
  891                 re->re_src_io = (struct uio *)crp->crp_buf;
  892                 re->re_dst_io = (struct uio *)crp->crp_buf;
  893         } else {
  894                 safestats.st_badflags++;
  895                 err = EINVAL;
  896                 goto errout;    /* XXX we don't handle contiguous blocks! */
  897         }
  898 
  899         sa = &re->re_sa;
  900         ses = &sc->sc_sessions[re->re_sesn];
  901 
  902         crd1 = crp->crp_desc;
  903         if (crd1 == NULL) {
  904                 safestats.st_nodesc++;
  905                 err = EINVAL;
  906                 goto errout;
  907         }
  908         crd2 = crd1->crd_next;
  909 
  910         cmd0 = SAFE_SA_CMD0_BASIC;              /* basic group operation */
  911         cmd1 = 0;
  912         if (crd2 == NULL) {
  913                 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
  914                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
  915                     crd1->crd_alg == CRYPTO_NULL_HMAC) {
  916                         maccrd = crd1;
  917                         enccrd = NULL;
  918                         cmd0 |= SAFE_SA_CMD0_OP_HASH;
  919                 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
  920                     crd1->crd_alg == CRYPTO_3DES_CBC ||
  921                     crd1->crd_alg == CRYPTO_AES_CBC ||
  922                     crd1->crd_alg == CRYPTO_NULL_CBC) {
  923                         maccrd = NULL;
  924                         enccrd = crd1;
  925                         cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
  926                 } else {
  927                         safestats.st_badalg++;
  928                         err = EINVAL;
  929                         goto errout;
  930                 }
  931         } else {
  932                 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
  933                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
  934                     crd1->crd_alg == CRYPTO_NULL_HMAC) &&
  935                     (crd2->crd_alg == CRYPTO_DES_CBC ||
  936                         crd2->crd_alg == CRYPTO_3DES_CBC ||
  937                         crd2->crd_alg == CRYPTO_AES_CBC ||
  938                         crd2->crd_alg == CRYPTO_NULL_CBC) &&
  939                     ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
  940                         maccrd = crd1;
  941                         enccrd = crd2;
  942                 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
  943                     crd1->crd_alg == CRYPTO_3DES_CBC ||
  944                     crd1->crd_alg == CRYPTO_AES_CBC ||
  945                     crd1->crd_alg == CRYPTO_NULL_CBC) &&
  946                     (crd2->crd_alg == CRYPTO_MD5_HMAC ||
  947                         crd2->crd_alg == CRYPTO_SHA1_HMAC ||
  948                         crd2->crd_alg == CRYPTO_NULL_HMAC) &&
  949                     (crd1->crd_flags & CRD_F_ENCRYPT)) {
  950                         enccrd = crd1;
  951                         maccrd = crd2;
  952                 } else {
  953                         safestats.st_badalg++;
  954                         err = EINVAL;
  955                         goto errout;
  956                 }
  957                 cmd0 |= SAFE_SA_CMD0_OP_BOTH;
  958         }
  959 
  960         if (enccrd) {
  961                 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
  962                         safe_setup_enckey(ses, enccrd->crd_key);
  963 
  964                 if (enccrd->crd_alg == CRYPTO_DES_CBC) {
  965                         cmd0 |= SAFE_SA_CMD0_DES;
  966                         cmd1 |= SAFE_SA_CMD1_CBC;
  967                         ivsize = 2*sizeof(u_int32_t);
  968                 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
  969                         cmd0 |= SAFE_SA_CMD0_3DES;
  970                         cmd1 |= SAFE_SA_CMD1_CBC;
  971                         ivsize = 2*sizeof(u_int32_t);
  972                 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
  973                         cmd0 |= SAFE_SA_CMD0_AES;
  974                         cmd1 |= SAFE_SA_CMD1_CBC;
  975                         if (ses->ses_klen == 128)
  976                              cmd1 |=  SAFE_SA_CMD1_AES128;
  977                         else if (ses->ses_klen == 192)
  978                              cmd1 |=  SAFE_SA_CMD1_AES192;
  979                         else
  980                              cmd1 |=  SAFE_SA_CMD1_AES256;
  981                         ivsize = 4*sizeof(u_int32_t);
  982                 } else {
  983                         cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
  984                         ivsize = 0;
  985                 }
  986 
  987                 /*
  988                  * Setup encrypt/decrypt state.  When using basic ops
  989                  * we can't use an inline IV because hash/crypt offset
  990                  * must be from the end of the IV to the start of the
  991                  * crypt data and this leaves out the preceding header
  992                  * from the hash calculation.  Instead we place the IV
  993                  * in the state record and set the hash/crypt offset to
  994                  * copy both the header+IV.
  995                  */
  996                 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
  997                         cmd0 |= SAFE_SA_CMD0_OUTBOUND;
  998 
  999                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
 1000                                 iv = enccrd->crd_iv;
 1001                         else
 1002                                 iv = (caddr_t) ses->ses_iv;
 1003                         if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
 1004                                 crypto_copyback(crp->crp_flags, crp->crp_buf,
 1005                                     enccrd->crd_inject, ivsize, iv);
 1006                         }
 1007                         bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
 1008                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
 1009                         re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
 1010                 } else {
 1011                         cmd0 |= SAFE_SA_CMD0_INBOUND;
 1012 
 1013                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
 1014                                 bcopy(enccrd->crd_iv,
 1015                                         re->re_sastate.sa_saved_iv, ivsize);
 1016                         } else {
 1017                                 crypto_copydata(crp->crp_flags, crp->crp_buf,
 1018                                     enccrd->crd_inject, ivsize,
 1019                                     (caddr_t)re->re_sastate.sa_saved_iv);
 1020                         }
 1021                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
 1022                 }
 1023                 /*
 1024                  * For basic encryption use the zero pad algorithm.
 1025                  * This pads results to an 8-byte boundary and
 1026                  * suppresses padding verification for inbound (i.e.
 1027                  * decrypt) operations.
 1028                  *
 1029                  * NB: Not sure if the 8-byte pad boundary is a problem.
 1030                  */
 1031                 cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
 1032 
 1033                 /* XXX assert key bufs have the same size */
 1034                 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
 1035         }
 1036 
 1037         if (maccrd) {
 1038                 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
 1039                         safe_setup_mackey(ses, maccrd->crd_alg,
 1040                             maccrd->crd_key, maccrd->crd_klen / 8);
 1041                 }
 1042 
 1043                 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
 1044                         cmd0 |= SAFE_SA_CMD0_MD5;
 1045                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
 1046                 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
 1047                         cmd0 |= SAFE_SA_CMD0_SHA1;
 1048                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
 1049                 } else {
 1050                         cmd0 |= SAFE_SA_CMD0_HASH_NULL;
 1051                 }
 1052                 /*
 1053                  * Digest data is loaded from the SA and the hash
 1054                  * result is saved to the state block where we
 1055                  * retrieve it for return to the caller.
 1056                  */
 1057                 /* XXX assert digest bufs have the same size */
 1058                 bcopy(ses->ses_hminner, sa->sa_indigest,
 1059                         sizeof(sa->sa_indigest));
 1060                 bcopy(ses->ses_hmouter, sa->sa_outdigest,
 1061                         sizeof(sa->sa_outdigest));
 1062 
 1063                 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
 1064                 re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
 1065         }
 1066 
 1067         if (enccrd && maccrd) {
 1068                 /*
 1069                  * The offset from hash data to the start of
 1070                  * crypt data is the difference in the skips.
 1071                  */
 1072                 bypass = maccrd->crd_skip;
 1073                 coffset = enccrd->crd_skip - maccrd->crd_skip;
 1074                 if (coffset < 0) {
 1075                         DPRINTF(("%s: hash does not precede crypt; "
 1076                                 "mac skip %u enc skip %u\n",
 1077                                 __func__, maccrd->crd_skip, enccrd->crd_skip));
 1078                         safestats.st_skipmismatch++;
 1079                         err = EINVAL;
 1080                         goto errout;
 1081                 }
 1082                 oplen = enccrd->crd_skip + enccrd->crd_len;
 1083                 if (maccrd->crd_skip + maccrd->crd_len != oplen) {
 1084                         DPRINTF(("%s: hash amount %u != crypt amount %u\n",
 1085                                 __func__, maccrd->crd_skip + maccrd->crd_len,
 1086                                 oplen));
 1087                         safestats.st_lenmismatch++;
 1088                         err = EINVAL;
 1089                         goto errout;
 1090                 }
 1091 #ifdef SAFE_DEBUG
 1092                 if (safe_debug) {
 1093                         printf("mac: skip %d, len %d, inject %d\n",
 1094                             maccrd->crd_skip, maccrd->crd_len,
 1095                             maccrd->crd_inject);
 1096                         printf("enc: skip %d, len %d, inject %d\n",
 1097                             enccrd->crd_skip, enccrd->crd_len,
 1098                             enccrd->crd_inject);
 1099                         printf("bypass %d coffset %d oplen %d\n",
 1100                                 bypass, coffset, oplen);
 1101                 }
 1102 #endif
 1103                 if (coffset & 3) {      /* offset must be 32-bit aligned */
 1104                         DPRINTF(("%s: coffset %u misaligned\n",
 1105                                 __func__, coffset));
 1106                         safestats.st_coffmisaligned++;
 1107                         err = EINVAL;
 1108                         goto errout;
 1109                 }
 1110                 coffset >>= 2;
 1111                 if (coffset > 255) {    /* offset must be <256 dwords */
 1112                         DPRINTF(("%s: coffset %u too big\n",
 1113                                 __func__, coffset));
 1114                         safestats.st_cofftoobig++;
 1115                         err = EINVAL;
 1116                         goto errout;
 1117                 }
 1118                 /*
 1119                  * Tell the hardware to copy the header to the output.
 1120                  * The header is defined as the data from the end of
 1121                  * the bypass to the start of data to be encrypted. 
 1122                  * Typically this is the inline IV.  Note that you need
 1123                  * to do this even if src+dst are the same; it appears
 1124                  * that w/o this bit the crypted data is written
 1125                  * immediately after the bypass data.
 1126                  */
 1127                 cmd1 |= SAFE_SA_CMD1_HDRCOPY;
 1128                 /*
 1129                  * Disable IP header mutable bit handling.  This is
 1130                  * needed to get correct HMAC calculations.
 1131                  */
 1132                 cmd1 |= SAFE_SA_CMD1_MUTABLE;
 1133         } else {
 1134                 if (enccrd) {
 1135                         bypass = enccrd->crd_skip;
 1136                         oplen = bypass + enccrd->crd_len;
 1137                 } else {
 1138                         bypass = maccrd->crd_skip;
 1139                         oplen = bypass + maccrd->crd_len;
 1140                 }
 1141                 coffset = 0;
 1142         }
 1143         /* XXX verify multiple of 4 when using s/g */
 1144         if (bypass > 96) {              /* bypass offset must be <= 96 bytes */
 1145                 DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
 1146                 safestats.st_bypasstoobig++;
 1147                 err = EINVAL;
 1148                 goto errout;
 1149         }
 1150 
 1151         if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
 1152                 safestats.st_nomap++;
 1153                 err = ENOMEM;
 1154                 goto errout;
 1155         }
 1156         if (crp->crp_flags & CRYPTO_F_IMBUF) {
 1157                 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
 1158                     re->re_src_m, safe_op_cb,
 1159                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
 1160                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
 1161                         re->re_src_map = NULL;
 1162                         safestats.st_noload++;
 1163                         err = ENOMEM;
 1164                         goto errout;
 1165                 }
 1166         } else if (crp->crp_flags & CRYPTO_F_IOV) {
 1167                 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
 1168                     re->re_src_io, safe_op_cb,
 1169                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
 1170                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
 1171                         re->re_src_map = NULL;
 1172                         safestats.st_noload++;
 1173                         err = ENOMEM;
 1174                         goto errout;
 1175                 }
 1176         }
 1177         nicealign = safe_dmamap_aligned(&re->re_src);
 1178         uniform = safe_dmamap_uniform(&re->re_src);
 1179 
 1180         DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
 1181                 nicealign, uniform, re->re_src.nsegs));
 1182         if (re->re_src.nsegs > 1) {
 1183                 re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
 1184                         ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
 1185                 for (i = 0; i < re->re_src_nsegs; i++) {
 1186                         /* NB: no need to check if there's space */
 1187                         pd = sc->sc_spfree;
 1188                         if (++(sc->sc_spfree) == sc->sc_springtop)
 1189                                 sc->sc_spfree = sc->sc_spring;
 1190 
 1191                         KASSERT((pd->pd_flags&3) == 0 ||
 1192                                 (pd->pd_flags&3) == SAFE_PD_DONE,
 1193                                 ("bogus source particle descriptor; flags %x",
 1194                                 pd->pd_flags));
 1195                         pd->pd_addr = re->re_src_segs[i].ds_addr;
 1196                         pd->pd_size = re->re_src_segs[i].ds_len;
 1197                         pd->pd_flags = SAFE_PD_READY;
 1198                 }
 1199                 cmd0 |= SAFE_SA_CMD0_IGATHER;
 1200         } else {
 1201                 /*
 1202                  * No need for gather, reference the operand directly.
 1203                  */
 1204                 re->re_desc.d_src = re->re_src_segs[0].ds_addr;
 1205         }
 1206 
 1207         if (enccrd == NULL && maccrd != NULL) {
 1208                 /*
 1209                  * Hash op; no destination needed.
 1210                  */
 1211         } else {
 1212                 if (crp->crp_flags & CRYPTO_F_IOV) {
 1213                         if (!nicealign) {
 1214                                 safestats.st_iovmisaligned++;
 1215                                 err = EINVAL;
 1216                                 goto errout;
 1217                         }
 1218                         if (uniform != 1) {
 1219                                 /*
 1220                                  * Source is not suitable for direct use as
 1221                                  * the destination.  Create a new scatter/gather
 1222                                  * list based on the destination requirements
 1223                                  * and check if that's ok.
 1224                                  */
 1225                                 if (bus_dmamap_create(sc->sc_dstdmat,
 1226                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
 1227                                         safestats.st_nomap++;
 1228                                         err = ENOMEM;
 1229                                         goto errout;
 1230                                 }
 1231                                 if (bus_dmamap_load_uio(sc->sc_dstdmat,
 1232                                     re->re_dst_map, re->re_dst_io,
 1233                                     safe_op_cb, &re->re_dst,
 1234                                     BUS_DMA_NOWAIT) != 0) {
 1235                                         bus_dmamap_destroy(sc->sc_dstdmat,
 1236                                                 re->re_dst_map);
 1237                                         re->re_dst_map = NULL;
 1238                                         safestats.st_noload++;
 1239                                         err = ENOMEM;
 1240                                         goto errout;
 1241                                 }
 1242                                 uniform = safe_dmamap_uniform(&re->re_dst);
 1243                                 if (!uniform) {
 1244                                         /*
 1245                                          * There's no way to handle the DMA
 1246                                          * requirements with this uio.  We
 1247                                          * could create a separate DMA area for
 1248                                          * the result and then copy it back,
 1249                                          * but for now we just bail and return
 1250                                          * an error.  Note that uio requests
 1251                                          * > SAFE_MAX_DSIZE are handled because
 1252                                          * the DMA map and segment list for the
 1253                                          * destination wil result in a
 1254                                          * destination particle list that does
 1255                                          * the necessary scatter DMA.
 1256                                          */ 
 1257                                         safestats.st_iovnotuniform++;
 1258                                         err = EINVAL;
 1259                                         goto errout;
 1260                                 }
 1261                         } else
 1262                                 re->re_dst = re->re_src;
 1263                 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
 1264                         if (nicealign && uniform == 1) {
 1265                                 /*
 1266                                  * Source layout is suitable for direct
 1267                                  * sharing of the DMA map and segment list.
 1268                                  */
 1269                                 re->re_dst = re->re_src;
 1270                         } else if (nicealign && uniform == 2) {
 1271                                 /*
 1272                                  * The source is properly aligned but requires a
 1273                                  * different particle list to handle DMA of the
 1274                                  * result.  Create a new map and do the load to
 1275                                  * create the segment list.  The particle
 1276                                  * descriptor setup code below will handle the
 1277                                  * rest.
 1278                                  */
 1279                                 if (bus_dmamap_create(sc->sc_dstdmat,
 1280                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
 1281                                         safestats.st_nomap++;
 1282                                         err = ENOMEM;
 1283                                         goto errout;
 1284                                 }
 1285                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
 1286                                     re->re_dst_map, re->re_dst_m,
 1287                                     safe_op_cb, &re->re_dst,
 1288                                     BUS_DMA_NOWAIT) != 0) {
 1289                                         bus_dmamap_destroy(sc->sc_dstdmat,
 1290                                                 re->re_dst_map);
 1291                                         re->re_dst_map = NULL;
 1292                                         safestats.st_noload++;
 1293                                         err = ENOMEM;
 1294                                         goto errout;
 1295                                 }
 1296                         } else {                /* !(aligned and/or uniform) */
 1297                                 int totlen, len;
 1298                                 struct mbuf *m, *top, **mp;
 1299 
 1300                                 /*
 1301                                  * DMA constraints require that we allocate a
 1302                                  * new mbuf chain for the destination.  We
 1303                                  * allocate an entire new set of mbufs of
 1304                                  * optimal/required size and then tell the
 1305                                  * hardware to copy any bits that are not
 1306                                  * created as a byproduct of the operation.
 1307                                  */
 1308                                 if (!nicealign)
 1309                                         safestats.st_unaligned++;
 1310                                 if (!uniform)
 1311                                         safestats.st_notuniform++;
 1312                                 totlen = re->re_src_mapsize;
 1313                                 if (re->re_src_m->m_flags & M_PKTHDR) {
 1314                                         len = MHLEN;
 1315                                         MGETHDR(m, M_NOWAIT, MT_DATA);
 1316                                         if (m && !m_dup_pkthdr(m, re->re_src_m,
 1317                                             M_NOWAIT)) {
 1318                                                 m_free(m);
 1319                                                 m = NULL;
 1320                                         }
 1321                                 } else {
 1322                                         len = MLEN;
 1323                                         MGET(m, M_NOWAIT, MT_DATA);
 1324                                 }
 1325                                 if (m == NULL) {
 1326                                         safestats.st_nombuf++;
 1327                                         err = sc->sc_nqchip ? ERESTART : ENOMEM;
 1328                                         goto errout;
 1329                                 }
 1330                                 if (totlen >= MINCLSIZE) {
 1331                                         MCLGET(m, M_NOWAIT);
 1332                                         if ((m->m_flags & M_EXT) == 0) {
 1333                                                 m_free(m);
 1334                                                 safestats.st_nomcl++;
 1335                                                 err = sc->sc_nqchip ?
 1336                                                         ERESTART : ENOMEM;
 1337                                                 goto errout;
 1338                                         }
 1339                                         len = MCLBYTES;
 1340                                 }
 1341                                 m->m_len = len;
 1342                                 top = NULL;
 1343                                 mp = &top;
 1344 
 1345                                 while (totlen > 0) {
 1346                                         if (top) {
 1347                                                 MGET(m, M_NOWAIT, MT_DATA);
 1348                                                 if (m == NULL) {
 1349                                                         m_freem(top);
 1350                                                         safestats.st_nombuf++;
 1351                                                         err = sc->sc_nqchip ?
 1352                                                             ERESTART : ENOMEM;
 1353                                                         goto errout;
 1354                                                 }
 1355                                                 len = MLEN;
 1356                                         }
 1357                                         if (top && totlen >= MINCLSIZE) {
 1358                                                 MCLGET(m, M_NOWAIT);
 1359                                                 if ((m->m_flags & M_EXT) == 0) {
 1360                                                         *mp = m;
 1361                                                         m_freem(top);
 1362                                                         safestats.st_nomcl++;
 1363                                                         err = sc->sc_nqchip ?
 1364                                                             ERESTART : ENOMEM;
 1365                                                         goto errout;
 1366                                                 }
 1367                                                 len = MCLBYTES;
 1368                                         }
 1369                                         m->m_len = len = min(totlen, len);
 1370                                         totlen -= len;
 1371                                         *mp = m;
 1372                                         mp = &m->m_next;
 1373                                 }
 1374                                 re->re_dst_m = top;
 1375                                 if (bus_dmamap_create(sc->sc_dstdmat, 
 1376                                     BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
 1377                                         safestats.st_nomap++;
 1378                                         err = ENOMEM;
 1379                                         goto errout;
 1380                                 }
 1381                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
 1382                                     re->re_dst_map, re->re_dst_m,
 1383                                     safe_op_cb, &re->re_dst,
 1384                                     BUS_DMA_NOWAIT) != 0) {
 1385                                         bus_dmamap_destroy(sc->sc_dstdmat,
 1386                                         re->re_dst_map);
 1387                                         re->re_dst_map = NULL;
 1388                                         safestats.st_noload++;
 1389                                         err = ENOMEM;
 1390                                         goto errout;
 1391                                 }
 1392                                 if (re->re_src.mapsize > oplen) {
 1393                                         /*
 1394                                          * There's data following what the
 1395                                          * hardware will copy for us.  If this
 1396                                          * isn't just the ICV (that's going to
 1397                                          * be written on completion), copy it
 1398                                          * to the new mbufs
 1399                                          */
 1400                                         if (!(maccrd &&
 1401                                             (re->re_src.mapsize-oplen) == 12 &&
 1402                                             maccrd->crd_inject == oplen))
 1403                                                 safe_mcopy(re->re_src_m,
 1404                                                            re->re_dst_m,
 1405                                                            oplen);
 1406                                         else
 1407                                                 safestats.st_noicvcopy++;
 1408                                 }
 1409                         }
 1410                 } else {
 1411                         safestats.st_badflags++;
 1412                         err = EINVAL;
 1413                         goto errout;
 1414                 }
 1415 
 1416                 if (re->re_dst.nsegs > 1) {
 1417                         re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
 1418                             ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
 1419                         for (i = 0; i < re->re_dst_nsegs; i++) {
 1420                                 pd = sc->sc_dpfree;
 1421                                 KASSERT((pd->pd_flags&3) == 0 ||
 1422                                         (pd->pd_flags&3) == SAFE_PD_DONE,
 1423                                         ("bogus dest particle descriptor; flags %x",
 1424                                                 pd->pd_flags));
 1425                                 if (++(sc->sc_dpfree) == sc->sc_dpringtop)
 1426                                         sc->sc_dpfree = sc->sc_dpring;
 1427                                 pd->pd_addr = re->re_dst_segs[i].ds_addr;
 1428                                 pd->pd_flags = SAFE_PD_READY;
 1429                         }
 1430                         cmd0 |= SAFE_SA_CMD0_OSCATTER;
 1431                 } else {
 1432                         /*
 1433                          * No need for scatter, reference the operand directly.
 1434                          */
 1435                         re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
 1436                 }
 1437         }
 1438 
 1439         /*
 1440          * All done with setup; fillin the SA command words
 1441          * and the packet engine descriptor.  The operation
 1442          * is now ready for submission to the hardware.
 1443          */
 1444         sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
 1445         sa->sa_cmd1 = cmd1
 1446                     | (coffset << SAFE_SA_CMD1_OFFSET_S)
 1447                     | SAFE_SA_CMD1_SAREV1       /* Rev 1 SA data structure */
 1448                     | SAFE_SA_CMD1_SRPCI
 1449                     ;
 1450         /*
 1451          * NB: the order of writes is important here.  In case the
 1452          * chip is scanning the ring because of an outstanding request
 1453          * it might nab this one too.  In that case we need to make
 1454          * sure the setup is complete before we write the length
 1455          * field of the descriptor as it signals the descriptor is
 1456          * ready for processing.
 1457          */
 1458         re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
 1459         if (maccrd)
 1460                 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
 1461         re->re_desc.d_len = oplen
 1462                           | SAFE_PE_LEN_READY
 1463                           | (bypass << SAFE_PE_LEN_BYPASS_S)
 1464                           ;
 1465 
 1466         safestats.st_ipackets++;
 1467         safestats.st_ibytes += oplen;
 1468 
 1469         if (++(sc->sc_front) == sc->sc_ringtop)
 1470                 sc->sc_front = sc->sc_ring;
 1471 
 1472         /* XXX honor batching */
 1473         safe_feed(sc, re);
 1474         mtx_unlock(&sc->sc_ringmtx);
 1475         return (0);
 1476 
 1477 errout:
 1478         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
 1479                 m_freem(re->re_dst_m);
 1480 
 1481         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
 1482                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
 1483                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
 1484         }
 1485         if (re->re_src_map != NULL) {
 1486                 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
 1487                 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
 1488         }
 1489         mtx_unlock(&sc->sc_ringmtx);
 1490         if (err != ERESTART) {
 1491                 crp->crp_etype = err;
 1492                 crypto_done(crp);
 1493         } else {
 1494                 sc->sc_needwakeup |= CRYPTO_SYMQ;
 1495         }
 1496         return (err);
 1497 }
 1498 
 1499 static void
 1500 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
 1501 {
 1502         struct cryptop *crp = (struct cryptop *)re->re_crp;
 1503         struct cryptodesc *crd;
 1504 
 1505         safestats.st_opackets++;
 1506         safestats.st_obytes += re->re_dst.mapsize;
 1507 
 1508         safe_dma_sync(&sc->sc_ringalloc,
 1509                 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 1510         if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
 1511                 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
 1512                         re->re_desc.d_csr,
 1513                         re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
 1514                 safestats.st_peoperr++;
 1515                 crp->crp_etype = EIO;           /* something more meaningful? */
 1516         }
 1517         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
 1518                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
 1519                     BUS_DMASYNC_POSTREAD);
 1520                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
 1521                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
 1522         }
 1523         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
 1524         bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
 1525         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
 1526 
 1527         /* 
 1528          * If result was written to a differet mbuf chain, swap
 1529          * it in as the return value and reclaim the original.
 1530          */
 1531         if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
 1532                 m_freem(re->re_src_m);
 1533                 crp->crp_buf = (caddr_t)re->re_dst_m;
 1534         }
 1535 
 1536         if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
 1537                 /* copy out IV for future use */
 1538                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
 1539                         int ivsize;
 1540 
 1541                         if (crd->crd_alg == CRYPTO_DES_CBC ||
 1542                             crd->crd_alg == CRYPTO_3DES_CBC) {
 1543                                 ivsize = 2*sizeof(u_int32_t);
 1544                         } else if (crd->crd_alg == CRYPTO_AES_CBC) {
 1545                                 ivsize = 4*sizeof(u_int32_t);
 1546                         } else
 1547                                 continue;
 1548                         crypto_copydata(crp->crp_flags, crp->crp_buf,
 1549                             crd->crd_skip + crd->crd_len - ivsize, ivsize,
 1550                             (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
 1551                         break;
 1552                 }
 1553         }
 1554 
 1555         if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
 1556                 /* copy out ICV result */
 1557                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
 1558                         if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
 1559                             crd->crd_alg == CRYPTO_SHA1_HMAC ||
 1560                             crd->crd_alg == CRYPTO_NULL_HMAC))
 1561                                 continue;
 1562                         if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
 1563                                 /*
 1564                                  * SHA-1 ICV's are byte-swapped; fix 'em up
 1565                                  * before copy them to their destination.
 1566                                  */
 1567                                 re->re_sastate.sa_saved_indigest[0] =
 1568                                     bswap32(re->re_sastate.sa_saved_indigest[0]);
 1569                                 re->re_sastate.sa_saved_indigest[1] =
 1570                                     bswap32(re->re_sastate.sa_saved_indigest[1]);
 1571                                 re->re_sastate.sa_saved_indigest[2] =
 1572                                     bswap32(re->re_sastate.sa_saved_indigest[2]);
 1573                         }
 1574                         crypto_copyback(crp->crp_flags, crp->crp_buf,
 1575                             crd->crd_inject,
 1576                             sc->sc_sessions[re->re_sesn].ses_mlen,
 1577                             (caddr_t)re->re_sastate.sa_saved_indigest);
 1578                         break;
 1579                 }
 1580         }
 1581         crypto_done(crp);
 1582 }
 1583 
 1584 /*
 1585  * Copy all data past offset from srcm to dstm.
 1586  */
 1587 static void
 1588 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
 1589 {
 1590         u_int j, dlen, slen;
 1591         caddr_t dptr, sptr;
 1592 
 1593         /*
 1594          * Advance src and dst to offset.
 1595          */
 1596         j = offset;
 1597         while (j >= 0) {
 1598                 if (srcm->m_len > j)
 1599                         break;
 1600                 j -= srcm->m_len;
 1601                 srcm = srcm->m_next;
 1602                 if (srcm == NULL)
 1603                         return;
 1604         }
 1605         sptr = mtod(srcm, caddr_t) + j;
 1606         slen = srcm->m_len - j;
 1607 
 1608         j = offset;
 1609         while (j >= 0) {
 1610                 if (dstm->m_len > j)
 1611                         break;
 1612                 j -= dstm->m_len;
 1613                 dstm = dstm->m_next;
 1614                 if (dstm == NULL)
 1615                         return;
 1616         }
 1617         dptr = mtod(dstm, caddr_t) + j;
 1618         dlen = dstm->m_len - j;
 1619 
 1620         /*
 1621          * Copy everything that remains.
 1622          */
 1623         for (;;) {
 1624                 j = min(slen, dlen);
 1625                 bcopy(sptr, dptr, j);
 1626                 if (slen == j) {
 1627                         srcm = srcm->m_next;
 1628                         if (srcm == NULL)
 1629                                 return;
 1630                         sptr = srcm->m_data;
 1631                         slen = srcm->m_len;
 1632                 } else
 1633                         sptr += j, slen -= j;
 1634                 if (dlen == j) {
 1635                         dstm = dstm->m_next;
 1636                         if (dstm == NULL)
 1637                                 return;
 1638                         dptr = dstm->m_data;
 1639                         dlen = dstm->m_len;
 1640                 } else
 1641                         dptr += j, dlen -= j;
 1642         }
 1643 }
 1644 
 1645 #ifndef SAFE_NO_RNG
 1646 #define SAFE_RNG_MAXWAIT        1000
 1647 
 1648 static void
 1649 safe_rng_init(struct safe_softc *sc)
 1650 {
 1651         u_int32_t w, v;
 1652         int i;
 1653 
 1654         WRITE_REG(sc, SAFE_RNG_CTRL, 0);
 1655         /* use default value according to the manual */
 1656         WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);    /* magic from SafeNet */
 1657         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 1658 
 1659         /*
 1660          * There is a bug in rev 1.0 of the 1140 that when the RNG
 1661          * is brought out of reset the ready status flag does not
 1662          * work until the RNG has finished its internal initialization.
 1663          *
 1664          * So in order to determine the device is through its
 1665          * initialization we must read the data register, using the
 1666          * status reg in the read in case it is initialized.  Then read
 1667          * the data register until it changes from the first read.
 1668          * Once it changes read the data register until it changes
 1669          * again.  At this time the RNG is considered initialized. 
 1670          * This could take between 750ms - 1000ms in time.
 1671          */
 1672         i = 0;
 1673         w = READ_REG(sc, SAFE_RNG_OUT);
 1674         do {
 1675                 v = READ_REG(sc, SAFE_RNG_OUT);
 1676                 if (v != w) {
 1677                         w = v;
 1678                         break;
 1679                 }
 1680                 DELAY(10);
 1681         } while (++i < SAFE_RNG_MAXWAIT);
 1682 
 1683         /* Wait Until data changes again */
 1684         i = 0;
 1685         do {
 1686                 v = READ_REG(sc, SAFE_RNG_OUT);
 1687                 if (v != w)
 1688                         break;
 1689                 DELAY(10);
 1690         } while (++i < SAFE_RNG_MAXWAIT);
 1691 }
 1692 
 1693 static __inline void
 1694 safe_rng_disable_short_cycle(struct safe_softc *sc)
 1695 {
 1696         WRITE_REG(sc, SAFE_RNG_CTRL,
 1697                 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
 1698 }
 1699 
 1700 static __inline void
 1701 safe_rng_enable_short_cycle(struct safe_softc *sc)
 1702 {
 1703         WRITE_REG(sc, SAFE_RNG_CTRL, 
 1704                 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
 1705 }
 1706 
 1707 static __inline u_int32_t
 1708 safe_rng_read(struct safe_softc *sc)
 1709 {
 1710         int i;
 1711 
 1712         i = 0;
 1713         while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
 1714                 ;
 1715         return READ_REG(sc, SAFE_RNG_OUT);
 1716 }
 1717 
 1718 static void
 1719 safe_rng(void *arg)
 1720 {
 1721         struct safe_softc *sc = arg;
 1722         u_int32_t buf[SAFE_RNG_MAXBUFSIZ];      /* NB: maybe move to softc */
 1723         u_int maxwords;
 1724         int i;
 1725 
 1726         safestats.st_rng++;
 1727         /*
 1728          * Fetch the next block of data.
 1729          */
 1730         maxwords = safe_rngbufsize;
 1731         if (maxwords > SAFE_RNG_MAXBUFSIZ)
 1732                 maxwords = SAFE_RNG_MAXBUFSIZ;
 1733 retry:
 1734         for (i = 0; i < maxwords; i++)
 1735                 buf[i] = safe_rng_read(sc);
 1736         /*
 1737          * Check the comparator alarm count and reset the h/w if
 1738          * it exceeds our threshold.  This guards against the
 1739          * hardware oscillators resonating with external signals.
 1740          */
 1741         if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
 1742                 u_int32_t freq_inc, w;
 1743 
 1744                 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
 1745                         READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
 1746                 safestats.st_rngalarm++;
 1747                 safe_rng_enable_short_cycle(sc);
 1748                 freq_inc = 18;
 1749                 for (i = 0; i < 64; i++) {
 1750                         w = READ_REG(sc, SAFE_RNG_CNFG);
 1751                         freq_inc = ((w + freq_inc) & 0x3fL);
 1752                         w = ((w & ~0x3fL) | freq_inc);
 1753                         WRITE_REG(sc, SAFE_RNG_CNFG, w);
 1754 
 1755                         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 1756 
 1757                         (void) safe_rng_read(sc);
 1758                         DELAY(25);
 1759 
 1760                         if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
 1761                                 safe_rng_disable_short_cycle(sc);
 1762                                 goto retry;
 1763                         }
 1764                         freq_inc = 1;
 1765                 }
 1766                 safe_rng_disable_short_cycle(sc);
 1767         } else
 1768                 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 1769 
 1770         (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
 1771         callout_reset(&sc->sc_rngto,
 1772                 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
 1773 }
 1774 #endif /* SAFE_NO_RNG */
 1775 
 1776 static void
 1777 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1778 {
 1779         bus_addr_t *paddr = (bus_addr_t*) arg;
 1780         *paddr = segs->ds_addr;
 1781 }
 1782 
 1783 static int
 1784 safe_dma_malloc(
 1785         struct safe_softc *sc,
 1786         bus_size_t size,
 1787         struct safe_dma_alloc *dma,
 1788         int mapflags
 1789 )
 1790 {
 1791         int r;
 1792 
 1793         r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),     /* parent */
 1794                                sizeof(u_int32_t), 0,    /* alignment, bounds */
 1795                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
 1796                                BUS_SPACE_MAXADDR,       /* highaddr */
 1797                                NULL, NULL,              /* filter, filterarg */
 1798                                size,                    /* maxsize */
 1799                                1,                       /* nsegments */
 1800                                size,                    /* maxsegsize */
 1801                                BUS_DMA_ALLOCNOW,        /* flags */
 1802                                NULL, NULL,              /* locking */
 1803                                &dma->dma_tag);
 1804         if (r != 0) {
 1805                 device_printf(sc->sc_dev, "safe_dma_malloc: "
 1806                         "bus_dma_tag_create failed; error %u\n", r);
 1807                 goto fail_0;
 1808         }
 1809 
 1810         r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
 1811         if (r != 0) {
 1812                 device_printf(sc->sc_dev, "safe_dma_malloc: "
 1813                         "bus_dmamap_create failed; error %u\n", r);
 1814                 goto fail_1;
 1815         }
 1816 
 1817         r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
 1818                              BUS_DMA_NOWAIT, &dma->dma_map);
 1819         if (r != 0) {
 1820                 device_printf(sc->sc_dev, "safe_dma_malloc: "
 1821                         "bus_dmammem_alloc failed; size %zu, error %u\n",
 1822                         size, r);
 1823                 goto fail_2;
 1824         }
 1825 
 1826         r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
 1827                             size,
 1828                             safe_dmamap_cb,
 1829                             &dma->dma_paddr,
 1830                             mapflags | BUS_DMA_NOWAIT);
 1831         if (r != 0) {
 1832                 device_printf(sc->sc_dev, "safe_dma_malloc: "
 1833                         "bus_dmamap_load failed; error %u\n", r);
 1834                 goto fail_3;
 1835         }
 1836 
 1837         dma->dma_size = size;
 1838         return (0);
 1839 
 1840 fail_3:
 1841         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
 1842 fail_2:
 1843         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
 1844 fail_1:
 1845         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
 1846         bus_dma_tag_destroy(dma->dma_tag);
 1847 fail_0:
 1848         dma->dma_map = NULL;
 1849         dma->dma_tag = NULL;
 1850         return (r);
 1851 }
 1852 
 1853 static void
 1854 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
 1855 {
 1856         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
 1857         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
 1858         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
 1859         bus_dma_tag_destroy(dma->dma_tag);
 1860 }
 1861 
 1862 /*
 1863  * Resets the board.  Values in the regesters are left as is
 1864  * from the reset (i.e. initial values are assigned elsewhere).
 1865  */
 1866 static void
 1867 safe_reset_board(struct safe_softc *sc)
 1868 {
 1869         u_int32_t v;
 1870         /*
 1871          * Reset the device.  The manual says no delay
 1872          * is needed between marking and clearing reset.
 1873          */
 1874         v = READ_REG(sc, SAFE_PE_DMACFG) &~
 1875                 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
 1876                  SAFE_PE_DMACFG_SGRESET);
 1877         WRITE_REG(sc, SAFE_PE_DMACFG, v
 1878                                     | SAFE_PE_DMACFG_PERESET
 1879                                     | SAFE_PE_DMACFG_PDRRESET
 1880                                     | SAFE_PE_DMACFG_SGRESET);
 1881         WRITE_REG(sc, SAFE_PE_DMACFG, v);
 1882 }
 1883 
 1884 /*
 1885  * Initialize registers we need to touch only once.
 1886  */
 1887 static void
 1888 safe_init_board(struct safe_softc *sc)
 1889 {
 1890         u_int32_t v, dwords;
 1891 
 1892         v = READ_REG(sc, SAFE_PE_DMACFG);
 1893         v &=~ SAFE_PE_DMACFG_PEMODE;
 1894         v |= SAFE_PE_DMACFG_FSENA               /* failsafe enable */
 1895           |  SAFE_PE_DMACFG_GPRPCI              /* gather ring on PCI */
 1896           |  SAFE_PE_DMACFG_SPRPCI              /* scatter ring on PCI */
 1897           |  SAFE_PE_DMACFG_ESDESC              /* endian-swap descriptors */
 1898           |  SAFE_PE_DMACFG_ESSA                /* endian-swap SA's */
 1899           |  SAFE_PE_DMACFG_ESPDESC             /* endian-swap part. desc's */
 1900           ;
 1901         WRITE_REG(sc, SAFE_PE_DMACFG, v);
 1902 #if 0
 1903         /* XXX select byte swap based on host byte order */
 1904         WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
 1905 #endif
 1906         if (sc->sc_chiprev == SAFE_REV(1,0)) {
 1907                 /*
 1908                  * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
 1909                  * "target mode transfers" done while the chip is DMA'ing
 1910                  * >1020 bytes cause the hardware to lockup.  To avoid this
 1911                  * we reduce the max PCI transfer size and use small source
 1912                  * particle descriptors (<= 256 bytes).
 1913                  */
 1914                 WRITE_REG(sc, SAFE_DMA_CFG, 256);
 1915                 device_printf(sc->sc_dev,
 1916                         "Reduce max DMA size to %u words for rev %u.%u WAR\n",
 1917                         (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
 1918                         SAFE_REV_MAJ(sc->sc_chiprev),
 1919                         SAFE_REV_MIN(sc->sc_chiprev));
 1920         }
 1921 
 1922         /* NB: operands+results are overlaid */
 1923         WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
 1924         WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
 1925         /*
 1926          * Configure ring entry size and number of items in the ring.
 1927          */
 1928         KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
 1929                 ("PE ring entry not 32-bit aligned!"));
 1930         dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
 1931         WRITE_REG(sc, SAFE_PE_RINGCFG,
 1932                 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
 1933         WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);     /* disable polling */
 1934 
 1935         WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
 1936         WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
 1937         WRITE_REG(sc, SAFE_PE_PARTSIZE,
 1938                 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
 1939         /*
 1940          * NB: destination particles are fixed size.  We use
 1941          *     an mbuf cluster and require all results go to
 1942          *     clusters or smaller.
 1943          */
 1944         WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
 1945 
 1946         /* it's now safe to enable PE mode, do it */
 1947         WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
 1948 
 1949         /*
 1950          * Configure hardware to use level-triggered interrupts and
 1951          * to interrupt after each descriptor is processed.
 1952          */
 1953         WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
 1954         WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
 1955         WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
 1956 }
 1957 
 1958 /*
 1959  * Init PCI registers
 1960  */
 1961 static void
 1962 safe_init_pciregs(device_t dev)
 1963 {
 1964 }
 1965 
 1966 /*
 1967  * Clean up after a chip crash.
 1968  * It is assumed that the caller in splimp()
 1969  */
 1970 static void
 1971 safe_cleanchip(struct safe_softc *sc)
 1972 {
 1973 
 1974         if (sc->sc_nqchip != 0) {
 1975                 struct safe_ringentry *re = sc->sc_back;
 1976 
 1977                 while (re != sc->sc_front) {
 1978                         if (re->re_desc.d_csr != 0)
 1979                                 safe_free_entry(sc, re);
 1980                         if (++re == sc->sc_ringtop)
 1981                                 re = sc->sc_ring;
 1982                 }
 1983                 sc->sc_back = re;
 1984                 sc->sc_nqchip = 0;
 1985         }
 1986 }
 1987 
 1988 /*
 1989  * free a safe_q
 1990  * It is assumed that the caller is within splimp().
 1991  */
 1992 static int
 1993 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
 1994 {
 1995         struct cryptop *crp;
 1996 
 1997         /*
 1998          * Free header MCR
 1999          */
 2000         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
 2001                 m_freem(re->re_dst_m);
 2002 
 2003         crp = (struct cryptop *)re->re_crp;
 2004         
 2005         re->re_desc.d_csr = 0;
 2006         
 2007         crp->crp_etype = EFAULT;
 2008         crypto_done(crp);
 2009         return(0);
 2010 }
 2011 
 2012 /*
 2013  * Routine to reset the chip and clean up.
 2014  * It is assumed that the caller is in splimp()
 2015  */
 2016 static void
 2017 safe_totalreset(struct safe_softc *sc)
 2018 {
 2019         safe_reset_board(sc);
 2020         safe_init_board(sc);
 2021         safe_cleanchip(sc);
 2022 }
 2023 
 2024 /*
 2025  * Is the operand suitable aligned for direct DMA.  Each
 2026  * segment must be aligned on a 32-bit boundary and all
 2027  * but the last segment must be a multiple of 4 bytes.
 2028  */
 2029 static int
 2030 safe_dmamap_aligned(const struct safe_operand *op)
 2031 {
 2032         int i;
 2033 
 2034         for (i = 0; i < op->nsegs; i++) {
 2035                 if (op->segs[i].ds_addr & 3)
 2036                         return (0);
 2037                 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
 2038                         return (0);
 2039         }
 2040         return (1);
 2041 }
 2042 
 2043 /*
 2044  * Is the operand suitable for direct DMA as the destination
 2045  * of an operation.  The hardware requires that each ``particle''
 2046  * but the last in an operation result have the same size.  We
 2047  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
 2048  * 0 if some segment is not a multiple of of this size, 1 if all
 2049  * segments are exactly this size, or 2 if segments are at worst
 2050  * a multple of this size.
 2051  */
 2052 static int
 2053 safe_dmamap_uniform(const struct safe_operand *op)
 2054 {
 2055         int result = 1;
 2056 
 2057         if (op->nsegs > 0) {
 2058                 int i;
 2059 
 2060                 for (i = 0; i < op->nsegs-1; i++) {
 2061                         if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
 2062                                 return (0);
 2063                         if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
 2064                                 result = 2;
 2065                 }
 2066         }
 2067         return (result);
 2068 }
 2069 
 2070 #ifdef SAFE_DEBUG
 2071 static void
 2072 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
 2073 {
 2074         printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
 2075                 , tag
 2076                 , READ_REG(sc, SAFE_DMA_ENDIAN)
 2077                 , READ_REG(sc, SAFE_DMA_SRCADDR)
 2078                 , READ_REG(sc, SAFE_DMA_DSTADDR)
 2079                 , READ_REG(sc, SAFE_DMA_STAT)
 2080         );
 2081 }
 2082 
 2083 static void
 2084 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
 2085 {
 2086         printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
 2087                 , tag
 2088                 , READ_REG(sc, SAFE_HI_CFG)
 2089                 , READ_REG(sc, SAFE_HI_MASK)
 2090                 , READ_REG(sc, SAFE_HI_DESC_CNT)
 2091                 , READ_REG(sc, SAFE_HU_STAT)
 2092                 , READ_REG(sc, SAFE_HM_STAT)
 2093         );
 2094 }
 2095 
 2096 static void
 2097 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
 2098 {
 2099         u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
 2100 
 2101         /* NB: assume caller has lock on ring */
 2102         printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
 2103                 tag,
 2104                 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
 2105                 (unsigned long)(sc->sc_back - sc->sc_ring),
 2106                 (unsigned long)(sc->sc_front - sc->sc_ring));
 2107 }
 2108 
 2109 static void
 2110 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
 2111 {
 2112         int ix, nsegs;
 2113 
 2114         ix = re - sc->sc_ring;
 2115         printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
 2116                 , tag
 2117                 , re, ix
 2118                 , re->re_desc.d_csr
 2119                 , re->re_desc.d_src
 2120                 , re->re_desc.d_dst
 2121                 , re->re_desc.d_sa
 2122                 , re->re_desc.d_len
 2123         );
 2124         if (re->re_src.nsegs > 1) {
 2125                 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
 2126                         sizeof(struct safe_pdesc);
 2127                 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
 2128                         printf(" spd[%u] %p: %p size %u flags %x"
 2129                                 , ix, &sc->sc_spring[ix]
 2130                                 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
 2131                                 , sc->sc_spring[ix].pd_size
 2132                                 , sc->sc_spring[ix].pd_flags
 2133                         );
 2134                         if (sc->sc_spring[ix].pd_size == 0)
 2135                                 printf(" (zero!)");
 2136                         printf("\n");
 2137                         if (++ix == SAFE_TOTAL_SPART)
 2138                                 ix = 0;
 2139                 }
 2140         }
 2141         if (re->re_dst.nsegs > 1) {
 2142                 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
 2143                         sizeof(struct safe_pdesc);
 2144                 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
 2145                         printf(" dpd[%u] %p: %p flags %x\n"
 2146                                 , ix, &sc->sc_dpring[ix]
 2147                                 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
 2148                                 , sc->sc_dpring[ix].pd_flags
 2149                         );
 2150                         if (++ix == SAFE_TOTAL_DPART)
 2151                                 ix = 0;
 2152                 }
 2153         }
 2154         printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
 2155                 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
 2156         printf("sa: key %x %x %x %x %x %x %x %x\n"
 2157                 , re->re_sa.sa_key[0]
 2158                 , re->re_sa.sa_key[1]
 2159                 , re->re_sa.sa_key[2]
 2160                 , re->re_sa.sa_key[3]
 2161                 , re->re_sa.sa_key[4]
 2162                 , re->re_sa.sa_key[5]
 2163                 , re->re_sa.sa_key[6]
 2164                 , re->re_sa.sa_key[7]
 2165         );
 2166         printf("sa: indigest %x %x %x %x %x\n"
 2167                 , re->re_sa.sa_indigest[0]
 2168                 , re->re_sa.sa_indigest[1]
 2169                 , re->re_sa.sa_indigest[2]
 2170                 , re->re_sa.sa_indigest[3]
 2171                 , re->re_sa.sa_indigest[4]
 2172         );
 2173         printf("sa: outdigest %x %x %x %x %x\n"
 2174                 , re->re_sa.sa_outdigest[0]
 2175                 , re->re_sa.sa_outdigest[1]
 2176                 , re->re_sa.sa_outdigest[2]
 2177                 , re->re_sa.sa_outdigest[3]
 2178                 , re->re_sa.sa_outdigest[4]
 2179         );
 2180         printf("sr: iv %x %x %x %x\n"
 2181                 , re->re_sastate.sa_saved_iv[0]
 2182                 , re->re_sastate.sa_saved_iv[1]
 2183                 , re->re_sastate.sa_saved_iv[2]
 2184                 , re->re_sastate.sa_saved_iv[3]
 2185         );
 2186         printf("sr: hashbc %u indigest %x %x %x %x %x\n"
 2187                 , re->re_sastate.sa_saved_hashbc
 2188                 , re->re_sastate.sa_saved_indigest[0]
 2189                 , re->re_sastate.sa_saved_indigest[1]
 2190                 , re->re_sastate.sa_saved_indigest[2]
 2191                 , re->re_sastate.sa_saved_indigest[3]
 2192                 , re->re_sastate.sa_saved_indigest[4]
 2193         );
 2194 }
 2195 
 2196 static void
 2197 safe_dump_ring(struct safe_softc *sc, const char *tag)
 2198 {
 2199         mtx_lock(&sc->sc_ringmtx);
 2200         printf("\nSafeNet Ring State:\n");
 2201         safe_dump_intrstate(sc, tag);
 2202         safe_dump_dmastatus(sc, tag);
 2203         safe_dump_ringstate(sc, tag);
 2204         if (sc->sc_nqchip) {
 2205                 struct safe_ringentry *re = sc->sc_back;
 2206                 do {
 2207                         safe_dump_request(sc, tag, re);
 2208                         if (++re == sc->sc_ringtop)
 2209                                 re = sc->sc_ring;
 2210                 } while (re != sc->sc_front);
 2211         }
 2212         mtx_unlock(&sc->sc_ringmtx);
 2213 }
 2214 
 2215 static int
 2216 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
 2217 {
 2218         char dmode[64];
 2219         int error;
 2220 
 2221         strncpy(dmode, "", sizeof(dmode) - 1);
 2222         dmode[sizeof(dmode) - 1] = '\0';
 2223         error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
 2224 
 2225         if (error == 0 && req->newptr != NULL) {
 2226                 struct safe_softc *sc = safec;
 2227 
 2228                 if (!sc)
 2229                         return EINVAL;
 2230                 if (strncmp(dmode, "dma", 3) == 0)
 2231                         safe_dump_dmastatus(sc, "safe0");
 2232                 else if (strncmp(dmode, "int", 3) == 0)
 2233                         safe_dump_intrstate(sc, "safe0");
 2234                 else if (strncmp(dmode, "ring", 4) == 0)
 2235                         safe_dump_ring(sc, "safe0");
 2236                 else
 2237                         return EINVAL;
 2238         }
 2239         return error;
 2240 }
 2241 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
 2242         0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
 2243 #endif /* SAFE_DEBUG */

Cache object: d796becc13b9db217e2825a75da0ca3b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.