The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/scsipi/ses.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: ses.c,v 1.30 2005/02/27 00:27:48 perry Exp $ */
    2 /*
    3  * Copyright (C) 2000 National Aeronautics & Space Administration
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the author may not be used to endorse or promote products
   12  *    derived from this software without specific prior written permission
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   24  *
   25  * Author:      mjacob@nas.nasa.gov
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.30 2005/02/27 00:27:48 perry Exp $");
   30 
   31 #include "opt_scsi.h"
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/kernel.h>
   36 #include <sys/file.h>
   37 #include <sys/stat.h>
   38 #include <sys/ioctl.h>
   39 #include <sys/scsiio.h>
   40 #include <sys/buf.h>
   41 #include <sys/uio.h>
   42 #include <sys/malloc.h>
   43 #include <sys/errno.h>
   44 #include <sys/device.h>
   45 #include <sys/disklabel.h>
   46 #include <sys/disk.h>
   47 #include <sys/proc.h>
   48 #include <sys/conf.h>
   49 #include <sys/vnode.h>
   50 #include <machine/stdarg.h>
   51 
   52 #include <dev/scsipi/scsipi_all.h>
   53 #include <dev/scsipi/scsipi_disk.h>
   54 #include <dev/scsipi/scsi_all.h>
   55 #include <dev/scsipi/scsi_disk.h>
   56 #include <dev/scsipi/scsipiconf.h>
   57 #include <dev/scsipi/scsipi_base.h>
   58 #include <dev/scsipi/ses.h>
   59 
   60 /*
   61  * Platform Independent Driver Internal Definitions for SES devices.
   62  */
   63 typedef enum {
   64         SES_NONE,
   65         SES_SES_SCSI2,
   66         SES_SES,
   67         SES_SES_PASSTHROUGH,
   68         SES_SEN,
   69         SES_SAFT
   70 } enctyp;
   71 
   72 struct ses_softc;
   73 typedef struct ses_softc ses_softc_t;
   74 typedef struct {
   75         int (*softc_init)(ses_softc_t *, int);
   76         int (*init_enc)(ses_softc_t *);
   77         int (*get_encstat)(ses_softc_t *, int);
   78         int (*set_encstat)(ses_softc_t *, ses_encstat, int);
   79         int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
   80         int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
   81 } encvec;
   82 
   83 #define ENCI_SVALID     0x80
   84 
   85 typedef struct {
   86         uint32_t
   87                 enctype : 8,            /* enclosure type */
   88                 subenclosure : 8,       /* subenclosure id */
   89                 svalid  : 1,            /* enclosure information valid */
   90                 priv    : 15;           /* private data, per object */
   91         uint8_t encstat[4];     /* state && stats */
   92 } encobj;
   93 
   94 #define SEN_ID          "UNISYS           SUN_SEN"
   95 #define SEN_ID_LEN      24
   96 
   97 static enctyp ses_type(struct scsipi_inquiry_data *);
   98 
   99 
  100 /* Forward reference to Enclosure Functions */
  101 static int ses_softc_init(ses_softc_t *, int);
  102 static int ses_init_enc(ses_softc_t *);
  103 static int ses_get_encstat(ses_softc_t *, int);
  104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
  105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
  106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
  107 
  108 static int safte_softc_init(ses_softc_t *, int);
  109 static int safte_init_enc(ses_softc_t *);
  110 static int safte_get_encstat(ses_softc_t *, int);
  111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
  112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
  113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
  114 
  115 /*
  116  * Platform implementation defines/functions for SES internal kernel stuff
  117  */
  118 
  119 #define STRNCMP                 strncmp
  120 #define PRINTF                  printf
  121 #define SES_LOG                 ses_log
  122 #if     defined(DEBUG) || defined(SCSIDEBUG)
  123 #define SES_VLOG                ses_log
  124 #else
  125 #define SES_VLOG                if (0) ses_log
  126 #endif
  127 #define SES_MALLOC(amt)         malloc(amt, M_DEVBUF, M_NOWAIT)
  128 #define SES_FREE(ptr, amt)      free(ptr, M_DEVBUF)
  129 #define MEMZERO(dest, amt)      memset(dest, 0, amt)
  130 #define MEMCPY(dest, src, amt)  memcpy(dest, src, amt)
  131 #define RECEIVE_DIAGNOSTIC      0x1c
  132 #define SEND_DIAGNOSTIC         0x1d
  133 #define WRITE_BUFFER            0x3b
  134 #define READ_BUFFER             0x3c
  135 
  136 static dev_type_open(sesopen);
  137 static dev_type_close(sesclose);
  138 static dev_type_ioctl(sesioctl);
  139 
  140 const struct cdevsw ses_cdevsw = {
  141         sesopen, sesclose, noread, nowrite, sesioctl,
  142         nostop, notty, nopoll, nommap, nokqfilter,
  143 };
  144 
  145 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
  146 static void ses_log(struct ses_softc *, const char *, ...)
  147      __attribute__((__format__(__printf__, 2, 3)));
  148 
  149 /*
  150  * General NetBSD kernel stuff.
  151  */
  152 
  153 struct ses_softc {
  154         struct device   sc_device;
  155         struct scsipi_periph *sc_periph;
  156         enctyp          ses_type;       /* type of enclosure */
  157         encvec          ses_vec;        /* vector to handlers */
  158         void *          ses_private;    /* per-type private data */
  159         encobj *        ses_objmap;     /* objects */
  160         u_int32_t       ses_nobjects;   /* number of objects */
  161         ses_encstat     ses_encstat;    /* overall status */
  162         u_int8_t        ses_flags;
  163 };
  164 #define SES_FLAG_INVALID        0x01
  165 #define SES_FLAG_OPEN           0x02
  166 #define SES_FLAG_INITIALIZED    0x04
  167 
  168 #define SESUNIT(x)       (minor((x)))
  169 
  170 static int ses_match(struct device *, struct cfdata *, void *);
  171 static void ses_attach(struct device *, struct device *, void *);
  172 static enctyp ses_device_type(struct scsipibus_attach_args *);
  173 
  174 CFATTACH_DECL(ses, sizeof (struct ses_softc),
  175     ses_match, ses_attach, NULL, NULL);
  176 
  177 extern struct cfdriver ses_cd;
  178 
  179 static const struct scsipi_periphsw ses_switch = {
  180         NULL,
  181         NULL,
  182         NULL,
  183         NULL
  184 };
  185 
  186 static int
  187 ses_match(struct device *parent, struct cfdata *match, void *aux)
  188 {
  189         struct scsipibus_attach_args *sa = aux;
  190 
  191         switch (ses_device_type(sa)) {
  192         case SES_SES:
  193         case SES_SES_SCSI2:
  194         case SES_SEN:
  195         case SES_SAFT:
  196         case SES_SES_PASSTHROUGH:
  197                 /*
  198                  * For these devices, it's a perfect match.
  199                  */
  200                 return (24);
  201         default:
  202                 return (0);
  203         }
  204 }
  205 
  206 
  207 /*
  208  * Complete the attachment.
  209  *
  210  * We have to repeat the rerun of INQUIRY data as above because
  211  * it's not until the return from the match routine that we have
  212  * the softc available to set stuff in.
  213  */
  214 static void
  215 ses_attach(struct device *parent, struct device *self, void *aux)
  216 {
  217         char *tname;
  218         struct ses_softc *softc = (void *)self;
  219         struct scsipibus_attach_args *sa = aux;
  220         struct scsipi_periph *periph = sa->sa_periph;
  221 
  222         SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
  223         softc->sc_periph = periph;
  224         periph->periph_dev = &softc->sc_device;
  225         periph->periph_switch = &ses_switch;
  226         periph->periph_openings = 1;
  227 
  228         softc->ses_type = ses_device_type(sa);
  229         switch (softc->ses_type) {
  230         case SES_SES:
  231         case SES_SES_SCSI2:
  232         case SES_SES_PASSTHROUGH:
  233                 softc->ses_vec.softc_init = ses_softc_init;
  234                 softc->ses_vec.init_enc = ses_init_enc;
  235                 softc->ses_vec.get_encstat = ses_get_encstat;
  236                 softc->ses_vec.set_encstat = ses_set_encstat;
  237                 softc->ses_vec.get_objstat = ses_get_objstat;
  238                 softc->ses_vec.set_objstat = ses_set_objstat;
  239                 break;
  240         case SES_SAFT:
  241                 softc->ses_vec.softc_init = safte_softc_init;
  242                 softc->ses_vec.init_enc = safte_init_enc;
  243                 softc->ses_vec.get_encstat = safte_get_encstat;
  244                 softc->ses_vec.set_encstat = safte_set_encstat;
  245                 softc->ses_vec.get_objstat = safte_get_objstat;
  246                 softc->ses_vec.set_objstat = safte_set_objstat;
  247                 break;
  248         case SES_SEN:
  249                 break;
  250         case SES_NONE:
  251         default:
  252                 break;
  253         }
  254 
  255         switch (softc->ses_type) {
  256         default:
  257         case SES_NONE:
  258                 tname = "No SES device";
  259                 break;
  260         case SES_SES_SCSI2:
  261                 tname = "SCSI-2 SES Device";
  262                 break;
  263         case SES_SES:
  264                 tname = "SCSI-3 SES Device";
  265                 break;
  266         case SES_SES_PASSTHROUGH:
  267                 tname = "SES Passthrough Device";
  268                 break;
  269         case SES_SEN:
  270                 tname = "UNISYS SEN Device (NOT HANDLED YET)";
  271                 break;
  272         case SES_SAFT:
  273                 tname = "SAF-TE Compliant Device";
  274                 break;
  275         }
  276         printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
  277 }
  278 
  279 
  280 static enctyp
  281 ses_device_type(struct scsipibus_attach_args *sa)
  282 {
  283         struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
  284 
  285         if (inqp == NULL)
  286                 return (SES_NONE);
  287 
  288         return (ses_type(inqp));
  289 }
  290 
  291 static int
  292 sesopen(dev_t dev, int flags, int fmt, struct proc *p)
  293 {
  294         struct ses_softc *softc;
  295         int error, unit;
  296 
  297         unit = SESUNIT(dev);
  298         if (unit >= ses_cd.cd_ndevs)
  299                 return (ENXIO);
  300         softc = ses_cd.cd_devs[unit];
  301         if (softc == NULL)
  302                 return (ENXIO);
  303 
  304         if (softc->ses_flags & SES_FLAG_INVALID) {
  305                 error = ENXIO;
  306                 goto out;
  307         }
  308         if (softc->ses_flags & SES_FLAG_OPEN) {
  309                 error = EBUSY;
  310                 goto out;
  311         }
  312         if (softc->ses_vec.softc_init == NULL) {
  313                 error = ENXIO;
  314                 goto out;
  315         }
  316         error = scsipi_adapter_addref(
  317             softc->sc_periph->periph_channel->chan_adapter);
  318         if (error != 0)
  319                 goto out;
  320 
  321 
  322         softc->ses_flags |= SES_FLAG_OPEN;
  323         if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
  324                 error = (*softc->ses_vec.softc_init)(softc, 1);
  325                 if (error)
  326                         softc->ses_flags &= ~SES_FLAG_OPEN;
  327                 else
  328                         softc->ses_flags |= SES_FLAG_INITIALIZED;
  329         }
  330 
  331 out:
  332         return (error);
  333 }
  334 
  335 static int
  336 sesclose(dev_t dev, int flags, int fmt, struct proc *p)
  337 {
  338         struct ses_softc *softc;
  339         int unit;
  340 
  341         unit = SESUNIT(dev);
  342         if (unit >= ses_cd.cd_ndevs)
  343                 return (ENXIO);
  344         softc = ses_cd.cd_devs[unit];
  345         if (softc == NULL)
  346                 return (ENXIO);
  347 
  348         scsipi_wait_drain(softc->sc_periph);
  349         scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
  350         softc->ses_flags &= ~SES_FLAG_OPEN;
  351         return (0);
  352 }
  353 
  354 static int
  355 sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct proc *p)
  356 {
  357         ses_encstat tmp;
  358         ses_objstat objs;
  359         ses_object obj, *uobj;
  360         struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
  361         void *addr;
  362         int error, i;
  363 
  364 
  365         if (arg_addr)
  366                 addr = *((caddr_t *) arg_addr);
  367         else
  368                 addr = NULL;
  369 
  370         SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
  371 
  372         /*
  373          * Now check to see whether we're initialized or not.
  374          */
  375         if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
  376                 return (ENODEV);
  377         }
  378 
  379         error = 0;
  380 
  381         /*
  382          * If this command can change the device's state,
  383          * we must have the device open for writing.
  384          */
  385         switch (cmd) {
  386         case SESIOC_GETNOBJ:
  387         case SESIOC_GETOBJMAP:
  388         case SESIOC_GETENCSTAT:
  389         case SESIOC_GETOBJSTAT:
  390                 break;
  391         default:
  392                 if ((flag & FWRITE) == 0) {
  393                         return (EBADF);
  394                 }
  395         }
  396 
  397         switch (cmd) {
  398         case SESIOC_GETNOBJ:
  399                 error = copyout(&ssc->ses_nobjects, addr,
  400                     sizeof (ssc->ses_nobjects));
  401                 break;
  402 
  403         case SESIOC_GETOBJMAP:
  404                 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
  405                         obj.obj_id = i;
  406                         obj.subencid = ssc->ses_objmap[i].subenclosure;
  407                         obj.object_type = ssc->ses_objmap[i].enctype;
  408                         error = copyout(&obj, uobj, sizeof (ses_object));
  409                         if (error) {
  410                                 break;
  411                         }
  412                 }
  413                 break;
  414 
  415         case SESIOC_GETENCSTAT:
  416                 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
  417                 if (error)
  418                         break;
  419                 tmp = ssc->ses_encstat & ~ENCI_SVALID;
  420                 error = copyout(&tmp, addr, sizeof (ses_encstat));
  421                 ssc->ses_encstat = tmp;
  422                 break;
  423 
  424         case SESIOC_SETENCSTAT:
  425                 error = copyin(addr, &tmp, sizeof (ses_encstat));
  426                 if (error)
  427                         break;
  428                 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
  429                 break;
  430 
  431         case SESIOC_GETOBJSTAT:
  432                 error = copyin(addr, &objs, sizeof (ses_objstat));
  433                 if (error)
  434                         break;
  435                 if (objs.obj_id >= ssc->ses_nobjects) {
  436                         error = EINVAL;
  437                         break;
  438                 }
  439                 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
  440                 if (error)
  441                         break;
  442                 error = copyout(&objs, addr, sizeof (ses_objstat));
  443                 /*
  444                  * Always (for now) invalidate entry.
  445                  */
  446                 ssc->ses_objmap[objs.obj_id].svalid = 0;
  447                 break;
  448 
  449         case SESIOC_SETOBJSTAT:
  450                 error = copyin(addr, &objs, sizeof (ses_objstat));
  451                 if (error)
  452                         break;
  453 
  454                 if (objs.obj_id >= ssc->ses_nobjects) {
  455                         error = EINVAL;
  456                         break;
  457                 }
  458                 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
  459 
  460                 /*
  461                  * Always (for now) invalidate entry.
  462                  */
  463                 ssc->ses_objmap[objs.obj_id].svalid = 0;
  464                 break;
  465 
  466         case SESIOC_INIT:
  467 
  468                 error = (*ssc->ses_vec.init_enc)(ssc);
  469                 break;
  470 
  471         default:
  472                 error = scsipi_do_ioctl(ssc->sc_periph,
  473                             dev, cmd, arg_addr, flag, p);
  474                 break;
  475         }
  476         return (error);
  477 }
  478 
  479 static int
  480 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
  481 {
  482         struct scsipi_generic sgen;
  483         int dl, flg, error;
  484 
  485         if (dptr) {
  486                 if ((dl = *dlenp) < 0) {
  487                         dl = -dl;
  488                         flg = XS_CTL_DATA_OUT;
  489                 } else {
  490                         flg = XS_CTL_DATA_IN;
  491                 }
  492         } else {
  493                 dl = 0;
  494                 flg = 0;
  495         }
  496 
  497         if (cdbl > sizeof (struct scsipi_generic)) {
  498                 cdbl = sizeof (struct scsipi_generic);
  499         }
  500         memcpy(&sgen, cdb, cdbl);
  501 #ifndef SCSIDEBUG
  502         flg |= XS_CTL_SILENT;
  503 #endif
  504         error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
  505             (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
  506 
  507         if (error == 0 && dptr)
  508                 *dlenp = 0;
  509 
  510         return (error);
  511 }
  512 
  513 static void
  514 ses_log(struct ses_softc *ssc, const char *fmt, ...)
  515 {
  516         va_list ap;
  517 
  518         printf("%s: ", ssc->sc_device.dv_xname);
  519         va_start(ap, fmt);
  520         vprintf(fmt, ap);
  521         va_end(ap);
  522 }
  523 
  524 /*
  525  * The code after this point runs on many platforms,
  526  * so forgive the slightly awkward and nonconforming
  527  * appearance.
  528  */
  529 
  530 /*
  531  * Is this a device that supports enclosure services?
  532  *
  533  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
  534  * an SES device. If it happens to be an old UNISYS SEN device, we can
  535  * handle that too.
  536  */
  537 
  538 #define SAFTE_START     44
  539 #define SAFTE_END       50
  540 #define SAFTE_LEN       SAFTE_END-SAFTE_START
  541 
  542 static enctyp
  543 ses_type(struct scsipi_inquiry_data *inqp)
  544 {
  545         size_t  given_len = inqp->additional_length + 4;
  546 
  547         if (given_len < 8+SEN_ID_LEN)
  548                 return (SES_NONE);
  549 
  550         if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
  551                 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
  552                         return (SES_SEN);
  553                 } else if ((inqp->version & SID_ANSII) > 2) {
  554                         return (SES_SES);
  555                 } else {
  556                         return (SES_SES_SCSI2);
  557                 }
  558                 return (SES_NONE);
  559         }
  560 
  561 #ifdef  SES_ENABLE_PASSTHROUGH
  562         if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
  563                 /*
  564                  * PassThrough Device.
  565                  */
  566                 return (SES_SES_PASSTHROUGH);
  567         }
  568 #endif
  569 
  570         /*
  571          * The comparison is short for a reason-
  572          * some vendors were chopping it short.
  573          */
  574 
  575         if (given_len < SAFTE_END - 2) {
  576                 return (SES_NONE);
  577         }
  578 
  579         if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
  580                         SAFTE_LEN - 2) == 0) {
  581                 return (SES_SAFT);
  582         }
  583 
  584         return (SES_NONE);
  585 }
  586 
  587 /*
  588  * SES Native Type Device Support
  589  */
  590 
  591 /*
  592  * SES Diagnostic Page Codes
  593  */
  594 
  595 typedef enum {
  596         SesConfigPage = 0x1,
  597         SesControlPage,
  598 #define SesStatusPage SesControlPage
  599         SesHelpTxt,
  600         SesStringOut,
  601 #define SesStringIn     SesStringOut
  602         SesThresholdOut,
  603 #define SesThresholdIn SesThresholdOut
  604         SesArrayControl,
  605 #define SesArrayStatus  SesArrayControl
  606         SesElementDescriptor,
  607         SesShortStatus
  608 } SesDiagPageCodes;
  609 
  610 /*
  611  * minimal amounts
  612  */
  613 
  614 /*
  615  * Minimum amount of data, starting from byte 0, to have
  616  * the config header.
  617  */
  618 #define SES_CFGHDR_MINLEN       12
  619 
  620 /*
  621  * Minimum amount of data, starting from byte 0, to have
  622  * the config header and one enclosure header.
  623  */
  624 #define SES_ENCHDR_MINLEN       48
  625 
  626 /*
  627  * Take this value, subtract it from VEnclen and you know
  628  * the length of the vendor unique bytes.
  629  */
  630 #define SES_ENCHDR_VMIN         36
  631 
  632 /*
  633  * SES Data Structures
  634  */
  635 
  636 typedef struct {
  637         uint32_t GenCode;       /* Generation Code */
  638         uint8_t Nsubenc;        /* Number of Subenclosures */
  639 } SesCfgHdr;
  640 
  641 typedef struct {
  642         uint8_t Subencid;       /* SubEnclosure Identifier */
  643         uint8_t Ntypes;         /* # of supported types */
  644         uint8_t VEnclen;        /* Enclosure Descriptor Length */
  645 } SesEncHdr;
  646 
  647 typedef struct {
  648         uint8_t encWWN[8];      /* XXX- Not Right Yet */
  649         uint8_t encVid[8];
  650         uint8_t encPid[16];
  651         uint8_t encRev[4];
  652         uint8_t encVen[1];
  653 } SesEncDesc;
  654 
  655 typedef struct {
  656         uint8_t enc_type;               /* type of element */
  657         uint8_t enc_maxelt;             /* maximum supported */
  658         uint8_t enc_subenc;             /* in SubEnc # N */
  659         uint8_t enc_tlen;               /* Type Descriptor Text Length */
  660 } SesThdr;
  661 
  662 typedef struct {
  663         uint8_t comstatus;
  664         uint8_t comstat[3];
  665 } SesComStat;
  666 
  667 struct typidx {
  668         int ses_tidx;
  669         int ses_oidx;
  670 };
  671 
  672 struct sscfg {
  673         uint8_t ses_ntypes;     /* total number of types supported */
  674 
  675         /*
  676          * We need to keep a type index as well as an
  677          * object index for each object in an enclosure.
  678          */
  679         struct typidx *ses_typidx;
  680 
  681         /*
  682          * We also need to keep track of the number of elements
  683          * per type of element. This is needed later so that we
  684          * can find precisely in the returned status data the
  685          * status for the Nth element of the Kth type.
  686          */
  687         uint8_t *       ses_eltmap;
  688 };
  689 
  690 
  691 /*
  692  * (de)canonicalization defines
  693  */
  694 #define sbyte(x, byte)          ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
  695 #define sbit(x, bit)            (((uint32_t)(x)) << bit)
  696 #define sset8(outp, idx, sval)  (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
  697 
  698 #define sset16(outp, idx, sval) \
  699         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
  700         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
  701 
  702 
  703 #define sset24(outp, idx, sval) \
  704         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
  705         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
  706         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
  707 
  708 
  709 #define sset32(outp, idx, sval) \
  710         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
  711         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
  712         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
  713         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
  714 
  715 #define gbyte(x, byte)  ((((uint32_t)(x)) & 0xff) << (byte * 8))
  716 #define gbit(lv, in, idx, shft, mask)   lv = ((in[idx] >> shft) & mask)
  717 #define sget8(inp, idx, lval)   lval = (((uint8_t *)(inp))[idx++])
  718 #define gget8(inp, idx, lval)   lval = (((uint8_t *)(inp))[idx])
  719 
  720 #define sget16(inp, idx, lval)  \
  721         lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
  722                 (((uint8_t *)(inp))[idx+1]), idx += 2
  723 
  724 #define gget16(inp, idx, lval)  \
  725         lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
  726                 (((uint8_t *)(inp))[idx+1])
  727 
  728 #define sget24(inp, idx, lval)  \
  729         lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
  730                 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
  731                         (((uint8_t *)(inp))[idx+2]), idx += 3
  732 
  733 #define gget24(inp, idx, lval)  \
  734         lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
  735                 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
  736                         (((uint8_t *)(inp))[idx+2])
  737 
  738 #define sget32(inp, idx, lval)  \
  739         lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
  740                 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
  741                 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
  742                         (((uint8_t *)(inp))[idx+3]), idx += 4
  743 
  744 #define gget32(inp, idx, lval)  \
  745         lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
  746                 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
  747                 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
  748                         (((uint8_t *)(inp))[idx+3])
  749 
  750 #define SCSZ    0x2000
  751 #define CFLEN   (256 + SES_ENCHDR_MINLEN)
  752 
  753 /*
  754  * Routines specific && private to SES only
  755  */
  756 
  757 static int ses_getconfig(ses_softc_t *);
  758 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
  759 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
  760 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
  761 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
  762 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
  763 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
  764 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
  765 
  766 static int
  767 ses_softc_init(ses_softc_t *ssc, int doinit)
  768 {
  769         if (doinit == 0) {
  770                 struct sscfg *cc;
  771                 if (ssc->ses_nobjects) {
  772                         SES_FREE(ssc->ses_objmap,
  773                             ssc->ses_nobjects * sizeof (encobj));
  774                         ssc->ses_objmap = NULL;
  775                 }
  776                 if ((cc = ssc->ses_private) != NULL) {
  777                         if (cc->ses_eltmap && cc->ses_ntypes) {
  778                                 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
  779                                 cc->ses_eltmap = NULL;
  780                                 cc->ses_ntypes = 0;
  781                         }
  782                         if (cc->ses_typidx && ssc->ses_nobjects) {
  783                                 SES_FREE(cc->ses_typidx,
  784                                     ssc->ses_nobjects * sizeof (struct typidx));
  785                                 cc->ses_typidx = NULL;
  786                         }
  787                         SES_FREE(cc, sizeof (struct sscfg));
  788                         ssc->ses_private = NULL;
  789                 }
  790                 ssc->ses_nobjects = 0;
  791                 return (0);
  792         }
  793         if (ssc->ses_private == NULL) {
  794                 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
  795         }
  796         if (ssc->ses_private == NULL) {
  797                 return (ENOMEM);
  798         }
  799         ssc->ses_nobjects = 0;
  800         ssc->ses_encstat = 0;
  801         return (ses_getconfig(ssc));
  802 }
  803 
  804 static int
  805 ses_init_enc(ses_softc_t *ssc)
  806 {
  807         return (0);
  808 }
  809 
  810 static int
  811 ses_get_encstat(ses_softc_t *ssc, int slpflag)
  812 {
  813         SesComStat ComStat;
  814         int status;
  815 
  816         if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
  817                 return (status);
  818         }
  819         ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
  820         return (0);
  821 }
  822 
  823 static int
  824 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
  825 {
  826         SesComStat ComStat;
  827         int status;
  828 
  829         ComStat.comstatus = encstat & 0xf;
  830         if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
  831                 return (status);
  832         }
  833         ssc->ses_encstat = encstat & 0xf;       /* note no SVALID set */
  834         return (0);
  835 }
  836 
  837 static int
  838 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
  839 {
  840         int i = (int)obp->obj_id;
  841 
  842         if (ssc->ses_objmap[i].svalid == 0) {
  843                 SesComStat ComStat;
  844                 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
  845                 if (err)
  846                         return (err);
  847                 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
  848                 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
  849                 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
  850                 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
  851                 ssc->ses_objmap[i].svalid = 1;
  852         }
  853         obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
  854         obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
  855         obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
  856         obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
  857         return (0);
  858 }
  859 
  860 static int
  861 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
  862 {
  863         SesComStat ComStat;
  864         int err;
  865         /*
  866          * If this is clear, we don't do diddly.
  867          */
  868         if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
  869                 return (0);
  870         }
  871         ComStat.comstatus = obp->cstat[0];
  872         ComStat.comstat[0] = obp->cstat[1];
  873         ComStat.comstat[1] = obp->cstat[2];
  874         ComStat.comstat[2] = obp->cstat[3];
  875         err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
  876         ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
  877         return (err);
  878 }
  879 
  880 static int
  881 ses_getconfig(ses_softc_t *ssc)
  882 {
  883         struct sscfg *cc;
  884         SesCfgHdr cf;
  885         SesEncHdr hd;
  886         SesEncDesc *cdp;
  887         SesThdr thdr;
  888         int err, amt, i, nobj, ntype, maxima;
  889         char storage[CFLEN], *sdata;
  890         static char cdb[6] = {
  891             RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
  892         };
  893 
  894         cc = ssc->ses_private;
  895         if (cc == NULL) {
  896                 return (ENXIO);
  897         }
  898 
  899         sdata = SES_MALLOC(SCSZ);
  900         if (sdata == NULL)
  901                 return (ENOMEM);
  902 
  903         amt = SCSZ;
  904         err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
  905         if (err) {
  906                 SES_FREE(sdata, SCSZ);
  907                 return (err);
  908         }
  909         amt = SCSZ - amt;
  910 
  911         if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
  912                 SES_LOG(ssc, "Unable to parse SES Config Header\n");
  913                 SES_FREE(sdata, SCSZ);
  914                 return (EIO);
  915         }
  916         if (amt < SES_ENCHDR_MINLEN) {
  917                 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
  918                 SES_FREE(sdata, SCSZ);
  919                 return (EIO);
  920         }
  921 
  922         SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
  923 
  924         /*
  925          * Now waltz through all the subenclosures toting up the
  926          * number of types available in each. For this, we only
  927          * really need the enclosure header. However, we get the
  928          * enclosure descriptor for debug purposes, as well
  929          * as self-consistency checking purposes.
  930          */
  931 
  932         maxima = cf.Nsubenc + 1;
  933         cdp = (SesEncDesc *) storage;
  934         for (ntype = i = 0; i < maxima; i++) {
  935                 MEMZERO((caddr_t)cdp, sizeof (*cdp));
  936                 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
  937                         SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
  938                         SES_FREE(sdata, SCSZ);
  939                         return (EIO);
  940                 }
  941                 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
  942                     "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
  943 
  944                 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
  945                         SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
  946                         SES_FREE(sdata, SCSZ);
  947                         return (EIO);
  948                 }
  949                 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
  950                     cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
  951                     cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
  952                     cdp->encWWN[6], cdp->encWWN[7]);
  953                 ntype += hd.Ntypes;
  954         }
  955 
  956         /*
  957          * Now waltz through all the types that are available, getting
  958          * the type header so we can start adding up the number of
  959          * objects available.
  960          */
  961         for (nobj = i = 0; i < ntype; i++) {
  962                 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
  963                         SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
  964                         SES_FREE(sdata, SCSZ);
  965                         return (EIO);
  966                 }
  967                 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
  968                     "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
  969                     thdr.enc_subenc, thdr.enc_tlen);
  970                 nobj += thdr.enc_maxelt;
  971         }
  972 
  973 
  974         /*
  975          * Now allocate the object array and type map.
  976          */
  977 
  978         ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
  979         cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
  980         cc->ses_eltmap = SES_MALLOC(ntype);
  981 
  982         if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
  983             cc->ses_eltmap == NULL) {
  984                 if (ssc->ses_objmap) {
  985                         SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
  986                         ssc->ses_objmap = NULL;
  987                 }
  988                 if (cc->ses_typidx) {
  989                         SES_FREE(cc->ses_typidx,
  990                             (nobj * sizeof (struct typidx)));
  991                         cc->ses_typidx = NULL;
  992                 }
  993                 if (cc->ses_eltmap) {
  994                         SES_FREE(cc->ses_eltmap, ntype);
  995                         cc->ses_eltmap = NULL;
  996                 }
  997                 SES_FREE(sdata, SCSZ);
  998                 return (ENOMEM);
  999         }
 1000         MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
 1001         MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
 1002         MEMZERO(cc->ses_eltmap, ntype);
 1003         cc->ses_ntypes = (uint8_t) ntype;
 1004         ssc->ses_nobjects = nobj;
 1005 
 1006         /*
 1007          * Now waltz through the # of types again to fill in the types
 1008          * (and subenclosure ids) of the allocated objects.
 1009          */
 1010         nobj = 0;
 1011         for (i = 0; i < ntype; i++) {
 1012                 int j;
 1013                 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
 1014                         continue;
 1015                 }
 1016                 cc->ses_eltmap[i] = thdr.enc_maxelt;
 1017                 for (j = 0; j < thdr.enc_maxelt; j++) {
 1018                         cc->ses_typidx[nobj].ses_tidx = i;
 1019                         cc->ses_typidx[nobj].ses_oidx = j;
 1020                         ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
 1021                         ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
 1022                 }
 1023         }
 1024         SES_FREE(sdata, SCSZ);
 1025         return (0);
 1026 }
 1027 
 1028 static int
 1029 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
 1030 {
 1031         struct sscfg *cc;
 1032         int err, amt, bufsiz, tidx, oidx;
 1033         char cdb[6], *sdata;
 1034 
 1035         cc = ssc->ses_private;
 1036         if (cc == NULL) {
 1037                 return (ENXIO);
 1038         }
 1039 
 1040         /*
 1041          * If we're just getting overall enclosure status,
 1042          * we only need 2 bytes of data storage.
 1043          *
 1044          * If we're getting anything else, we know how much
 1045          * storage we need by noting that starting at offset
 1046          * 8 in returned data, all object status bytes are 4
 1047          * bytes long, and are stored in chunks of types(M)
 1048          * and nth+1 instances of type M.
 1049          */
 1050         if (objid == -1) {
 1051                 bufsiz = 2;
 1052         } else {
 1053                 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
 1054         }
 1055         sdata = SES_MALLOC(bufsiz);
 1056         if (sdata == NULL)
 1057                 return (ENOMEM);
 1058 
 1059         cdb[0] = RECEIVE_DIAGNOSTIC;
 1060         cdb[1] = 1;
 1061         cdb[2] = SesStatusPage;
 1062         cdb[3] = bufsiz >> 8;
 1063         cdb[4] = bufsiz & 0xff;
 1064         cdb[5] = 0;
 1065         amt = bufsiz;
 1066         err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
 1067         if (err) {
 1068                 SES_FREE(sdata, bufsiz);
 1069                 return (err);
 1070         }
 1071         amt = bufsiz - amt;
 1072 
 1073         if (objid == -1) {
 1074                 tidx = -1;
 1075                 oidx = -1;
 1076         } else {
 1077                 tidx = cc->ses_typidx[objid].ses_tidx;
 1078                 oidx = cc->ses_typidx[objid].ses_oidx;
 1079         }
 1080         if (in) {
 1081                 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
 1082                         err = ENODEV;
 1083                 }
 1084         } else {
 1085                 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
 1086                         err = ENODEV;
 1087                 } else {
 1088                         cdb[0] = SEND_DIAGNOSTIC;
 1089                         cdb[1] = 0x10;
 1090                         cdb[2] = 0;
 1091                         cdb[3] = bufsiz >> 8;
 1092                         cdb[4] = bufsiz & 0xff;
 1093                         cdb[5] = 0;
 1094                         amt = -bufsiz;
 1095                         err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
 1096                 }
 1097         }
 1098         SES_FREE(sdata, bufsiz);
 1099         return (0);
 1100 }
 1101 
 1102 
 1103 /*
 1104  * Routines to parse returned SES data structures.
 1105  * Architecture and compiler independent.
 1106  */
 1107 
 1108 static int
 1109 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
 1110 {
 1111         if (buflen < SES_CFGHDR_MINLEN) {
 1112                 return (-1);
 1113         }
 1114         gget8(buffer, 1, cfp->Nsubenc);
 1115         gget32(buffer, 4, cfp->GenCode);
 1116         return (0);
 1117 }
 1118 
 1119 static int
 1120 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
 1121 {
 1122         int s, off = 8;
 1123         for (s = 0; s < SubEncId; s++) {
 1124                 if (off + 3 > amt)
 1125                         return (-1);
 1126                 off += buffer[off+3] + 4;
 1127         }
 1128         if (off + 3 > amt) {
 1129                 return (-1);
 1130         }
 1131         gget8(buffer, off+1, chp->Subencid);
 1132         gget8(buffer, off+2, chp->Ntypes);
 1133         gget8(buffer, off+3, chp->VEnclen);
 1134         return (0);
 1135 }
 1136 
 1137 static int
 1138 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
 1139 {
 1140         int s, e, enclen, off = 8;
 1141         for (s = 0; s < SubEncId; s++) {
 1142                 if (off + 3 > amt)
 1143                         return (-1);
 1144                 off += buffer[off+3] + 4;
 1145         }
 1146         if (off + 3 > amt) {
 1147                 return (-1);
 1148         }
 1149         gget8(buffer, off+3, enclen);
 1150         off += 4;
 1151         if (off  >= amt)
 1152                 return (-1);
 1153 
 1154         e = off + enclen;
 1155         if (e > amt) {
 1156                 e = amt;
 1157         }
 1158         MEMCPY(cdp, &buffer[off], e - off);
 1159         return (0);
 1160 }
 1161 
 1162 static int
 1163 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
 1164 {
 1165         int s, off = 8;
 1166 
 1167         if (amt < SES_CFGHDR_MINLEN) {
 1168                 return (-1);
 1169         }
 1170         for (s = 0; s < buffer[1]; s++) {
 1171                 if (off + 3 > amt)
 1172                         return (-1);
 1173                 off += buffer[off+3] + 4;
 1174         }
 1175         if (off + 3 > amt) {
 1176                 return (-1);
 1177         }
 1178         off += buffer[off+3] + 4 + (nth * 4);
 1179         if (amt < (off + 4))
 1180                 return (-1);
 1181 
 1182         gget8(buffer, off++, thp->enc_type);
 1183         gget8(buffer, off++, thp->enc_maxelt);
 1184         gget8(buffer, off++, thp->enc_subenc);
 1185         gget8(buffer, off, thp->enc_tlen);
 1186         return (0);
 1187 }
 1188 
 1189 /*
 1190  * This function needs a little explanation.
 1191  *
 1192  * The arguments are:
 1193  *
 1194  *
 1195  *      char *b, int amt
 1196  *
 1197  *              These describes the raw input SES status data and length.
 1198  *
 1199  *      uint8_t *ep
 1200  *
 1201  *              This is a map of the number of types for each element type
 1202  *              in the enclosure.
 1203  *
 1204  *      int elt
 1205  *
 1206  *              This is the element type being sought. If elt is -1,
 1207  *              then overall enclosure status is being sought.
 1208  *
 1209  *      int elm
 1210  *
 1211  *              This is the ordinal Mth element of type elt being sought.
 1212  *
 1213  *      SesComStat *sp
 1214  *
 1215  *              This is the output area to store the status for
 1216  *              the Mth element of type Elt.
 1217  */
 1218 
 1219 static int
 1220 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
 1221 {
 1222         int idx, i;
 1223 
 1224         /*
 1225          * If it's overall enclosure status being sought, get that.
 1226          * We need at least 2 bytes of status data to get that.
 1227          */
 1228         if (elt == -1) {
 1229                 if (amt < 2)
 1230                         return (-1);
 1231                 gget8(b, 1, sp->comstatus);
 1232                 sp->comstat[0] = 0;
 1233                 sp->comstat[1] = 0;
 1234                 sp->comstat[2] = 0;
 1235                 return (0);
 1236         }
 1237 
 1238         /*
 1239          * Check to make sure that the Mth element is legal for type Elt.
 1240          */
 1241 
 1242         if (elm >= ep[elt])
 1243                 return (-1);
 1244 
 1245         /*
 1246          * Starting at offset 8, start skipping over the storage
 1247          * for the element types we're not interested in.
 1248          */
 1249         for (idx = 8, i = 0; i < elt; i++) {
 1250                 idx += ((ep[i] + 1) * 4);
 1251         }
 1252 
 1253         /*
 1254          * Skip over Overall status for this element type.
 1255          */
 1256         idx += 4;
 1257 
 1258         /*
 1259          * And skip to the index for the Mth element that we're going for.
 1260          */
 1261         idx += (4 * elm);
 1262 
 1263         /*
 1264          * Make sure we haven't overflowed the buffer.
 1265          */
 1266         if (idx+4 > amt)
 1267                 return (-1);
 1268 
 1269         /*
 1270          * Retrieve the status.
 1271          */
 1272         gget8(b, idx++, sp->comstatus);
 1273         gget8(b, idx++, sp->comstat[0]);
 1274         gget8(b, idx++, sp->comstat[1]);
 1275         gget8(b, idx++, sp->comstat[2]);
 1276 #if     0
 1277         PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
 1278 #endif
 1279         return (0);
 1280 }
 1281 
 1282 /*
 1283  * This is the mirror function to ses_decode, but we set the 'select'
 1284  * bit for the object which we're interested in. All other objects,
 1285  * after a status fetch, should have that bit off. Hmm. It'd be easy
 1286  * enough to ensure this, so we will.
 1287  */
 1288 
 1289 static int
 1290 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
 1291 {
 1292         int idx, i;
 1293 
 1294         /*
 1295          * If it's overall enclosure status being sought, get that.
 1296          * We need at least 2 bytes of status data to get that.
 1297          */
 1298         if (elt == -1) {
 1299                 if (amt < 2)
 1300                         return (-1);
 1301                 i = 0;
 1302                 sset8(b, i, 0);
 1303                 sset8(b, i, sp->comstatus & 0xf);
 1304 #if     0
 1305                 PRINTF("set EncStat %x\n", sp->comstatus);
 1306 #endif
 1307                 return (0);
 1308         }
 1309 
 1310         /*
 1311          * Check to make sure that the Mth element is legal for type Elt.
 1312          */
 1313 
 1314         if (elm >= ep[elt])
 1315                 return (-1);
 1316 
 1317         /*
 1318          * Starting at offset 8, start skipping over the storage
 1319          * for the element types we're not interested in.
 1320          */
 1321         for (idx = 8, i = 0; i < elt; i++) {
 1322                 idx += ((ep[i] + 1) * 4);
 1323         }
 1324 
 1325         /*
 1326          * Skip over Overall status for this element type.
 1327          */
 1328         idx += 4;
 1329 
 1330         /*
 1331          * And skip to the index for the Mth element that we're going for.
 1332          */
 1333         idx += (4 * elm);
 1334 
 1335         /*
 1336          * Make sure we haven't overflowed the buffer.
 1337          */
 1338         if (idx+4 > amt)
 1339                 return (-1);
 1340 
 1341         /*
 1342          * Set the status.
 1343          */
 1344         sset8(b, idx, sp->comstatus);
 1345         sset8(b, idx, sp->comstat[0]);
 1346         sset8(b, idx, sp->comstat[1]);
 1347         sset8(b, idx, sp->comstat[2]);
 1348         idx -= 4;
 1349 
 1350 #if     0
 1351         PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
 1352             elt, elm, idx, sp->comstatus, sp->comstat[0],
 1353             sp->comstat[1], sp->comstat[2]);
 1354 #endif
 1355 
 1356         /*
 1357          * Now make sure all other 'Select' bits are off.
 1358          */
 1359         for (i = 8; i < amt; i += 4) {
 1360                 if (i != idx)
 1361                         b[i] &= ~0x80;
 1362         }
 1363         /*
 1364          * And make sure the INVOP bit is clear.
 1365          */
 1366         b[2] &= ~0x10;
 1367 
 1368         return (0);
 1369 }
 1370 
 1371 /*
 1372  * SAF-TE Type Device Emulation
 1373  */
 1374 
 1375 static int safte_getconfig(ses_softc_t *);
 1376 static int safte_rdstat(ses_softc_t *, int);
 1377 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
 1378 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
 1379 static void wrslot_stat(ses_softc_t *, int);
 1380 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
 1381 
 1382 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
 1383         SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
 1384 /*
 1385  * SAF-TE specific defines- Mandatory ones only...
 1386  */
 1387 
 1388 /*
 1389  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
 1390  */
 1391 #define SAFTE_RD_RDCFG  0x00    /* read enclosure configuration */
 1392 #define SAFTE_RD_RDESTS 0x01    /* read enclosure status */
 1393 #define SAFTE_RD_RDDSTS 0x04    /* read drive slot status */
 1394 
 1395 /*
 1396  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
 1397  */
 1398 #define SAFTE_WT_DSTAT  0x10    /* write device slot status */
 1399 #define SAFTE_WT_SLTOP  0x12    /* perform slot operation */
 1400 #define SAFTE_WT_FANSPD 0x13    /* set fan speed */
 1401 #define SAFTE_WT_ACTPWS 0x14    /* turn on/off power supply */
 1402 #define SAFTE_WT_GLOBAL 0x15    /* send global command */
 1403 
 1404 
 1405 #define SAFT_SCRATCH    64
 1406 #define NPSEUDO_THERM   16
 1407 #define NPSEUDO_ALARM   1
 1408 struct scfg {
 1409         /*
 1410          * Cached Configuration
 1411          */
 1412         uint8_t Nfans;          /* Number of Fans */
 1413         uint8_t Npwr;           /* Number of Power Supplies */
 1414         uint8_t Nslots;         /* Number of Device Slots */
 1415         uint8_t DoorLock;       /* Door Lock Installed */
 1416         uint8_t Ntherm;         /* Number of Temperature Sensors */
 1417         uint8_t Nspkrs;         /* Number of Speakers */
 1418         uint8_t Nalarm;         /* Number of Alarms (at least one) */
 1419         /*
 1420          * Cached Flag Bytes for Global Status
 1421          */
 1422         uint8_t flag1;
 1423         uint8_t flag2;
 1424         /*
 1425          * What object index ID is where various slots start.
 1426          */
 1427         uint8_t pwroff;
 1428         uint8_t slotoff;
 1429 #define SAFT_ALARM_OFFSET(cc)   (cc)->slotoff - 1
 1430 };
 1431 
 1432 #define SAFT_FLG1_ALARM         0x1
 1433 #define SAFT_FLG1_GLOBFAIL      0x2
 1434 #define SAFT_FLG1_GLOBWARN      0x4
 1435 #define SAFT_FLG1_ENCPWROFF     0x8
 1436 #define SAFT_FLG1_ENCFANFAIL    0x10
 1437 #define SAFT_FLG1_ENCPWRFAIL    0x20
 1438 #define SAFT_FLG1_ENCDRVFAIL    0x40
 1439 #define SAFT_FLG1_ENCDRVWARN    0x80
 1440 
 1441 #define SAFT_FLG2_LOCKDOOR      0x4
 1442 #define SAFT_PRIVATE            sizeof (struct scfg)
 1443 
 1444 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
 1445 #define SAFT_BAIL(r, x, k, l)   \
 1446         if (r >= x) { \
 1447                 SES_LOG(ssc, safte_2little, x, __LINE__);\
 1448                 SES_FREE(k, l); \
 1449                 return (EIO); \
 1450         }
 1451 
 1452 
 1453 static int
 1454 safte_softc_init(ses_softc_t *ssc, int doinit)
 1455 {
 1456         int err, i, r;
 1457         struct scfg *cc;
 1458 
 1459         if (doinit == 0) {
 1460                 if (ssc->ses_nobjects) {
 1461                         if (ssc->ses_objmap) {
 1462                                 SES_FREE(ssc->ses_objmap,
 1463                                     ssc->ses_nobjects * sizeof (encobj));
 1464                                 ssc->ses_objmap = NULL;
 1465                         }
 1466                         ssc->ses_nobjects = 0;
 1467                 }
 1468                 if (ssc->ses_private) {
 1469                         SES_FREE(ssc->ses_private, SAFT_PRIVATE);
 1470                         ssc->ses_private = NULL;
 1471                 }
 1472                 return (0);
 1473         }
 1474 
 1475         if (ssc->ses_private == NULL) {
 1476                 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
 1477                 if (ssc->ses_private == NULL) {
 1478                         return (ENOMEM);
 1479                 }
 1480                 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
 1481         }
 1482 
 1483         ssc->ses_nobjects = 0;
 1484         ssc->ses_encstat = 0;
 1485 
 1486         if ((err = safte_getconfig(ssc)) != 0) {
 1487                 return (err);
 1488         }
 1489 
 1490         /*
 1491          * The number of objects here, as well as that reported by the
 1492          * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
 1493          * that get reported during READ_BUFFER/READ_ENC_STATUS.
 1494          */
 1495         cc = ssc->ses_private;
 1496         ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
 1497             cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
 1498         ssc->ses_objmap = (encobj *)
 1499             SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
 1500         if (ssc->ses_objmap == NULL) {
 1501                 return (ENOMEM);
 1502         }
 1503         MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
 1504 
 1505         r = 0;
 1506         /*
 1507          * Note that this is all arranged for the convenience
 1508          * in later fetches of status.
 1509          */
 1510         for (i = 0; i < cc->Nfans; i++)
 1511                 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
 1512         cc->pwroff = (uint8_t) r;
 1513         for (i = 0; i < cc->Npwr; i++)
 1514                 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
 1515         for (i = 0; i < cc->DoorLock; i++)
 1516                 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
 1517         for (i = 0; i < cc->Nspkrs; i++)
 1518                 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
 1519         for (i = 0; i < cc->Ntherm; i++)
 1520                 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
 1521         for (i = 0; i < NPSEUDO_THERM; i++)
 1522                 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
 1523         ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
 1524         cc->slotoff = (uint8_t) r;
 1525         for (i = 0; i < cc->Nslots; i++)
 1526                 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
 1527         return (0);
 1528 }
 1529 
 1530 static int
 1531 safte_init_enc(ses_softc_t *ssc)
 1532 {
 1533         int err, amt;
 1534         char *sdata;
 1535         static char cdb0[6] = { SEND_DIAGNOSTIC };
 1536         static char cdb[10] =
 1537             { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
 1538 
 1539         sdata = SES_MALLOC(SAFT_SCRATCH);
 1540         if (sdata == NULL)
 1541                 return (ENOMEM);
 1542 
 1543         err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
 1544         if (err) {
 1545                 SES_FREE(sdata, SAFT_SCRATCH);
 1546                 return (err);
 1547         }
 1548         sdata[0] = SAFTE_WT_GLOBAL;
 1549         MEMZERO(&sdata[1], 15);
 1550         amt = -SAFT_SCRATCH;
 1551         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 1552         SES_FREE(sdata, SAFT_SCRATCH);
 1553         return (err);
 1554 }
 1555 
 1556 static int
 1557 safte_get_encstat(ses_softc_t *ssc, int slpflg)
 1558 {
 1559         return (safte_rdstat(ssc, slpflg));
 1560 }
 1561 
 1562 static int
 1563 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
 1564 {
 1565         struct scfg *cc = ssc->ses_private;
 1566         if (cc == NULL)
 1567                 return (0);
 1568         /*
 1569          * Since SAF-TE devices aren't necessarily sticky in terms
 1570          * of state, make our soft copy of enclosure status 'sticky'-
 1571          * that is, things set in enclosure status stay set (as implied
 1572          * by conditions set in reading object status) until cleared.
 1573          */
 1574         ssc->ses_encstat &= ~ALL_ENC_STAT;
 1575         ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
 1576         ssc->ses_encstat |= ENCI_SVALID;
 1577         cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
 1578         if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
 1579                 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
 1580         } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
 1581                 cc->flag1 |= SAFT_FLG1_GLOBWARN;
 1582         }
 1583         return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
 1584 }
 1585 
 1586 static int
 1587 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
 1588 {
 1589         int i = (int)obp->obj_id;
 1590 
 1591         if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
 1592             (ssc->ses_objmap[i].svalid) == 0) {
 1593                 int err = safte_rdstat(ssc, slpflg);
 1594                 if (err)
 1595                         return (err);
 1596         }
 1597         obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
 1598         obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
 1599         obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
 1600         obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
 1601         return (0);
 1602 }
 1603 
 1604 
 1605 static int
 1606 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
 1607 {
 1608         int idx, err;
 1609         encobj *ep;
 1610         struct scfg *cc;
 1611 
 1612 
 1613         SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
 1614             (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
 1615             obp->cstat[3]);
 1616 
 1617         /*
 1618          * If this is clear, we don't do diddly.
 1619          */
 1620         if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
 1621                 return (0);
 1622         }
 1623 
 1624         err = 0;
 1625         /*
 1626          * Check to see if the common bits are set and do them first.
 1627          */
 1628         if (obp->cstat[0] & ~SESCTL_CSEL) {
 1629                 err = set_objstat_sel(ssc, obp, slp);
 1630                 if (err)
 1631                         return (err);
 1632         }
 1633 
 1634         cc = ssc->ses_private;
 1635         if (cc == NULL)
 1636                 return (0);
 1637 
 1638         idx = (int)obp->obj_id;
 1639         ep = &ssc->ses_objmap[idx];
 1640 
 1641         switch (ep->enctype) {
 1642         case SESTYP_DEVICE:
 1643         {
 1644                 uint8_t slotop = 0;
 1645                 /*
 1646                  * XXX: I should probably cache the previous state
 1647                  * XXX: of SESCTL_DEVOFF so that when it goes from
 1648                  * XXX: true to false I can then set PREPARE FOR OPERATION
 1649                  * XXX: flag in PERFORM SLOT OPERATION write buffer command.
 1650                  */
 1651                 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
 1652                         slotop |= 0x2;
 1653                 }
 1654                 if (obp->cstat[2] & SESCTL_RQSID) {
 1655                         slotop |= 0x4;
 1656                 }
 1657                 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
 1658                     slotop, slp);
 1659                 if (err)
 1660                         return (err);
 1661                 if (obp->cstat[3] & SESCTL_RQSFLT) {
 1662                         ep->priv |= 0x2;
 1663                 } else {
 1664                         ep->priv &= ~0x2;
 1665                 }
 1666                 if (ep->priv & 0xc6) {
 1667                         ep->priv &= ~0x1;
 1668                 } else {
 1669                         ep->priv |= 0x1;        /* no errors */
 1670                 }
 1671                 wrslot_stat(ssc, slp);
 1672                 break;
 1673         }
 1674         case SESTYP_POWER:
 1675                 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
 1676                         cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
 1677                 } else {
 1678                         cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
 1679                 }
 1680                 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 1681                     cc->flag2, 0, slp);
 1682                 if (err)
 1683                         return (err);
 1684                 if (obp->cstat[3] & SESCTL_RQSTON) {
 1685                         (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
 1686                                 idx - cc->pwroff, 0, 0, slp);
 1687                 } else {
 1688                         (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
 1689                                 idx - cc->pwroff, 0, 1, slp);
 1690                 }
 1691                 break;
 1692         case SESTYP_FAN:
 1693                 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
 1694                         cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
 1695                 } else {
 1696                         cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
 1697                 }
 1698                 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 1699                     cc->flag2, 0, slp);
 1700                 if (err)
 1701                         return (err);
 1702                 if (obp->cstat[3] & SESCTL_RQSTON) {
 1703                         uint8_t fsp;
 1704                         if ((obp->cstat[3] & 0x7) == 7) {
 1705                                 fsp = 4;
 1706                         } else if ((obp->cstat[3] & 0x7) == 6) {
 1707                                 fsp = 3;
 1708                         } else if ((obp->cstat[3] & 0x7) == 4) {
 1709                                 fsp = 2;
 1710                         } else {
 1711                                 fsp = 1;
 1712                         }
 1713                         (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
 1714                 } else {
 1715                         (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
 1716                 }
 1717                 break;
 1718         case SESTYP_DOORLOCK:
 1719                 if (obp->cstat[3] & 0x1) {
 1720                         cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
 1721                 } else {
 1722                         cc->flag2 |= SAFT_FLG2_LOCKDOOR;
 1723                 }
 1724                 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 1725                     cc->flag2, 0, slp);
 1726                 break;
 1727         case SESTYP_ALARM:
 1728                 /*
 1729                  * On all nonzero but the 'muted' bit, we turn on the alarm,
 1730                  */
 1731                 obp->cstat[3] &= ~0xa;
 1732                 if (obp->cstat[3] & 0x40) {
 1733                         cc->flag2 &= ~SAFT_FLG1_ALARM;
 1734                 } else if (obp->cstat[3] != 0) {
 1735                         cc->flag2 |= SAFT_FLG1_ALARM;
 1736                 } else {
 1737                         cc->flag2 &= ~SAFT_FLG1_ALARM;
 1738                 }
 1739                 ep->priv = obp->cstat[3];
 1740                 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 1741                         cc->flag2, 0, slp);
 1742                 break;
 1743         default:
 1744                 break;
 1745         }
 1746         ep->svalid = 0;
 1747         return (0);
 1748 }
 1749 
 1750 static int
 1751 safte_getconfig(ses_softc_t *ssc)
 1752 {
 1753         struct scfg *cfg;
 1754         int err, amt;
 1755         char *sdata;
 1756         static char cdb[10] =
 1757             { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
 1758 
 1759         cfg = ssc->ses_private;
 1760         if (cfg == NULL)
 1761                 return (ENXIO);
 1762 
 1763         sdata = SES_MALLOC(SAFT_SCRATCH);
 1764         if (sdata == NULL)
 1765                 return (ENOMEM);
 1766 
 1767         amt = SAFT_SCRATCH;
 1768         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 1769         if (err) {
 1770                 SES_FREE(sdata, SAFT_SCRATCH);
 1771                 return (err);
 1772         }
 1773         amt = SAFT_SCRATCH - amt;
 1774         if (amt < 6) {
 1775                 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
 1776                 SES_FREE(sdata, SAFT_SCRATCH);
 1777                 return (EIO);
 1778         }
 1779         SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
 1780             sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
 1781         cfg->Nfans = sdata[0];
 1782         cfg->Npwr = sdata[1];
 1783         cfg->Nslots = sdata[2];
 1784         cfg->DoorLock = sdata[3];
 1785         cfg->Ntherm = sdata[4];
 1786         cfg->Nspkrs = sdata[5];
 1787         cfg->Nalarm = NPSEUDO_ALARM;
 1788         SES_FREE(sdata, SAFT_SCRATCH);
 1789         return (0);
 1790 }
 1791 
 1792 static int
 1793 safte_rdstat(ses_softc_t *ssc, int slpflg)
 1794 {
 1795         int err, oid, r, i, hiwater, nitems, amt;
 1796         uint16_t tempflags;
 1797         size_t buflen;
 1798         uint8_t status, oencstat;
 1799         char *sdata, cdb[10];
 1800         struct scfg *cc = ssc->ses_private;
 1801 
 1802 
 1803         /*
 1804          * The number of objects overstates things a bit,
 1805          * both for the bogus 'thermometer' entries and
 1806          * the drive status (which isn't read at the same
 1807          * time as the enclosure status), but that's okay.
 1808          */
 1809         buflen = 4 * cc->Nslots;
 1810         if (ssc->ses_nobjects > buflen)
 1811                 buflen = ssc->ses_nobjects;
 1812         sdata = SES_MALLOC(buflen);
 1813         if (sdata == NULL)
 1814                 return (ENOMEM);
 1815 
 1816         cdb[0] = READ_BUFFER;
 1817         cdb[1] = 1;
 1818         cdb[2] = SAFTE_RD_RDESTS;
 1819         cdb[3] = 0;
 1820         cdb[4] = 0;
 1821         cdb[5] = 0;
 1822         cdb[6] = 0;
 1823         cdb[7] = (buflen >> 8) & 0xff;
 1824         cdb[8] = buflen & 0xff;
 1825         cdb[9] = 0;
 1826         amt = buflen;
 1827         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 1828         if (err) {
 1829                 SES_FREE(sdata, buflen);
 1830                 return (err);
 1831         }
 1832         hiwater = buflen - amt;
 1833 
 1834 
 1835         /*
 1836          * invalidate all status bits.
 1837          */
 1838         for (i = 0; i < ssc->ses_nobjects; i++)
 1839                 ssc->ses_objmap[i].svalid = 0;
 1840         oencstat = ssc->ses_encstat & ALL_ENC_STAT;
 1841         ssc->ses_encstat = 0;
 1842 
 1843 
 1844         /*
 1845          * Now parse returned buffer.
 1846          * If we didn't get enough data back,
 1847          * that's considered a fatal error.
 1848          */
 1849         oid = r = 0;
 1850 
 1851         for (nitems = i = 0; i < cc->Nfans; i++) {
 1852                 SAFT_BAIL(r, hiwater, sdata, buflen);
 1853                 /*
 1854                  * 0 = Fan Operational
 1855                  * 1 = Fan is malfunctioning
 1856                  * 2 = Fan is not present
 1857                  * 0x80 = Unknown or Not Reportable Status
 1858                  */
 1859                 ssc->ses_objmap[oid].encstat[1] = 0;    /* resvd */
 1860                 ssc->ses_objmap[oid].encstat[2] = 0;    /* resvd */
 1861                 switch ((int)(uint8_t)sdata[r]) {
 1862                 case 0:
 1863                         nitems++;
 1864                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 1865                         /*
 1866                          * We could get fancier and cache
 1867                          * fan speeds that we have set, but
 1868                          * that isn't done now.
 1869                          */
 1870                         ssc->ses_objmap[oid].encstat[3] = 7;
 1871                         break;
 1872 
 1873                 case 1:
 1874                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
 1875                         /*
 1876                          * FAIL and FAN STOPPED synthesized
 1877                          */
 1878                         ssc->ses_objmap[oid].encstat[3] = 0x40;
 1879                         /*
 1880                          * Enclosure marked with CRITICAL error
 1881                          * if only one fan or no thermometers,
 1882                          * else the NONCRITICAL error is set.
 1883                          */
 1884                         if (cc->Nfans == 1 || cc->Ntherm == 0)
 1885                                 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
 1886                         else
 1887                                 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 1888                         break;
 1889                 case 2:
 1890                         ssc->ses_objmap[oid].encstat[0] =
 1891                             SES_OBJSTAT_NOTINSTALLED;
 1892                         ssc->ses_objmap[oid].encstat[3] = 0;
 1893                         /*
 1894                          * Enclosure marked with CRITICAL error
 1895                          * if only one fan or no thermometers,
 1896                          * else the NONCRITICAL error is set.
 1897                          */
 1898                         if (cc->Nfans == 1)
 1899                                 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
 1900                         else
 1901                                 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 1902                         break;
 1903                 case 0x80:
 1904                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
 1905                         ssc->ses_objmap[oid].encstat[3] = 0;
 1906                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 1907                         break;
 1908                 default:
 1909                         ssc->ses_objmap[oid].encstat[0] =
 1910                             SES_OBJSTAT_UNSUPPORTED;
 1911                         SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
 1912                             sdata[r] & 0xff);
 1913                         break;
 1914                 }
 1915                 ssc->ses_objmap[oid++].svalid = 1;
 1916                 r++;
 1917         }
 1918 
 1919         /*
 1920          * No matter how you cut it, no cooling elements when there
 1921          * should be some there is critical.
 1922          */
 1923         if (cc->Nfans && nitems == 0) {
 1924                 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
 1925         }
 1926 
 1927 
 1928         for (i = 0; i < cc->Npwr; i++) {
 1929                 SAFT_BAIL(r, hiwater, sdata, buflen);
 1930                 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
 1931                 ssc->ses_objmap[oid].encstat[1] = 0;    /* resvd */
 1932                 ssc->ses_objmap[oid].encstat[2] = 0;    /* resvd */
 1933                 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
 1934                 switch ((uint8_t)sdata[r]) {
 1935                 case 0x00:      /* pws operational and on */
 1936                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 1937                         break;
 1938                 case 0x01:      /* pws operational and off */
 1939                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 1940                         ssc->ses_objmap[oid].encstat[3] = 0x10;
 1941                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 1942                         break;
 1943                 case 0x10:      /* pws is malfunctioning and commanded on */
 1944                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
 1945                         ssc->ses_objmap[oid].encstat[3] = 0x61;
 1946                         ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 1947                         break;
 1948 
 1949                 case 0x11:      /* pws is malfunctioning and commanded off */
 1950                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
 1951                         ssc->ses_objmap[oid].encstat[3] = 0x51;
 1952                         ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 1953                         break;
 1954                 case 0x20:      /* pws is not present */
 1955                         ssc->ses_objmap[oid].encstat[0] =
 1956                             SES_OBJSTAT_NOTINSTALLED;
 1957                         ssc->ses_objmap[oid].encstat[3] = 0;
 1958                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 1959                         break;
 1960                 case 0x21:      /* pws is present */
 1961                         /*
 1962                          * This is for enclosures that cannot tell whether the
 1963                          * device is on or malfunctioning, but know that it is
 1964                          * present. Just fall through.
 1965                          */
 1966                         /* FALLTHROUGH */
 1967                 case 0x80:      /* Unknown or Not Reportable Status */
 1968                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
 1969                         ssc->ses_objmap[oid].encstat[3] = 0;
 1970                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 1971                         break;
 1972                 default:
 1973                         SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
 1974                             i, sdata[r] & 0xff);
 1975                         break;
 1976                 }
 1977                 ssc->ses_objmap[oid++].svalid = 1;
 1978                 r++;
 1979         }
 1980 
 1981         /*
 1982          * Skip over Slot SCSI IDs
 1983          */
 1984         r += cc->Nslots;
 1985 
 1986         /*
 1987          * We always have doorlock status, no matter what,
 1988          * but we only save the status if we have one.
 1989          */
 1990         SAFT_BAIL(r, hiwater, sdata, buflen);
 1991         if (cc->DoorLock) {
 1992                 /*
 1993                  * 0 = Door Locked
 1994                  * 1 = Door Unlocked, or no Lock Installed
 1995                  * 0x80 = Unknown or Not Reportable Status
 1996                  */
 1997                 ssc->ses_objmap[oid].encstat[1] = 0;
 1998                 ssc->ses_objmap[oid].encstat[2] = 0;
 1999                 switch ((uint8_t)sdata[r]) {
 2000                 case 0:
 2001                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2002                         ssc->ses_objmap[oid].encstat[3] = 0;
 2003                         break;
 2004                 case 1:
 2005                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2006                         ssc->ses_objmap[oid].encstat[3] = 1;
 2007                         break;
 2008                 case 0x80:
 2009                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
 2010                         ssc->ses_objmap[oid].encstat[3] = 0;
 2011                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 2012                         break;
 2013                 default:
 2014                         ssc->ses_objmap[oid].encstat[0] =
 2015                             SES_OBJSTAT_UNSUPPORTED;
 2016                         SES_LOG(ssc, "unknown lock status 0x%x\n",
 2017                             sdata[r] & 0xff);
 2018                         break;
 2019                 }
 2020                 ssc->ses_objmap[oid++].svalid = 1;
 2021         }
 2022         r++;
 2023 
 2024         /*
 2025          * We always have speaker status, no matter what,
 2026          * but we only save the status if we have one.
 2027          */
 2028         SAFT_BAIL(r, hiwater, sdata, buflen);
 2029         if (cc->Nspkrs) {
 2030                 ssc->ses_objmap[oid].encstat[1] = 0;
 2031                 ssc->ses_objmap[oid].encstat[2] = 0;
 2032                 if (sdata[r] == 1) {
 2033                         /*
 2034                          * We need to cache tone urgency indicators.
 2035                          * Someday.
 2036                          */
 2037                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
 2038                         ssc->ses_objmap[oid].encstat[3] = 0x8;
 2039                         ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 2040                 } else if (sdata[r] == 0) {
 2041                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2042                         ssc->ses_objmap[oid].encstat[3] = 0;
 2043                 } else {
 2044                         ssc->ses_objmap[oid].encstat[0] =
 2045                             SES_OBJSTAT_UNSUPPORTED;
 2046                         ssc->ses_objmap[oid].encstat[3] = 0;
 2047                         SES_LOG(ssc, "unknown spkr status 0x%x\n",
 2048                             sdata[r] & 0xff);
 2049                 }
 2050                 ssc->ses_objmap[oid++].svalid = 1;
 2051         }
 2052         r++;
 2053 
 2054         for (i = 0; i < cc->Ntherm; i++) {
 2055                 SAFT_BAIL(r, hiwater, sdata, buflen);
 2056                 /*
 2057                  * Status is a range from -10 to 245 deg Celsius,
 2058                  * which we need to normalize to -20 to -245 according
 2059                  * to the latest SCSI spec, which makes little
 2060                  * sense since this would overflow an 8bit value.
 2061                  * Well, still, the base normalization is -20,
 2062                  * not -10, so we have to adjust.
 2063                  *
 2064                  * So what's over and under temperature?
 2065                  * Hmm- we'll state that 'normal' operating
 2066                  * is 10 to 40 deg Celsius.
 2067                  */
 2068 
 2069                 /*
 2070                  * Actually.... All of the units that people out in the world
 2071                  * seem to have do not come even close to setting a value that
 2072                  * complies with this spec.
 2073                  *
 2074                  * The closest explanation I could find was in an
 2075                  * LSI-Logic manual, which seemed to indicate that
 2076                  * this value would be set by whatever the I2C code
 2077                  * would interpolate from the output of an LM75
 2078                  * temperature sensor.
 2079                  *
 2080                  * This means that it is impossible to use the actual
 2081                  * numeric value to predict anything. But we don't want
 2082                  * to lose the value. So, we'll propagate the *uncorrected*
 2083                  * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
 2084                  * temperature flags for warnings.
 2085                  */
 2086                 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
 2087                 ssc->ses_objmap[oid].encstat[1] = 0;
 2088                 ssc->ses_objmap[oid].encstat[2] = sdata[r];
 2089                 ssc->ses_objmap[oid].encstat[3] = 0;
 2090                 ssc->ses_objmap[oid++].svalid = 1;
 2091                 r++;
 2092         }
 2093 
 2094         /*
 2095          * Now, for "pseudo" thermometers, we have two bytes
 2096          * of information in enclosure status- 16 bits. Actually,
 2097          * the MSB is a single TEMP ALERT flag indicating whether
 2098          * any other bits are set, but, thanks to fuzzy thinking,
 2099          * in the SAF-TE spec, this can also be set even if no
 2100          * other bits are set, thus making this really another
 2101          * binary temperature sensor.
 2102          */
 2103 
 2104         SAFT_BAIL(r, hiwater, sdata, buflen);
 2105         tempflags = sdata[r++];
 2106         SAFT_BAIL(r, hiwater, sdata, buflen);
 2107         tempflags |= (tempflags << 8) | sdata[r++];
 2108 
 2109         for (i = 0; i < NPSEUDO_THERM; i++) {
 2110                 ssc->ses_objmap[oid].encstat[1] = 0;
 2111                 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
 2112                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
 2113                         ssc->ses_objmap[4].encstat[2] = 0xff;
 2114                         /*
 2115                          * Set 'over temperature' failure.
 2116                          */
 2117                         ssc->ses_objmap[oid].encstat[3] = 8;
 2118                         ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
 2119                 } else {
 2120                         /*
 2121                          * We used to say 'not available' and synthesize a
 2122                          * nominal 30 deg (C)- that was wrong. Actually,
 2123                          * Just say 'OK', and use the reserved value of
 2124                          * zero.
 2125                          */
 2126                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2127                         ssc->ses_objmap[oid].encstat[2] = 0;
 2128                         ssc->ses_objmap[oid].encstat[3] = 0;
 2129                 }
 2130                 ssc->ses_objmap[oid++].svalid = 1;
 2131         }
 2132 
 2133         /*
 2134          * Get alarm status.
 2135          */
 2136         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2137         ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
 2138         ssc->ses_objmap[oid++].svalid = 1;
 2139 
 2140         /*
 2141          * Now get drive slot status
 2142          */
 2143         cdb[2] = SAFTE_RD_RDDSTS;
 2144         amt = buflen;
 2145         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 2146         if (err) {
 2147                 SES_FREE(sdata, buflen);
 2148                 return (err);
 2149         }
 2150         hiwater = buflen - amt;
 2151         for (r = i = 0; i < cc->Nslots; i++, r += 4) {
 2152                 SAFT_BAIL(r+3, hiwater, sdata, buflen);
 2153                 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
 2154                 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
 2155                 ssc->ses_objmap[oid].encstat[2] = 0;
 2156                 ssc->ses_objmap[oid].encstat[3] = 0;
 2157                 status = sdata[r+3];
 2158                 if ((status & 0x1) == 0) {      /* no device */
 2159                         ssc->ses_objmap[oid].encstat[0] =
 2160                             SES_OBJSTAT_NOTINSTALLED;
 2161                 } else {
 2162                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2163                 }
 2164                 if (status & 0x2) {
 2165                         ssc->ses_objmap[oid].encstat[2] = 0x8;
 2166                 }
 2167                 if ((status & 0x4) == 0) {
 2168                         ssc->ses_objmap[oid].encstat[3] = 0x10;
 2169                 }
 2170                 ssc->ses_objmap[oid++].svalid = 1;
 2171         }
 2172         /* see comment below about sticky enclosure status */
 2173         ssc->ses_encstat |= ENCI_SVALID | oencstat;
 2174         SES_FREE(sdata, buflen);
 2175         return (0);
 2176 }
 2177 
 2178 static int
 2179 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
 2180 {
 2181         int idx;
 2182         encobj *ep;
 2183         struct scfg *cc = ssc->ses_private;
 2184 
 2185         if (cc == NULL)
 2186                 return (0);
 2187 
 2188         idx = (int)obp->obj_id;
 2189         ep = &ssc->ses_objmap[idx];
 2190 
 2191         switch (ep->enctype) {
 2192         case SESTYP_DEVICE:
 2193                 if (obp->cstat[0] & SESCTL_PRDFAIL) {
 2194                         ep->priv |= 0x40;
 2195                 }
 2196                 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
 2197                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2198                         ep->priv |= 0x80;
 2199                         /*
 2200                          * Hmm. Try to set the 'No Drive' flag.
 2201                          * Maybe that will count as a 'disable'.
 2202                          */
 2203                 }
 2204                 if (ep->priv & 0xc6) {
 2205                         ep->priv &= ~0x1;
 2206                 } else {
 2207                         ep->priv |= 0x1;        /* no errors */
 2208                 }
 2209                 wrslot_stat(ssc, slp);
 2210                 break;
 2211         case SESTYP_POWER:
 2212                 /*
 2213                  * Okay- the only one that makes sense here is to
 2214                  * do the 'disable' for a power supply.
 2215                  */
 2216                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2217                         (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
 2218                                 idx - cc->pwroff, 0, 0, slp);
 2219                 }
 2220                 break;
 2221         case SESTYP_FAN:
 2222                 /*
 2223                  * Okay- the only one that makes sense here is to
 2224                  * set fan speed to zero on disable.
 2225                  */
 2226                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2227                         /* remember- fans are the first items, so idx works */
 2228                         (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
 2229                 }
 2230                 break;
 2231         case SESTYP_DOORLOCK:
 2232                 /*
 2233                  * Well, we can 'disable' the lock.
 2234                  */
 2235                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2236                         cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
 2237                         (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 2238                                 cc->flag2, 0, slp);
 2239                 }
 2240                 break;
 2241         case SESTYP_ALARM:
 2242                 /*
 2243                  * Well, we can 'disable' the alarm.
 2244                  */
 2245                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2246                         cc->flag2 &= ~SAFT_FLG1_ALARM;
 2247                         ep->priv |= 0x40;       /* Muted */
 2248                         (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 2249                                 cc->flag2, 0, slp);
 2250                 }
 2251                 break;
 2252         default:
 2253                 break;
 2254         }
 2255         ep->svalid = 0;
 2256         return (0);
 2257 }
 2258 
 2259 /*
 2260  * This function handles all of the 16 byte WRITE BUFFER commands.
 2261  */
 2262 static int
 2263 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
 2264     uint8_t b3, int slp)
 2265 {
 2266         int err, amt;
 2267         char *sdata;
 2268         struct scfg *cc = ssc->ses_private;
 2269         static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
 2270 
 2271         if (cc == NULL)
 2272                 return (0);
 2273 
 2274         sdata = SES_MALLOC(16);
 2275         if (sdata == NULL)
 2276                 return (ENOMEM);
 2277 
 2278         SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
 2279 
 2280         sdata[0] = op;
 2281         sdata[1] = b1;
 2282         sdata[2] = b2;
 2283         sdata[3] = b3;
 2284         MEMZERO(&sdata[4], 12);
 2285         amt = -16;
 2286         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 2287         SES_FREE(sdata, 16);
 2288         return (err);
 2289 }
 2290 
 2291 /*
 2292  * This function updates the status byte for the device slot described.
 2293  *
 2294  * Since this is an optional SAF-TE command, there's no point in
 2295  * returning an error.
 2296  */
 2297 static void
 2298 wrslot_stat(ses_softc_t *ssc, int slp)
 2299 {
 2300         int i, amt;
 2301         encobj *ep;
 2302         char cdb[10], *sdata;
 2303         struct scfg *cc = ssc->ses_private;
 2304 
 2305         if (cc == NULL)
 2306                 return;
 2307 
 2308         SES_VLOG(ssc, "saf_wrslot\n");
 2309         cdb[0] = WRITE_BUFFER;
 2310         cdb[1] = 1;
 2311         cdb[2] = 0;
 2312         cdb[3] = 0;
 2313         cdb[4] = 0;
 2314         cdb[5] = 0;
 2315         cdb[6] = 0;
 2316         cdb[7] = 0;
 2317         cdb[8] = cc->Nslots * 3 + 1;
 2318         cdb[9] = 0;
 2319 
 2320         sdata = SES_MALLOC(cc->Nslots * 3 + 1);
 2321         if (sdata == NULL)
 2322                 return;
 2323         MEMZERO(sdata, cc->Nslots * 3 + 1);
 2324 
 2325         sdata[0] = SAFTE_WT_DSTAT;
 2326         for (i = 0; i < cc->Nslots; i++) {
 2327                 ep = &ssc->ses_objmap[cc->slotoff + i];
 2328                 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
 2329                 sdata[1 + (3 * i)] = ep->priv & 0xff;
 2330         }
 2331         amt = -(cc->Nslots * 3 + 1);
 2332         (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
 2333         SES_FREE(sdata, cc->Nslots * 3 + 1);
 2334 }
 2335 
 2336 /*
 2337  * This function issues the "PERFORM SLOT OPERATION" command.
 2338  */
 2339 static int
 2340 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
 2341 {
 2342         int err, amt;
 2343         char *sdata;
 2344         struct scfg *cc = ssc->ses_private;
 2345         static char cdb[10] =
 2346             { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
 2347 
 2348         if (cc == NULL)
 2349                 return (0);
 2350 
 2351         sdata = SES_MALLOC(SAFT_SCRATCH);
 2352         if (sdata == NULL)
 2353                 return (ENOMEM);
 2354         MEMZERO(sdata, SAFT_SCRATCH);
 2355 
 2356         sdata[0] = SAFTE_WT_SLTOP;
 2357         sdata[1] = slot;
 2358         sdata[2] = opflag;
 2359         SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
 2360         amt = -SAFT_SCRATCH;
 2361         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 2362         SES_FREE(sdata, SAFT_SCRATCH);
 2363         return (err);
 2364 }

Cache object: 9ec2b3efa1529ff82ff8dcb8bea3c63a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.