The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/scsipi/ses.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: ses.c,v 1.40 2008/06/08 18:18:34 tsutsui Exp $ */
    2 /*
    3  * Copyright (C) 2000 National Aeronautics & Space Administration
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the author may not be used to endorse or promote products
   12  *    derived from this software without specific prior written permission
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   24  *
   25  * Author:      mjacob@nas.nasa.gov
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.40 2008/06/08 18:18:34 tsutsui Exp $");
   30 
   31 #include "opt_scsi.h"
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/kernel.h>
   36 #include <sys/file.h>
   37 #include <sys/stat.h>
   38 #include <sys/ioctl.h>
   39 #include <sys/scsiio.h>
   40 #include <sys/buf.h>
   41 #include <sys/uio.h>
   42 #include <sys/malloc.h>
   43 #include <sys/errno.h>
   44 #include <sys/device.h>
   45 #include <sys/disklabel.h>
   46 #include <sys/disk.h>
   47 #include <sys/proc.h>
   48 #include <sys/conf.h>
   49 #include <sys/vnode.h>
   50 #include <machine/stdarg.h>
   51 
   52 #include <dev/scsipi/scsipi_all.h>
   53 #include <dev/scsipi/scsipi_disk.h>
   54 #include <dev/scsipi/scsi_all.h>
   55 #include <dev/scsipi/scsi_disk.h>
   56 #include <dev/scsipi/scsipiconf.h>
   57 #include <dev/scsipi/scsipi_base.h>
   58 #include <dev/scsipi/ses.h>
   59 
   60 /*
   61  * Platform Independent Driver Internal Definitions for SES devices.
   62  */
   63 typedef enum {
   64         SES_NONE,
   65         SES_SES_SCSI2,
   66         SES_SES,
   67         SES_SES_PASSTHROUGH,
   68         SES_SEN,
   69         SES_SAFT
   70 } enctyp;
   71 
   72 struct ses_softc;
   73 typedef struct ses_softc ses_softc_t;
   74 typedef struct {
   75         int (*softc_init)(ses_softc_t *, int);
   76         int (*init_enc)(ses_softc_t *);
   77         int (*get_encstat)(ses_softc_t *, int);
   78         int (*set_encstat)(ses_softc_t *, ses_encstat, int);
   79         int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
   80         int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
   81 } encvec;
   82 
   83 #define ENCI_SVALID     0x80
   84 
   85 typedef struct {
   86         uint32_t
   87                 enctype : 8,            /* enclosure type */
   88                 subenclosure : 8,       /* subenclosure id */
   89                 svalid  : 1,            /* enclosure information valid */
   90                 priv    : 15;           /* private data, per object */
   91         uint8_t encstat[4];     /* state && stats */
   92 } encobj;
   93 
   94 #define SEN_ID          "UNISYS           SUN_SEN"
   95 #define SEN_ID_LEN      24
   96 
   97 static enctyp ses_type(struct scsipi_inquiry_data *);
   98 
   99 
  100 /* Forward reference to Enclosure Functions */
  101 static int ses_softc_init(ses_softc_t *, int);
  102 static int ses_init_enc(ses_softc_t *);
  103 static int ses_get_encstat(ses_softc_t *, int);
  104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
  105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
  106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
  107 
  108 static int safte_softc_init(ses_softc_t *, int);
  109 static int safte_init_enc(ses_softc_t *);
  110 static int safte_get_encstat(ses_softc_t *, int);
  111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
  112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
  113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
  114 
  115 /*
  116  * Platform implementation defines/functions for SES internal kernel stuff
  117  */
  118 
  119 #define STRNCMP                 strncmp
  120 #define PRINTF                  printf
  121 #define SES_LOG                 ses_log
  122 #if     defined(DEBUG) || defined(SCSIDEBUG)
  123 #define SES_VLOG                ses_log
  124 #else
  125 #define SES_VLOG                if (0) ses_log
  126 #endif
  127 #define SES_MALLOC(amt)         malloc(amt, M_DEVBUF, M_NOWAIT)
  128 #define SES_FREE(ptr, amt)      free(ptr, M_DEVBUF)
  129 #define MEMZERO(dest, amt)      memset(dest, 0, amt)
  130 #define MEMCPY(dest, src, amt)  memcpy(dest, src, amt)
  131 #define RECEIVE_DIAGNOSTIC      0x1c
  132 #define SEND_DIAGNOSTIC         0x1d
  133 #define WRITE_BUFFER            0x3b
  134 #define READ_BUFFER             0x3c
  135 
  136 static dev_type_open(sesopen);
  137 static dev_type_close(sesclose);
  138 static dev_type_ioctl(sesioctl);
  139 
  140 const struct cdevsw ses_cdevsw = {
  141         sesopen, sesclose, noread, nowrite, sesioctl,
  142         nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
  143 };
  144 
  145 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
  146 static void ses_log(struct ses_softc *, const char *, ...)
  147      __attribute__((__format__(__printf__, 2, 3)));
  148 
  149 /*
  150  * General NetBSD kernel stuff.
  151  */
  152 
  153 struct ses_softc {
  154         struct device   sc_device;
  155         struct scsipi_periph *sc_periph;
  156         enctyp          ses_type;       /* type of enclosure */
  157         encvec          ses_vec;        /* vector to handlers */
  158         void *          ses_private;    /* per-type private data */
  159         encobj *        ses_objmap;     /* objects */
  160         u_int32_t       ses_nobjects;   /* number of objects */
  161         ses_encstat     ses_encstat;    /* overall status */
  162         u_int8_t        ses_flags;
  163 };
  164 #define SES_FLAG_INVALID        0x01
  165 #define SES_FLAG_OPEN           0x02
  166 #define SES_FLAG_INITIALIZED    0x04
  167 
  168 #define SESUNIT(x)       (minor((x)))
  169 
  170 static int ses_match(struct device *, struct cfdata *, void *);
  171 static void ses_attach(struct device *, struct device *, void *);
  172 static enctyp ses_device_type(struct scsipibus_attach_args *);
  173 
  174 CFATTACH_DECL(ses, sizeof (struct ses_softc),
  175     ses_match, ses_attach, NULL, NULL);
  176 
  177 extern struct cfdriver ses_cd;
  178 
  179 static const struct scsipi_periphsw ses_switch = {
  180         NULL,
  181         NULL,
  182         NULL,
  183         NULL
  184 };
  185 
  186 static int
  187 ses_match(struct device *parent, struct cfdata *match,
  188     void *aux)
  189 {
  190         struct scsipibus_attach_args *sa = aux;
  191 
  192         switch (ses_device_type(sa)) {
  193         case SES_SES:
  194         case SES_SES_SCSI2:
  195         case SES_SEN:
  196         case SES_SAFT:
  197         case SES_SES_PASSTHROUGH:
  198                 /*
  199                  * For these devices, it's a perfect match.
  200                  */
  201                 return (24);
  202         default:
  203                 return (0);
  204         }
  205 }
  206 
  207 
  208 /*
  209  * Complete the attachment.
  210  *
  211  * We have to repeat the rerun of INQUIRY data as above because
  212  * it's not until the return from the match routine that we have
  213  * the softc available to set stuff in.
  214  */
  215 static void
  216 ses_attach(struct device *parent, struct device *self, void *aux)
  217 {
  218         const char *tname;
  219         struct ses_softc *softc = device_private(self);
  220         struct scsipibus_attach_args *sa = aux;
  221         struct scsipi_periph *periph = sa->sa_periph;
  222 
  223         SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
  224         softc->sc_periph = periph;
  225         periph->periph_dev = &softc->sc_device;
  226         periph->periph_switch = &ses_switch;
  227         periph->periph_openings = 1;
  228 
  229         softc->ses_type = ses_device_type(sa);
  230         switch (softc->ses_type) {
  231         case SES_SES:
  232         case SES_SES_SCSI2:
  233         case SES_SES_PASSTHROUGH:
  234                 softc->ses_vec.softc_init = ses_softc_init;
  235                 softc->ses_vec.init_enc = ses_init_enc;
  236                 softc->ses_vec.get_encstat = ses_get_encstat;
  237                 softc->ses_vec.set_encstat = ses_set_encstat;
  238                 softc->ses_vec.get_objstat = ses_get_objstat;
  239                 softc->ses_vec.set_objstat = ses_set_objstat;
  240                 break;
  241         case SES_SAFT:
  242                 softc->ses_vec.softc_init = safte_softc_init;
  243                 softc->ses_vec.init_enc = safte_init_enc;
  244                 softc->ses_vec.get_encstat = safte_get_encstat;
  245                 softc->ses_vec.set_encstat = safte_set_encstat;
  246                 softc->ses_vec.get_objstat = safte_get_objstat;
  247                 softc->ses_vec.set_objstat = safte_set_objstat;
  248                 break;
  249         case SES_SEN:
  250                 break;
  251         case SES_NONE:
  252         default:
  253                 break;
  254         }
  255 
  256         switch (softc->ses_type) {
  257         default:
  258         case SES_NONE:
  259                 tname = "No SES device";
  260                 break;
  261         case SES_SES_SCSI2:
  262                 tname = "SCSI-2 SES Device";
  263                 break;
  264         case SES_SES:
  265                 tname = "SCSI-3 SES Device";
  266                 break;
  267         case SES_SES_PASSTHROUGH:
  268                 tname = "SES Passthrough Device";
  269                 break;
  270         case SES_SEN:
  271                 tname = "UNISYS SEN Device (NOT HANDLED YET)";
  272                 break;
  273         case SES_SAFT:
  274                 tname = "SAF-TE Compliant Device";
  275                 break;
  276         }
  277         printf("\n%s: %s\n", device_xname(&softc->sc_device), tname);
  278 }
  279 
  280 
  281 static enctyp
  282 ses_device_type(struct scsipibus_attach_args *sa)
  283 {
  284         struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
  285 
  286         if (inqp == NULL)
  287                 return (SES_NONE);
  288 
  289         return (ses_type(inqp));
  290 }
  291 
  292 static int
  293 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
  294 {
  295         struct ses_softc *softc;
  296         int error, unit;
  297 
  298         unit = SESUNIT(dev);
  299         softc = device_lookup_private(&ses_cd, unit);
  300         if (softc == NULL)
  301                 return (ENXIO);
  302 
  303         if (softc->ses_flags & SES_FLAG_INVALID) {
  304                 error = ENXIO;
  305                 goto out;
  306         }
  307         if (softc->ses_flags & SES_FLAG_OPEN) {
  308                 error = EBUSY;
  309                 goto out;
  310         }
  311         if (softc->ses_vec.softc_init == NULL) {
  312                 error = ENXIO;
  313                 goto out;
  314         }
  315         error = scsipi_adapter_addref(
  316             softc->sc_periph->periph_channel->chan_adapter);
  317         if (error != 0)
  318                 goto out;
  319 
  320 
  321         softc->ses_flags |= SES_FLAG_OPEN;
  322         if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
  323                 error = (*softc->ses_vec.softc_init)(softc, 1);
  324                 if (error)
  325                         softc->ses_flags &= ~SES_FLAG_OPEN;
  326                 else
  327                         softc->ses_flags |= SES_FLAG_INITIALIZED;
  328         }
  329 
  330 out:
  331         return (error);
  332 }
  333 
  334 static int
  335 sesclose(dev_t dev, int flags, int fmt,
  336     struct lwp *l)
  337 {
  338         struct ses_softc *softc;
  339         int unit;
  340 
  341         unit = SESUNIT(dev);
  342         softc = device_lookup_private(&ses_cd, unit);
  343         if (softc == NULL)
  344                 return (ENXIO);
  345 
  346         scsipi_wait_drain(softc->sc_periph);
  347         scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
  348         softc->ses_flags &= ~SES_FLAG_OPEN;
  349         return (0);
  350 }
  351 
  352 static int
  353 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
  354 {
  355         ses_encstat tmp;
  356         ses_objstat objs;
  357         ses_object obj, *uobj;
  358         struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
  359         void *addr;
  360         int error, i;
  361 
  362 
  363         if (arg_addr)
  364                 addr = *((void **) arg_addr);
  365         else
  366                 addr = NULL;
  367 
  368         SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
  369 
  370         /*
  371          * Now check to see whether we're initialized or not.
  372          */
  373         if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
  374                 return (ENODEV);
  375         }
  376 
  377         error = 0;
  378 
  379         /*
  380          * If this command can change the device's state,
  381          * we must have the device open for writing.
  382          */
  383         switch (cmd) {
  384         case SESIOC_GETNOBJ:
  385         case SESIOC_GETOBJMAP:
  386         case SESIOC_GETENCSTAT:
  387         case SESIOC_GETOBJSTAT:
  388                 break;
  389         default:
  390                 if ((flag & FWRITE) == 0) {
  391                         return (EBADF);
  392                 }
  393         }
  394 
  395         switch (cmd) {
  396         case SESIOC_GETNOBJ:
  397                 if (addr == NULL)
  398                         return EINVAL;
  399                 error = copyout(&ssc->ses_nobjects, addr,
  400                     sizeof (ssc->ses_nobjects));
  401                 break;
  402 
  403         case SESIOC_GETOBJMAP:
  404                 if (addr == NULL)
  405                         return EINVAL;
  406                 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
  407                         obj.obj_id = i;
  408                         obj.subencid = ssc->ses_objmap[i].subenclosure;
  409                         obj.object_type = ssc->ses_objmap[i].enctype;
  410                         error = copyout(&obj, uobj, sizeof (ses_object));
  411                         if (error) {
  412                                 break;
  413                         }
  414                 }
  415                 break;
  416 
  417         case SESIOC_GETENCSTAT:
  418                 if (addr == NULL)
  419                         return EINVAL;
  420                 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
  421                 if (error)
  422                         break;
  423                 tmp = ssc->ses_encstat & ~ENCI_SVALID;
  424                 error = copyout(&tmp, addr, sizeof (ses_encstat));
  425                 ssc->ses_encstat = tmp;
  426                 break;
  427 
  428         case SESIOC_SETENCSTAT:
  429                 if (addr == NULL)
  430                         return EINVAL;
  431                 error = copyin(addr, &tmp, sizeof (ses_encstat));
  432                 if (error)
  433                         break;
  434                 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
  435                 break;
  436 
  437         case SESIOC_GETOBJSTAT:
  438                 if (addr == NULL)
  439                         return EINVAL;
  440                 error = copyin(addr, &objs, sizeof (ses_objstat));
  441                 if (error)
  442                         break;
  443                 if (objs.obj_id >= ssc->ses_nobjects) {
  444                         error = EINVAL;
  445                         break;
  446                 }
  447                 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
  448                 if (error)
  449                         break;
  450                 error = copyout(&objs, addr, sizeof (ses_objstat));
  451                 /*
  452                  * Always (for now) invalidate entry.
  453                  */
  454                 ssc->ses_objmap[objs.obj_id].svalid = 0;
  455                 break;
  456 
  457         case SESIOC_SETOBJSTAT:
  458                 if (addr == NULL)
  459                         return EINVAL;
  460                 error = copyin(addr, &objs, sizeof (ses_objstat));
  461                 if (error)
  462                         break;
  463 
  464                 if (objs.obj_id >= ssc->ses_nobjects) {
  465                         error = EINVAL;
  466                         break;
  467                 }
  468                 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
  469 
  470                 /*
  471                  * Always (for now) invalidate entry.
  472                  */
  473                 ssc->ses_objmap[objs.obj_id].svalid = 0;
  474                 break;
  475 
  476         case SESIOC_INIT:
  477 
  478                 error = (*ssc->ses_vec.init_enc)(ssc);
  479                 break;
  480 
  481         default:
  482                 error = scsipi_do_ioctl(ssc->sc_periph,
  483                             dev, cmd, arg_addr, flag, l);
  484                 break;
  485         }
  486         return (error);
  487 }
  488 
  489 static int
  490 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
  491 {
  492         struct scsipi_generic sgen;
  493         int dl, flg, error;
  494 
  495         if (dptr) {
  496                 if ((dl = *dlenp) < 0) {
  497                         dl = -dl;
  498                         flg = XS_CTL_DATA_OUT;
  499                 } else {
  500                         flg = XS_CTL_DATA_IN;
  501                 }
  502         } else {
  503                 dl = 0;
  504                 flg = 0;
  505         }
  506 
  507         if (cdbl > sizeof (struct scsipi_generic)) {
  508                 cdbl = sizeof (struct scsipi_generic);
  509         }
  510         memcpy(&sgen, cdb, cdbl);
  511 #ifndef SCSIDEBUG
  512         flg |= XS_CTL_SILENT;
  513 #endif
  514         error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
  515             (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
  516 
  517         if (error == 0 && dptr)
  518                 *dlenp = 0;
  519 
  520         return (error);
  521 }
  522 
  523 static void
  524 ses_log(struct ses_softc *ssc, const char *fmt, ...)
  525 {
  526         va_list ap;
  527 
  528         printf("%s: ", device_xname(&ssc->sc_device));
  529         va_start(ap, fmt);
  530         vprintf(fmt, ap);
  531         va_end(ap);
  532 }
  533 
  534 /*
  535  * The code after this point runs on many platforms,
  536  * so forgive the slightly awkward and nonconforming
  537  * appearance.
  538  */
  539 
  540 /*
  541  * Is this a device that supports enclosure services?
  542  *
  543  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
  544  * an SES device. If it happens to be an old UNISYS SEN device, we can
  545  * handle that too.
  546  */
  547 
  548 #define SAFTE_START     44
  549 #define SAFTE_END       50
  550 #define SAFTE_LEN       SAFTE_END-SAFTE_START
  551 
  552 static enctyp
  553 ses_type(struct scsipi_inquiry_data *inqp)
  554 {
  555         size_t  given_len = inqp->additional_length + 4;
  556 
  557         if (given_len < 8+SEN_ID_LEN)
  558                 return (SES_NONE);
  559 
  560         if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
  561                 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
  562                         return (SES_SEN);
  563                 } else if ((inqp->version & SID_ANSII) > 2) {
  564                         return (SES_SES);
  565                 } else {
  566                         return (SES_SES_SCSI2);
  567                 }
  568                 return (SES_NONE);
  569         }
  570 
  571 #ifdef  SES_ENABLE_PASSTHROUGH
  572         if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
  573                 /*
  574                  * PassThrough Device.
  575                  */
  576                 return (SES_SES_PASSTHROUGH);
  577         }
  578 #endif
  579 
  580         /*
  581          * The comparison is short for a reason-
  582          * some vendors were chopping it short.
  583          */
  584 
  585         if (given_len < SAFTE_END - 2) {
  586                 return (SES_NONE);
  587         }
  588 
  589         if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
  590                         SAFTE_LEN - 2) == 0) {
  591                 return (SES_SAFT);
  592         }
  593 
  594         return (SES_NONE);
  595 }
  596 
  597 /*
  598  * SES Native Type Device Support
  599  */
  600 
  601 /*
  602  * SES Diagnostic Page Codes
  603  */
  604 
  605 typedef enum {
  606         SesConfigPage = 0x1,
  607         SesControlPage,
  608 #define SesStatusPage SesControlPage
  609         SesHelpTxt,
  610         SesStringOut,
  611 #define SesStringIn     SesStringOut
  612         SesThresholdOut,
  613 #define SesThresholdIn SesThresholdOut
  614         SesArrayControl,
  615 #define SesArrayStatus  SesArrayControl
  616         SesElementDescriptor,
  617         SesShortStatus
  618 } SesDiagPageCodes;
  619 
  620 /*
  621  * minimal amounts
  622  */
  623 
  624 /*
  625  * Minimum amount of data, starting from byte 0, to have
  626  * the config header.
  627  */
  628 #define SES_CFGHDR_MINLEN       12
  629 
  630 /*
  631  * Minimum amount of data, starting from byte 0, to have
  632  * the config header and one enclosure header.
  633  */
  634 #define SES_ENCHDR_MINLEN       48
  635 
  636 /*
  637  * Take this value, subtract it from VEnclen and you know
  638  * the length of the vendor unique bytes.
  639  */
  640 #define SES_ENCHDR_VMIN         36
  641 
  642 /*
  643  * SES Data Structures
  644  */
  645 
  646 typedef struct {
  647         uint32_t GenCode;       /* Generation Code */
  648         uint8_t Nsubenc;        /* Number of Subenclosures */
  649 } SesCfgHdr;
  650 
  651 typedef struct {
  652         uint8_t Subencid;       /* SubEnclosure Identifier */
  653         uint8_t Ntypes;         /* # of supported types */
  654         uint8_t VEnclen;        /* Enclosure Descriptor Length */
  655 } SesEncHdr;
  656 
  657 typedef struct {
  658         uint8_t encWWN[8];      /* XXX- Not Right Yet */
  659         uint8_t encVid[8];
  660         uint8_t encPid[16];
  661         uint8_t encRev[4];
  662         uint8_t encVen[1];
  663 } SesEncDesc;
  664 
  665 typedef struct {
  666         uint8_t enc_type;               /* type of element */
  667         uint8_t enc_maxelt;             /* maximum supported */
  668         uint8_t enc_subenc;             /* in SubEnc # N */
  669         uint8_t enc_tlen;               /* Type Descriptor Text Length */
  670 } SesThdr;
  671 
  672 typedef struct {
  673         uint8_t comstatus;
  674         uint8_t comstat[3];
  675 } SesComStat;
  676 
  677 struct typidx {
  678         int ses_tidx;
  679         int ses_oidx;
  680 };
  681 
  682 struct sscfg {
  683         uint8_t ses_ntypes;     /* total number of types supported */
  684 
  685         /*
  686          * We need to keep a type index as well as an
  687          * object index for each object in an enclosure.
  688          */
  689         struct typidx *ses_typidx;
  690 
  691         /*
  692          * We also need to keep track of the number of elements
  693          * per type of element. This is needed later so that we
  694          * can find precisely in the returned status data the
  695          * status for the Nth element of the Kth type.
  696          */
  697         uint8_t *       ses_eltmap;
  698 };
  699 
  700 
  701 /*
  702  * (de)canonicalization defines
  703  */
  704 #define sbyte(x, byte)          ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
  705 #define sbit(x, bit)            (((uint32_t)(x)) << bit)
  706 #define sset8(outp, idx, sval)  (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
  707 
  708 #define sset16(outp, idx, sval) \
  709         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
  710         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
  711 
  712 
  713 #define sset24(outp, idx, sval) \
  714         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
  715         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
  716         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
  717 
  718 
  719 #define sset32(outp, idx, sval) \
  720         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
  721         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
  722         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
  723         (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
  724 
  725 #define gbyte(x, byte)  ((((uint32_t)(x)) & 0xff) << (byte * 8))
  726 #define gbit(lv, in, idx, shft, mask)   lv = ((in[idx] >> shft) & mask)
  727 #define sget8(inp, idx, lval)   lval = (((uint8_t *)(inp))[idx++])
  728 #define gget8(inp, idx, lval)   lval = (((uint8_t *)(inp))[idx])
  729 
  730 #define sget16(inp, idx, lval)  \
  731         lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
  732                 (((uint8_t *)(inp))[idx+1]), idx += 2
  733 
  734 #define gget16(inp, idx, lval)  \
  735         lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
  736                 (((uint8_t *)(inp))[idx+1])
  737 
  738 #define sget24(inp, idx, lval)  \
  739         lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
  740                 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
  741                         (((uint8_t *)(inp))[idx+2]), idx += 3
  742 
  743 #define gget24(inp, idx, lval)  \
  744         lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
  745                 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
  746                         (((uint8_t *)(inp))[idx+2])
  747 
  748 #define sget32(inp, idx, lval)  \
  749         lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
  750                 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
  751                 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
  752                         (((uint8_t *)(inp))[idx+3]), idx += 4
  753 
  754 #define gget32(inp, idx, lval)  \
  755         lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
  756                 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
  757                 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
  758                         (((uint8_t *)(inp))[idx+3])
  759 
  760 #define SCSZ    0x2000
  761 #define CFLEN   (256 + SES_ENCHDR_MINLEN)
  762 
  763 /*
  764  * Routines specific && private to SES only
  765  */
  766 
  767 static int ses_getconfig(ses_softc_t *);
  768 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
  769 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
  770 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
  771 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
  772 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
  773 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
  774 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
  775 
  776 static int
  777 ses_softc_init(ses_softc_t *ssc, int doinit)
  778 {
  779         if (doinit == 0) {
  780                 struct sscfg *cc;
  781                 if (ssc->ses_nobjects) {
  782                         SES_FREE(ssc->ses_objmap,
  783                             ssc->ses_nobjects * sizeof (encobj));
  784                         ssc->ses_objmap = NULL;
  785                 }
  786                 if ((cc = ssc->ses_private) != NULL) {
  787                         if (cc->ses_eltmap && cc->ses_ntypes) {
  788                                 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
  789                                 cc->ses_eltmap = NULL;
  790                                 cc->ses_ntypes = 0;
  791                         }
  792                         if (cc->ses_typidx && ssc->ses_nobjects) {
  793                                 SES_FREE(cc->ses_typidx,
  794                                     ssc->ses_nobjects * sizeof (struct typidx));
  795                                 cc->ses_typidx = NULL;
  796                         }
  797                         SES_FREE(cc, sizeof (struct sscfg));
  798                         ssc->ses_private = NULL;
  799                 }
  800                 ssc->ses_nobjects = 0;
  801                 return (0);
  802         }
  803         if (ssc->ses_private == NULL) {
  804                 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
  805         }
  806         if (ssc->ses_private == NULL) {
  807                 return (ENOMEM);
  808         }
  809         ssc->ses_nobjects = 0;
  810         ssc->ses_encstat = 0;
  811         return (ses_getconfig(ssc));
  812 }
  813 
  814 static int
  815 ses_init_enc(ses_softc_t *ssc)
  816 {
  817         return (0);
  818 }
  819 
  820 static int
  821 ses_get_encstat(ses_softc_t *ssc, int slpflag)
  822 {
  823         SesComStat ComStat;
  824         int status;
  825 
  826         if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
  827                 return (status);
  828         }
  829         ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
  830         return (0);
  831 }
  832 
  833 static int
  834 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
  835 {
  836         SesComStat ComStat;
  837         int status;
  838 
  839         ComStat.comstatus = encstat & 0xf;
  840         if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
  841                 return (status);
  842         }
  843         ssc->ses_encstat = encstat & 0xf;       /* note no SVALID set */
  844         return (0);
  845 }
  846 
  847 static int
  848 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
  849 {
  850         int i = (int)obp->obj_id;
  851 
  852         if (ssc->ses_objmap[i].svalid == 0) {
  853                 SesComStat ComStat;
  854                 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
  855                 if (err)
  856                         return (err);
  857                 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
  858                 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
  859                 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
  860                 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
  861                 ssc->ses_objmap[i].svalid = 1;
  862         }
  863         obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
  864         obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
  865         obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
  866         obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
  867         return (0);
  868 }
  869 
  870 static int
  871 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
  872 {
  873         SesComStat ComStat;
  874         int err;
  875         /*
  876          * If this is clear, we don't do diddly.
  877          */
  878         if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
  879                 return (0);
  880         }
  881         ComStat.comstatus = obp->cstat[0];
  882         ComStat.comstat[0] = obp->cstat[1];
  883         ComStat.comstat[1] = obp->cstat[2];
  884         ComStat.comstat[2] = obp->cstat[3];
  885         err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
  886         ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
  887         return (err);
  888 }
  889 
  890 static int
  891 ses_getconfig(ses_softc_t *ssc)
  892 {
  893         struct sscfg *cc;
  894         SesCfgHdr cf;
  895         SesEncHdr hd;
  896         SesEncDesc *cdp;
  897         SesThdr thdr;
  898         int err, amt, i, nobj, ntype, maxima;
  899         char storage[CFLEN], *sdata;
  900         static char cdb[6] = {
  901             RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
  902         };
  903 
  904         cc = ssc->ses_private;
  905         if (cc == NULL) {
  906                 return (ENXIO);
  907         }
  908 
  909         sdata = SES_MALLOC(SCSZ);
  910         if (sdata == NULL)
  911                 return (ENOMEM);
  912 
  913         amt = SCSZ;
  914         err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
  915         if (err) {
  916                 SES_FREE(sdata, SCSZ);
  917                 return (err);
  918         }
  919         amt = SCSZ - amt;
  920 
  921         if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
  922                 SES_LOG(ssc, "Unable to parse SES Config Header\n");
  923                 SES_FREE(sdata, SCSZ);
  924                 return (EIO);
  925         }
  926         if (amt < SES_ENCHDR_MINLEN) {
  927                 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
  928                 SES_FREE(sdata, SCSZ);
  929                 return (EIO);
  930         }
  931 
  932         SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
  933 
  934         /*
  935          * Now waltz through all the subenclosures toting up the
  936          * number of types available in each. For this, we only
  937          * really need the enclosure header. However, we get the
  938          * enclosure descriptor for debug purposes, as well
  939          * as self-consistency checking purposes.
  940          */
  941 
  942         maxima = cf.Nsubenc + 1;
  943         cdp = (SesEncDesc *) storage;
  944         for (ntype = i = 0; i < maxima; i++) {
  945                 MEMZERO((void *)cdp, sizeof (*cdp));
  946                 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
  947                         SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
  948                         SES_FREE(sdata, SCSZ);
  949                         return (EIO);
  950                 }
  951                 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
  952                     "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
  953 
  954                 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
  955                         SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
  956                         SES_FREE(sdata, SCSZ);
  957                         return (EIO);
  958                 }
  959                 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
  960                     cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
  961                     cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
  962                     cdp->encWWN[6], cdp->encWWN[7]);
  963                 ntype += hd.Ntypes;
  964         }
  965 
  966         /*
  967          * Now waltz through all the types that are available, getting
  968          * the type header so we can start adding up the number of
  969          * objects available.
  970          */
  971         for (nobj = i = 0; i < ntype; i++) {
  972                 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
  973                         SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
  974                         SES_FREE(sdata, SCSZ);
  975                         return (EIO);
  976                 }
  977                 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
  978                     "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
  979                     thdr.enc_subenc, thdr.enc_tlen);
  980                 nobj += thdr.enc_maxelt;
  981         }
  982 
  983 
  984         /*
  985          * Now allocate the object array and type map.
  986          */
  987 
  988         ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
  989         cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
  990         cc->ses_eltmap = SES_MALLOC(ntype);
  991 
  992         if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
  993             cc->ses_eltmap == NULL) {
  994                 if (ssc->ses_objmap) {
  995                         SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
  996                         ssc->ses_objmap = NULL;
  997                 }
  998                 if (cc->ses_typidx) {
  999                         SES_FREE(cc->ses_typidx,
 1000                             (nobj * sizeof (struct typidx)));
 1001                         cc->ses_typidx = NULL;
 1002                 }
 1003                 if (cc->ses_eltmap) {
 1004                         SES_FREE(cc->ses_eltmap, ntype);
 1005                         cc->ses_eltmap = NULL;
 1006                 }
 1007                 SES_FREE(sdata, SCSZ);
 1008                 return (ENOMEM);
 1009         }
 1010         MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
 1011         MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
 1012         MEMZERO(cc->ses_eltmap, ntype);
 1013         cc->ses_ntypes = (uint8_t) ntype;
 1014         ssc->ses_nobjects = nobj;
 1015 
 1016         /*
 1017          * Now waltz through the # of types again to fill in the types
 1018          * (and subenclosure ids) of the allocated objects.
 1019          */
 1020         nobj = 0;
 1021         for (i = 0; i < ntype; i++) {
 1022                 int j;
 1023                 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
 1024                         continue;
 1025                 }
 1026                 cc->ses_eltmap[i] = thdr.enc_maxelt;
 1027                 for (j = 0; j < thdr.enc_maxelt; j++) {
 1028                         cc->ses_typidx[nobj].ses_tidx = i;
 1029                         cc->ses_typidx[nobj].ses_oidx = j;
 1030                         ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
 1031                         ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
 1032                 }
 1033         }
 1034         SES_FREE(sdata, SCSZ);
 1035         return (0);
 1036 }
 1037 
 1038 static int
 1039 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
 1040     int in)
 1041 {
 1042         struct sscfg *cc;
 1043         int err, amt, bufsiz, tidx, oidx;
 1044         char cdb[6], *sdata;
 1045 
 1046         cc = ssc->ses_private;
 1047         if (cc == NULL) {
 1048                 return (ENXIO);
 1049         }
 1050 
 1051         /*
 1052          * If we're just getting overall enclosure status,
 1053          * we only need 2 bytes of data storage.
 1054          *
 1055          * If we're getting anything else, we know how much
 1056          * storage we need by noting that starting at offset
 1057          * 8 in returned data, all object status bytes are 4
 1058          * bytes long, and are stored in chunks of types(M)
 1059          * and nth+1 instances of type M.
 1060          */
 1061         if (objid == -1) {
 1062                 bufsiz = 2;
 1063         } else {
 1064                 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
 1065         }
 1066         sdata = SES_MALLOC(bufsiz);
 1067         if (sdata == NULL)
 1068                 return (ENOMEM);
 1069 
 1070         cdb[0] = RECEIVE_DIAGNOSTIC;
 1071         cdb[1] = 1;
 1072         cdb[2] = SesStatusPage;
 1073         cdb[3] = bufsiz >> 8;
 1074         cdb[4] = bufsiz & 0xff;
 1075         cdb[5] = 0;
 1076         amt = bufsiz;
 1077         err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
 1078         if (err) {
 1079                 SES_FREE(sdata, bufsiz);
 1080                 return (err);
 1081         }
 1082         amt = bufsiz - amt;
 1083 
 1084         if (objid == -1) {
 1085                 tidx = -1;
 1086                 oidx = -1;
 1087         } else {
 1088                 tidx = cc->ses_typidx[objid].ses_tidx;
 1089                 oidx = cc->ses_typidx[objid].ses_oidx;
 1090         }
 1091         if (in) {
 1092                 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
 1093                         err = ENODEV;
 1094                 }
 1095         } else {
 1096                 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
 1097                         err = ENODEV;
 1098                 } else {
 1099                         cdb[0] = SEND_DIAGNOSTIC;
 1100                         cdb[1] = 0x10;
 1101                         cdb[2] = 0;
 1102                         cdb[3] = bufsiz >> 8;
 1103                         cdb[4] = bufsiz & 0xff;
 1104                         cdb[5] = 0;
 1105                         amt = -bufsiz;
 1106                         err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
 1107                 }
 1108         }
 1109         SES_FREE(sdata, bufsiz);
 1110         return (0);
 1111 }
 1112 
 1113 
 1114 /*
 1115  * Routines to parse returned SES data structures.
 1116  * Architecture and compiler independent.
 1117  */
 1118 
 1119 static int
 1120 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
 1121 {
 1122         if (buflen < SES_CFGHDR_MINLEN) {
 1123                 return (-1);
 1124         }
 1125         gget8(buffer, 1, cfp->Nsubenc);
 1126         gget32(buffer, 4, cfp->GenCode);
 1127         return (0);
 1128 }
 1129 
 1130 static int
 1131 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
 1132 {
 1133         int s, off = 8;
 1134         for (s = 0; s < SubEncId; s++) {
 1135                 if (off + 3 > amt)
 1136                         return (-1);
 1137                 off += buffer[off+3] + 4;
 1138         }
 1139         if (off + 3 > amt) {
 1140                 return (-1);
 1141         }
 1142         gget8(buffer, off+1, chp->Subencid);
 1143         gget8(buffer, off+2, chp->Ntypes);
 1144         gget8(buffer, off+3, chp->VEnclen);
 1145         return (0);
 1146 }
 1147 
 1148 static int
 1149 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
 1150 {
 1151         int s, e, enclen, off = 8;
 1152         for (s = 0; s < SubEncId; s++) {
 1153                 if (off + 3 > amt)
 1154                         return (-1);
 1155                 off += buffer[off+3] + 4;
 1156         }
 1157         if (off + 3 > amt) {
 1158                 return (-1);
 1159         }
 1160         gget8(buffer, off+3, enclen);
 1161         off += 4;
 1162         if (off  >= amt)
 1163                 return (-1);
 1164 
 1165         e = off + enclen;
 1166         if (e > amt) {
 1167                 e = amt;
 1168         }
 1169         MEMCPY(cdp, &buffer[off], e - off);
 1170         return (0);
 1171 }
 1172 
 1173 static int
 1174 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
 1175 {
 1176         int s, off = 8;
 1177 
 1178         if (amt < SES_CFGHDR_MINLEN) {
 1179                 return (-1);
 1180         }
 1181         for (s = 0; s < buffer[1]; s++) {
 1182                 if (off + 3 > amt)
 1183                         return (-1);
 1184                 off += buffer[off+3] + 4;
 1185         }
 1186         if (off + 3 > amt) {
 1187                 return (-1);
 1188         }
 1189         off += buffer[off+3] + 4 + (nth * 4);
 1190         if (amt < (off + 4))
 1191                 return (-1);
 1192 
 1193         gget8(buffer, off++, thp->enc_type);
 1194         gget8(buffer, off++, thp->enc_maxelt);
 1195         gget8(buffer, off++, thp->enc_subenc);
 1196         gget8(buffer, off, thp->enc_tlen);
 1197         return (0);
 1198 }
 1199 
 1200 /*
 1201  * This function needs a little explanation.
 1202  *
 1203  * The arguments are:
 1204  *
 1205  *
 1206  *      char *b, int amt
 1207  *
 1208  *              These describes the raw input SES status data and length.
 1209  *
 1210  *      uint8_t *ep
 1211  *
 1212  *              This is a map of the number of types for each element type
 1213  *              in the enclosure.
 1214  *
 1215  *      int elt
 1216  *
 1217  *              This is the element type being sought. If elt is -1,
 1218  *              then overall enclosure status is being sought.
 1219  *
 1220  *      int elm
 1221  *
 1222  *              This is the ordinal Mth element of type elt being sought.
 1223  *
 1224  *      SesComStat *sp
 1225  *
 1226  *              This is the output area to store the status for
 1227  *              the Mth element of type Elt.
 1228  */
 1229 
 1230 static int
 1231 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
 1232 {
 1233         int idx, i;
 1234 
 1235         /*
 1236          * If it's overall enclosure status being sought, get that.
 1237          * We need at least 2 bytes of status data to get that.
 1238          */
 1239         if (elt == -1) {
 1240                 if (amt < 2)
 1241                         return (-1);
 1242                 gget8(b, 1, sp->comstatus);
 1243                 sp->comstat[0] = 0;
 1244                 sp->comstat[1] = 0;
 1245                 sp->comstat[2] = 0;
 1246                 return (0);
 1247         }
 1248 
 1249         /*
 1250          * Check to make sure that the Mth element is legal for type Elt.
 1251          */
 1252 
 1253         if (elm >= ep[elt])
 1254                 return (-1);
 1255 
 1256         /*
 1257          * Starting at offset 8, start skipping over the storage
 1258          * for the element types we're not interested in.
 1259          */
 1260         for (idx = 8, i = 0; i < elt; i++) {
 1261                 idx += ((ep[i] + 1) * 4);
 1262         }
 1263 
 1264         /*
 1265          * Skip over Overall status for this element type.
 1266          */
 1267         idx += 4;
 1268 
 1269         /*
 1270          * And skip to the index for the Mth element that we're going for.
 1271          */
 1272         idx += (4 * elm);
 1273 
 1274         /*
 1275          * Make sure we haven't overflowed the buffer.
 1276          */
 1277         if (idx+4 > amt)
 1278                 return (-1);
 1279 
 1280         /*
 1281          * Retrieve the status.
 1282          */
 1283         gget8(b, idx++, sp->comstatus);
 1284         gget8(b, idx++, sp->comstat[0]);
 1285         gget8(b, idx++, sp->comstat[1]);
 1286         gget8(b, idx++, sp->comstat[2]);
 1287 #if     0
 1288         PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
 1289 #endif
 1290         return (0);
 1291 }
 1292 
 1293 /*
 1294  * This is the mirror function to ses_decode, but we set the 'select'
 1295  * bit for the object which we're interested in. All other objects,
 1296  * after a status fetch, should have that bit off. Hmm. It'd be easy
 1297  * enough to ensure this, so we will.
 1298  */
 1299 
 1300 static int
 1301 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
 1302 {
 1303         int idx, i;
 1304 
 1305         /*
 1306          * If it's overall enclosure status being sought, get that.
 1307          * We need at least 2 bytes of status data to get that.
 1308          */
 1309         if (elt == -1) {
 1310                 if (amt < 2)
 1311                         return (-1);
 1312                 i = 0;
 1313                 sset8(b, i, 0);
 1314                 sset8(b, i, sp->comstatus & 0xf);
 1315 #if     0
 1316                 PRINTF("set EncStat %x\n", sp->comstatus);
 1317 #endif
 1318                 return (0);
 1319         }
 1320 
 1321         /*
 1322          * Check to make sure that the Mth element is legal for type Elt.
 1323          */
 1324 
 1325         if (elm >= ep[elt])
 1326                 return (-1);
 1327 
 1328         /*
 1329          * Starting at offset 8, start skipping over the storage
 1330          * for the element types we're not interested in.
 1331          */
 1332         for (idx = 8, i = 0; i < elt; i++) {
 1333                 idx += ((ep[i] + 1) * 4);
 1334         }
 1335 
 1336         /*
 1337          * Skip over Overall status for this element type.
 1338          */
 1339         idx += 4;
 1340 
 1341         /*
 1342          * And skip to the index for the Mth element that we're going for.
 1343          */
 1344         idx += (4 * elm);
 1345 
 1346         /*
 1347          * Make sure we haven't overflowed the buffer.
 1348          */
 1349         if (idx+4 > amt)
 1350                 return (-1);
 1351 
 1352         /*
 1353          * Set the status.
 1354          */
 1355         sset8(b, idx, sp->comstatus);
 1356         sset8(b, idx, sp->comstat[0]);
 1357         sset8(b, idx, sp->comstat[1]);
 1358         sset8(b, idx, sp->comstat[2]);
 1359         idx -= 4;
 1360 
 1361 #if     0
 1362         PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
 1363             elt, elm, idx, sp->comstatus, sp->comstat[0],
 1364             sp->comstat[1], sp->comstat[2]);
 1365 #endif
 1366 
 1367         /*
 1368          * Now make sure all other 'Select' bits are off.
 1369          */
 1370         for (i = 8; i < amt; i += 4) {
 1371                 if (i != idx)
 1372                         b[i] &= ~0x80;
 1373         }
 1374         /*
 1375          * And make sure the INVOP bit is clear.
 1376          */
 1377         b[2] &= ~0x10;
 1378 
 1379         return (0);
 1380 }
 1381 
 1382 /*
 1383  * SAF-TE Type Device Emulation
 1384  */
 1385 
 1386 static int safte_getconfig(ses_softc_t *);
 1387 static int safte_rdstat(ses_softc_t *, int);
 1388 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
 1389 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
 1390 static void wrslot_stat(ses_softc_t *, int);
 1391 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
 1392 
 1393 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
 1394         SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
 1395 /*
 1396  * SAF-TE specific defines- Mandatory ones only...
 1397  */
 1398 
 1399 /*
 1400  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
 1401  */
 1402 #define SAFTE_RD_RDCFG  0x00    /* read enclosure configuration */
 1403 #define SAFTE_RD_RDESTS 0x01    /* read enclosure status */
 1404 #define SAFTE_RD_RDDSTS 0x04    /* read drive slot status */
 1405 
 1406 /*
 1407  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
 1408  */
 1409 #define SAFTE_WT_DSTAT  0x10    /* write device slot status */
 1410 #define SAFTE_WT_SLTOP  0x12    /* perform slot operation */
 1411 #define SAFTE_WT_FANSPD 0x13    /* set fan speed */
 1412 #define SAFTE_WT_ACTPWS 0x14    /* turn on/off power supply */
 1413 #define SAFTE_WT_GLOBAL 0x15    /* send global command */
 1414 
 1415 
 1416 #define SAFT_SCRATCH    64
 1417 #define NPSEUDO_THERM   16
 1418 #define NPSEUDO_ALARM   1
 1419 struct scfg {
 1420         /*
 1421          * Cached Configuration
 1422          */
 1423         uint8_t Nfans;          /* Number of Fans */
 1424         uint8_t Npwr;           /* Number of Power Supplies */
 1425         uint8_t Nslots;         /* Number of Device Slots */
 1426         uint8_t DoorLock;       /* Door Lock Installed */
 1427         uint8_t Ntherm;         /* Number of Temperature Sensors */
 1428         uint8_t Nspkrs;         /* Number of Speakers */
 1429         uint8_t Nalarm;         /* Number of Alarms (at least one) */
 1430         /*
 1431          * Cached Flag Bytes for Global Status
 1432          */
 1433         uint8_t flag1;
 1434         uint8_t flag2;
 1435         /*
 1436          * What object index ID is where various slots start.
 1437          */
 1438         uint8_t pwroff;
 1439         uint8_t slotoff;
 1440 #define SAFT_ALARM_OFFSET(cc)   (cc)->slotoff - 1
 1441 };
 1442 
 1443 #define SAFT_FLG1_ALARM         0x1
 1444 #define SAFT_FLG1_GLOBFAIL      0x2
 1445 #define SAFT_FLG1_GLOBWARN      0x4
 1446 #define SAFT_FLG1_ENCPWROFF     0x8
 1447 #define SAFT_FLG1_ENCFANFAIL    0x10
 1448 #define SAFT_FLG1_ENCPWRFAIL    0x20
 1449 #define SAFT_FLG1_ENCDRVFAIL    0x40
 1450 #define SAFT_FLG1_ENCDRVWARN    0x80
 1451 
 1452 #define SAFT_FLG2_LOCKDOOR      0x4
 1453 #define SAFT_PRIVATE            sizeof (struct scfg)
 1454 
 1455 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
 1456 #define SAFT_BAIL(r, x, k, l)   \
 1457         if (r >= x) { \
 1458                 SES_LOG(ssc, safte_2little, x, __LINE__);\
 1459                 SES_FREE(k, l); \
 1460                 return (EIO); \
 1461         }
 1462 
 1463 
 1464 static int
 1465 safte_softc_init(ses_softc_t *ssc, int doinit)
 1466 {
 1467         int err, i, r;
 1468         struct scfg *cc;
 1469 
 1470         if (doinit == 0) {
 1471                 if (ssc->ses_nobjects) {
 1472                         if (ssc->ses_objmap) {
 1473                                 SES_FREE(ssc->ses_objmap,
 1474                                     ssc->ses_nobjects * sizeof (encobj));
 1475                                 ssc->ses_objmap = NULL;
 1476                         }
 1477                         ssc->ses_nobjects = 0;
 1478                 }
 1479                 if (ssc->ses_private) {
 1480                         SES_FREE(ssc->ses_private, SAFT_PRIVATE);
 1481                         ssc->ses_private = NULL;
 1482                 }
 1483                 return (0);
 1484         }
 1485 
 1486         if (ssc->ses_private == NULL) {
 1487                 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
 1488                 if (ssc->ses_private == NULL) {
 1489                         return (ENOMEM);
 1490                 }
 1491                 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
 1492         }
 1493 
 1494         ssc->ses_nobjects = 0;
 1495         ssc->ses_encstat = 0;
 1496 
 1497         if ((err = safte_getconfig(ssc)) != 0) {
 1498                 return (err);
 1499         }
 1500 
 1501         /*
 1502          * The number of objects here, as well as that reported by the
 1503          * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
 1504          * that get reported during READ_BUFFER/READ_ENC_STATUS.
 1505          */
 1506         cc = ssc->ses_private;
 1507         ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
 1508             cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
 1509         ssc->ses_objmap = (encobj *)
 1510             SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
 1511         if (ssc->ses_objmap == NULL) {
 1512                 return (ENOMEM);
 1513         }
 1514         MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
 1515 
 1516         r = 0;
 1517         /*
 1518          * Note that this is all arranged for the convenience
 1519          * in later fetches of status.
 1520          */
 1521         for (i = 0; i < cc->Nfans; i++)
 1522                 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
 1523         cc->pwroff = (uint8_t) r;
 1524         for (i = 0; i < cc->Npwr; i++)
 1525                 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
 1526         for (i = 0; i < cc->DoorLock; i++)
 1527                 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
 1528         for (i = 0; i < cc->Nspkrs; i++)
 1529                 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
 1530         for (i = 0; i < cc->Ntherm; i++)
 1531                 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
 1532         for (i = 0; i < NPSEUDO_THERM; i++)
 1533                 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
 1534         ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
 1535         cc->slotoff = (uint8_t) r;
 1536         for (i = 0; i < cc->Nslots; i++)
 1537                 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
 1538         return (0);
 1539 }
 1540 
 1541 static int
 1542 safte_init_enc(ses_softc_t *ssc)
 1543 {
 1544         int err, amt;
 1545         char *sdata;
 1546         static char cdb0[6] = { SEND_DIAGNOSTIC };
 1547         static char cdb[10] =
 1548             { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
 1549 
 1550         sdata = SES_MALLOC(SAFT_SCRATCH);
 1551         if (sdata == NULL)
 1552                 return (ENOMEM);
 1553 
 1554         err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
 1555         if (err) {
 1556                 SES_FREE(sdata, SAFT_SCRATCH);
 1557                 return (err);
 1558         }
 1559         sdata[0] = SAFTE_WT_GLOBAL;
 1560         MEMZERO(&sdata[1], 15);
 1561         amt = -SAFT_SCRATCH;
 1562         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 1563         SES_FREE(sdata, SAFT_SCRATCH);
 1564         return (err);
 1565 }
 1566 
 1567 static int
 1568 safte_get_encstat(ses_softc_t *ssc, int slpflg)
 1569 {
 1570         return (safte_rdstat(ssc, slpflg));
 1571 }
 1572 
 1573 static int
 1574 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
 1575 {
 1576         struct scfg *cc = ssc->ses_private;
 1577         if (cc == NULL)
 1578                 return (0);
 1579         /*
 1580          * Since SAF-TE devices aren't necessarily sticky in terms
 1581          * of state, make our soft copy of enclosure status 'sticky'-
 1582          * that is, things set in enclosure status stay set (as implied
 1583          * by conditions set in reading object status) until cleared.
 1584          */
 1585         ssc->ses_encstat &= ~ALL_ENC_STAT;
 1586         ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
 1587         ssc->ses_encstat |= ENCI_SVALID;
 1588         cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
 1589         if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
 1590                 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
 1591         } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
 1592                 cc->flag1 |= SAFT_FLG1_GLOBWARN;
 1593         }
 1594         return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
 1595 }
 1596 
 1597 static int
 1598 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
 1599 {
 1600         int i = (int)obp->obj_id;
 1601 
 1602         if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
 1603             (ssc->ses_objmap[i].svalid) == 0) {
 1604                 int err = safte_rdstat(ssc, slpflg);
 1605                 if (err)
 1606                         return (err);
 1607         }
 1608         obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
 1609         obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
 1610         obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
 1611         obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
 1612         return (0);
 1613 }
 1614 
 1615 
 1616 static int
 1617 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
 1618 {
 1619         int idx, err;
 1620         encobj *ep;
 1621         struct scfg *cc;
 1622 
 1623 
 1624         SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
 1625             (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
 1626             obp->cstat[3]);
 1627 
 1628         /*
 1629          * If this is clear, we don't do diddly.
 1630          */
 1631         if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
 1632                 return (0);
 1633         }
 1634 
 1635         err = 0;
 1636         /*
 1637          * Check to see if the common bits are set and do them first.
 1638          */
 1639         if (obp->cstat[0] & ~SESCTL_CSEL) {
 1640                 err = set_objstat_sel(ssc, obp, slp);
 1641                 if (err)
 1642                         return (err);
 1643         }
 1644 
 1645         cc = ssc->ses_private;
 1646         if (cc == NULL)
 1647                 return (0);
 1648 
 1649         idx = (int)obp->obj_id;
 1650         ep = &ssc->ses_objmap[idx];
 1651 
 1652         switch (ep->enctype) {
 1653         case SESTYP_DEVICE:
 1654         {
 1655                 uint8_t slotop = 0;
 1656                 /*
 1657                  * XXX: I should probably cache the previous state
 1658                  * XXX: of SESCTL_DEVOFF so that when it goes from
 1659                  * XXX: true to false I can then set PREPARE FOR OPERATION
 1660                  * XXX: flag in PERFORM SLOT OPERATION write buffer command.
 1661                  */
 1662                 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
 1663                         slotop |= 0x2;
 1664                 }
 1665                 if (obp->cstat[2] & SESCTL_RQSID) {
 1666                         slotop |= 0x4;
 1667                 }
 1668                 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
 1669                     slotop, slp);
 1670                 if (err)
 1671                         return (err);
 1672                 if (obp->cstat[3] & SESCTL_RQSFLT) {
 1673                         ep->priv |= 0x2;
 1674                 } else {
 1675                         ep->priv &= ~0x2;
 1676                 }
 1677                 if (ep->priv & 0xc6) {
 1678                         ep->priv &= ~0x1;
 1679                 } else {
 1680                         ep->priv |= 0x1;        /* no errors */
 1681                 }
 1682                 wrslot_stat(ssc, slp);
 1683                 break;
 1684         }
 1685         case SESTYP_POWER:
 1686                 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
 1687                         cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
 1688                 } else {
 1689                         cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
 1690                 }
 1691                 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 1692                     cc->flag2, 0, slp);
 1693                 if (err)
 1694                         return (err);
 1695                 if (obp->cstat[3] & SESCTL_RQSTON) {
 1696                         (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
 1697                                 idx - cc->pwroff, 0, 0, slp);
 1698                 } else {
 1699                         (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
 1700                                 idx - cc->pwroff, 0, 1, slp);
 1701                 }
 1702                 break;
 1703         case SESTYP_FAN:
 1704                 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
 1705                         cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
 1706                 } else {
 1707                         cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
 1708                 }
 1709                 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 1710                     cc->flag2, 0, slp);
 1711                 if (err)
 1712                         return (err);
 1713                 if (obp->cstat[3] & SESCTL_RQSTON) {
 1714                         uint8_t fsp;
 1715                         if ((obp->cstat[3] & 0x7) == 7) {
 1716                                 fsp = 4;
 1717                         } else if ((obp->cstat[3] & 0x7) == 6) {
 1718                                 fsp = 3;
 1719                         } else if ((obp->cstat[3] & 0x7) == 4) {
 1720                                 fsp = 2;
 1721                         } else {
 1722                                 fsp = 1;
 1723                         }
 1724                         (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
 1725                 } else {
 1726                         (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
 1727                 }
 1728                 break;
 1729         case SESTYP_DOORLOCK:
 1730                 if (obp->cstat[3] & 0x1) {
 1731                         cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
 1732                 } else {
 1733                         cc->flag2 |= SAFT_FLG2_LOCKDOOR;
 1734                 }
 1735                 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 1736                     cc->flag2, 0, slp);
 1737                 break;
 1738         case SESTYP_ALARM:
 1739                 /*
 1740                  * On all nonzero but the 'muted' bit, we turn on the alarm,
 1741                  */
 1742                 obp->cstat[3] &= ~0xa;
 1743                 if (obp->cstat[3] & 0x40) {
 1744                         cc->flag2 &= ~SAFT_FLG1_ALARM;
 1745                 } else if (obp->cstat[3] != 0) {
 1746                         cc->flag2 |= SAFT_FLG1_ALARM;
 1747                 } else {
 1748                         cc->flag2 &= ~SAFT_FLG1_ALARM;
 1749                 }
 1750                 ep->priv = obp->cstat[3];
 1751                 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 1752                         cc->flag2, 0, slp);
 1753                 break;
 1754         default:
 1755                 break;
 1756         }
 1757         ep->svalid = 0;
 1758         return (0);
 1759 }
 1760 
 1761 static int
 1762 safte_getconfig(ses_softc_t *ssc)
 1763 {
 1764         struct scfg *cfg;
 1765         int err, amt;
 1766         char *sdata;
 1767         static char cdb[10] =
 1768             { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
 1769 
 1770         cfg = ssc->ses_private;
 1771         if (cfg == NULL)
 1772                 return (ENXIO);
 1773 
 1774         sdata = SES_MALLOC(SAFT_SCRATCH);
 1775         if (sdata == NULL)
 1776                 return (ENOMEM);
 1777 
 1778         amt = SAFT_SCRATCH;
 1779         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 1780         if (err) {
 1781                 SES_FREE(sdata, SAFT_SCRATCH);
 1782                 return (err);
 1783         }
 1784         amt = SAFT_SCRATCH - amt;
 1785         if (amt < 6) {
 1786                 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
 1787                 SES_FREE(sdata, SAFT_SCRATCH);
 1788                 return (EIO);
 1789         }
 1790         SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
 1791             sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
 1792         cfg->Nfans = sdata[0];
 1793         cfg->Npwr = sdata[1];
 1794         cfg->Nslots = sdata[2];
 1795         cfg->DoorLock = sdata[3];
 1796         cfg->Ntherm = sdata[4];
 1797         cfg->Nspkrs = sdata[5];
 1798         cfg->Nalarm = NPSEUDO_ALARM;
 1799         SES_FREE(sdata, SAFT_SCRATCH);
 1800         return (0);
 1801 }
 1802 
 1803 static int
 1804 safte_rdstat(ses_softc_t *ssc, int slpflg)
 1805 {
 1806         int err, oid, r, i, hiwater, nitems, amt;
 1807         uint16_t tempflags;
 1808         size_t buflen;
 1809         uint8_t status, oencstat;
 1810         char *sdata, cdb[10];
 1811         struct scfg *cc = ssc->ses_private;
 1812 
 1813 
 1814         /*
 1815          * The number of objects overstates things a bit,
 1816          * both for the bogus 'thermometer' entries and
 1817          * the drive status (which isn't read at the same
 1818          * time as the enclosure status), but that's okay.
 1819          */
 1820         buflen = 4 * cc->Nslots;
 1821         if (ssc->ses_nobjects > buflen)
 1822                 buflen = ssc->ses_nobjects;
 1823         sdata = SES_MALLOC(buflen);
 1824         if (sdata == NULL)
 1825                 return (ENOMEM);
 1826 
 1827         cdb[0] = READ_BUFFER;
 1828         cdb[1] = 1;
 1829         cdb[2] = SAFTE_RD_RDESTS;
 1830         cdb[3] = 0;
 1831         cdb[4] = 0;
 1832         cdb[5] = 0;
 1833         cdb[6] = 0;
 1834         cdb[7] = (buflen >> 8) & 0xff;
 1835         cdb[8] = buflen & 0xff;
 1836         cdb[9] = 0;
 1837         amt = buflen;
 1838         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 1839         if (err) {
 1840                 SES_FREE(sdata, buflen);
 1841                 return (err);
 1842         }
 1843         hiwater = buflen - amt;
 1844 
 1845 
 1846         /*
 1847          * invalidate all status bits.
 1848          */
 1849         for (i = 0; i < ssc->ses_nobjects; i++)
 1850                 ssc->ses_objmap[i].svalid = 0;
 1851         oencstat = ssc->ses_encstat & ALL_ENC_STAT;
 1852         ssc->ses_encstat = 0;
 1853 
 1854 
 1855         /*
 1856          * Now parse returned buffer.
 1857          * If we didn't get enough data back,
 1858          * that's considered a fatal error.
 1859          */
 1860         oid = r = 0;
 1861 
 1862         for (nitems = i = 0; i < cc->Nfans; i++) {
 1863                 SAFT_BAIL(r, hiwater, sdata, buflen);
 1864                 /*
 1865                  * 0 = Fan Operational
 1866                  * 1 = Fan is malfunctioning
 1867                  * 2 = Fan is not present
 1868                  * 0x80 = Unknown or Not Reportable Status
 1869                  */
 1870                 ssc->ses_objmap[oid].encstat[1] = 0;    /* resvd */
 1871                 ssc->ses_objmap[oid].encstat[2] = 0;    /* resvd */
 1872                 switch ((int)(uint8_t)sdata[r]) {
 1873                 case 0:
 1874                         nitems++;
 1875                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 1876                         /*
 1877                          * We could get fancier and cache
 1878                          * fan speeds that we have set, but
 1879                          * that isn't done now.
 1880                          */
 1881                         ssc->ses_objmap[oid].encstat[3] = 7;
 1882                         break;
 1883 
 1884                 case 1:
 1885                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
 1886                         /*
 1887                          * FAIL and FAN STOPPED synthesized
 1888                          */
 1889                         ssc->ses_objmap[oid].encstat[3] = 0x40;
 1890                         /*
 1891                          * Enclosure marked with CRITICAL error
 1892                          * if only one fan or no thermometers,
 1893                          * else the NONCRITICAL error is set.
 1894                          */
 1895                         if (cc->Nfans == 1 || cc->Ntherm == 0)
 1896                                 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
 1897                         else
 1898                                 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 1899                         break;
 1900                 case 2:
 1901                         ssc->ses_objmap[oid].encstat[0] =
 1902                             SES_OBJSTAT_NOTINSTALLED;
 1903                         ssc->ses_objmap[oid].encstat[3] = 0;
 1904                         /*
 1905                          * Enclosure marked with CRITICAL error
 1906                          * if only one fan or no thermometers,
 1907                          * else the NONCRITICAL error is set.
 1908                          */
 1909                         if (cc->Nfans == 1)
 1910                                 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
 1911                         else
 1912                                 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 1913                         break;
 1914                 case 0x80:
 1915                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
 1916                         ssc->ses_objmap[oid].encstat[3] = 0;
 1917                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 1918                         break;
 1919                 default:
 1920                         ssc->ses_objmap[oid].encstat[0] =
 1921                             SES_OBJSTAT_UNSUPPORTED;
 1922                         SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
 1923                             sdata[r] & 0xff);
 1924                         break;
 1925                 }
 1926                 ssc->ses_objmap[oid++].svalid = 1;
 1927                 r++;
 1928         }
 1929 
 1930         /*
 1931          * No matter how you cut it, no cooling elements when there
 1932          * should be some there is critical.
 1933          */
 1934         if (cc->Nfans && nitems == 0) {
 1935                 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
 1936         }
 1937 
 1938 
 1939         for (i = 0; i < cc->Npwr; i++) {
 1940                 SAFT_BAIL(r, hiwater, sdata, buflen);
 1941                 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
 1942                 ssc->ses_objmap[oid].encstat[1] = 0;    /* resvd */
 1943                 ssc->ses_objmap[oid].encstat[2] = 0;    /* resvd */
 1944                 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
 1945                 switch ((uint8_t)sdata[r]) {
 1946                 case 0x00:      /* pws operational and on */
 1947                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 1948                         break;
 1949                 case 0x01:      /* pws operational and off */
 1950                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 1951                         ssc->ses_objmap[oid].encstat[3] = 0x10;
 1952                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 1953                         break;
 1954                 case 0x10:      /* pws is malfunctioning and commanded on */
 1955                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
 1956                         ssc->ses_objmap[oid].encstat[3] = 0x61;
 1957                         ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 1958                         break;
 1959 
 1960                 case 0x11:      /* pws is malfunctioning and commanded off */
 1961                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
 1962                         ssc->ses_objmap[oid].encstat[3] = 0x51;
 1963                         ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 1964                         break;
 1965                 case 0x20:      /* pws is not present */
 1966                         ssc->ses_objmap[oid].encstat[0] =
 1967                             SES_OBJSTAT_NOTINSTALLED;
 1968                         ssc->ses_objmap[oid].encstat[3] = 0;
 1969                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 1970                         break;
 1971                 case 0x21:      /* pws is present */
 1972                         /*
 1973                          * This is for enclosures that cannot tell whether the
 1974                          * device is on or malfunctioning, but know that it is
 1975                          * present. Just fall through.
 1976                          */
 1977                         /* FALLTHROUGH */
 1978                 case 0x80:      /* Unknown or Not Reportable Status */
 1979                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
 1980                         ssc->ses_objmap[oid].encstat[3] = 0;
 1981                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 1982                         break;
 1983                 default:
 1984                         SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
 1985                             i, sdata[r] & 0xff);
 1986                         break;
 1987                 }
 1988                 ssc->ses_objmap[oid++].svalid = 1;
 1989                 r++;
 1990         }
 1991 
 1992         /*
 1993          * Skip over Slot SCSI IDs
 1994          */
 1995         r += cc->Nslots;
 1996 
 1997         /*
 1998          * We always have doorlock status, no matter what,
 1999          * but we only save the status if we have one.
 2000          */
 2001         SAFT_BAIL(r, hiwater, sdata, buflen);
 2002         if (cc->DoorLock) {
 2003                 /*
 2004                  * 0 = Door Locked
 2005                  * 1 = Door Unlocked, or no Lock Installed
 2006                  * 0x80 = Unknown or Not Reportable Status
 2007                  */
 2008                 ssc->ses_objmap[oid].encstat[1] = 0;
 2009                 ssc->ses_objmap[oid].encstat[2] = 0;
 2010                 switch ((uint8_t)sdata[r]) {
 2011                 case 0:
 2012                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2013                         ssc->ses_objmap[oid].encstat[3] = 0;
 2014                         break;
 2015                 case 1:
 2016                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2017                         ssc->ses_objmap[oid].encstat[3] = 1;
 2018                         break;
 2019                 case 0x80:
 2020                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
 2021                         ssc->ses_objmap[oid].encstat[3] = 0;
 2022                         ssc->ses_encstat |= SES_ENCSTAT_INFO;
 2023                         break;
 2024                 default:
 2025                         ssc->ses_objmap[oid].encstat[0] =
 2026                             SES_OBJSTAT_UNSUPPORTED;
 2027                         SES_LOG(ssc, "unknown lock status 0x%x\n",
 2028                             sdata[r] & 0xff);
 2029                         break;
 2030                 }
 2031                 ssc->ses_objmap[oid++].svalid = 1;
 2032         }
 2033         r++;
 2034 
 2035         /*
 2036          * We always have speaker status, no matter what,
 2037          * but we only save the status if we have one.
 2038          */
 2039         SAFT_BAIL(r, hiwater, sdata, buflen);
 2040         if (cc->Nspkrs) {
 2041                 ssc->ses_objmap[oid].encstat[1] = 0;
 2042                 ssc->ses_objmap[oid].encstat[2] = 0;
 2043                 if (sdata[r] == 1) {
 2044                         /*
 2045                          * We need to cache tone urgency indicators.
 2046                          * Someday.
 2047                          */
 2048                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
 2049                         ssc->ses_objmap[oid].encstat[3] = 0x8;
 2050                         ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
 2051                 } else if (sdata[r] == 0) {
 2052                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2053                         ssc->ses_objmap[oid].encstat[3] = 0;
 2054                 } else {
 2055                         ssc->ses_objmap[oid].encstat[0] =
 2056                             SES_OBJSTAT_UNSUPPORTED;
 2057                         ssc->ses_objmap[oid].encstat[3] = 0;
 2058                         SES_LOG(ssc, "unknown spkr status 0x%x\n",
 2059                             sdata[r] & 0xff);
 2060                 }
 2061                 ssc->ses_objmap[oid++].svalid = 1;
 2062         }
 2063         r++;
 2064 
 2065         for (i = 0; i < cc->Ntherm; i++) {
 2066                 SAFT_BAIL(r, hiwater, sdata, buflen);
 2067                 /*
 2068                  * Status is a range from -10 to 245 deg Celsius,
 2069                  * which we need to normalize to -20 to -245 according
 2070                  * to the latest SCSI spec, which makes little
 2071                  * sense since this would overflow an 8bit value.
 2072                  * Well, still, the base normalization is -20,
 2073                  * not -10, so we have to adjust.
 2074                  *
 2075                  * So what's over and under temperature?
 2076                  * Hmm- we'll state that 'normal' operating
 2077                  * is 10 to 40 deg Celsius.
 2078                  */
 2079 
 2080                 /*
 2081                  * Actually.... All of the units that people out in the world
 2082                  * seem to have do not come even close to setting a value that
 2083                  * complies with this spec.
 2084                  *
 2085                  * The closest explanation I could find was in an
 2086                  * LSI-Logic manual, which seemed to indicate that
 2087                  * this value would be set by whatever the I2C code
 2088                  * would interpolate from the output of an LM75
 2089                  * temperature sensor.
 2090                  *
 2091                  * This means that it is impossible to use the actual
 2092                  * numeric value to predict anything. But we don't want
 2093                  * to lose the value. So, we'll propagate the *uncorrected*
 2094                  * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
 2095                  * temperature flags for warnings.
 2096                  */
 2097                 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
 2098                 ssc->ses_objmap[oid].encstat[1] = 0;
 2099                 ssc->ses_objmap[oid].encstat[2] = sdata[r];
 2100                 ssc->ses_objmap[oid].encstat[3] = 0;
 2101                 ssc->ses_objmap[oid++].svalid = 1;
 2102                 r++;
 2103         }
 2104 
 2105         /*
 2106          * Now, for "pseudo" thermometers, we have two bytes
 2107          * of information in enclosure status- 16 bits. Actually,
 2108          * the MSB is a single TEMP ALERT flag indicating whether
 2109          * any other bits are set, but, thanks to fuzzy thinking,
 2110          * in the SAF-TE spec, this can also be set even if no
 2111          * other bits are set, thus making this really another
 2112          * binary temperature sensor.
 2113          */
 2114 
 2115         SAFT_BAIL(r, hiwater, sdata, buflen);
 2116         tempflags = sdata[r++];
 2117         SAFT_BAIL(r, hiwater, sdata, buflen);
 2118         tempflags |= (tempflags << 8) | sdata[r++];
 2119 
 2120         for (i = 0; i < NPSEUDO_THERM; i++) {
 2121                 ssc->ses_objmap[oid].encstat[1] = 0;
 2122                 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
 2123                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
 2124                         ssc->ses_objmap[4].encstat[2] = 0xff;
 2125                         /*
 2126                          * Set 'over temperature' failure.
 2127                          */
 2128                         ssc->ses_objmap[oid].encstat[3] = 8;
 2129                         ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
 2130                 } else {
 2131                         /*
 2132                          * We used to say 'not available' and synthesize a
 2133                          * nominal 30 deg (C)- that was wrong. Actually,
 2134                          * Just say 'OK', and use the reserved value of
 2135                          * zero.
 2136                          */
 2137                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2138                         ssc->ses_objmap[oid].encstat[2] = 0;
 2139                         ssc->ses_objmap[oid].encstat[3] = 0;
 2140                 }
 2141                 ssc->ses_objmap[oid++].svalid = 1;
 2142         }
 2143 
 2144         /*
 2145          * Get alarm status.
 2146          */
 2147         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2148         ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
 2149         ssc->ses_objmap[oid++].svalid = 1;
 2150 
 2151         /*
 2152          * Now get drive slot status
 2153          */
 2154         cdb[2] = SAFTE_RD_RDDSTS;
 2155         amt = buflen;
 2156         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 2157         if (err) {
 2158                 SES_FREE(sdata, buflen);
 2159                 return (err);
 2160         }
 2161         hiwater = buflen - amt;
 2162         for (r = i = 0; i < cc->Nslots; i++, r += 4) {
 2163                 SAFT_BAIL(r+3, hiwater, sdata, buflen);
 2164                 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
 2165                 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
 2166                 ssc->ses_objmap[oid].encstat[2] = 0;
 2167                 ssc->ses_objmap[oid].encstat[3] = 0;
 2168                 status = sdata[r+3];
 2169                 if ((status & 0x1) == 0) {      /* no device */
 2170                         ssc->ses_objmap[oid].encstat[0] =
 2171                             SES_OBJSTAT_NOTINSTALLED;
 2172                 } else {
 2173                         ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
 2174                 }
 2175                 if (status & 0x2) {
 2176                         ssc->ses_objmap[oid].encstat[2] = 0x8;
 2177                 }
 2178                 if ((status & 0x4) == 0) {
 2179                         ssc->ses_objmap[oid].encstat[3] = 0x10;
 2180                 }
 2181                 ssc->ses_objmap[oid++].svalid = 1;
 2182         }
 2183         /* see comment below about sticky enclosure status */
 2184         ssc->ses_encstat |= ENCI_SVALID | oencstat;
 2185         SES_FREE(sdata, buflen);
 2186         return (0);
 2187 }
 2188 
 2189 static int
 2190 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
 2191 {
 2192         int idx;
 2193         encobj *ep;
 2194         struct scfg *cc = ssc->ses_private;
 2195 
 2196         if (cc == NULL)
 2197                 return (0);
 2198 
 2199         idx = (int)obp->obj_id;
 2200         ep = &ssc->ses_objmap[idx];
 2201 
 2202         switch (ep->enctype) {
 2203         case SESTYP_DEVICE:
 2204                 if (obp->cstat[0] & SESCTL_PRDFAIL) {
 2205                         ep->priv |= 0x40;
 2206                 }
 2207                 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
 2208                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2209                         ep->priv |= 0x80;
 2210                         /*
 2211                          * Hmm. Try to set the 'No Drive' flag.
 2212                          * Maybe that will count as a 'disable'.
 2213                          */
 2214                 }
 2215                 if (ep->priv & 0xc6) {
 2216                         ep->priv &= ~0x1;
 2217                 } else {
 2218                         ep->priv |= 0x1;        /* no errors */
 2219                 }
 2220                 wrslot_stat(ssc, slp);
 2221                 break;
 2222         case SESTYP_POWER:
 2223                 /*
 2224                  * Okay- the only one that makes sense here is to
 2225                  * do the 'disable' for a power supply.
 2226                  */
 2227                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2228                         (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
 2229                                 idx - cc->pwroff, 0, 0, slp);
 2230                 }
 2231                 break;
 2232         case SESTYP_FAN:
 2233                 /*
 2234                  * Okay- the only one that makes sense here is to
 2235                  * set fan speed to zero on disable.
 2236                  */
 2237                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2238                         /* remember- fans are the first items, so idx works */
 2239                         (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
 2240                 }
 2241                 break;
 2242         case SESTYP_DOORLOCK:
 2243                 /*
 2244                  * Well, we can 'disable' the lock.
 2245                  */
 2246                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2247                         cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
 2248                         (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 2249                                 cc->flag2, 0, slp);
 2250                 }
 2251                 break;
 2252         case SESTYP_ALARM:
 2253                 /*
 2254                  * Well, we can 'disable' the alarm.
 2255                  */
 2256                 if (obp->cstat[0] & SESCTL_DISABLE) {
 2257                         cc->flag2 &= ~SAFT_FLG1_ALARM;
 2258                         ep->priv |= 0x40;       /* Muted */
 2259                         (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
 2260                                 cc->flag2, 0, slp);
 2261                 }
 2262                 break;
 2263         default:
 2264                 break;
 2265         }
 2266         ep->svalid = 0;
 2267         return (0);
 2268 }
 2269 
 2270 /*
 2271  * This function handles all of the 16 byte WRITE BUFFER commands.
 2272  */
 2273 static int
 2274 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
 2275     uint8_t b3, int slp)
 2276 {
 2277         int err, amt;
 2278         char *sdata;
 2279         struct scfg *cc = ssc->ses_private;
 2280         static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
 2281 
 2282         if (cc == NULL)
 2283                 return (0);
 2284 
 2285         sdata = SES_MALLOC(16);
 2286         if (sdata == NULL)
 2287                 return (ENOMEM);
 2288 
 2289         SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
 2290 
 2291         sdata[0] = op;
 2292         sdata[1] = b1;
 2293         sdata[2] = b2;
 2294         sdata[3] = b3;
 2295         MEMZERO(&sdata[4], 12);
 2296         amt = -16;
 2297         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 2298         SES_FREE(sdata, 16);
 2299         return (err);
 2300 }
 2301 
 2302 /*
 2303  * This function updates the status byte for the device slot described.
 2304  *
 2305  * Since this is an optional SAF-TE command, there's no point in
 2306  * returning an error.
 2307  */
 2308 static void
 2309 wrslot_stat(ses_softc_t *ssc, int slp)
 2310 {
 2311         int i, amt;
 2312         encobj *ep;
 2313         char cdb[10], *sdata;
 2314         struct scfg *cc = ssc->ses_private;
 2315 
 2316         if (cc == NULL)
 2317                 return;
 2318 
 2319         SES_VLOG(ssc, "saf_wrslot\n");
 2320         cdb[0] = WRITE_BUFFER;
 2321         cdb[1] = 1;
 2322         cdb[2] = 0;
 2323         cdb[3] = 0;
 2324         cdb[4] = 0;
 2325         cdb[5] = 0;
 2326         cdb[6] = 0;
 2327         cdb[7] = 0;
 2328         cdb[8] = cc->Nslots * 3 + 1;
 2329         cdb[9] = 0;
 2330 
 2331         sdata = SES_MALLOC(cc->Nslots * 3 + 1);
 2332         if (sdata == NULL)
 2333                 return;
 2334         MEMZERO(sdata, cc->Nslots * 3 + 1);
 2335 
 2336         sdata[0] = SAFTE_WT_DSTAT;
 2337         for (i = 0; i < cc->Nslots; i++) {
 2338                 ep = &ssc->ses_objmap[cc->slotoff + i];
 2339                 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
 2340                 sdata[1 + (3 * i)] = ep->priv & 0xff;
 2341         }
 2342         amt = -(cc->Nslots * 3 + 1);
 2343         (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
 2344         SES_FREE(sdata, cc->Nslots * 3 + 1);
 2345 }
 2346 
 2347 /*
 2348  * This function issues the "PERFORM SLOT OPERATION" command.
 2349  */
 2350 static int
 2351 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
 2352 {
 2353         int err, amt;
 2354         char *sdata;
 2355         struct scfg *cc = ssc->ses_private;
 2356         static char cdb[10] =
 2357             { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
 2358 
 2359         if (cc == NULL)
 2360                 return (0);
 2361 
 2362         sdata = SES_MALLOC(SAFT_SCRATCH);
 2363         if (sdata == NULL)
 2364                 return (ENOMEM);
 2365         MEMZERO(sdata, SAFT_SCRATCH);
 2366 
 2367         sdata[0] = SAFTE_WT_SLTOP;
 2368         sdata[1] = slot;
 2369         sdata[2] = opflag;
 2370         SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
 2371         amt = -SAFT_SCRATCH;
 2372         err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
 2373         SES_FREE(sdata, SAFT_SCRATCH);
 2374         return (err);
 2375 }

Cache object: fe41e0d0a118ecc2e14d3a497e9dacbf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.