The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sdhci/fsl_sdhci.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  */
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 /*
   31  * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
   32  *
   33  * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
   34  */
   35 
   36 #include "opt_mmccam.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/types.h>
   41 #include <sys/bus.h>
   42 #include <sys/callout.h>
   43 #include <sys/kernel.h>
   44 #include <sys/libkern.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/module.h>
   48 #include <sys/mutex.h>
   49 #include <sys/resource.h>
   50 #include <sys/rman.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/taskqueue.h>
   53 #include <sys/time.h>
   54 
   55 #include <machine/bus.h>
   56 #include <machine/resource.h>
   57 #ifdef __arm__
   58 #include <machine/intr.h>
   59 
   60 #include <arm/freescale/imx/imx_ccmvar.h>
   61 #endif
   62 
   63 #ifdef __powerpc__
   64 #include <powerpc/mpc85xx/mpc85xx.h>
   65 #endif
   66 
   67 #include <dev/gpio/gpiobusvar.h>
   68 
   69 #include <dev/ofw/ofw_bus.h>
   70 #include <dev/ofw/ofw_bus_subr.h>
   71 
   72 #include <dev/mmc/bridge.h>
   73 
   74 #include <dev/sdhci/sdhci.h>
   75 #include <dev/sdhci/sdhci_fdt_gpio.h>
   76 
   77 #include "mmcbr_if.h"
   78 #include "sdhci_if.h"
   79 
   80 struct fsl_sdhci_softc {
   81         device_t                dev;
   82         struct resource *       mem_res;
   83         struct resource *       irq_res;
   84         void *                  intr_cookie;
   85         struct sdhci_slot       slot;
   86         struct callout          r1bfix_callout;
   87         sbintime_t              r1bfix_timeout_at;
   88         struct sdhci_fdt_gpio * gpio;
   89         uint32_t                baseclk_hz;
   90         uint32_t                cmd_and_mode;
   91         uint32_t                r1bfix_intmask;
   92         uint16_t                sdclockreg_freq_bits;
   93         uint8_t                 r1bfix_type;
   94         uint8_t                 hwtype;
   95         bool                    slot_init_done;
   96 };
   97 
   98 #define R1BFIX_NONE     0       /* No fix needed at next interrupt. */
   99 #define R1BFIX_NODATA   1       /* Synthesize DATA_END for R1B w/o data. */
  100 #define R1BFIX_AC12     2       /* Wait for busy after auto command 12. */
  101 
  102 #define HWTYPE_NONE     0       /* Hardware not recognized/supported. */
  103 #define HWTYPE_ESDHC    1       /* fsl5x and earlier. */
  104 #define HWTYPE_USDHC    2       /* fsl6. */
  105 
  106 /*
  107  * Freescale-specific registers, or in some cases the layout of bits within the
  108  * sdhci-defined register is different on Freescale.  These names all begin with
  109  * SDHC_ (not SDHCI_).
  110  */
  111 
  112 #define SDHC_WTMK_LVL           0x44    /* Watermark Level register. */
  113 #define USDHC_MIX_CONTROL       0x48    /* Mix(ed) Control register. */
  114 #define SDHC_VEND_SPEC          0xC0    /* Vendor-specific register. */
  115 #define  SDHC_VEND_FRC_SDCLK_ON (1 <<  8)
  116 #define  SDHC_VEND_IPGEN        (1 << 11)
  117 #define  SDHC_VEND_HCKEN        (1 << 12)
  118 #define  SDHC_VEND_PEREN        (1 << 13)
  119 
  120 #define SDHC_PRES_STATE         0x24
  121 #define   SDHC_PRES_CIHB          (1 <<  0)
  122 #define   SDHC_PRES_CDIHB         (1 <<  1)
  123 #define   SDHC_PRES_DLA           (1 <<  2)
  124 #define   SDHC_PRES_SDSTB         (1 <<  3)
  125 #define   SDHC_PRES_IPGOFF        (1 <<  4)
  126 #define   SDHC_PRES_HCKOFF        (1 <<  5)
  127 #define   SDHC_PRES_PEROFF        (1 <<  6)
  128 #define   SDHC_PRES_SDOFF         (1 <<  7)
  129 #define   SDHC_PRES_WTA           (1 <<  8)
  130 #define   SDHC_PRES_RTA           (1 <<  9)
  131 #define   SDHC_PRES_BWEN          (1 << 10)
  132 #define   SDHC_PRES_BREN          (1 << 11)
  133 #define   SDHC_PRES_RTR           (1 << 12)
  134 #define   SDHC_PRES_CINST         (1 << 16)
  135 #define   SDHC_PRES_CDPL          (1 << 18)
  136 #define   SDHC_PRES_WPSPL         (1 << 19)
  137 #define   SDHC_PRES_CLSL          (1 << 23)
  138 #define   SDHC_PRES_DLSL_SHIFT    24
  139 #define   SDHC_PRES_DLSL_MASK     (0xffU << SDHC_PRES_DLSL_SHIFT)
  140 
  141 #define SDHC_PROT_CTRL          0x28
  142 #define  SDHC_PROT_LED          (1 << 0)
  143 #define  SDHC_PROT_WIDTH_1BIT   (0 << 1)
  144 #define  SDHC_PROT_WIDTH_4BIT   (1 << 1)
  145 #define  SDHC_PROT_WIDTH_8BIT   (2 << 1)
  146 #define  SDHC_PROT_WIDTH_MASK   (3 << 1)
  147 #define  SDHC_PROT_D3CD         (1 << 3)
  148 #define  SDHC_PROT_EMODE_BIG    (0 << 4)
  149 #define  SDHC_PROT_EMODE_HALF   (1 << 4)
  150 #define  SDHC_PROT_EMODE_LITTLE (2 << 4)
  151 #define  SDHC_PROT_EMODE_MASK   (3 << 4)
  152 #define  SDHC_PROT_SDMA         (0 << 8)
  153 #define  SDHC_PROT_ADMA1        (1 << 8)
  154 #define  SDHC_PROT_ADMA2        (2 << 8)
  155 #define  SDHC_PROT_ADMA264      (3 << 8)
  156 #define  SDHC_PROT_DMA_MASK     (3 << 8)
  157 #define  SDHC_PROT_CDTL         (1 << 6)
  158 #define  SDHC_PROT_CDSS         (1 << 7)
  159 
  160 #define SDHC_SYS_CTRL           0x2c
  161 
  162 /*
  163  * The clock enable bits exist in different registers for ESDHC vs USDHC, but
  164  * they are the same bits in both cases.  The divisor values go into the
  165  * standard sdhci clock register, but in different bit positions and meanings
  166    than the sdhci spec values.
  167  */
  168 #define SDHC_CLK_IPGEN          (1 << 0)
  169 #define SDHC_CLK_HCKEN          (1 << 1)
  170 #define SDHC_CLK_PEREN          (1 << 2)
  171 #define SDHC_CLK_SDCLKEN        (1 << 3)
  172 #define SDHC_CLK_ENABLE_MASK    0x0000000f
  173 #define SDHC_CLK_DIVISOR_MASK   0x000000f0
  174 #define SDHC_CLK_DIVISOR_SHIFT  4
  175 #define SDHC_CLK_PRESCALE_MASK  0x0000ff00
  176 #define SDHC_CLK_PRESCALE_SHIFT 8
  177 
  178 static struct ofw_compat_data compat_data[] = {
  179         {"fsl,imx6q-usdhc",     HWTYPE_USDHC},
  180         {"fsl,imx6sl-usdhc",    HWTYPE_USDHC},
  181         {"fsl,imx53-esdhc",     HWTYPE_ESDHC},
  182         {"fsl,imx51-esdhc",     HWTYPE_ESDHC},
  183         {"fsl,esdhc",           HWTYPE_ESDHC},
  184         {NULL,                  HWTYPE_NONE},
  185 };
  186 
  187 static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
  188 static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
  189 static void fsl_sdhci_r1bfix_func(void *arg);
  190 
  191 static inline uint32_t
  192 RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
  193 {
  194 
  195         return (bus_read_4(sc->mem_res, off));
  196 }
  197 
  198 static inline void
  199 WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
  200 {
  201 
  202         bus_write_4(sc->mem_res, off, val);
  203 }
  204 
  205 static uint8_t
  206 fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
  207 {
  208         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  209         uint32_t val32, wrk32;
  210 
  211         /*
  212          * Most of the things in the standard host control register are in the
  213          * hardware's wider protocol control register, but some of the bits are
  214          * moved around.
  215          */
  216         if (off == SDHCI_HOST_CONTROL) {
  217                 wrk32 = RD4(sc, SDHC_PROT_CTRL);
  218                 val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
  219                     SDHCI_CTRL_FORCE_CARD);
  220                 switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
  221                 case SDHC_PROT_WIDTH_1BIT:
  222                         /* Value is already 0. */
  223                         break;
  224                 case SDHC_PROT_WIDTH_4BIT:
  225                         val32 |= SDHCI_CTRL_4BITBUS;
  226                         break;
  227                 case SDHC_PROT_WIDTH_8BIT:
  228                         val32 |= SDHCI_CTRL_8BITBUS;
  229                         break;
  230                 }
  231                 switch (wrk32 & SDHC_PROT_DMA_MASK) {
  232                 case SDHC_PROT_SDMA:
  233                         /* Value is already 0. */
  234                         break;
  235                 case SDHC_PROT_ADMA1:
  236                         /* This value is deprecated, should never appear. */
  237                         break;
  238                 case SDHC_PROT_ADMA2:
  239                         val32 |= SDHCI_CTRL_ADMA2;
  240                         break;
  241                 case SDHC_PROT_ADMA264:
  242                         val32 |= SDHCI_CTRL_ADMA264;
  243                         break;
  244                 }
  245                 return val32;
  246         }
  247 
  248         /*
  249          * XXX can't find the bus power on/off knob.  For now we have to say the
  250          * power is always on and always set to the same voltage.
  251          */
  252         if (off == SDHCI_POWER_CONTROL) {
  253                 return (SDHCI_POWER_ON | SDHCI_POWER_300);
  254         }
  255 
  256         return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
  257 }
  258 
  259 static uint16_t
  260 fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
  261 {
  262         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  263         uint32_t val32;
  264 
  265         if (sc->hwtype == HWTYPE_USDHC) {
  266                 /*
  267                  * The USDHC hardware has nothing in the version register, but
  268                  * it's v3 compatible with all our translation code.
  269                  */
  270                 if (off == SDHCI_HOST_VERSION) {
  271                         return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
  272                 }
  273                 /*
  274                  * The USDHC hardware moved the transfer mode bits to the mixed
  275                  * control register, fetch them from there.
  276                  */
  277                 if (off == SDHCI_TRANSFER_MODE)
  278                         return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
  279 
  280         } else if (sc->hwtype == HWTYPE_ESDHC) {
  281                 /*
  282                  * The ESDHC hardware has the typical 32-bit combined "command
  283                  * and mode" register that we have to cache so that command
  284                  * isn't written until after mode.  On a read, just retrieve the
  285                  * cached values last written.
  286                  */
  287                 if (off == SDHCI_TRANSFER_MODE) {
  288                         return (sc->cmd_and_mode & 0x0000ffff);
  289                 } else if (off == SDHCI_COMMAND_FLAGS) {
  290                         return (sc->cmd_and_mode >> 16);
  291                 }
  292         }
  293 
  294         /*
  295          * This hardware only manages one slot.  Synthesize a slot interrupt
  296          * status register... if there are any enabled interrupts active they
  297          * must be coming from our one and only slot.
  298          */
  299         if (off == SDHCI_SLOT_INT_STATUS) {
  300                 val32  = RD4(sc, SDHCI_INT_STATUS);
  301                 val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
  302                 return (val32 ? 1 : 0);
  303         }
  304 
  305         /*
  306          * Clock bits are scattered into various registers which differ by
  307          * hardware type, complex enough to have their own function.
  308          */
  309         if (off == SDHCI_CLOCK_CONTROL) {
  310                 return (fsl_sdhc_get_clock(sc));
  311         }
  312 
  313         return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
  314 }
  315 
  316 static uint32_t
  317 fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
  318 {
  319         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  320         uint32_t val32, wrk32;
  321 
  322         val32 = RD4(sc, off);
  323 
  324         /*
  325          * The hardware leaves the base clock frequency out of the capabilities
  326          * register, but we filled it in by setting slot->max_clk at attach time
  327          * rather than here, because we can't represent frequencies above 63MHz
  328          * in an sdhci 2.0 capabliities register.  The timeout clock is the same
  329          * as the active output sdclock; we indicate that with a quirk setting
  330          * so don't populate the timeout frequency bits.
  331          *
  332          * XXX Turn off (for now) features the hardware can do but this driver
  333          * doesn't yet handle (1.8v, suspend/resume, etc).
  334          */
  335         if (off == SDHCI_CAPABILITIES) {
  336                 val32 &= ~SDHCI_CAN_VDD_180;
  337                 val32 &= ~SDHCI_CAN_DO_SUSPEND;
  338                 val32 |= SDHCI_CAN_DO_8BITBUS;
  339                 return (val32);
  340         }
  341 
  342         /*
  343          * The hardware moves bits around in the present state register to make
  344          * room for all 8 data line state bits.  To translate, mask out all the
  345          * bits which are not in the same position in both registers (this also
  346          * masks out some Freescale-specific bits in locations defined as
  347          * reserved by sdhci), then shift the data line and retune request bits
  348          * down to their standard locations.
  349          */
  350         if (off == SDHCI_PRESENT_STATE) {
  351                 wrk32 = val32;
  352                 val32 &= 0x000F0F07;
  353                 val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
  354                 val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
  355                 return (val32);
  356         }
  357 
  358         /*
  359          * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
  360          * command with an R1B response, mix it into the hardware status.
  361          */
  362         if (off == SDHCI_INT_STATUS) {
  363                 return (val32 | sc->r1bfix_intmask);
  364         }
  365 
  366         return val32;
  367 }
  368 
  369 static void
  370 fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
  371     uint32_t *data, bus_size_t count)
  372 {
  373         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  374 
  375         bus_read_multi_4(sc->mem_res, off, data, count);
  376 }
  377 
  378 static void
  379 fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
  380 {
  381         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  382         uint32_t val32;
  383 
  384         /*
  385          * Most of the things in the standard host control register are in the
  386          * hardware's wider protocol control register, but some of the bits are
  387          * moved around.
  388          */
  389         if (off == SDHCI_HOST_CONTROL) {
  390                 val32 = RD4(sc, SDHC_PROT_CTRL);
  391                 val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
  392                     SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
  393                 val32 |= (val & SDHCI_CTRL_LED);
  394                 if (val & SDHCI_CTRL_8BITBUS)
  395                         val32 |= SDHC_PROT_WIDTH_8BIT;
  396                 else
  397                         val32 |= (val & SDHCI_CTRL_4BITBUS);
  398                 val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
  399                 val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
  400                 WR4(sc, SDHC_PROT_CTRL, val32);
  401                 return;
  402         }
  403 
  404         /* XXX I can't find the bus power on/off knob; do nothing. */
  405         if (off == SDHCI_POWER_CONTROL) {
  406                 return;
  407         }
  408 #ifdef __powerpc__
  409         /* XXX Reset doesn't seem to work as expected.  Do nothing for now. */
  410         if (off == SDHCI_SOFTWARE_RESET)
  411                 return;
  412 #endif
  413 
  414         val32 = RD4(sc, off & ~3);
  415         val32 &= ~(0xff << (off & 3) * 8);
  416         val32 |= (val << (off & 3) * 8);
  417 
  418         WR4(sc, off & ~3, val32);
  419 }
  420 
  421 static void
  422 fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
  423 {
  424         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  425         uint32_t val32;
  426 
  427         /*
  428          * The clock control stuff is complex enough to have its own function
  429          * that can handle the ESDHC versus USDHC differences.
  430          */
  431         if (off == SDHCI_CLOCK_CONTROL) {
  432                 fsl_sdhc_set_clock(sc, val);
  433                 return;
  434         }
  435 
  436         /*
  437          * Figure out whether we need to check the DAT0 line for busy status at
  438          * interrupt time.  The controller should be doing this, but for some
  439          * reason it doesn't.  There are two cases:
  440          *  - R1B response with no data transfer should generate a DATA_END (aka
  441          *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
  442          *    there's no data transfer there's no DATA_END interrupt.  This is
  443          *    documented; they seem to think it's a feature.
  444          *  - R1B response after Auto-CMD12 appears to not work, even though
  445          *    there's a control bit for it (bit 3) in the vendor register.
  446          * When we're starting a command that needs a manual DAT0 line check at
  447          * interrupt time, we leave ourselves a note in r1bfix_type so that we
  448          * can do the extra work in fsl_sdhci_intr().
  449          */
  450         if (off == SDHCI_COMMAND_FLAGS) {
  451                 if (val & SDHCI_CMD_DATA) {
  452                         const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
  453                         val32 = RD4(sc, USDHC_MIX_CONTROL);
  454                         if ((val32 & MBAUTOCMD) == MBAUTOCMD)
  455                                 sc->r1bfix_type = R1BFIX_AC12;
  456                 } else {
  457                         if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
  458                                 WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
  459                                 WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
  460                                 sc->r1bfix_type = R1BFIX_NODATA;
  461                         }
  462                 }
  463         }
  464 
  465         /*
  466          * The USDHC hardware moved the transfer mode bits to mixed control; we
  467          * just write them there and we're done.  The ESDHC hardware has the
  468          * typical combined cmd-and-mode register that allows only 32-bit
  469          * access, so when writing the mode bits just save them, then later when
  470          * writing the command bits, add in the saved mode bits.
  471          */
  472         if (sc->hwtype == HWTYPE_USDHC) {
  473                 if (off == SDHCI_TRANSFER_MODE) {
  474                         val32 = RD4(sc, USDHC_MIX_CONTROL);
  475                         val32 &= ~0x3f;
  476                         val32 |= val & 0x37;
  477                         // XXX acmd23 not supported here (or by sdhci driver)
  478                         WR4(sc, USDHC_MIX_CONTROL, val32);
  479                         return;
  480                 }
  481         } else if (sc->hwtype == HWTYPE_ESDHC) {
  482                 if (off == SDHCI_TRANSFER_MODE) {
  483                         sc->cmd_and_mode =
  484                             (sc->cmd_and_mode & 0xffff0000) | val;
  485                         return;
  486                 } else if (off == SDHCI_COMMAND_FLAGS) {
  487                         sc->cmd_and_mode =
  488                             (sc->cmd_and_mode & 0xffff) | (val << 16);
  489                         WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
  490                         return;
  491                 }
  492         }
  493 
  494         val32 = RD4(sc, off & ~3);
  495         val32 &= ~(0xffff << (off & 3) * 8);
  496         val32 |= ((val & 0xffff) << (off & 3) * 8);
  497         WR4(sc, off & ~3, val32);       
  498 }
  499 
  500 static void
  501 fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
  502 {
  503         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  504 
  505         /* Clear synthesized interrupts, then pass the value to the hardware. */
  506         if (off == SDHCI_INT_STATUS) {
  507                 sc->r1bfix_intmask &= ~val;
  508         }
  509 
  510         WR4(sc, off, val);
  511 }
  512 
  513 static void
  514 fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
  515     uint32_t *data, bus_size_t count)
  516 {
  517         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  518 
  519         bus_write_multi_4(sc->mem_res, off, data, count);
  520 }
  521 
  522 static uint16_t
  523 fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
  524 {
  525         uint16_t val;
  526 
  527         /*
  528          * Whenever the sdhci driver writes the clock register we save a
  529          * snapshot of just the frequency bits, so that we can play them back
  530          * here on a register read without recalculating the frequency from the
  531          * prescalar and divisor bits in the real register.  We'll start with
  532          * those bits, and mix in the clock status and enable bits that come
  533          * from different places depending on which hardware we've got.
  534          */
  535         val = sc->sdclockreg_freq_bits;
  536 
  537         /*
  538          * The internal clock is always enabled (actually, the hardware manages
  539          * it).  Whether the internal clock is stable yet after a frequency
  540          * change comes from the present-state register on both hardware types.
  541          */
  542         val |= SDHCI_CLOCK_INT_EN;
  543         if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
  544             val |= SDHCI_CLOCK_INT_STABLE;
  545 
  546         /*
  547          * On i.MX ESDHC hardware the card bus clock enable is in the usual
  548          * sdhci register but it's a different bit, so transcribe it (note the
  549          * difference between standard SDHCI_ and Freescale SDHC_ prefixes
  550          * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
  551          * no force-off for the card bus clock (the hardware runs the clock when
  552          * transfers are active no matter what), so we always say the clock is
  553          * on.
  554          * XXX Maybe we should say it's in whatever state the sdhci driver last
  555          * set it to.
  556          */
  557         if (sc->hwtype == HWTYPE_ESDHC) {
  558 #ifdef __arm__
  559                 if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
  560 #endif
  561                         val |= SDHCI_CLOCK_CARD_EN;
  562         } else {
  563                 val |= SDHCI_CLOCK_CARD_EN;
  564         }
  565 
  566         return (val);
  567 }
  568 
  569 static void 
  570 fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
  571 {
  572         uint32_t divisor, freq, prescale, val32;
  573 
  574         val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
  575 
  576         /*
  577          * Save the frequency-setting bits in SDHCI format so that we can play
  578          * them back in get_clock without complex decoding of hardware regs,
  579          * then deal with the freqency part of the value based on hardware type.
  580          */
  581         sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
  582         if (sc->hwtype == HWTYPE_ESDHC) {
  583                 /*
  584                  * The i.MX5 ESDHC hardware requires the driver to manually
  585                  * start and stop the sd bus clock.  If the enable bit is not
  586                  * set, turn off the clock in hardware and we're done, otherwise
  587                  * decode the requested frequency.  ESDHC hardware is sdhci 2.0;
  588                  * the sdhci driver will use the original 8-bit divisor field
  589                  * and the "base / 2^N" divisor scheme.
  590                  */
  591                 if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
  592 #ifdef __arm__
  593                         /* On QorIQ, this is a reserved bit. */
  594                         WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
  595 #endif
  596                         return;
  597                 }
  598                 divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
  599                 freq = sc->baseclk_hz >> ffs(divisor);
  600         } else {
  601                 /*
  602                  * The USDHC hardware provides only "force always on" control
  603                  * over the sd bus clock, but no way to turn it off.  (If a cmd
  604                  * or data transfer is in progress the clock is on, otherwise it
  605                  * is off.)  If the clock is being disabled, we can just return
  606                  * now, otherwise we decode the requested frequency.  USDHC
  607                  * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
  608                  * divisor using the "base / 2*N" divisor scheme.
  609                  */
  610                 if ((val & SDHCI_CLOCK_CARD_EN) == 0)
  611                         return;
  612                 divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
  613                     ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
  614                     SDHCI_DIVIDER_MASK_LEN;
  615                 if (divisor == 0)
  616                         freq = sc->baseclk_hz;
  617                 else
  618                         freq = sc->baseclk_hz / (2 * divisor);
  619         }
  620 
  621         /*
  622          * Get a prescaler and final divisor to achieve the desired frequency.
  623          */
  624         for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
  625                 prescale <<= 1;
  626 
  627         for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
  628                 ++divisor;
  629 
  630 #ifdef DEBUG    
  631         device_printf(sc->dev,
  632             "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
  633             freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz, 
  634             prescale, divisor);
  635 #endif  
  636 
  637         /*
  638          * Adjust to zero-based values, and store them to the hardware.
  639          */
  640         prescale >>= 1;
  641         divisor -= 1;
  642 
  643         val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
  644         val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
  645         val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
  646         val32 |= SDHC_CLK_IPGEN;
  647         WR4(sc, SDHCI_CLOCK_CONTROL, val32);
  648 }
  649 
  650 static boolean_t
  651 fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
  652 {
  653         uint32_t inhibit;
  654 
  655         mtx_assert(&sc->slot.mtx, MA_OWNED);
  656 
  657         /*
  658          * Check the DAT0 line status using both the DLA (data line active) and
  659          * CDIHB (data inhibit) bits in the present state register.  In theory
  660          * just DLA should do the trick,  but in practice it takes both.  If the
  661          * DAT0 line is still being held and we're not yet beyond the timeout
  662          * point, just schedule another callout to check again later.
  663          */
  664         inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
  665 
  666         if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
  667                 callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0, 
  668                     fsl_sdhci_r1bfix_func, sc, 0);
  669                 return (false);
  670         }
  671 
  672         /*
  673          * If we reach this point with the inhibit bits still set, we've got a
  674          * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
  675          * line has been released, and we synthesize a DATA_END, and if the type
  676          * of fix needed was on a command-without-data we also now add in the
  677          * original INT_RESPONSE that we suppressed earlier.
  678          */
  679         if (inhibit)
  680                 sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
  681         else {
  682                 sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
  683                 if (sc->r1bfix_type == R1BFIX_NODATA)
  684                         sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
  685         }
  686 
  687         sc->r1bfix_type = R1BFIX_NONE;
  688         return (true);
  689 }
  690 
  691 static void
  692 fsl_sdhci_r1bfix_func(void * arg)
  693 {
  694         struct fsl_sdhci_softc *sc = arg;
  695         boolean_t r1bwait_done;
  696 
  697         mtx_lock(&sc->slot.mtx);
  698         r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
  699         mtx_unlock(&sc->slot.mtx);
  700         if (r1bwait_done)
  701                 sdhci_generic_intr(&sc->slot);
  702 }
  703 
  704 static void
  705 fsl_sdhci_intr(void *arg)
  706 {
  707         struct fsl_sdhci_softc *sc = arg;
  708         uint32_t intmask;
  709 
  710         mtx_lock(&sc->slot.mtx);
  711 
  712         /*
  713          * Manually check the DAT0 line for R1B response types that the
  714          * controller fails to handle properly.  The controller asserts the done
  715          * interrupt while the card is still asserting busy with the DAT0 line.
  716          *
  717          * We check DAT0 immediately because most of the time, especially on a
  718          * read, the card will actually be done by time we get here.  If it's
  719          * not, then the wait_done routine will schedule a callout to re-check
  720          * periodically until it is done.  In that case we clear the interrupt
  721          * out of the hardware now so that we can present it later when the DAT0
  722          * line is released.
  723          *
  724          * If we need to wait for the DAT0 line to be released, we set up a
  725          * timeout point 250ms in the future.  This number comes from the SD
  726          * spec, which allows a command to take that long.  In the real world,
  727          * cards tend to take 10-20ms for a long-running command such as a write
  728          * or erase that spans two pages.
  729          */
  730         switch (sc->r1bfix_type) {
  731         case R1BFIX_NODATA:
  732                 intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
  733                 break;
  734         case R1BFIX_AC12:
  735                 intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
  736                 break;
  737         default:
  738                 intmask = 0;
  739                 break;
  740         }
  741         if (intmask) {
  742                 sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
  743                 if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
  744                         WR4(sc, SDHCI_INT_STATUS, intmask);
  745                         bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4, 
  746                             BUS_SPACE_BARRIER_WRITE);
  747                 }
  748         }
  749 
  750         mtx_unlock(&sc->slot.mtx);
  751         sdhci_generic_intr(&sc->slot);
  752 }
  753 
  754 static int
  755 fsl_sdhci_get_ro(device_t bus, device_t child)
  756 {
  757         struct fsl_sdhci_softc *sc = device_get_softc(bus);
  758 
  759         return (sdhci_fdt_gpio_get_readonly(sc->gpio));
  760 }
  761 
  762 static bool
  763 fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
  764 {
  765         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  766 
  767         return (sdhci_fdt_gpio_get_present(sc->gpio));
  768 }
  769 
  770 #ifdef __powerpc__
  771 static uint32_t
  772 fsl_sdhci_get_platform_clock(device_t dev)
  773 {
  774         phandle_t node;
  775         uint32_t clock;
  776 
  777         node = ofw_bus_get_node(dev);
  778 
  779         /* Get sdhci node properties */
  780         if((OF_getprop(node, "clock-frequency", (void *)&clock,
  781             sizeof(clock)) <= 0) || (clock == 0)) {
  782                 clock = mpc85xx_get_system_clock();
  783 
  784                 if (clock == 0) {
  785                         device_printf(dev,"Cannot acquire correct sdhci "
  786                             "frequency from DTS.\n");
  787 
  788                         return (0);
  789                 }
  790         }
  791 
  792         if (bootverbose)
  793                 device_printf(dev, "Acquired clock: %d from DTS\n", clock);
  794 
  795         return (clock);
  796 }
  797 #endif
  798 
  799 static int
  800 fsl_sdhci_detach(device_t dev)
  801 {
  802         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  803 
  804         if (sc->gpio != NULL)
  805                 sdhci_fdt_gpio_teardown(sc->gpio);
  806 
  807         callout_drain(&sc->r1bfix_callout);
  808 
  809         if (sc->slot_init_done)
  810                 sdhci_cleanup_slot(&sc->slot);
  811 
  812         if (sc->intr_cookie != NULL)
  813                 bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
  814         if (sc->irq_res != NULL)
  815                 bus_release_resource(dev, SYS_RES_IRQ,
  816                     rman_get_rid(sc->irq_res), sc->irq_res);
  817 
  818         if (sc->mem_res != NULL) {
  819                 bus_release_resource(dev, SYS_RES_MEMORY,
  820                     rman_get_rid(sc->mem_res), sc->mem_res);
  821         }
  822 
  823         return (0);
  824 }
  825 
  826 static int
  827 fsl_sdhci_attach(device_t dev)
  828 {
  829         struct fsl_sdhci_softc *sc = device_get_softc(dev);
  830         int rid, err;
  831 #ifdef __powerpc__
  832         phandle_t node;
  833         uint32_t protctl;
  834 #endif
  835 
  836         sc->dev = dev;
  837 
  838         callout_init(&sc->r1bfix_callout, 1);
  839 
  840         sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
  841         if (sc->hwtype == HWTYPE_NONE)
  842                 panic("Impossible: not compatible in fsl_sdhci_attach()");
  843 
  844         rid = 0;
  845         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  846             RF_ACTIVE);
  847         if (!sc->mem_res) {
  848                 device_printf(dev, "cannot allocate memory window\n");
  849                 err = ENXIO;
  850                 goto fail;
  851         }
  852 
  853         rid = 0;
  854         sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  855             RF_ACTIVE);
  856         if (!sc->irq_res) {
  857                 device_printf(dev, "cannot allocate interrupt\n");
  858                 err = ENXIO;
  859                 goto fail;
  860         }
  861 
  862         if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
  863             NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
  864                 device_printf(dev, "cannot setup interrupt handler\n");
  865                 err = ENXIO;
  866                 goto fail;
  867         }
  868 
  869         sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
  870 
  871         /*
  872          * DMA is not really broken, I just haven't implemented it yet.
  873          */
  874         sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
  875 
  876         /*
  877          * Set the buffer watermark level to 128 words (512 bytes) for both read
  878          * and write.  The hardware has a restriction that when the read or
  879          * write ready status is asserted, that means you can read exactly the
  880          * number of words set in the watermark register before you have to
  881          * re-check the status and potentially wait for more data.  The main
  882          * sdhci driver provides no hook for doing status checking on less than
  883          * a full block boundary, so we set the watermark level to be a full
  884          * block.  Reads and writes where the block size is less than the
  885          * watermark size will work correctly too, no need to change the
  886          * watermark for different size blocks.  However, 128 is the maximum
  887          * allowed for the watermark, so PIO is limitted to 512 byte blocks
  888          * (which works fine for SD cards, may be a problem for SDIO some day).
  889          *
  890          * XXX need named constants for this stuff.
  891          */
  892         /* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
  893         if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
  894                 WR4(sc, SDHC_WTMK_LVL, 0x10801080);
  895         else
  896                 WR4(sc, SDHC_WTMK_LVL, 0x08800880);
  897 
  898         /*
  899          * We read in native byte order in the main driver, but the register
  900          * defaults to little endian.
  901          */
  902 #ifdef __powerpc__
  903         sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
  904 #else
  905         sc->baseclk_hz = imx_ccm_sdhci_hz();
  906 #endif
  907         sc->slot.max_clk = sc->baseclk_hz;
  908 
  909         /*
  910          * Set up any gpio pin handling described in the FDT data. This cannot
  911          * fail; see comments in sdhci_fdt_gpio.h for details.
  912          */
  913         sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
  914 
  915 #ifdef __powerpc__
  916         node = ofw_bus_get_node(dev);
  917         /* Default to big-endian on powerpc */
  918         protctl = RD4(sc, SDHC_PROT_CTRL);
  919         protctl &= ~SDHC_PROT_EMODE_MASK;
  920         if (OF_hasprop(node, "little-endian"))
  921                 protctl |= SDHC_PROT_EMODE_LITTLE;
  922         else
  923                 protctl |= SDHC_PROT_EMODE_BIG;
  924         WR4(sc, SDHC_PROT_CTRL, protctl);
  925 #endif
  926 
  927         sdhci_init_slot(dev, &sc->slot, 0);
  928         sc->slot_init_done = true;
  929 
  930         bus_generic_probe(dev);
  931         bus_generic_attach(dev);
  932 
  933         sdhci_start_slot(&sc->slot);
  934 
  935         return (0);
  936 
  937 fail:
  938         fsl_sdhci_detach(dev);
  939         return (err);
  940 }
  941 
  942 static int
  943 fsl_sdhci_probe(device_t dev)
  944 {
  945 
  946         if (!ofw_bus_status_okay(dev))
  947                 return (ENXIO);
  948 
  949         switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
  950         case HWTYPE_ESDHC:
  951                 device_set_desc(dev, "Freescale eSDHC controller");
  952                 return (BUS_PROBE_DEFAULT);
  953         case HWTYPE_USDHC:
  954                 device_set_desc(dev, "Freescale uSDHC controller");
  955                 return (BUS_PROBE_DEFAULT);
  956         default:
  957                 break;
  958         }
  959         return (ENXIO);
  960 }
  961 
  962 static device_method_t fsl_sdhci_methods[] = {
  963         /* Device interface */
  964         DEVMETHOD(device_probe,         fsl_sdhci_probe),
  965         DEVMETHOD(device_attach,        fsl_sdhci_attach),
  966         DEVMETHOD(device_detach,        fsl_sdhci_detach),
  967 
  968         /* Bus interface */
  969         DEVMETHOD(bus_read_ivar,        sdhci_generic_read_ivar),
  970         DEVMETHOD(bus_write_ivar,       sdhci_generic_write_ivar),
  971 
  972         /* MMC bridge interface */
  973         DEVMETHOD(mmcbr_update_ios,     sdhci_generic_update_ios),
  974         DEVMETHOD(mmcbr_request,        sdhci_generic_request),
  975         DEVMETHOD(mmcbr_get_ro,         fsl_sdhci_get_ro),
  976         DEVMETHOD(mmcbr_acquire_host,   sdhci_generic_acquire_host),
  977         DEVMETHOD(mmcbr_release_host,   sdhci_generic_release_host),
  978 
  979         /* SDHCI accessors */
  980         DEVMETHOD(sdhci_read_1,         fsl_sdhci_read_1),
  981         DEVMETHOD(sdhci_read_2,         fsl_sdhci_read_2),
  982         DEVMETHOD(sdhci_read_4,         fsl_sdhci_read_4),
  983         DEVMETHOD(sdhci_read_multi_4,   fsl_sdhci_read_multi_4),
  984         DEVMETHOD(sdhci_write_1,        fsl_sdhci_write_1),
  985         DEVMETHOD(sdhci_write_2,        fsl_sdhci_write_2),
  986         DEVMETHOD(sdhci_write_4,        fsl_sdhci_write_4),
  987         DEVMETHOD(sdhci_write_multi_4,  fsl_sdhci_write_multi_4),
  988         DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
  989 
  990         DEVMETHOD_END
  991 };
  992 
  993 static driver_t fsl_sdhci_driver = {
  994         "sdhci_fsl",
  995         fsl_sdhci_methods,
  996         sizeof(struct fsl_sdhci_softc),
  997 };
  998 
  999 DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, NULL, NULL);
 1000 SDHCI_DEPEND(sdhci_fsl);
 1001 
 1002 #ifndef MMCCAM
 1003 MMC_DECLARE_BRIDGE(sdhci_fsl);
 1004 #endif

Cache object: 399e31b9928850551697c5d9de66ed67


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.