1 /*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31 * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
32 *
33 * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34 */
35
36 #include "opt_mmccam.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/bus.h>
42 #include <sys/callout.h>
43 #include <sys/kernel.h>
44 #include <sys/libkern.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/mutex.h>
49 #include <sys/resource.h>
50 #include <sys/rman.h>
51 #include <sys/sysctl.h>
52 #include <sys/taskqueue.h>
53 #include <sys/time.h>
54
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 #ifdef __arm__
58 #include <machine/intr.h>
59
60 #include <arm/freescale/imx/imx_ccmvar.h>
61 #endif
62
63 #ifdef __powerpc__
64 #include <powerpc/mpc85xx/mpc85xx.h>
65 #endif
66
67 #include <dev/gpio/gpiobusvar.h>
68
69 #include <dev/ofw/ofw_bus.h>
70 #include <dev/ofw/ofw_bus_subr.h>
71
72 #include <dev/mmc/bridge.h>
73
74 #include <dev/sdhci/sdhci.h>
75 #include <dev/sdhci/sdhci_fdt_gpio.h>
76
77 #include "mmcbr_if.h"
78 #include "sdhci_if.h"
79
80 struct fsl_sdhci_softc {
81 device_t dev;
82 struct resource * mem_res;
83 struct resource * irq_res;
84 void * intr_cookie;
85 struct sdhci_slot slot;
86 struct callout r1bfix_callout;
87 sbintime_t r1bfix_timeout_at;
88 struct sdhci_fdt_gpio * gpio;
89 uint32_t baseclk_hz;
90 uint32_t cmd_and_mode;
91 uint32_t r1bfix_intmask;
92 uint16_t sdclockreg_freq_bits;
93 uint8_t r1bfix_type;
94 uint8_t hwtype;
95 bool slot_init_done;
96 };
97
98 #define R1BFIX_NONE 0 /* No fix needed at next interrupt. */
99 #define R1BFIX_NODATA 1 /* Synthesize DATA_END for R1B w/o data. */
100 #define R1BFIX_AC12 2 /* Wait for busy after auto command 12. */
101
102 #define HWTYPE_NONE 0 /* Hardware not recognized/supported. */
103 #define HWTYPE_ESDHC 1 /* fsl5x and earlier. */
104 #define HWTYPE_USDHC 2 /* fsl6. */
105
106 /*
107 * Freescale-specific registers, or in some cases the layout of bits within the
108 * sdhci-defined register is different on Freescale. These names all begin with
109 * SDHC_ (not SDHCI_).
110 */
111
112 #define SDHC_WTMK_LVL 0x44 /* Watermark Level register. */
113 #define USDHC_MIX_CONTROL 0x48 /* Mix(ed) Control register. */
114 #define SDHC_VEND_SPEC 0xC0 /* Vendor-specific register. */
115 #define SDHC_VEND_FRC_SDCLK_ON (1 << 8)
116 #define SDHC_VEND_IPGEN (1 << 11)
117 #define SDHC_VEND_HCKEN (1 << 12)
118 #define SDHC_VEND_PEREN (1 << 13)
119
120 #define SDHC_PRES_STATE 0x24
121 #define SDHC_PRES_CIHB (1 << 0)
122 #define SDHC_PRES_CDIHB (1 << 1)
123 #define SDHC_PRES_DLA (1 << 2)
124 #define SDHC_PRES_SDSTB (1 << 3)
125 #define SDHC_PRES_IPGOFF (1 << 4)
126 #define SDHC_PRES_HCKOFF (1 << 5)
127 #define SDHC_PRES_PEROFF (1 << 6)
128 #define SDHC_PRES_SDOFF (1 << 7)
129 #define SDHC_PRES_WTA (1 << 8)
130 #define SDHC_PRES_RTA (1 << 9)
131 #define SDHC_PRES_BWEN (1 << 10)
132 #define SDHC_PRES_BREN (1 << 11)
133 #define SDHC_PRES_RTR (1 << 12)
134 #define SDHC_PRES_CINST (1 << 16)
135 #define SDHC_PRES_CDPL (1 << 18)
136 #define SDHC_PRES_WPSPL (1 << 19)
137 #define SDHC_PRES_CLSL (1 << 23)
138 #define SDHC_PRES_DLSL_SHIFT 24
139 #define SDHC_PRES_DLSL_MASK (0xffU << SDHC_PRES_DLSL_SHIFT)
140
141 #define SDHC_PROT_CTRL 0x28
142 #define SDHC_PROT_LED (1 << 0)
143 #define SDHC_PROT_WIDTH_1BIT (0 << 1)
144 #define SDHC_PROT_WIDTH_4BIT (1 << 1)
145 #define SDHC_PROT_WIDTH_8BIT (2 << 1)
146 #define SDHC_PROT_WIDTH_MASK (3 << 1)
147 #define SDHC_PROT_D3CD (1 << 3)
148 #define SDHC_PROT_EMODE_BIG (0 << 4)
149 #define SDHC_PROT_EMODE_HALF (1 << 4)
150 #define SDHC_PROT_EMODE_LITTLE (2 << 4)
151 #define SDHC_PROT_EMODE_MASK (3 << 4)
152 #define SDHC_PROT_SDMA (0 << 8)
153 #define SDHC_PROT_ADMA1 (1 << 8)
154 #define SDHC_PROT_ADMA2 (2 << 8)
155 #define SDHC_PROT_ADMA264 (3 << 8)
156 #define SDHC_PROT_DMA_MASK (3 << 8)
157 #define SDHC_PROT_CDTL (1 << 6)
158 #define SDHC_PROT_CDSS (1 << 7)
159
160 #define SDHC_SYS_CTRL 0x2c
161
162 /*
163 * The clock enable bits exist in different registers for ESDHC vs USDHC, but
164 * they are the same bits in both cases. The divisor values go into the
165 * standard sdhci clock register, but in different bit positions and meanings
166 than the sdhci spec values.
167 */
168 #define SDHC_CLK_IPGEN (1 << 0)
169 #define SDHC_CLK_HCKEN (1 << 1)
170 #define SDHC_CLK_PEREN (1 << 2)
171 #define SDHC_CLK_SDCLKEN (1 << 3)
172 #define SDHC_CLK_ENABLE_MASK 0x0000000f
173 #define SDHC_CLK_DIVISOR_MASK 0x000000f0
174 #define SDHC_CLK_DIVISOR_SHIFT 4
175 #define SDHC_CLK_PRESCALE_MASK 0x0000ff00
176 #define SDHC_CLK_PRESCALE_SHIFT 8
177
178 static struct ofw_compat_data compat_data[] = {
179 {"fsl,imx6q-usdhc", HWTYPE_USDHC},
180 {"fsl,imx6sl-usdhc", HWTYPE_USDHC},
181 {"fsl,imx53-esdhc", HWTYPE_ESDHC},
182 {"fsl,imx51-esdhc", HWTYPE_ESDHC},
183 {"fsl,esdhc", HWTYPE_ESDHC},
184 {NULL, HWTYPE_NONE},
185 };
186
187 static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
188 static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
189 static void fsl_sdhci_r1bfix_func(void *arg);
190
191 static inline uint32_t
192 RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
193 {
194
195 return (bus_read_4(sc->mem_res, off));
196 }
197
198 static inline void
199 WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
200 {
201
202 bus_write_4(sc->mem_res, off, val);
203 }
204
205 static uint8_t
206 fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
207 {
208 struct fsl_sdhci_softc *sc = device_get_softc(dev);
209 uint32_t val32, wrk32;
210
211 /*
212 * Most of the things in the standard host control register are in the
213 * hardware's wider protocol control register, but some of the bits are
214 * moved around.
215 */
216 if (off == SDHCI_HOST_CONTROL) {
217 wrk32 = RD4(sc, SDHC_PROT_CTRL);
218 val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
219 SDHCI_CTRL_FORCE_CARD);
220 switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
221 case SDHC_PROT_WIDTH_1BIT:
222 /* Value is already 0. */
223 break;
224 case SDHC_PROT_WIDTH_4BIT:
225 val32 |= SDHCI_CTRL_4BITBUS;
226 break;
227 case SDHC_PROT_WIDTH_8BIT:
228 val32 |= SDHCI_CTRL_8BITBUS;
229 break;
230 }
231 switch (wrk32 & SDHC_PROT_DMA_MASK) {
232 case SDHC_PROT_SDMA:
233 /* Value is already 0. */
234 break;
235 case SDHC_PROT_ADMA1:
236 /* This value is deprecated, should never appear. */
237 break;
238 case SDHC_PROT_ADMA2:
239 val32 |= SDHCI_CTRL_ADMA2;
240 break;
241 case SDHC_PROT_ADMA264:
242 val32 |= SDHCI_CTRL_ADMA264;
243 break;
244 }
245 return val32;
246 }
247
248 /*
249 * XXX can't find the bus power on/off knob. For now we have to say the
250 * power is always on and always set to the same voltage.
251 */
252 if (off == SDHCI_POWER_CONTROL) {
253 return (SDHCI_POWER_ON | SDHCI_POWER_300);
254 }
255
256 return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
257 }
258
259 static uint16_t
260 fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
261 {
262 struct fsl_sdhci_softc *sc = device_get_softc(dev);
263 uint32_t val32;
264
265 if (sc->hwtype == HWTYPE_USDHC) {
266 /*
267 * The USDHC hardware has nothing in the version register, but
268 * it's v3 compatible with all our translation code.
269 */
270 if (off == SDHCI_HOST_VERSION) {
271 return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
272 }
273 /*
274 * The USDHC hardware moved the transfer mode bits to the mixed
275 * control register, fetch them from there.
276 */
277 if (off == SDHCI_TRANSFER_MODE)
278 return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
279
280 } else if (sc->hwtype == HWTYPE_ESDHC) {
281 /*
282 * The ESDHC hardware has the typical 32-bit combined "command
283 * and mode" register that we have to cache so that command
284 * isn't written until after mode. On a read, just retrieve the
285 * cached values last written.
286 */
287 if (off == SDHCI_TRANSFER_MODE) {
288 return (sc->cmd_and_mode & 0x0000ffff);
289 } else if (off == SDHCI_COMMAND_FLAGS) {
290 return (sc->cmd_and_mode >> 16);
291 }
292 }
293
294 /*
295 * This hardware only manages one slot. Synthesize a slot interrupt
296 * status register... if there are any enabled interrupts active they
297 * must be coming from our one and only slot.
298 */
299 if (off == SDHCI_SLOT_INT_STATUS) {
300 val32 = RD4(sc, SDHCI_INT_STATUS);
301 val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
302 return (val32 ? 1 : 0);
303 }
304
305 /*
306 * Clock bits are scattered into various registers which differ by
307 * hardware type, complex enough to have their own function.
308 */
309 if (off == SDHCI_CLOCK_CONTROL) {
310 return (fsl_sdhc_get_clock(sc));
311 }
312
313 return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
314 }
315
316 static uint32_t
317 fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
318 {
319 struct fsl_sdhci_softc *sc = device_get_softc(dev);
320 uint32_t val32, wrk32;
321
322 val32 = RD4(sc, off);
323
324 /*
325 * The hardware leaves the base clock frequency out of the capabilities
326 * register, but we filled it in by setting slot->max_clk at attach time
327 * rather than here, because we can't represent frequencies above 63MHz
328 * in an sdhci 2.0 capabliities register. The timeout clock is the same
329 * as the active output sdclock; we indicate that with a quirk setting
330 * so don't populate the timeout frequency bits.
331 *
332 * XXX Turn off (for now) features the hardware can do but this driver
333 * doesn't yet handle (1.8v, suspend/resume, etc).
334 */
335 if (off == SDHCI_CAPABILITIES) {
336 val32 &= ~SDHCI_CAN_VDD_180;
337 val32 &= ~SDHCI_CAN_DO_SUSPEND;
338 val32 |= SDHCI_CAN_DO_8BITBUS;
339 return (val32);
340 }
341
342 /*
343 * The hardware moves bits around in the present state register to make
344 * room for all 8 data line state bits. To translate, mask out all the
345 * bits which are not in the same position in both registers (this also
346 * masks out some Freescale-specific bits in locations defined as
347 * reserved by sdhci), then shift the data line and retune request bits
348 * down to their standard locations.
349 */
350 if (off == SDHCI_PRESENT_STATE) {
351 wrk32 = val32;
352 val32 &= 0x000F0F07;
353 val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
354 val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
355 return (val32);
356 }
357
358 /*
359 * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
360 * command with an R1B response, mix it into the hardware status.
361 */
362 if (off == SDHCI_INT_STATUS) {
363 return (val32 | sc->r1bfix_intmask);
364 }
365
366 return val32;
367 }
368
369 static void
370 fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
371 uint32_t *data, bus_size_t count)
372 {
373 struct fsl_sdhci_softc *sc = device_get_softc(dev);
374
375 bus_read_multi_4(sc->mem_res, off, data, count);
376 }
377
378 static void
379 fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
380 {
381 struct fsl_sdhci_softc *sc = device_get_softc(dev);
382 uint32_t val32;
383
384 /*
385 * Most of the things in the standard host control register are in the
386 * hardware's wider protocol control register, but some of the bits are
387 * moved around.
388 */
389 if (off == SDHCI_HOST_CONTROL) {
390 val32 = RD4(sc, SDHC_PROT_CTRL);
391 val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
392 SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
393 val32 |= (val & SDHCI_CTRL_LED);
394 if (val & SDHCI_CTRL_8BITBUS)
395 val32 |= SDHC_PROT_WIDTH_8BIT;
396 else
397 val32 |= (val & SDHCI_CTRL_4BITBUS);
398 val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
399 val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
400 WR4(sc, SDHC_PROT_CTRL, val32);
401 return;
402 }
403
404 /* XXX I can't find the bus power on/off knob; do nothing. */
405 if (off == SDHCI_POWER_CONTROL) {
406 return;
407 }
408 #ifdef __powerpc__
409 /* XXX Reset doesn't seem to work as expected. Do nothing for now. */
410 if (off == SDHCI_SOFTWARE_RESET)
411 return;
412 #endif
413
414 val32 = RD4(sc, off & ~3);
415 val32 &= ~(0xff << (off & 3) * 8);
416 val32 |= (val << (off & 3) * 8);
417
418 WR4(sc, off & ~3, val32);
419 }
420
421 static void
422 fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
423 {
424 struct fsl_sdhci_softc *sc = device_get_softc(dev);
425 uint32_t val32;
426
427 /*
428 * The clock control stuff is complex enough to have its own function
429 * that can handle the ESDHC versus USDHC differences.
430 */
431 if (off == SDHCI_CLOCK_CONTROL) {
432 fsl_sdhc_set_clock(sc, val);
433 return;
434 }
435
436 /*
437 * Figure out whether we need to check the DAT0 line for busy status at
438 * interrupt time. The controller should be doing this, but for some
439 * reason it doesn't. There are two cases:
440 * - R1B response with no data transfer should generate a DATA_END (aka
441 * TRANSFER_COMPLETE) interrupt after waiting for busy, but if
442 * there's no data transfer there's no DATA_END interrupt. This is
443 * documented; they seem to think it's a feature.
444 * - R1B response after Auto-CMD12 appears to not work, even though
445 * there's a control bit for it (bit 3) in the vendor register.
446 * When we're starting a command that needs a manual DAT0 line check at
447 * interrupt time, we leave ourselves a note in r1bfix_type so that we
448 * can do the extra work in fsl_sdhci_intr().
449 */
450 if (off == SDHCI_COMMAND_FLAGS) {
451 if (val & SDHCI_CMD_DATA) {
452 const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
453 val32 = RD4(sc, USDHC_MIX_CONTROL);
454 if ((val32 & MBAUTOCMD) == MBAUTOCMD)
455 sc->r1bfix_type = R1BFIX_AC12;
456 } else {
457 if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
458 WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
459 WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
460 sc->r1bfix_type = R1BFIX_NODATA;
461 }
462 }
463 }
464
465 /*
466 * The USDHC hardware moved the transfer mode bits to mixed control; we
467 * just write them there and we're done. The ESDHC hardware has the
468 * typical combined cmd-and-mode register that allows only 32-bit
469 * access, so when writing the mode bits just save them, then later when
470 * writing the command bits, add in the saved mode bits.
471 */
472 if (sc->hwtype == HWTYPE_USDHC) {
473 if (off == SDHCI_TRANSFER_MODE) {
474 val32 = RD4(sc, USDHC_MIX_CONTROL);
475 val32 &= ~0x3f;
476 val32 |= val & 0x37;
477 // XXX acmd23 not supported here (or by sdhci driver)
478 WR4(sc, USDHC_MIX_CONTROL, val32);
479 return;
480 }
481 } else if (sc->hwtype == HWTYPE_ESDHC) {
482 if (off == SDHCI_TRANSFER_MODE) {
483 sc->cmd_and_mode =
484 (sc->cmd_and_mode & 0xffff0000) | val;
485 return;
486 } else if (off == SDHCI_COMMAND_FLAGS) {
487 sc->cmd_and_mode =
488 (sc->cmd_and_mode & 0xffff) | (val << 16);
489 WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
490 return;
491 }
492 }
493
494 val32 = RD4(sc, off & ~3);
495 val32 &= ~(0xffff << (off & 3) * 8);
496 val32 |= ((val & 0xffff) << (off & 3) * 8);
497 WR4(sc, off & ~3, val32);
498 }
499
500 static void
501 fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
502 {
503 struct fsl_sdhci_softc *sc = device_get_softc(dev);
504
505 /* Clear synthesized interrupts, then pass the value to the hardware. */
506 if (off == SDHCI_INT_STATUS) {
507 sc->r1bfix_intmask &= ~val;
508 }
509
510 WR4(sc, off, val);
511 }
512
513 static void
514 fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
515 uint32_t *data, bus_size_t count)
516 {
517 struct fsl_sdhci_softc *sc = device_get_softc(dev);
518
519 bus_write_multi_4(sc->mem_res, off, data, count);
520 }
521
522 static uint16_t
523 fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
524 {
525 uint16_t val;
526
527 /*
528 * Whenever the sdhci driver writes the clock register we save a
529 * snapshot of just the frequency bits, so that we can play them back
530 * here on a register read without recalculating the frequency from the
531 * prescalar and divisor bits in the real register. We'll start with
532 * those bits, and mix in the clock status and enable bits that come
533 * from different places depending on which hardware we've got.
534 */
535 val = sc->sdclockreg_freq_bits;
536
537 /*
538 * The internal clock is always enabled (actually, the hardware manages
539 * it). Whether the internal clock is stable yet after a frequency
540 * change comes from the present-state register on both hardware types.
541 */
542 val |= SDHCI_CLOCK_INT_EN;
543 if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
544 val |= SDHCI_CLOCK_INT_STABLE;
545
546 /*
547 * On i.MX ESDHC hardware the card bus clock enable is in the usual
548 * sdhci register but it's a different bit, so transcribe it (note the
549 * difference between standard SDHCI_ and Freescale SDHC_ prefixes
550 * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
551 * no force-off for the card bus clock (the hardware runs the clock when
552 * transfers are active no matter what), so we always say the clock is
553 * on.
554 * XXX Maybe we should say it's in whatever state the sdhci driver last
555 * set it to.
556 */
557 if (sc->hwtype == HWTYPE_ESDHC) {
558 #ifdef __arm__
559 if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
560 #endif
561 val |= SDHCI_CLOCK_CARD_EN;
562 } else {
563 val |= SDHCI_CLOCK_CARD_EN;
564 }
565
566 return (val);
567 }
568
569 static void
570 fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
571 {
572 uint32_t divisor, freq, prescale, val32;
573
574 val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
575
576 /*
577 * Save the frequency-setting bits in SDHCI format so that we can play
578 * them back in get_clock without complex decoding of hardware regs,
579 * then deal with the freqency part of the value based on hardware type.
580 */
581 sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
582 if (sc->hwtype == HWTYPE_ESDHC) {
583 /*
584 * The i.MX5 ESDHC hardware requires the driver to manually
585 * start and stop the sd bus clock. If the enable bit is not
586 * set, turn off the clock in hardware and we're done, otherwise
587 * decode the requested frequency. ESDHC hardware is sdhci 2.0;
588 * the sdhci driver will use the original 8-bit divisor field
589 * and the "base / 2^N" divisor scheme.
590 */
591 if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
592 #ifdef __arm__
593 /* On QorIQ, this is a reserved bit. */
594 WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
595 #endif
596 return;
597 }
598 divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
599 freq = sc->baseclk_hz >> ffs(divisor);
600 } else {
601 /*
602 * The USDHC hardware provides only "force always on" control
603 * over the sd bus clock, but no way to turn it off. (If a cmd
604 * or data transfer is in progress the clock is on, otherwise it
605 * is off.) If the clock is being disabled, we can just return
606 * now, otherwise we decode the requested frequency. USDHC
607 * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
608 * divisor using the "base / 2*N" divisor scheme.
609 */
610 if ((val & SDHCI_CLOCK_CARD_EN) == 0)
611 return;
612 divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
613 ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
614 SDHCI_DIVIDER_MASK_LEN;
615 if (divisor == 0)
616 freq = sc->baseclk_hz;
617 else
618 freq = sc->baseclk_hz / (2 * divisor);
619 }
620
621 /*
622 * Get a prescaler and final divisor to achieve the desired frequency.
623 */
624 for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
625 prescale <<= 1;
626
627 for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
628 ++divisor;
629
630 #ifdef DEBUG
631 device_printf(sc->dev,
632 "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
633 freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
634 prescale, divisor);
635 #endif
636
637 /*
638 * Adjust to zero-based values, and store them to the hardware.
639 */
640 prescale >>= 1;
641 divisor -= 1;
642
643 val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
644 val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
645 val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
646 val32 |= SDHC_CLK_IPGEN;
647 WR4(sc, SDHCI_CLOCK_CONTROL, val32);
648 }
649
650 static boolean_t
651 fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
652 {
653 uint32_t inhibit;
654
655 mtx_assert(&sc->slot.mtx, MA_OWNED);
656
657 /*
658 * Check the DAT0 line status using both the DLA (data line active) and
659 * CDIHB (data inhibit) bits in the present state register. In theory
660 * just DLA should do the trick, but in practice it takes both. If the
661 * DAT0 line is still being held and we're not yet beyond the timeout
662 * point, just schedule another callout to check again later.
663 */
664 inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
665
666 if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
667 callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
668 fsl_sdhci_r1bfix_func, sc, 0);
669 return (false);
670 }
671
672 /*
673 * If we reach this point with the inhibit bits still set, we've got a
674 * timeout, synthesize a DATA_TIMEOUT interrupt. Otherwise the DAT0
675 * line has been released, and we synthesize a DATA_END, and if the type
676 * of fix needed was on a command-without-data we also now add in the
677 * original INT_RESPONSE that we suppressed earlier.
678 */
679 if (inhibit)
680 sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
681 else {
682 sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
683 if (sc->r1bfix_type == R1BFIX_NODATA)
684 sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
685 }
686
687 sc->r1bfix_type = R1BFIX_NONE;
688 return (true);
689 }
690
691 static void
692 fsl_sdhci_r1bfix_func(void * arg)
693 {
694 struct fsl_sdhci_softc *sc = arg;
695 boolean_t r1bwait_done;
696
697 mtx_lock(&sc->slot.mtx);
698 r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
699 mtx_unlock(&sc->slot.mtx);
700 if (r1bwait_done)
701 sdhci_generic_intr(&sc->slot);
702 }
703
704 static void
705 fsl_sdhci_intr(void *arg)
706 {
707 struct fsl_sdhci_softc *sc = arg;
708 uint32_t intmask;
709
710 mtx_lock(&sc->slot.mtx);
711
712 /*
713 * Manually check the DAT0 line for R1B response types that the
714 * controller fails to handle properly. The controller asserts the done
715 * interrupt while the card is still asserting busy with the DAT0 line.
716 *
717 * We check DAT0 immediately because most of the time, especially on a
718 * read, the card will actually be done by time we get here. If it's
719 * not, then the wait_done routine will schedule a callout to re-check
720 * periodically until it is done. In that case we clear the interrupt
721 * out of the hardware now so that we can present it later when the DAT0
722 * line is released.
723 *
724 * If we need to wait for the DAT0 line to be released, we set up a
725 * timeout point 250ms in the future. This number comes from the SD
726 * spec, which allows a command to take that long. In the real world,
727 * cards tend to take 10-20ms for a long-running command such as a write
728 * or erase that spans two pages.
729 */
730 switch (sc->r1bfix_type) {
731 case R1BFIX_NODATA:
732 intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
733 break;
734 case R1BFIX_AC12:
735 intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
736 break;
737 default:
738 intmask = 0;
739 break;
740 }
741 if (intmask) {
742 sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
743 if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
744 WR4(sc, SDHCI_INT_STATUS, intmask);
745 bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
746 BUS_SPACE_BARRIER_WRITE);
747 }
748 }
749
750 mtx_unlock(&sc->slot.mtx);
751 sdhci_generic_intr(&sc->slot);
752 }
753
754 static int
755 fsl_sdhci_get_ro(device_t bus, device_t child)
756 {
757 struct fsl_sdhci_softc *sc = device_get_softc(bus);
758
759 return (sdhci_fdt_gpio_get_readonly(sc->gpio));
760 }
761
762 static bool
763 fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
764 {
765 struct fsl_sdhci_softc *sc = device_get_softc(dev);
766
767 return (sdhci_fdt_gpio_get_present(sc->gpio));
768 }
769
770 #ifdef __powerpc__
771 static uint32_t
772 fsl_sdhci_get_platform_clock(device_t dev)
773 {
774 phandle_t node;
775 uint32_t clock;
776
777 node = ofw_bus_get_node(dev);
778
779 /* Get sdhci node properties */
780 if((OF_getprop(node, "clock-frequency", (void *)&clock,
781 sizeof(clock)) <= 0) || (clock == 0)) {
782 clock = mpc85xx_get_system_clock();
783
784 if (clock == 0) {
785 device_printf(dev,"Cannot acquire correct sdhci "
786 "frequency from DTS.\n");
787
788 return (0);
789 }
790 }
791
792 if (bootverbose)
793 device_printf(dev, "Acquired clock: %d from DTS\n", clock);
794
795 return (clock);
796 }
797 #endif
798
799 static int
800 fsl_sdhci_detach(device_t dev)
801 {
802 struct fsl_sdhci_softc *sc = device_get_softc(dev);
803
804 if (sc->gpio != NULL)
805 sdhci_fdt_gpio_teardown(sc->gpio);
806
807 callout_drain(&sc->r1bfix_callout);
808
809 if (sc->slot_init_done)
810 sdhci_cleanup_slot(&sc->slot);
811
812 if (sc->intr_cookie != NULL)
813 bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
814 if (sc->irq_res != NULL)
815 bus_release_resource(dev, SYS_RES_IRQ,
816 rman_get_rid(sc->irq_res), sc->irq_res);
817
818 if (sc->mem_res != NULL) {
819 bus_release_resource(dev, SYS_RES_MEMORY,
820 rman_get_rid(sc->mem_res), sc->mem_res);
821 }
822
823 return (0);
824 }
825
826 static int
827 fsl_sdhci_attach(device_t dev)
828 {
829 struct fsl_sdhci_softc *sc = device_get_softc(dev);
830 int rid, err;
831 #ifdef __powerpc__
832 phandle_t node;
833 uint32_t protctl;
834 #endif
835
836 sc->dev = dev;
837
838 callout_init(&sc->r1bfix_callout, 1);
839
840 sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
841 if (sc->hwtype == HWTYPE_NONE)
842 panic("Impossible: not compatible in fsl_sdhci_attach()");
843
844 rid = 0;
845 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
846 RF_ACTIVE);
847 if (!sc->mem_res) {
848 device_printf(dev, "cannot allocate memory window\n");
849 err = ENXIO;
850 goto fail;
851 }
852
853 rid = 0;
854 sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
855 RF_ACTIVE);
856 if (!sc->irq_res) {
857 device_printf(dev, "cannot allocate interrupt\n");
858 err = ENXIO;
859 goto fail;
860 }
861
862 if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
863 NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
864 device_printf(dev, "cannot setup interrupt handler\n");
865 err = ENXIO;
866 goto fail;
867 }
868
869 sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
870
871 /*
872 * DMA is not really broken, I just haven't implemented it yet.
873 */
874 sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
875
876 /*
877 * Set the buffer watermark level to 128 words (512 bytes) for both read
878 * and write. The hardware has a restriction that when the read or
879 * write ready status is asserted, that means you can read exactly the
880 * number of words set in the watermark register before you have to
881 * re-check the status and potentially wait for more data. The main
882 * sdhci driver provides no hook for doing status checking on less than
883 * a full block boundary, so we set the watermark level to be a full
884 * block. Reads and writes where the block size is less than the
885 * watermark size will work correctly too, no need to change the
886 * watermark for different size blocks. However, 128 is the maximum
887 * allowed for the watermark, so PIO is limitted to 512 byte blocks
888 * (which works fine for SD cards, may be a problem for SDIO some day).
889 *
890 * XXX need named constants for this stuff.
891 */
892 /* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
893 if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
894 WR4(sc, SDHC_WTMK_LVL, 0x10801080);
895 else
896 WR4(sc, SDHC_WTMK_LVL, 0x08800880);
897
898 /*
899 * We read in native byte order in the main driver, but the register
900 * defaults to little endian.
901 */
902 #ifdef __powerpc__
903 sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
904 #else
905 sc->baseclk_hz = imx_ccm_sdhci_hz();
906 #endif
907 sc->slot.max_clk = sc->baseclk_hz;
908
909 /*
910 * Set up any gpio pin handling described in the FDT data. This cannot
911 * fail; see comments in sdhci_fdt_gpio.h for details.
912 */
913 sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
914
915 #ifdef __powerpc__
916 node = ofw_bus_get_node(dev);
917 /* Default to big-endian on powerpc */
918 protctl = RD4(sc, SDHC_PROT_CTRL);
919 protctl &= ~SDHC_PROT_EMODE_MASK;
920 if (OF_hasprop(node, "little-endian"))
921 protctl |= SDHC_PROT_EMODE_LITTLE;
922 else
923 protctl |= SDHC_PROT_EMODE_BIG;
924 WR4(sc, SDHC_PROT_CTRL, protctl);
925 #endif
926
927 sdhci_init_slot(dev, &sc->slot, 0);
928 sc->slot_init_done = true;
929
930 bus_generic_probe(dev);
931 bus_generic_attach(dev);
932
933 sdhci_start_slot(&sc->slot);
934
935 return (0);
936
937 fail:
938 fsl_sdhci_detach(dev);
939 return (err);
940 }
941
942 static int
943 fsl_sdhci_probe(device_t dev)
944 {
945
946 if (!ofw_bus_status_okay(dev))
947 return (ENXIO);
948
949 switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
950 case HWTYPE_ESDHC:
951 device_set_desc(dev, "Freescale eSDHC controller");
952 return (BUS_PROBE_DEFAULT);
953 case HWTYPE_USDHC:
954 device_set_desc(dev, "Freescale uSDHC controller");
955 return (BUS_PROBE_DEFAULT);
956 default:
957 break;
958 }
959 return (ENXIO);
960 }
961
962 static device_method_t fsl_sdhci_methods[] = {
963 /* Device interface */
964 DEVMETHOD(device_probe, fsl_sdhci_probe),
965 DEVMETHOD(device_attach, fsl_sdhci_attach),
966 DEVMETHOD(device_detach, fsl_sdhci_detach),
967
968 /* Bus interface */
969 DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
970 DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
971
972 /* MMC bridge interface */
973 DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios),
974 DEVMETHOD(mmcbr_request, sdhci_generic_request),
975 DEVMETHOD(mmcbr_get_ro, fsl_sdhci_get_ro),
976 DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
977 DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
978
979 /* SDHCI accessors */
980 DEVMETHOD(sdhci_read_1, fsl_sdhci_read_1),
981 DEVMETHOD(sdhci_read_2, fsl_sdhci_read_2),
982 DEVMETHOD(sdhci_read_4, fsl_sdhci_read_4),
983 DEVMETHOD(sdhci_read_multi_4, fsl_sdhci_read_multi_4),
984 DEVMETHOD(sdhci_write_1, fsl_sdhci_write_1),
985 DEVMETHOD(sdhci_write_2, fsl_sdhci_write_2),
986 DEVMETHOD(sdhci_write_4, fsl_sdhci_write_4),
987 DEVMETHOD(sdhci_write_multi_4, fsl_sdhci_write_multi_4),
988 DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
989
990 DEVMETHOD_END
991 };
992
993 static driver_t fsl_sdhci_driver = {
994 "sdhci_fsl",
995 fsl_sdhci_methods,
996 sizeof(struct fsl_sdhci_softc),
997 };
998
999 DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, NULL, NULL);
1000 SDHCI_DEPEND(sdhci_fsl);
1001
1002 #ifndef MMCCAM
1003 MMC_DECLARE_BRIDGE(sdhci_fsl);
1004 #endif
Cache object: 399e31b9928850551697c5d9de66ed67
|