FreeBSD/Linux Kernel Cross Reference
sys/dev/sdhci/sdhci.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org>
5 * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/callout.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/libkern.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/mutex.h>
44 #include <sys/resource.h>
45 #include <sys/rman.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
48 #include <sys/sbuf.h>
49
50 #include <machine/bus.h>
51 #include <machine/resource.h>
52 #include <machine/stdarg.h>
53
54 #include <dev/mmc/bridge.h>
55 #include <dev/mmc/mmcreg.h>
56 #include <dev/mmc/mmcbrvar.h>
57
58 #include <dev/sdhci/sdhci.h>
59
60 #include <cam/cam.h>
61 #include <cam/cam_ccb.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_sim.h>
64 #include <cam/cam_xpt_sim.h>
65
66 #include "mmcbr_if.h"
67 #include "sdhci_if.h"
68
69 #include "opt_mmccam.h"
70
71 SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
72 "sdhci driver");
73
74 static int sdhci_debug = 0;
75 SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0,
76 "Debug level");
77 u_int sdhci_quirk_clear = 0;
78 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear,
79 0, "Mask of quirks to clear");
80 u_int sdhci_quirk_set = 0;
81 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0,
82 "Mask of quirks to set");
83
84 #define RD1(slot, off) SDHCI_READ_1((slot)->bus, (slot), (off))
85 #define RD2(slot, off) SDHCI_READ_2((slot)->bus, (slot), (off))
86 #define RD4(slot, off) SDHCI_READ_4((slot)->bus, (slot), (off))
87 #define RD_MULTI_4(slot, off, ptr, count) \
88 SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
89
90 #define WR1(slot, off, val) SDHCI_WRITE_1((slot)->bus, (slot), (off), (val))
91 #define WR2(slot, off, val) SDHCI_WRITE_2((slot)->bus, (slot), (off), (val))
92 #define WR4(slot, off, val) SDHCI_WRITE_4((slot)->bus, (slot), (off), (val))
93 #define WR_MULTI_4(slot, off, ptr, count) \
94 SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
95
96 static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err);
97 static void sdhci_card_poll(void *arg);
98 static void sdhci_card_task(void *arg, int pending);
99 static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask);
100 static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask);
101 static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset);
102 static void sdhci_handle_card_present_locked(struct sdhci_slot *slot,
103 bool is_present);
104 static void sdhci_finish_command(struct sdhci_slot *slot);
105 static void sdhci_init(struct sdhci_slot *slot);
106 static void sdhci_read_block_pio(struct sdhci_slot *slot);
107 static void sdhci_req_done(struct sdhci_slot *slot);
108 static void sdhci_req_wakeup(struct mmc_request *req);
109 static void sdhci_retune(void *arg);
110 static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock);
111 static void sdhci_set_power(struct sdhci_slot *slot, u_char power);
112 static void sdhci_set_transfer_mode(struct sdhci_slot *slot,
113 const struct mmc_data *data);
114 static void sdhci_start(struct sdhci_slot *slot);
115 static void sdhci_timeout(void *arg);
116 static void sdhci_start_command(struct sdhci_slot *slot,
117 struct mmc_command *cmd);
118 static void sdhci_start_data(struct sdhci_slot *slot,
119 const struct mmc_data *data);
120 static void sdhci_write_block_pio(struct sdhci_slot *slot);
121 static void sdhci_transfer_pio(struct sdhci_slot *slot);
122
123 #ifdef MMCCAM
124 /* CAM-related */
125 static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb);
126 static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
127 int proposed_clock);
128 static void sdhci_cam_poll(struct cam_sim *sim);
129 static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb);
130 static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb);
131 static int sdhci_cam_update_ios(struct sdhci_slot *slot);
132 #endif
133
134 /* helper routines */
135 static int sdhci_dma_alloc(struct sdhci_slot *slot);
136 static void sdhci_dma_free(struct sdhci_slot *slot);
137 static void sdhci_dumpcaps(struct sdhci_slot *slot);
138 static void sdhci_dumpcaps_buf(struct sdhci_slot *slot, struct sbuf *s);
139 static void sdhci_dumpregs(struct sdhci_slot *slot);
140 static void sdhci_dumpregs_buf(struct sdhci_slot *slot, struct sbuf *s);
141 static int sdhci_syctl_dumpcaps(SYSCTL_HANDLER_ARGS);
142 static int sdhci_syctl_dumpregs(SYSCTL_HANDLER_ARGS);
143 static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs,
144 int error);
145 static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
146 __printflike(2, 3);
147 static int slot_sprintf(const struct sdhci_slot *slot, struct sbuf *s,
148 const char * fmt, ...) __printflike(3, 4);
149 static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot);
150
151 #define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx)
152 #define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx)
153 #define SDHCI_LOCK_INIT(_slot) \
154 mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF)
155 #define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx);
156 #define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED);
157 #define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED);
158
159 #define SDHCI_DEFAULT_MAX_FREQ 50
160
161 #define SDHCI_200_MAX_DIVIDER 256
162 #define SDHCI_300_MAX_DIVIDER 2046
163
164 #define SDHCI_CARD_PRESENT_TICKS (hz / 5)
165 #define SDHCI_INSERT_DELAY_TICKS (hz / 2)
166
167 /*
168 * Broadcom BCM577xx Controller Constants
169 */
170 /* Maximum divider supported by the default clock source. */
171 #define BCM577XX_DEFAULT_MAX_DIVIDER 256
172 /* Alternative clock's base frequency. */
173 #define BCM577XX_ALT_CLOCK_BASE 63000000
174
175 #define BCM577XX_HOST_CONTROL 0x198
176 #define BCM577XX_CTRL_CLKSEL_MASK 0xFFFFCFFF
177 #define BCM577XX_CTRL_CLKSEL_SHIFT 12
178 #define BCM577XX_CTRL_CLKSEL_DEFAULT 0x0
179 #define BCM577XX_CTRL_CLKSEL_64MHZ 0x3
180
181 static void
182 sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
183 {
184
185 if (error != 0) {
186 printf("getaddr: error %d\n", error);
187 return;
188 }
189 *(bus_addr_t *)arg = segs[0].ds_addr;
190 }
191
192 static int
193 slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
194 {
195 char buf[128];
196 va_list ap;
197 int retval;
198
199 /*
200 * Make sure we print a single line all together rather than in two
201 * halves to avoid console gibberish bingo.
202 */
203 va_start(ap, fmt);
204 retval = vsnprintf(buf, sizeof(buf), fmt, ap);
205 va_end(ap);
206
207 retval += printf("%s-slot%d: %s",
208 device_get_nameunit(slot->bus), slot->num, buf);
209 return (retval);
210 }
211
212 static int
213 slot_sprintf(const struct sdhci_slot *slot, struct sbuf *s,
214 const char * fmt, ...)
215 {
216 va_list ap;
217 int retval;
218
219 retval = sbuf_printf(s, "%s-slot%d: ", device_get_nameunit(slot->bus), slot->num);
220
221 va_start(ap, fmt);
222 retval += sbuf_vprintf(s, fmt, ap);
223 va_end(ap);
224
225 return (retval);
226 }
227
228 static void
229 sdhci_dumpregs_buf(struct sdhci_slot *slot, struct sbuf *s)
230 {
231 slot_sprintf(slot, s, "============== REGISTER DUMP ==============\n");
232
233 slot_sprintf(slot, s, "Sys addr: 0x%08x | Version: 0x%08x\n",
234 RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION));
235 slot_sprintf(slot, s, "Blk size: 0x%08x | Blk cnt: 0x%08x\n",
236 RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT));
237 slot_sprintf(slot, s, "Argument: 0x%08x | Trn mode: 0x%08x\n",
238 RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE));
239 slot_sprintf(slot, s, "Present: 0x%08x | Host ctl: 0x%08x\n",
240 RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL));
241 slot_sprintf(slot, s, "Power: 0x%08x | Blk gap: 0x%08x\n",
242 RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL));
243 slot_sprintf(slot, s, "Wake-up: 0x%08x | Clock: 0x%08x\n",
244 RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL));
245 slot_sprintf(slot, s, "Timeout: 0x%08x | Int stat: 0x%08x\n",
246 RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS));
247 slot_sprintf(slot, s, "Int enab: 0x%08x | Sig enab: 0x%08x\n",
248 RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE));
249 slot_sprintf(slot, s, "AC12 err: 0x%08x | Host ctl2:0x%08x\n",
250 RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2));
251 slot_sprintf(slot, s, "Caps: 0x%08x | Caps2: 0x%08x\n",
252 RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2));
253 slot_sprintf(slot, s, "Max curr: 0x%08x | ADMA err: 0x%08x\n",
254 RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR));
255 slot_sprintf(slot, s, "ADMA addr:0x%08x | Slot int: 0x%08x\n",
256 RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS));
257
258 slot_sprintf(slot, s, "===========================================\n");
259 }
260
261 static void
262 sdhci_dumpregs(struct sdhci_slot *slot)
263 {
264 struct sbuf s;
265
266 if (sbuf_new(&s, NULL, 1024, SBUF_NOWAIT | SBUF_AUTOEXTEND) == NULL) {
267 slot_printf(slot, "sdhci_dumpregs: Failed to allocate memory for sbuf\n");
268 return;
269 }
270
271 sbuf_set_drain(&s, &sbuf_printf_drain, NULL);
272 sdhci_dumpregs_buf(slot, &s);
273 sbuf_finish(&s);
274 sbuf_delete(&s);
275 }
276
277 static int
278 sdhci_syctl_dumpregs(SYSCTL_HANDLER_ARGS)
279 {
280 struct sdhci_slot *slot = arg1;
281 struct sbuf s;
282
283 sbuf_new_for_sysctl(&s, NULL, 1024, req);
284 sbuf_putc(&s, '\n');
285 sdhci_dumpregs_buf(slot, &s);
286 sbuf_finish(&s);
287 sbuf_delete(&s);
288
289 return (0);
290 }
291
292 static void
293 sdhci_dumpcaps_buf(struct sdhci_slot *slot, struct sbuf *s)
294 {
295 int host_caps = slot->host.caps;
296 int caps = slot->caps;
297
298 slot_sprintf(slot, s,
299 "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n",
300 slot->max_clk / 1000000,
301 (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "",
302 (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" :
303 ((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"),
304 (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "",
305 (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "",
306 ((caps & SDHCI_CAN_VDD_180) &&
307 (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "",
308 (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "",
309 (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "",
310 (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "",
311 (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "",
312 (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "",
313 (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO",
314 (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" :
315 (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" :
316 "removable");
317 if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 |
318 MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE))
319 slot_sprintf(slot, s, "eMMC:%s%s%s%s\n",
320 (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "",
321 (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "",
322 (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "",
323 ((host_caps &
324 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ==
325 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ?
326 " HS400ES" : "");
327 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
328 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104))
329 slot_sprintf(slot, s, "UHS-I:%s%s%s%s%s\n",
330 (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "",
331 (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "",
332 (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "",
333 (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "",
334 (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : "");
335 if (slot->opt & SDHCI_TUNING_SUPPORTED)
336 slot_sprintf(slot, s,
337 "Re-tuning count %d secs, mode %d\n",
338 slot->retune_count, slot->retune_mode + 1);
339 }
340
341 static void
342 sdhci_dumpcaps(struct sdhci_slot *slot)
343 {
344 struct sbuf s;
345
346 if (sbuf_new(&s, NULL, 1024, SBUF_NOWAIT | SBUF_AUTOEXTEND) == NULL) {
347 slot_printf(slot, "sdhci_dumpcaps: Failed to allocate memory for sbuf\n");
348 return;
349 }
350
351 sbuf_set_drain(&s, &sbuf_printf_drain, NULL);
352 sdhci_dumpcaps_buf(slot, &s);
353 sbuf_finish(&s);
354 sbuf_delete(&s);
355 }
356
357 static int
358 sdhci_syctl_dumpcaps(SYSCTL_HANDLER_ARGS)
359 {
360 struct sdhci_slot *slot = arg1;
361 struct sbuf s;
362
363 sbuf_new_for_sysctl(&s, NULL, 1024, req);
364 sbuf_putc(&s, '\n');
365 sdhci_dumpcaps_buf(slot, &s);
366 sbuf_finish(&s);
367 sbuf_delete(&s);
368
369 return (0);
370 }
371
372 static uint32_t
373 sdhci_tuning_intmask(const struct sdhci_slot *slot)
374 {
375 uint32_t intmask;
376
377 intmask = 0;
378 if (slot->opt & SDHCI_TUNING_ENABLED) {
379 intmask |= SDHCI_INT_TUNEERR;
380 if (slot->retune_mode == SDHCI_RETUNE_MODE_2 ||
381 slot->retune_mode == SDHCI_RETUNE_MODE_3)
382 intmask |= SDHCI_INT_RETUNE;
383 }
384 return (intmask);
385 }
386
387 static void
388 sdhci_init(struct sdhci_slot *slot)
389 {
390
391 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL);
392
393 /* Enable interrupts. */
394 slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
395 SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
396 SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
397 SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
398 SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE |
399 SDHCI_INT_ACMD12ERR;
400
401 if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
402 !(slot->opt & SDHCI_NON_REMOVABLE)) {
403 slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT;
404 }
405
406 WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
407 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
408 }
409
410 static void
411 sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock)
412 {
413 uint32_t clk_base;
414 uint32_t clk_sel;
415 uint32_t res;
416 uint16_t clk;
417 uint16_t div;
418 int timeout;
419
420 if (clock == slot->clock)
421 return;
422 clock = SDHCI_SET_CLOCK(slot->bus, slot, clock);
423 slot->clock = clock;
424
425 /* Turn off the clock. */
426 clk = RD2(slot, SDHCI_CLOCK_CONTROL);
427 WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN);
428 /* If no clock requested - leave it so. */
429 if (clock == 0)
430 return;
431
432 /* Determine the clock base frequency */
433 clk_base = slot->max_clk;
434 if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) {
435 clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) &
436 BCM577XX_CTRL_CLKSEL_MASK;
437
438 /*
439 * Select clock source appropriate for the requested frequency.
440 */
441 if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) {
442 clk_base = BCM577XX_ALT_CLOCK_BASE;
443 clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ <<
444 BCM577XX_CTRL_CLKSEL_SHIFT);
445 } else {
446 clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT <<
447 BCM577XX_CTRL_CLKSEL_SHIFT);
448 }
449
450 WR2(slot, BCM577XX_HOST_CONTROL, clk_sel);
451 }
452
453 /* Recalculate timeout clock frequency based on the new sd clock. */
454 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
455 slot->timeout_clk = slot->clock / 1000;
456
457 if (slot->version < SDHCI_SPEC_300) {
458 /* Looking for highest freq <= clock. */
459 res = clk_base;
460 for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) {
461 if (res <= clock)
462 break;
463 res >>= 1;
464 }
465 /* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */
466 div >>= 1;
467 } else {
468 /* Version 3.0 divisors are multiples of two up to 1023 * 2 */
469 if (clock >= clk_base)
470 div = 0;
471 else {
472 for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) {
473 if ((clk_base / div) <= clock)
474 break;
475 }
476 }
477 div >>= 1;
478 }
479
480 if (bootverbose || sdhci_debug)
481 slot_printf(slot, "Divider %d for freq %d (base %d)\n",
482 div, clock, clk_base);
483
484 /* Now we have got divider, set it. */
485 clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT;
486 clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK)
487 << SDHCI_DIVIDER_HI_SHIFT;
488
489 WR2(slot, SDHCI_CLOCK_CONTROL, clk);
490 /* Enable clock. */
491 clk |= SDHCI_CLOCK_INT_EN;
492 WR2(slot, SDHCI_CLOCK_CONTROL, clk);
493 /* Wait up to 10 ms until it stabilize. */
494 timeout = 10;
495 while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL))
496 & SDHCI_CLOCK_INT_STABLE)) {
497 if (timeout == 0) {
498 slot_printf(slot,
499 "Internal clock never stabilised.\n");
500 sdhci_dumpregs(slot);
501 return;
502 }
503 timeout--;
504 DELAY(1000);
505 }
506 /* Pass clock signal to the bus. */
507 clk |= SDHCI_CLOCK_CARD_EN;
508 WR2(slot, SDHCI_CLOCK_CONTROL, clk);
509 }
510
511 static void
512 sdhci_set_power(struct sdhci_slot *slot, u_char power)
513 {
514 int i;
515 uint8_t pwr;
516
517 if (slot->power == power)
518 return;
519
520 slot->power = power;
521
522 /* Turn off the power. */
523 pwr = 0;
524 WR1(slot, SDHCI_POWER_CONTROL, pwr);
525 /* If power down requested - leave it so. */
526 if (power == 0)
527 return;
528 /* Set voltage. */
529 switch (1 << power) {
530 case MMC_OCR_LOW_VOLTAGE:
531 pwr |= SDHCI_POWER_180;
532 break;
533 case MMC_OCR_290_300:
534 case MMC_OCR_300_310:
535 pwr |= SDHCI_POWER_300;
536 break;
537 case MMC_OCR_320_330:
538 case MMC_OCR_330_340:
539 pwr |= SDHCI_POWER_330;
540 break;
541 }
542 WR1(slot, SDHCI_POWER_CONTROL, pwr);
543 /*
544 * Turn on VDD1 power. Note that at least some Intel controllers can
545 * fail to enable bus power on the first try after transiting from D3
546 * to D0, so we give them up to 2 ms.
547 */
548 pwr |= SDHCI_POWER_ON;
549 for (i = 0; i < 20; i++) {
550 WR1(slot, SDHCI_POWER_CONTROL, pwr);
551 if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)
552 break;
553 DELAY(100);
554 }
555 if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON))
556 slot_printf(slot, "Bus power failed to enable\n");
557
558 if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) {
559 WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10);
560 DELAY(10);
561 WR1(slot, SDHCI_POWER_CONTROL, pwr);
562 DELAY(300);
563 }
564 }
565
566 static void
567 sdhci_read_block_pio(struct sdhci_slot *slot)
568 {
569 uint32_t data;
570 char *buffer;
571 size_t left;
572
573 buffer = slot->curcmd->data->data;
574 buffer += slot->offset;
575 /* Transfer one block at a time. */
576 #ifdef MMCCAM
577 if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE)
578 left = min(slot->curcmd->data->block_size,
579 slot->curcmd->data->len - slot->offset);
580 else
581 #endif
582 left = min(512, slot->curcmd->data->len - slot->offset);
583 slot->offset += left;
584
585 /* If we are too fast, broken controllers return zeroes. */
586 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS)
587 DELAY(10);
588 /* Handle unaligned and aligned buffer cases. */
589 if ((intptr_t)buffer & 3) {
590 while (left > 3) {
591 data = RD4(slot, SDHCI_BUFFER);
592 buffer[0] = data;
593 buffer[1] = (data >> 8);
594 buffer[2] = (data >> 16);
595 buffer[3] = (data >> 24);
596 buffer += 4;
597 left -= 4;
598 }
599 } else {
600 RD_MULTI_4(slot, SDHCI_BUFFER,
601 (uint32_t *)buffer, left >> 2);
602 left &= 3;
603 }
604 /* Handle uneven size case. */
605 if (left > 0) {
606 data = RD4(slot, SDHCI_BUFFER);
607 while (left > 0) {
608 *(buffer++) = data;
609 data >>= 8;
610 left--;
611 }
612 }
613 }
614
615 static void
616 sdhci_write_block_pio(struct sdhci_slot *slot)
617 {
618 uint32_t data = 0;
619 char *buffer;
620 size_t left;
621
622 buffer = slot->curcmd->data->data;
623 buffer += slot->offset;
624 /* Transfer one block at a time. */
625 #ifdef MMCCAM
626 if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) {
627 left = min(slot->curcmd->data->block_size,
628 slot->curcmd->data->len - slot->offset);
629 } else
630 #endif
631 left = min(512, slot->curcmd->data->len - slot->offset);
632 slot->offset += left;
633
634 /* Handle unaligned and aligned buffer cases. */
635 if ((intptr_t)buffer & 3) {
636 while (left > 3) {
637 data = buffer[0] +
638 (buffer[1] << 8) +
639 (buffer[2] << 16) +
640 (buffer[3] << 24);
641 left -= 4;
642 buffer += 4;
643 WR4(slot, SDHCI_BUFFER, data);
644 }
645 } else {
646 WR_MULTI_4(slot, SDHCI_BUFFER,
647 (uint32_t *)buffer, left >> 2);
648 left &= 3;
649 }
650 /* Handle uneven size case. */
651 if (left > 0) {
652 while (left > 0) {
653 data <<= 8;
654 data += *(buffer++);
655 left--;
656 }
657 WR4(slot, SDHCI_BUFFER, data);
658 }
659 }
660
661 static void
662 sdhci_transfer_pio(struct sdhci_slot *slot)
663 {
664
665 /* Read as many blocks as possible. */
666 if (slot->curcmd->data->flags & MMC_DATA_READ) {
667 while (RD4(slot, SDHCI_PRESENT_STATE) &
668 SDHCI_DATA_AVAILABLE) {
669 sdhci_read_block_pio(slot);
670 if (slot->offset >= slot->curcmd->data->len)
671 break;
672 }
673 } else {
674 while (RD4(slot, SDHCI_PRESENT_STATE) &
675 SDHCI_SPACE_AVAILABLE) {
676 sdhci_write_block_pio(slot);
677 if (slot->offset >= slot->curcmd->data->len)
678 break;
679 }
680 }
681 }
682
683 static void
684 sdhci_card_task(void *arg, int pending __unused)
685 {
686 struct sdhci_slot *slot = arg;
687 #ifndef MMCCAM
688 device_t d;
689 #endif
690
691 SDHCI_LOCK(slot);
692 if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) {
693 #ifdef MMCCAM
694 if (slot->card_present == 0) {
695 #else
696 if (slot->dev == NULL) {
697 #endif
698 /* If card is present - attach mmc bus. */
699 if (bootverbose || sdhci_debug)
700 slot_printf(slot, "Card inserted\n");
701 #ifdef MMCCAM
702 slot->card_present = 1;
703 mmccam_start_discovery(slot->sim);
704 SDHCI_UNLOCK(slot);
705 #else
706 d = slot->dev = device_add_child(slot->bus, "mmc", -1);
707 SDHCI_UNLOCK(slot);
708 if (d) {
709 device_set_ivars(d, slot);
710 (void)device_probe_and_attach(d);
711 }
712 #endif
713 } else
714 SDHCI_UNLOCK(slot);
715 } else {
716 #ifdef MMCCAM
717 if (slot->card_present == 1) {
718 #else
719 if (slot->dev != NULL) {
720 d = slot->dev;
721 #endif
722 /* If no card present - detach mmc bus. */
723 if (bootverbose || sdhci_debug)
724 slot_printf(slot, "Card removed\n");
725 slot->dev = NULL;
726 #ifdef MMCCAM
727 slot->card_present = 0;
728 mmccam_start_discovery(slot->sim);
729 SDHCI_UNLOCK(slot);
730 #else
731 slot->intmask &= ~sdhci_tuning_intmask(slot);
732 WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
733 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
734 slot->opt &= ~SDHCI_TUNING_ENABLED;
735 SDHCI_UNLOCK(slot);
736 callout_drain(&slot->retune_callout);
737 device_delete_child(slot->bus, d);
738 #endif
739 } else
740 SDHCI_UNLOCK(slot);
741 }
742 }
743
744 static void
745 sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present)
746 {
747 bool was_present;
748
749 /*
750 * If there was no card and now there is one, schedule the task to
751 * create the child device after a short delay. The delay is to
752 * debounce the card insert (sometimes the card detect pin stabilizes
753 * before the other pins have made good contact).
754 *
755 * If there was a card present and now it's gone, immediately schedule
756 * the task to delete the child device. No debouncing -- gone is gone,
757 * because once power is removed, a full card re-init is needed, and
758 * that happens by deleting and recreating the child device.
759 */
760 #ifdef MMCCAM
761 was_present = slot->card_present;
762 #else
763 was_present = slot->dev != NULL;
764 #endif
765 if (!was_present && is_present) {
766 taskqueue_enqueue_timeout(taskqueue_swi_giant,
767 &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS);
768 } else if (was_present && !is_present) {
769 taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task);
770 }
771 }
772
773 void
774 sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present)
775 {
776
777 SDHCI_LOCK(slot);
778 sdhci_handle_card_present_locked(slot, is_present);
779 SDHCI_UNLOCK(slot);
780 }
781
782 static void
783 sdhci_card_poll(void *arg)
784 {
785 struct sdhci_slot *slot = arg;
786
787 sdhci_handle_card_present(slot,
788 SDHCI_GET_CARD_PRESENT(slot->bus, slot));
789 callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS,
790 sdhci_card_poll, slot);
791 }
792
793 static int
794 sdhci_dma_alloc(struct sdhci_slot *slot)
795 {
796 int err;
797
798 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) {
799 if (maxphys <= 1024 * 4)
800 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K;
801 else if (maxphys <= 1024 * 8)
802 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K;
803 else if (maxphys <= 1024 * 16)
804 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K;
805 else if (maxphys <= 1024 * 32)
806 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K;
807 else if (maxphys <= 1024 * 64)
808 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K;
809 else if (maxphys <= 1024 * 128)
810 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K;
811 else if (maxphys <= 1024 * 256)
812 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K;
813 else
814 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K;
815 }
816 slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary);
817
818 /*
819 * Allocate the DMA tag for an SDMA bounce buffer.
820 * Note that the SDHCI specification doesn't state any alignment
821 * constraint for the SDMA system address. However, controllers
822 * typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when
823 * forming the actual address of data, requiring the SDMA buffer to
824 * be aligned to the SDMA boundary.
825 */
826 err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz,
827 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
828 slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW,
829 NULL, NULL, &slot->dmatag);
830 if (err != 0) {
831 slot_printf(slot, "Can't create DMA tag for SDMA\n");
832 return (err);
833 }
834 /* Allocate DMA memory for the SDMA bounce buffer. */
835 err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem,
836 BUS_DMA_NOWAIT, &slot->dmamap);
837 if (err != 0) {
838 slot_printf(slot, "Can't alloc DMA memory for SDMA\n");
839 bus_dma_tag_destroy(slot->dmatag);
840 return (err);
841 }
842 /* Map the memory of the SDMA bounce buffer. */
843 err = bus_dmamap_load(slot->dmatag, slot->dmamap,
844 (void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr,
845 &slot->paddr, 0);
846 if (err != 0 || slot->paddr == 0) {
847 slot_printf(slot, "Can't load DMA memory for SDMA\n");
848 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
849 bus_dma_tag_destroy(slot->dmatag);
850 if (err)
851 return (err);
852 else
853 return (EFAULT);
854 }
855
856 return (0);
857 }
858
859 static void
860 sdhci_dma_free(struct sdhci_slot *slot)
861 {
862
863 bus_dmamap_unload(slot->dmatag, slot->dmamap);
864 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
865 bus_dma_tag_destroy(slot->dmatag);
866 }
867
868 int
869 sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num)
870 {
871 kobjop_desc_t kobj_desc;
872 kobj_method_t *kobj_method;
873 uint32_t caps, caps2, freq, host_caps;
874 int err;
875 char node_name[8];
876 struct sysctl_oid *node_oid;
877
878 SDHCI_LOCK_INIT(slot);
879
880 slot->num = num;
881 slot->bus = dev;
882
883 slot->version = (RD2(slot, SDHCI_HOST_VERSION)
884 >> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK;
885 if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) {
886 caps = slot->caps;
887 caps2 = slot->caps2;
888 } else {
889 caps = RD4(slot, SDHCI_CAPABILITIES);
890 if (slot->version >= SDHCI_SPEC_300)
891 caps2 = RD4(slot, SDHCI_CAPABILITIES2);
892 else
893 caps2 = 0;
894 }
895 if (slot->version >= SDHCI_SPEC_300) {
896 if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE &&
897 (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) {
898 slot_printf(slot,
899 "Driver doesn't support shared bus slots\n");
900 SDHCI_LOCK_DESTROY(slot);
901 return (ENXIO);
902 } else if ((caps & SDHCI_SLOTTYPE_MASK) ==
903 SDHCI_SLOTTYPE_EMBEDDED) {
904 slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE;
905 }
906 }
907 /* Calculate base clock frequency. */
908 if (slot->version >= SDHCI_SPEC_300)
909 freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >>
910 SDHCI_CLOCK_BASE_SHIFT;
911 else
912 freq = (caps & SDHCI_CLOCK_BASE_MASK) >>
913 SDHCI_CLOCK_BASE_SHIFT;
914 if (freq != 0)
915 slot->max_clk = freq * 1000000;
916 /*
917 * If the frequency wasn't in the capabilities and the hardware driver
918 * hasn't already set max_clk we're probably not going to work right
919 * with an assumption, so complain about it.
920 */
921 if (slot->max_clk == 0) {
922 slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000;
923 slot_printf(slot, "Hardware doesn't specify base clock "
924 "frequency, using %dMHz as default.\n",
925 SDHCI_DEFAULT_MAX_FREQ);
926 }
927 /* Calculate/set timeout clock frequency. */
928 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) {
929 slot->timeout_clk = slot->max_clk / 1000;
930 } else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) {
931 slot->timeout_clk = 1000;
932 } else {
933 slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >>
934 SDHCI_TIMEOUT_CLK_SHIFT;
935 if (caps & SDHCI_TIMEOUT_CLK_UNIT)
936 slot->timeout_clk *= 1000;
937 }
938 /*
939 * If the frequency wasn't in the capabilities and the hardware driver
940 * hasn't already set timeout_clk we'll probably work okay using the
941 * max timeout, but still mention it.
942 */
943 if (slot->timeout_clk == 0) {
944 slot_printf(slot, "Hardware doesn't specify timeout clock "
945 "frequency, setting BROKEN_TIMEOUT quirk.\n");
946 slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
947 }
948
949 slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot);
950 slot->host.f_max = slot->max_clk;
951 slot->host.host_ocr = 0;
952 if (caps & SDHCI_CAN_VDD_330)
953 slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340;
954 if (caps & SDHCI_CAN_VDD_300)
955 slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310;
956 /*
957 * 1.8V VDD is not supposed to be used for removable cards. Hardware
958 * prior to v3.0 had no way to indicate embedded slots, but did
959 * sometimes support 1.8v for non-removable devices.
960 */
961 if ((caps & SDHCI_CAN_VDD_180) && (slot->version < SDHCI_SPEC_300 ||
962 (slot->opt & SDHCI_SLOT_EMBEDDED)))
963 slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE;
964 if (slot->host.host_ocr == 0) {
965 slot_printf(slot, "Hardware doesn't report any "
966 "support voltages.\n");
967 }
968
969 host_caps = slot->host.caps;
970 host_caps |= MMC_CAP_4_BIT_DATA;
971 if (caps & SDHCI_CAN_DO_8BITBUS)
972 host_caps |= MMC_CAP_8_BIT_DATA;
973 if (caps & SDHCI_CAN_DO_HISPD)
974 host_caps |= MMC_CAP_HSPEED;
975 if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC)
976 host_caps |= MMC_CAP_BOOT_NOACC;
977 if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY)
978 host_caps |= MMC_CAP_WAIT_WHILE_BUSY;
979
980 /* Determine supported UHS-I and eMMC modes. */
981 if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50))
982 host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
983 if (caps2 & SDHCI_CAN_SDR104) {
984 host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
985 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200))
986 host_caps |= MMC_CAP_MMC_HS200;
987 } else if (caps2 & SDHCI_CAN_SDR50)
988 host_caps |= MMC_CAP_UHS_SDR50;
989 if (caps2 & SDHCI_CAN_DDR50 &&
990 !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50))
991 host_caps |= MMC_CAP_UHS_DDR50;
992 if (slot->quirks & SDHCI_QUIRK_MMC_DDR52)
993 host_caps |= MMC_CAP_MMC_DDR52;
994 if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 &&
995 caps2 & SDHCI_CAN_MMC_HS400)
996 host_caps |= MMC_CAP_MMC_HS400;
997 if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 &&
998 caps2 & SDHCI_CAN_SDR104)
999 host_caps |= MMC_CAP_MMC_HS400;
1000
1001 /*
1002 * Disable UHS-I and eMMC modes if the set_uhs_timing method is the
1003 * default NULL implementation.
1004 */
1005 kobj_desc = &sdhci_set_uhs_timing_desc;
1006 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1007 kobj_desc);
1008 if (kobj_method == &kobj_desc->deflt)
1009 host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
1010 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
1011 MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400);
1012
1013 #define SDHCI_CAP_MODES_TUNING(caps2) \
1014 (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) | \
1015 MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 | \
1016 MMC_CAP_MMC_HS400)
1017
1018 /*
1019 * Disable UHS-I and eMMC modes that require (re-)tuning if either
1020 * the tune or re-tune method is the default NULL implementation.
1021 */
1022 kobj_desc = &mmcbr_tune_desc;
1023 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1024 kobj_desc);
1025 if (kobj_method == &kobj_desc->deflt)
1026 goto no_tuning;
1027 kobj_desc = &mmcbr_retune_desc;
1028 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1029 kobj_desc);
1030 if (kobj_method == &kobj_desc->deflt) {
1031 no_tuning:
1032 host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2));
1033 }
1034
1035 /* Allocate tuning structures and determine tuning parameters. */
1036 if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) {
1037 slot->opt |= SDHCI_TUNING_SUPPORTED;
1038 slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF,
1039 M_WAITOK);
1040 slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF,
1041 M_WAITOK);
1042 slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF,
1043 M_WAITOK);
1044 if (caps2 & SDHCI_TUNE_SDR50)
1045 slot->opt |= SDHCI_SDR50_NEEDS_TUNING;
1046 slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >>
1047 SDHCI_RETUNE_MODES_SHIFT;
1048 if (slot->retune_mode == SDHCI_RETUNE_MODE_1) {
1049 slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >>
1050 SDHCI_RETUNE_CNT_SHIFT;
1051 if (slot->retune_count > 0xb) {
1052 slot_printf(slot, "Unknown re-tuning count "
1053 "%x, using 1 sec\n", slot->retune_count);
1054 slot->retune_count = 1;
1055 } else if (slot->retune_count != 0)
1056 slot->retune_count =
1057 1 << (slot->retune_count - 1);
1058 }
1059 }
1060
1061 #undef SDHCI_CAP_MODES_TUNING
1062
1063 /* Determine supported VCCQ signaling levels. */
1064 host_caps |= MMC_CAP_SIGNALING_330;
1065 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
1066 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
1067 MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 |
1068 MMC_CAP_MMC_HS400_180))
1069 host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180;
1070
1071 /*
1072 * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the
1073 * default NULL implementation. Disable 1.2 V support if it's the
1074 * generic SDHCI implementation.
1075 */
1076 kobj_desc = &mmcbr_switch_vccq_desc;
1077 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1078 kobj_desc);
1079 if (kobj_method == &kobj_desc->deflt)
1080 host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180);
1081 else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq)
1082 host_caps &= ~MMC_CAP_SIGNALING_120;
1083
1084 /* Determine supported driver types (type B is always mandatory). */
1085 if (caps2 & SDHCI_CAN_DRIVE_TYPE_A)
1086 host_caps |= MMC_CAP_DRIVER_TYPE_A;
1087 if (caps2 & SDHCI_CAN_DRIVE_TYPE_C)
1088 host_caps |= MMC_CAP_DRIVER_TYPE_C;
1089 if (caps2 & SDHCI_CAN_DRIVE_TYPE_D)
1090 host_caps |= MMC_CAP_DRIVER_TYPE_D;
1091 slot->host.caps = host_caps;
1092
1093 /* Decide if we have usable DMA. */
1094 if (caps & SDHCI_CAN_DO_DMA)
1095 slot->opt |= SDHCI_HAVE_DMA;
1096
1097 if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA)
1098 slot->opt &= ~SDHCI_HAVE_DMA;
1099 if (slot->quirks & SDHCI_QUIRK_FORCE_DMA)
1100 slot->opt |= SDHCI_HAVE_DMA;
1101 if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE)
1102 slot->opt |= SDHCI_NON_REMOVABLE;
1103
1104 /*
1105 * Use platform-provided transfer backend
1106 * with PIO as a fallback mechanism
1107 */
1108 if (slot->opt & SDHCI_PLATFORM_TRANSFER)
1109 slot->opt &= ~SDHCI_HAVE_DMA;
1110
1111 if (slot->opt & SDHCI_HAVE_DMA) {
1112 err = sdhci_dma_alloc(slot);
1113 if (err != 0) {
1114 if (slot->opt & SDHCI_TUNING_SUPPORTED) {
1115 free(slot->tune_req, M_DEVBUF);
1116 free(slot->tune_cmd, M_DEVBUF);
1117 free(slot->tune_data, M_DEVBUF);
1118 }
1119 SDHCI_LOCK_DESTROY(slot);
1120 return (err);
1121 }
1122 }
1123
1124 if (bootverbose || sdhci_debug) {
1125 sdhci_dumpcaps(slot);
1126 sdhci_dumpregs(slot);
1127 }
1128
1129 slot->timeout = 10;
1130 SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus),
1131 SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO,
1132 "timeout", CTLFLAG_RWTUN, &slot->timeout, 0,
1133 "Maximum timeout for SDHCI transfers (in secs)");
1134 TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot);
1135 TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0,
1136 sdhci_card_task, slot);
1137 callout_init(&slot->card_poll_callout, 1);
1138 callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0);
1139 callout_init_mtx(&slot->retune_callout, &slot->mtx, 0);
1140
1141 if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
1142 !(slot->opt & SDHCI_NON_REMOVABLE)) {
1143 callout_reset(&slot->card_poll_callout,
1144 SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot);
1145 }
1146
1147 sdhci_init(slot);
1148
1149 snprintf(node_name, sizeof(node_name), "slot%d", slot->num);
1150
1151 node_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
1152 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1153 OID_AUTO, node_name, CTLFLAG_RW, 0, "slot specific node");
1154
1155 node_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
1156 SYSCTL_CHILDREN(node_oid), OID_AUTO, "debug", CTLFLAG_RW, 0,
1157 "Debugging node");
1158
1159 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(node_oid),
1160 OID_AUTO, "dumpregs", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1161 slot, 0, &sdhci_syctl_dumpregs,
1162 "A", "Dump SDHCI registers");
1163
1164 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(node_oid),
1165 OID_AUTO, "dumpcaps", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1166 slot, 0, &sdhci_syctl_dumpcaps,
1167 "A", "Dump SDHCI capabilites");
1168
1169 return (0);
1170 }
1171
1172 #ifndef MMCCAM
1173 void
1174 sdhci_start_slot(struct sdhci_slot *slot)
1175 {
1176
1177 sdhci_card_task(slot, 0);
1178 }
1179 #endif
1180
1181 int
1182 sdhci_cleanup_slot(struct sdhci_slot *slot)
1183 {
1184 device_t d;
1185
1186 callout_drain(&slot->timeout_callout);
1187 callout_drain(&slot->card_poll_callout);
1188 callout_drain(&slot->retune_callout);
1189 taskqueue_drain(taskqueue_swi_giant, &slot->card_task);
1190 taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task);
1191
1192 SDHCI_LOCK(slot);
1193 d = slot->dev;
1194 slot->dev = NULL;
1195 SDHCI_UNLOCK(slot);
1196 if (d != NULL)
1197 device_delete_child(slot->bus, d);
1198
1199 SDHCI_LOCK(slot);
1200 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL);
1201 SDHCI_UNLOCK(slot);
1202 if (slot->opt & SDHCI_HAVE_DMA)
1203 sdhci_dma_free(slot);
1204 if (slot->opt & SDHCI_TUNING_SUPPORTED) {
1205 free(slot->tune_req, M_DEVBUF);
1206 free(slot->tune_cmd, M_DEVBUF);
1207 free(slot->tune_data, M_DEVBUF);
1208 }
1209
1210 SDHCI_LOCK_DESTROY(slot);
1211
1212 return (0);
1213 }
1214
1215 int
1216 sdhci_generic_suspend(struct sdhci_slot *slot)
1217 {
1218
1219 /*
1220 * We expect the MMC layer to issue initial tuning after resume.
1221 * Otherwise, we'd need to indicate re-tuning including circuit reset
1222 * being required at least for re-tuning modes 1 and 2 ourselves.
1223 */
1224 callout_drain(&slot->retune_callout);
1225 SDHCI_LOCK(slot);
1226 slot->opt &= ~SDHCI_TUNING_ENABLED;
1227 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL);
1228 SDHCI_UNLOCK(slot);
1229
1230 return (0);
1231 }
1232
1233 int
1234 sdhci_generic_resume(struct sdhci_slot *slot)
1235 {
1236
1237 SDHCI_LOCK(slot);
1238 sdhci_init(slot);
1239 SDHCI_UNLOCK(slot);
1240
1241 return (0);
1242 }
1243
1244 void
1245 sdhci_generic_reset(device_t brdev __unused, struct sdhci_slot *slot,
1246 uint8_t mask)
1247 {
1248 int timeout;
1249 uint32_t clock;
1250
1251 if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
1252 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot))
1253 return;
1254 }
1255
1256 /* Some controllers need this kick or reset won't work. */
1257 if ((mask & SDHCI_RESET_ALL) == 0 &&
1258 (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) {
1259 /* This is to force an update */
1260 clock = slot->clock;
1261 slot->clock = 0;
1262 sdhci_set_clock(slot, clock);
1263 }
1264
1265 if (mask & SDHCI_RESET_ALL) {
1266 slot->clock = 0;
1267 slot->power = 0;
1268 }
1269
1270 WR1(slot, SDHCI_SOFTWARE_RESET, mask);
1271
1272 if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) {
1273 /*
1274 * Resets on TI OMAPs and AM335x are incompatible with SDHCI
1275 * specification. The reset bit has internal propagation delay,
1276 * so a fast read after write returns 0 even if reset process is
1277 * in progress. The workaround is to poll for 1 before polling
1278 * for 0. In the worst case, if we miss seeing it asserted the
1279 * time we spent waiting is enough to ensure the reset finishes.
1280 */
1281 timeout = 10000;
1282 while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) {
1283 if (timeout <= 0)
1284 break;
1285 timeout--;
1286 DELAY(1);
1287 }
1288 }
1289
1290 /* Wait max 100 ms */
1291 timeout = 10000;
1292 /* Controller clears the bits when it's done */
1293 while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) {
1294 if (timeout <= 0) {
1295 slot_printf(slot, "Reset 0x%x never completed.\n",
1296 mask);
1297 sdhci_dumpregs(slot);
1298 return;
1299 }
1300 timeout--;
1301 DELAY(10);
1302 }
1303 }
1304
1305 uint32_t
1306 sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot)
1307 {
1308
1309 if (slot->version >= SDHCI_SPEC_300)
1310 return (slot->max_clk / SDHCI_300_MAX_DIVIDER);
1311 else
1312 return (slot->max_clk / SDHCI_200_MAX_DIVIDER);
1313 }
1314
1315 bool
1316 sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot)
1317 {
1318
1319 if (slot->opt & SDHCI_NON_REMOVABLE)
1320 return true;
1321
1322 return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
1323 }
1324
1325 void
1326 sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot)
1327 {
1328 const struct mmc_ios *ios;
1329 uint16_t hostctrl2;
1330
1331 if (slot->version < SDHCI_SPEC_300)
1332 return;
1333
1334 SDHCI_ASSERT_LOCKED(slot);
1335 ios = &slot->host.ios;
1336 sdhci_set_clock(slot, 0);
1337 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1338 hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK;
1339 if (ios->clock > SD_SDR50_MAX) {
1340 if (ios->timing == bus_timing_mmc_hs400 ||
1341 ios->timing == bus_timing_mmc_hs400es)
1342 hostctrl2 |= SDHCI_CTRL2_MMC_HS400;
1343 else
1344 hostctrl2 |= SDHCI_CTRL2_UHS_SDR104;
1345 }
1346 else if (ios->clock > SD_SDR25_MAX)
1347 hostctrl2 |= SDHCI_CTRL2_UHS_SDR50;
1348 else if (ios->clock > SD_SDR12_MAX) {
1349 if (ios->timing == bus_timing_uhs_ddr50 ||
1350 ios->timing == bus_timing_mmc_ddr52)
1351 hostctrl2 |= SDHCI_CTRL2_UHS_DDR50;
1352 else
1353 hostctrl2 |= SDHCI_CTRL2_UHS_SDR25;
1354 } else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY)
1355 hostctrl2 |= SDHCI_CTRL2_UHS_SDR12;
1356 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1357 sdhci_set_clock(slot, ios->clock);
1358 }
1359
1360 int
1361 sdhci_generic_update_ios(device_t brdev, device_t reqdev)
1362 {
1363 struct sdhci_slot *slot = device_get_ivars(reqdev);
1364 struct mmc_ios *ios = &slot->host.ios;
1365
1366 SDHCI_LOCK(slot);
1367 /* Do full reset on bus power down to clear from any state. */
1368 if (ios->power_mode == power_off) {
1369 WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
1370 sdhci_init(slot);
1371 }
1372 /* Configure the bus. */
1373 sdhci_set_clock(slot, ios->clock);
1374 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
1375 if (ios->bus_width == bus_width_8) {
1376 slot->hostctrl |= SDHCI_CTRL_8BITBUS;
1377 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
1378 } else if (ios->bus_width == bus_width_4) {
1379 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
1380 slot->hostctrl |= SDHCI_CTRL_4BITBUS;
1381 } else if (ios->bus_width == bus_width_1) {
1382 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
1383 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
1384 } else {
1385 panic("Invalid bus width: %d", ios->bus_width);
1386 }
1387 if (ios->clock > SD_SDR12_MAX &&
1388 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
1389 slot->hostctrl |= SDHCI_CTRL_HISPD;
1390 else
1391 slot->hostctrl &= ~SDHCI_CTRL_HISPD;
1392 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
1393 SDHCI_SET_UHS_TIMING(brdev, slot);
1394 /* Some controllers like reset after bus changes. */
1395 if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
1396 SDHCI_RESET(slot->bus, slot,
1397 SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1398
1399 SDHCI_UNLOCK(slot);
1400 return (0);
1401 }
1402
1403 int
1404 sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev)
1405 {
1406 struct sdhci_slot *slot = device_get_ivars(reqdev);
1407 enum mmc_vccq vccq;
1408 int err;
1409 uint16_t hostctrl2;
1410
1411 if (slot->version < SDHCI_SPEC_300)
1412 return (0);
1413
1414 err = 0;
1415 vccq = slot->host.ios.vccq;
1416 SDHCI_LOCK(slot);
1417 sdhci_set_clock(slot, 0);
1418 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1419 switch (vccq) {
1420 case vccq_330:
1421 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1422 goto done;
1423 hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE;
1424 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1425 DELAY(5000);
1426 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1427 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1428 goto done;
1429 err = EAGAIN;
1430 break;
1431 case vccq_180:
1432 if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) {
1433 err = EINVAL;
1434 goto done;
1435 }
1436 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1437 goto done;
1438 hostctrl2 |= SDHCI_CTRL2_S18_ENABLE;
1439 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1440 DELAY(5000);
1441 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1442 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1443 goto done;
1444 err = EAGAIN;
1445 break;
1446 default:
1447 slot_printf(slot,
1448 "Attempt to set unsupported signaling voltage\n");
1449 err = EINVAL;
1450 break;
1451 }
1452 done:
1453 sdhci_set_clock(slot, slot->host.ios.clock);
1454 SDHCI_UNLOCK(slot);
1455 return (err);
1456 }
1457
1458 int
1459 sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400)
1460 {
1461 struct sdhci_slot *slot = device_get_ivars(reqdev);
1462 const struct mmc_ios *ios = &slot->host.ios;
1463 struct mmc_command *tune_cmd;
1464 struct mmc_data *tune_data;
1465 uint32_t opcode;
1466 int err;
1467
1468 if (!(slot->opt & SDHCI_TUNING_SUPPORTED))
1469 return (0);
1470
1471 slot->retune_ticks = slot->retune_count * hz;
1472 opcode = MMC_SEND_TUNING_BLOCK;
1473 SDHCI_LOCK(slot);
1474 switch (ios->timing) {
1475 case bus_timing_mmc_hs400:
1476 slot_printf(slot, "HS400 must be tuned in HS200 mode\n");
1477 SDHCI_UNLOCK(slot);
1478 return (EINVAL);
1479 case bus_timing_mmc_hs200:
1480 /*
1481 * In HS400 mode, controllers use the data strobe line to
1482 * latch data from the devices so periodic re-tuning isn't
1483 * expected to be required.
1484 */
1485 if (hs400)
1486 slot->retune_ticks = 0;
1487 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1488 break;
1489 case bus_timing_uhs_ddr50:
1490 case bus_timing_uhs_sdr104:
1491 break;
1492 case bus_timing_uhs_sdr50:
1493 if (slot->opt & SDHCI_SDR50_NEEDS_TUNING)
1494 break;
1495 /* FALLTHROUGH */
1496 default:
1497 SDHCI_UNLOCK(slot);
1498 return (0);
1499 }
1500
1501 tune_cmd = slot->tune_cmd;
1502 memset(tune_cmd, 0, sizeof(*tune_cmd));
1503 tune_cmd->opcode = opcode;
1504 tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1505 tune_data = tune_cmd->data = slot->tune_data;
1506 memset(tune_data, 0, sizeof(*tune_data));
1507 tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
1508 ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 :
1509 MMC_TUNING_LEN;
1510 tune_data->flags = MMC_DATA_READ;
1511 tune_data->mrq = tune_cmd->mrq = slot->tune_req;
1512
1513 slot->opt &= ~SDHCI_TUNING_ENABLED;
1514 err = sdhci_exec_tuning(slot, true);
1515 if (err == 0) {
1516 slot->opt |= SDHCI_TUNING_ENABLED;
1517 slot->intmask |= sdhci_tuning_intmask(slot);
1518 WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
1519 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1520 if (slot->retune_ticks) {
1521 callout_reset(&slot->retune_callout, slot->retune_ticks,
1522 sdhci_retune, slot);
1523 }
1524 }
1525 SDHCI_UNLOCK(slot);
1526 return (err);
1527 }
1528
1529 int
1530 sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset)
1531 {
1532 struct sdhci_slot *slot = device_get_ivars(reqdev);
1533 int err;
1534
1535 if (!(slot->opt & SDHCI_TUNING_ENABLED))
1536 return (0);
1537
1538 /* HS400 must be tuned in HS200 mode. */
1539 if (slot->host.ios.timing == bus_timing_mmc_hs400)
1540 return (EINVAL);
1541
1542 SDHCI_LOCK(slot);
1543 err = sdhci_exec_tuning(slot, reset);
1544 /*
1545 * There are two ways sdhci_exec_tuning() can fail:
1546 * EBUSY should not actually happen when requests are only issued
1547 * with the host properly acquired, and
1548 * EIO re-tuning failed (but it did work initially).
1549 *
1550 * In both cases, we should retry at later point if periodic re-tuning
1551 * is enabled. Note that due to slot->retune_req not being cleared in
1552 * these failure cases, the MMC layer should trigger another attempt at
1553 * re-tuning with the next request anyway, though.
1554 */
1555 if (slot->retune_ticks) {
1556 callout_reset(&slot->retune_callout, slot->retune_ticks,
1557 sdhci_retune, slot);
1558 }
1559 SDHCI_UNLOCK(slot);
1560 return (err);
1561 }
1562
1563 static int
1564 sdhci_exec_tuning(struct sdhci_slot *slot, bool reset)
1565 {
1566 struct mmc_request *tune_req;
1567 struct mmc_command *tune_cmd;
1568 int i;
1569 uint32_t intmask;
1570 uint16_t hostctrl2;
1571 u_char opt;
1572
1573 SDHCI_ASSERT_LOCKED(slot);
1574 if (slot->req != NULL)
1575 return (EBUSY);
1576
1577 /* Tuning doesn't work with DMA enabled. */
1578 opt = slot->opt;
1579 slot->opt = opt & ~SDHCI_HAVE_DMA;
1580
1581 /*
1582 * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only
1583 * kind of interrupt we receive in response to a tuning request.
1584 */
1585 intmask = slot->intmask;
1586 slot->intmask = SDHCI_INT_DATA_AVAIL;
1587 WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL);
1588 WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL);
1589
1590 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1591 if (reset)
1592 hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK;
1593 else
1594 hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK;
1595 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING);
1596
1597 tune_req = slot->tune_req;
1598 tune_cmd = slot->tune_cmd;
1599 for (i = 0; i < MMC_TUNING_MAX; i++) {
1600 memset(tune_req, 0, sizeof(*tune_req));
1601 tune_req->cmd = tune_cmd;
1602 tune_req->done = sdhci_req_wakeup;
1603 tune_req->done_data = slot;
1604 slot->req = tune_req;
1605 slot->flags = 0;
1606 sdhci_start(slot);
1607 while (!(tune_req->flags & MMC_REQ_DONE))
1608 msleep(tune_req, &slot->mtx, 0, "sdhciet", 0);
1609 if (!(tune_req->flags & MMC_TUNE_DONE))
1610 break;
1611 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1612 if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING))
1613 break;
1614 if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK)
1615 DELAY(1000);
1616 }
1617
1618 /*
1619 * Restore DMA usage and interrupts.
1620 * Note that the interrupt aggregation code might have cleared
1621 * SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask
1622 * and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE
1623 * doesn't lose these.
1624 */
1625 slot->opt = opt;
1626 slot->intmask = intmask;
1627 WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END |
1628 SDHCI_INT_RESPONSE);
1629 WR4(slot, SDHCI_SIGNAL_ENABLE, intmask);
1630
1631 if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING |
1632 SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) {
1633 slot->retune_req = 0;
1634 return (0);
1635 }
1636
1637 slot_printf(slot, "Tuning failed, using fixed sampling clock\n");
1638 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING |
1639 SDHCI_CTRL2_SAMPLING_CLOCK));
1640 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1641 return (EIO);
1642 }
1643
1644 static void
1645 sdhci_retune(void *arg)
1646 {
1647 struct sdhci_slot *slot = arg;
1648
1649 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
1650 }
1651
1652 #ifdef MMCCAM
1653 static void
1654 sdhci_req_done(struct sdhci_slot *slot)
1655 {
1656 union ccb *ccb;
1657
1658 if (__predict_false(sdhci_debug > 1))
1659 slot_printf(slot, "%s\n", __func__);
1660 if (slot->ccb != NULL && slot->curcmd != NULL) {
1661 callout_stop(&slot->timeout_callout);
1662 ccb = slot->ccb;
1663 slot->ccb = NULL;
1664 slot->curcmd = NULL;
1665
1666 /* Tell CAM the request is finished */
1667 struct ccb_mmcio *mmcio;
1668 mmcio = &ccb->mmcio;
1669
1670 ccb->ccb_h.status =
1671 (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR);
1672 xpt_done(ccb);
1673 }
1674 }
1675 #else
1676 static void
1677 sdhci_req_done(struct sdhci_slot *slot)
1678 {
1679 struct mmc_request *req;
1680
1681 if (slot->req != NULL && slot->curcmd != NULL) {
1682 callout_stop(&slot->timeout_callout);
1683 req = slot->req;
1684 slot->req = NULL;
1685 slot->curcmd = NULL;
1686 req->done(req);
1687 }
1688 }
1689 #endif
1690
1691 static void
1692 sdhci_req_wakeup(struct mmc_request *req)
1693 {
1694
1695 req->flags |= MMC_REQ_DONE;
1696 wakeup(req);
1697 }
1698
1699 static void
1700 sdhci_timeout(void *arg)
1701 {
1702 struct sdhci_slot *slot = arg;
1703
1704 if (slot->curcmd != NULL) {
1705 slot_printf(slot, "Controller timeout\n");
1706 sdhci_dumpregs(slot);
1707 SDHCI_RESET(slot->bus, slot,
1708 SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1709 slot->curcmd->error = MMC_ERR_TIMEOUT;
1710 sdhci_req_done(slot);
1711 } else {
1712 slot_printf(slot, "Spurious timeout - no active command\n");
1713 }
1714 }
1715
1716 static void
1717 sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data)
1718 {
1719 uint16_t mode;
1720
1721 if (data == NULL)
1722 return;
1723
1724 mode = SDHCI_TRNS_BLK_CNT_EN;
1725 if (data->len > 512 || data->block_count > 1) {
1726 mode |= SDHCI_TRNS_MULTI;
1727 if (data->block_count == 0 && __predict_true(
1728 #ifdef MMCCAM
1729 slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION &&
1730 #else
1731 slot->req->stop != NULL &&
1732 #endif
1733 !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)))
1734 mode |= SDHCI_TRNS_ACMD12;
1735 }
1736 if (data->flags & MMC_DATA_READ)
1737 mode |= SDHCI_TRNS_READ;
1738 if (slot->flags & SDHCI_USE_DMA)
1739 mode |= SDHCI_TRNS_DMA;
1740
1741 WR2(slot, SDHCI_TRANSFER_MODE, mode);
1742 }
1743
1744 static void
1745 sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd)
1746 {
1747 int flags, timeout;
1748 uint32_t mask;
1749
1750 slot->curcmd = cmd;
1751 slot->cmd_done = 0;
1752
1753 cmd->error = MMC_ERR_NONE;
1754
1755 /* This flags combination is not supported by controller. */
1756 if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
1757 slot_printf(slot, "Unsupported response type!\n");
1758 cmd->error = MMC_ERR_FAILED;
1759 sdhci_req_done(slot);
1760 return;
1761 }
1762
1763 /*
1764 * Do not issue command if there is no card, clock or power.
1765 * Controller will not detect timeout without clock active.
1766 */
1767 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) ||
1768 slot->power == 0 ||
1769 slot->clock == 0) {
1770 slot_printf(slot,
1771 "Cannot issue a command (power=%d clock=%d)\n",
1772 slot->power, slot->clock);
1773 cmd->error = MMC_ERR_FAILED;
1774 sdhci_req_done(slot);
1775 return;
1776 }
1777 /* Always wait for free CMD bus. */
1778 mask = SDHCI_CMD_INHIBIT;
1779 /* Wait for free DAT if we have data or busy signal. */
1780 if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY))
1781 mask |= SDHCI_DAT_INHIBIT;
1782 /*
1783 * We shouldn't wait for DAT for stop commands or CMD19/CMD21. Note
1784 * that these latter are also special in that SDHCI_CMD_DATA should
1785 * be set below but no actual data is ever read from the controller.
1786 */
1787 #ifdef MMCCAM
1788 if (cmd == &slot->ccb->mmcio.stop ||
1789 #else
1790 if (cmd == slot->req->stop ||
1791 #endif
1792 __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK ||
1793 cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))
1794 mask &= ~SDHCI_DAT_INHIBIT;
1795 /*
1796 * Wait for bus no more then 250 ms. Typically there will be no wait
1797 * here at all, but when writing a crash dump we may be bypassing the
1798 * host platform's interrupt handler, and in some cases that handler
1799 * may be working around hardware quirks such as not respecting r1b
1800 * busy indications. In those cases, this wait-loop serves the purpose
1801 * of waiting for the prior command and data transfers to be done, and
1802 * SD cards are allowed to take up to 250ms for write and erase ops.
1803 * (It's usually more like 20-30ms in the real world.)
1804 */
1805 timeout = 250;
1806 while (mask & RD4(slot, SDHCI_PRESENT_STATE)) {
1807 if (timeout == 0) {
1808 slot_printf(slot, "Controller never released "
1809 "inhibit bit(s).\n");
1810 sdhci_dumpregs(slot);
1811 cmd->error = MMC_ERR_FAILED;
1812 sdhci_req_done(slot);
1813 return;
1814 }
1815 timeout--;
1816 DELAY(1000);
1817 }
1818
1819 /* Prepare command flags. */
1820 if (!(cmd->flags & MMC_RSP_PRESENT))
1821 flags = SDHCI_CMD_RESP_NONE;
1822 else if (cmd->flags & MMC_RSP_136)
1823 flags = SDHCI_CMD_RESP_LONG;
1824 else if (cmd->flags & MMC_RSP_BUSY)
1825 flags = SDHCI_CMD_RESP_SHORT_BUSY;
1826 else
1827 flags = SDHCI_CMD_RESP_SHORT;
1828 if (cmd->flags & MMC_RSP_CRC)
1829 flags |= SDHCI_CMD_CRC;
1830 if (cmd->flags & MMC_RSP_OPCODE)
1831 flags |= SDHCI_CMD_INDEX;
1832 if (cmd->data != NULL)
1833 flags |= SDHCI_CMD_DATA;
1834 if (cmd->opcode == MMC_STOP_TRANSMISSION)
1835 flags |= SDHCI_CMD_TYPE_ABORT;
1836 /* Prepare data. */
1837 sdhci_start_data(slot, cmd->data);
1838 /*
1839 * Interrupt aggregation: To reduce total number of interrupts
1840 * group response interrupt with data interrupt when possible.
1841 * If there going to be data interrupt, mask response one.
1842 */
1843 if (slot->data_done == 0) {
1844 WR4(slot, SDHCI_SIGNAL_ENABLE,
1845 slot->intmask &= ~SDHCI_INT_RESPONSE);
1846 }
1847 /* Set command argument. */
1848 WR4(slot, SDHCI_ARGUMENT, cmd->arg);
1849 /* Set data transfer mode. */
1850 sdhci_set_transfer_mode(slot, cmd->data);
1851 if (__predict_false(sdhci_debug > 1))
1852 slot_printf(slot, "Starting command opcode %#04x flags %#04x\n",
1853 cmd->opcode, flags);
1854
1855 /* Start command. */
1856 WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff));
1857 /* Start timeout callout. */
1858 callout_reset(&slot->timeout_callout, slot->timeout * hz,
1859 sdhci_timeout, slot);
1860 }
1861
1862 static void
1863 sdhci_finish_command(struct sdhci_slot *slot)
1864 {
1865 int i;
1866 uint32_t val;
1867 uint8_t extra;
1868
1869 if (__predict_false(sdhci_debug > 1))
1870 slot_printf(slot, "%s: called, err %d flags %#04x\n",
1871 __func__, slot->curcmd->error, slot->curcmd->flags);
1872 slot->cmd_done = 1;
1873 /*
1874 * Interrupt aggregation: Restore command interrupt.
1875 * Main restore point for the case when command interrupt
1876 * happened first.
1877 */
1878 if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK &&
1879 slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200))
1880 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |=
1881 SDHCI_INT_RESPONSE);
1882 /* In case of error - reset host and return. */
1883 if (slot->curcmd->error) {
1884 if (slot->curcmd->error == MMC_ERR_BADCRC)
1885 slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
1886 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
1887 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA);
1888 sdhci_start(slot);
1889 return;
1890 }
1891 /* If command has response - fetch it. */
1892 if (slot->curcmd->flags & MMC_RSP_PRESENT) {
1893 if (slot->curcmd->flags & MMC_RSP_136) {
1894 /* CRC is stripped so we need one byte shift. */
1895 extra = 0;
1896 for (i = 0; i < 4; i++) {
1897 val = RD4(slot, SDHCI_RESPONSE + i * 4);
1898 if (slot->quirks &
1899 SDHCI_QUIRK_DONT_SHIFT_RESPONSE)
1900 slot->curcmd->resp[3 - i] = val;
1901 else {
1902 slot->curcmd->resp[3 - i] =
1903 (val << 8) | extra;
1904 extra = val >> 24;
1905 }
1906 }
1907 } else
1908 slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE);
1909 }
1910 if (__predict_false(sdhci_debug > 1))
1911 slot_printf(slot, "Resp: %#04x %#04x %#04x %#04x\n",
1912 slot->curcmd->resp[0], slot->curcmd->resp[1],
1913 slot->curcmd->resp[2], slot->curcmd->resp[3]);
1914
1915 /* If data ready - finish. */
1916 if (slot->data_done)
1917 sdhci_start(slot);
1918 }
1919
1920 static void
1921 sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data)
1922 {
1923 uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout;
1924 uint8_t div;
1925
1926 if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
1927 slot->data_done = 1;
1928 return;
1929 }
1930
1931 slot->data_done = 0;
1932
1933 /* Calculate and set data timeout.*/
1934 /* XXX: We should have this from mmc layer, now assume 1 sec. */
1935 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) {
1936 div = 0xE;
1937 } else {
1938 target_timeout = 1000000;
1939 div = 0;
1940 current_timeout = (1 << 13) * 1000 / slot->timeout_clk;
1941 while (current_timeout < target_timeout && div < 0xE) {
1942 ++div;
1943 current_timeout <<= 1;
1944 }
1945 /* Compensate for an off-by-one error in the CaFe chip.*/
1946 if (div < 0xE &&
1947 (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) {
1948 ++div;
1949 }
1950 }
1951 WR1(slot, SDHCI_TIMEOUT_CONTROL, div);
1952
1953 if (data == NULL)
1954 return;
1955
1956 /* Use DMA if possible. */
1957 if ((slot->opt & SDHCI_HAVE_DMA))
1958 slot->flags |= SDHCI_USE_DMA;
1959 /* If data is small, broken DMA may return zeroes instead of data. */
1960 if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) &&
1961 (data->len <= 512))
1962 slot->flags &= ~SDHCI_USE_DMA;
1963 /* Some controllers require even block sizes. */
1964 if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) &&
1965 ((data->len) & 0x3))
1966 slot->flags &= ~SDHCI_USE_DMA;
1967 /* Load DMA buffer. */
1968 if (slot->flags & SDHCI_USE_DMA) {
1969 sdma_bbufsz = slot->sdma_bbufsz;
1970 if (data->flags & MMC_DATA_READ)
1971 bus_dmamap_sync(slot->dmatag, slot->dmamap,
1972 BUS_DMASYNC_PREREAD);
1973 else {
1974 memcpy(slot->dmamem, data->data, ulmin(data->len,
1975 sdma_bbufsz));
1976 bus_dmamap_sync(slot->dmatag, slot->dmamap,
1977 BUS_DMASYNC_PREWRITE);
1978 }
1979 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
1980 /*
1981 * Interrupt aggregation: Mask border interrupt for the last
1982 * bounce buffer and unmask otherwise.
1983 */
1984 if (data->len == sdma_bbufsz)
1985 slot->intmask &= ~SDHCI_INT_DMA_END;
1986 else
1987 slot->intmask |= SDHCI_INT_DMA_END;
1988 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1989 }
1990 /* Current data offset for both PIO and DMA. */
1991 slot->offset = 0;
1992 #ifdef MMCCAM
1993 if (data->flags & MMC_DATA_BLOCK_SIZE) {
1994 /* Set block size and request border interrupts on the SDMA boundary. */
1995 blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, data->block_size);
1996 blkcnt = data->block_count;
1997 if (__predict_false(sdhci_debug > 0))
1998 slot_printf(slot, "SDIO Custom block params: blksz: "
1999 "%#10x, blk cnt: %#10x\n", blksz, blkcnt);
2000 } else
2001 #endif
2002 {
2003 /* Set block size and request border interrupts on the SDMA boundary. */
2004 blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512));
2005 blkcnt = howmany(data->len, 512);
2006 }
2007
2008 WR2(slot, SDHCI_BLOCK_SIZE, blksz);
2009 WR2(slot, SDHCI_BLOCK_COUNT, blkcnt);
2010 if (__predict_false(sdhci_debug > 1))
2011 slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n",
2012 blksz, blkcnt);
2013 }
2014
2015 void
2016 sdhci_finish_data(struct sdhci_slot *slot)
2017 {
2018 struct mmc_data *data = slot->curcmd->data;
2019 size_t left;
2020
2021 /* Interrupt aggregation: Restore command interrupt.
2022 * Auxiliary restore point for the case when data interrupt
2023 * happened first. */
2024 if (!slot->cmd_done) {
2025 WR4(slot, SDHCI_SIGNAL_ENABLE,
2026 slot->intmask |= SDHCI_INT_RESPONSE);
2027 }
2028 /* Unload rest of data from DMA buffer. */
2029 if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) &&
2030 slot->curcmd->data != NULL) {
2031 if (data->flags & MMC_DATA_READ) {
2032 left = data->len - slot->offset;
2033 bus_dmamap_sync(slot->dmatag, slot->dmamap,
2034 BUS_DMASYNC_POSTREAD);
2035 memcpy((u_char*)data->data + slot->offset, slot->dmamem,
2036 ulmin(left, slot->sdma_bbufsz));
2037 } else
2038 bus_dmamap_sync(slot->dmatag, slot->dmamap,
2039 BUS_DMASYNC_POSTWRITE);
2040 }
2041 slot->data_done = 1;
2042 /* If there was error - reset the host. */
2043 if (slot->curcmd->error) {
2044 if (slot->curcmd->error == MMC_ERR_BADCRC)
2045 slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
2046 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
2047 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA);
2048 sdhci_start(slot);
2049 return;
2050 }
2051 /* If we already have command response - finish. */
2052 if (slot->cmd_done)
2053 sdhci_start(slot);
2054 }
2055
2056 #ifdef MMCCAM
2057 static void
2058 sdhci_start(struct sdhci_slot *slot)
2059 {
2060 union ccb *ccb;
2061 struct ccb_mmcio *mmcio;
2062
2063 ccb = slot->ccb;
2064 if (ccb == NULL)
2065 return;
2066
2067 mmcio = &ccb->mmcio;
2068 if (!(slot->flags & CMD_STARTED)) {
2069 slot->flags |= CMD_STARTED;
2070 sdhci_start_command(slot, &mmcio->cmd);
2071 return;
2072 }
2073
2074 /*
2075 * Old stack doesn't use this!
2076 * Enabling this code causes significant performance degradation
2077 * and IRQ storms on BBB, Wandboard behaves fine.
2078 * Not using this code does no harm...
2079 if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) {
2080 slot->flags |= STOP_STARTED;
2081 sdhci_start_command(slot, &mmcio->stop);
2082 return;
2083 }
2084 */
2085 if (__predict_false(sdhci_debug > 1))
2086 slot_printf(slot, "result: %d\n", mmcio->cmd.error);
2087 if (mmcio->cmd.error == 0 &&
2088 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) {
2089 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
2090 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA);
2091 }
2092
2093 sdhci_req_done(slot);
2094 }
2095 #else
2096 static void
2097 sdhci_start(struct sdhci_slot *slot)
2098 {
2099 const struct mmc_request *req;
2100
2101 req = slot->req;
2102 if (req == NULL)
2103 return;
2104
2105 if (!(slot->flags & CMD_STARTED)) {
2106 slot->flags |= CMD_STARTED;
2107 sdhci_start_command(slot, req->cmd);
2108 return;
2109 }
2110 if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) &&
2111 !(slot->flags & STOP_STARTED) && req->stop) {
2112 slot->flags |= STOP_STARTED;
2113 sdhci_start_command(slot, req->stop);
2114 return;
2115 }
2116 if (__predict_false(sdhci_debug > 1))
2117 slot_printf(slot, "result: %d\n", req->cmd->error);
2118 if (!req->cmd->error &&
2119 ((slot->curcmd == req->stop &&
2120 (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) ||
2121 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) {
2122 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
2123 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA);
2124 }
2125
2126 sdhci_req_done(slot);
2127 }
2128 #endif
2129
2130 int
2131 sdhci_generic_request(device_t brdev __unused, device_t reqdev,
2132 struct mmc_request *req)
2133 {
2134 struct sdhci_slot *slot = device_get_ivars(reqdev);
2135
2136 SDHCI_LOCK(slot);
2137 if (slot->req != NULL) {
2138 SDHCI_UNLOCK(slot);
2139 return (EBUSY);
2140 }
2141 if (__predict_false(sdhci_debug > 1)) {
2142 slot_printf(slot,
2143 "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
2144 req->cmd->opcode, req->cmd->arg, req->cmd->flags,
2145 (req->cmd->data)?(u_int)req->cmd->data->len:0,
2146 (req->cmd->data)?req->cmd->data->flags:0);
2147 }
2148 slot->req = req;
2149 slot->flags = 0;
2150 sdhci_start(slot);
2151 SDHCI_UNLOCK(slot);
2152 if (dumping) {
2153 while (slot->req != NULL) {
2154 sdhci_generic_intr(slot);
2155 DELAY(10);
2156 }
2157 }
2158 return (0);
2159 }
2160
2161 int
2162 sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev)
2163 {
2164 struct sdhci_slot *slot = device_get_ivars(reqdev);
2165 uint32_t val;
2166
2167 SDHCI_LOCK(slot);
2168 val = RD4(slot, SDHCI_PRESENT_STATE);
2169 SDHCI_UNLOCK(slot);
2170 return (!(val & SDHCI_WRITE_PROTECT));
2171 }
2172
2173 int
2174 sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev)
2175 {
2176 struct sdhci_slot *slot = device_get_ivars(reqdev);
2177 int err = 0;
2178
2179 SDHCI_LOCK(slot);
2180 while (slot->bus_busy)
2181 msleep(slot, &slot->mtx, 0, "sdhciah", 0);
2182 slot->bus_busy++;
2183 /* Activate led. */
2184 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED);
2185 SDHCI_UNLOCK(slot);
2186 return (err);
2187 }
2188
2189 int
2190 sdhci_generic_release_host(device_t brdev __unused, device_t reqdev)
2191 {
2192 struct sdhci_slot *slot = device_get_ivars(reqdev);
2193
2194 SDHCI_LOCK(slot);
2195 /* Deactivate led. */
2196 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED);
2197 slot->bus_busy--;
2198 wakeup(slot);
2199 SDHCI_UNLOCK(slot);
2200 return (0);
2201 }
2202
2203 static void
2204 sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask)
2205 {
2206
2207 if (!slot->curcmd) {
2208 slot_printf(slot, "Got command interrupt 0x%08x, but "
2209 "there is no active command.\n", intmask);
2210 sdhci_dumpregs(slot);
2211 return;
2212 }
2213 if (intmask & SDHCI_INT_TIMEOUT)
2214 slot->curcmd->error = MMC_ERR_TIMEOUT;
2215 else if (intmask & SDHCI_INT_CRC)
2216 slot->curcmd->error = MMC_ERR_BADCRC;
2217 else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX))
2218 slot->curcmd->error = MMC_ERR_FIFO;
2219
2220 sdhci_finish_command(slot);
2221 }
2222
2223 static void
2224 sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask)
2225 {
2226 struct mmc_data *data;
2227 size_t left;
2228 uint32_t sdma_bbufsz;
2229
2230 if (!slot->curcmd) {
2231 slot_printf(slot, "Got data interrupt 0x%08x, but "
2232 "there is no active command.\n", intmask);
2233 sdhci_dumpregs(slot);
2234 return;
2235 }
2236 if (slot->curcmd->data == NULL &&
2237 (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
2238 slot_printf(slot, "Got data interrupt 0x%08x, but "
2239 "there is no active data operation.\n",
2240 intmask);
2241 sdhci_dumpregs(slot);
2242 return;
2243 }
2244 if (intmask & SDHCI_INT_DATA_TIMEOUT)
2245 slot->curcmd->error = MMC_ERR_TIMEOUT;
2246 else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT))
2247 slot->curcmd->error = MMC_ERR_BADCRC;
2248 if (slot->curcmd->data == NULL &&
2249 (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
2250 SDHCI_INT_DMA_END))) {
2251 slot_printf(slot, "Got data interrupt 0x%08x, but "
2252 "there is busy-only command.\n", intmask);
2253 sdhci_dumpregs(slot);
2254 slot->curcmd->error = MMC_ERR_INVALID;
2255 }
2256 if (slot->curcmd->error) {
2257 /* No need to continue after any error. */
2258 goto done;
2259 }
2260
2261 /* Handle tuning completion interrupt. */
2262 if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) &&
2263 (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK ||
2264 slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) {
2265 slot->req->flags |= MMC_TUNE_DONE;
2266 sdhci_finish_command(slot);
2267 sdhci_finish_data(slot);
2268 return;
2269 }
2270 /* Handle PIO interrupt. */
2271 if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) {
2272 if ((slot->opt & SDHCI_PLATFORM_TRANSFER) &&
2273 SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) {
2274 SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot,
2275 &intmask);
2276 slot->flags |= PLATFORM_DATA_STARTED;
2277 } else
2278 sdhci_transfer_pio(slot);
2279 }
2280 /* Handle DMA border. */
2281 if (intmask & SDHCI_INT_DMA_END) {
2282 data = slot->curcmd->data;
2283 sdma_bbufsz = slot->sdma_bbufsz;
2284
2285 /* Unload DMA buffer ... */
2286 left = data->len - slot->offset;
2287 if (data->flags & MMC_DATA_READ) {
2288 bus_dmamap_sync(slot->dmatag, slot->dmamap,
2289 BUS_DMASYNC_POSTREAD);
2290 memcpy((u_char*)data->data + slot->offset, slot->dmamem,
2291 ulmin(left, sdma_bbufsz));
2292 } else {
2293 bus_dmamap_sync(slot->dmatag, slot->dmamap,
2294 BUS_DMASYNC_POSTWRITE);
2295 }
2296 /* ... and reload it again. */
2297 slot->offset += sdma_bbufsz;
2298 left = data->len - slot->offset;
2299 if (data->flags & MMC_DATA_READ) {
2300 bus_dmamap_sync(slot->dmatag, slot->dmamap,
2301 BUS_DMASYNC_PREREAD);
2302 } else {
2303 memcpy(slot->dmamem, (u_char*)data->data + slot->offset,
2304 ulmin(left, sdma_bbufsz));
2305 bus_dmamap_sync(slot->dmatag, slot->dmamap,
2306 BUS_DMASYNC_PREWRITE);
2307 }
2308 /*
2309 * Interrupt aggregation: Mask border interrupt for the last
2310 * bounce buffer.
2311 */
2312 if (left == sdma_bbufsz) {
2313 slot->intmask &= ~SDHCI_INT_DMA_END;
2314 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
2315 }
2316 /* Restart DMA. */
2317 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
2318 }
2319 /* We have got all data. */
2320 if (intmask & SDHCI_INT_DATA_END) {
2321 if (slot->flags & PLATFORM_DATA_STARTED) {
2322 slot->flags &= ~PLATFORM_DATA_STARTED;
2323 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
2324 } else
2325 sdhci_finish_data(slot);
2326 }
2327 done:
2328 if (slot->curcmd != NULL && slot->curcmd->error != 0) {
2329 if (slot->flags & PLATFORM_DATA_STARTED) {
2330 slot->flags &= ~PLATFORM_DATA_STARTED;
2331 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
2332 } else
2333 sdhci_finish_data(slot);
2334 }
2335 }
2336
2337 static void
2338 sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err)
2339 {
2340
2341 if (!slot->curcmd) {
2342 slot_printf(slot, "Got AutoCMD12 error 0x%04x, but "
2343 "there is no active command.\n", acmd_err);
2344 sdhci_dumpregs(slot);
2345 return;
2346 }
2347 slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err);
2348 SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
2349 }
2350
2351 void
2352 sdhci_generic_intr(struct sdhci_slot *slot)
2353 {
2354 uint32_t intmask, present;
2355 uint16_t val16;
2356
2357 SDHCI_LOCK(slot);
2358 /* Read slot interrupt status. */
2359 intmask = RD4(slot, SDHCI_INT_STATUS);
2360 if (intmask == 0 || intmask == 0xffffffff) {
2361 SDHCI_UNLOCK(slot);
2362 return;
2363 }
2364 if (__predict_false(sdhci_debug > 2))
2365 slot_printf(slot, "Interrupt %#x\n", intmask);
2366
2367 /* Handle tuning error interrupt. */
2368 if (__predict_false(intmask & SDHCI_INT_TUNEERR)) {
2369 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR);
2370 slot_printf(slot, "Tuning error indicated\n");
2371 slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
2372 if (slot->curcmd) {
2373 slot->curcmd->error = MMC_ERR_BADCRC;
2374 sdhci_finish_command(slot);
2375 }
2376 }
2377 /* Handle re-tuning interrupt. */
2378 if (__predict_false(intmask & SDHCI_INT_RETUNE))
2379 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
2380 /* Handle card presence interrupts. */
2381 if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
2382 present = (intmask & SDHCI_INT_CARD_INSERT) != 0;
2383 slot->intmask &=
2384 ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
2385 slot->intmask |= present ? SDHCI_INT_CARD_REMOVE :
2386 SDHCI_INT_CARD_INSERT;
2387 WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
2388 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
2389 WR4(slot, SDHCI_INT_STATUS, intmask &
2390 (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE));
2391 sdhci_handle_card_present_locked(slot, present);
2392 }
2393 /* Handle command interrupts. */
2394 if (intmask & SDHCI_INT_CMD_MASK) {
2395 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK);
2396 sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK);
2397 }
2398 /* Handle data interrupts. */
2399 if (intmask & SDHCI_INT_DATA_MASK) {
2400 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK);
2401 /* Don't call data_irq in case of errored command. */
2402 if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0)
2403 sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK);
2404 }
2405 /* Handle AutoCMD12 error interrupt. */
2406 if (intmask & SDHCI_INT_ACMD12ERR) {
2407 /* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */
2408 val16 = RD2(slot, SDHCI_ACMD12_ERR);
2409 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR);
2410 sdhci_acmd_irq(slot, val16);
2411 }
2412 /* Handle bus power interrupt. */
2413 if (intmask & SDHCI_INT_BUS_POWER) {
2414 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER);
2415 slot_printf(slot, "Card is consuming too much power!\n");
2416 }
2417 intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE |
2418 SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK |
2419 SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER);
2420 /* The rest is unknown. */
2421 if (intmask) {
2422 WR4(slot, SDHCI_INT_STATUS, intmask);
2423 slot_printf(slot, "Unexpected interrupt 0x%08x.\n",
2424 intmask);
2425 sdhci_dumpregs(slot);
2426 }
2427
2428 SDHCI_UNLOCK(slot);
2429 }
2430
2431 int
2432 sdhci_generic_read_ivar(device_t bus, device_t child, int which,
2433 uintptr_t *result)
2434 {
2435 const struct sdhci_slot *slot = device_get_ivars(child);
2436
2437 switch (which) {
2438 default:
2439 return (EINVAL);
2440 case MMCBR_IVAR_BUS_MODE:
2441 *result = slot->host.ios.bus_mode;
2442 break;
2443 case MMCBR_IVAR_BUS_WIDTH:
2444 *result = slot->host.ios.bus_width;
2445 break;
2446 case MMCBR_IVAR_CHIP_SELECT:
2447 *result = slot->host.ios.chip_select;
2448 break;
2449 case MMCBR_IVAR_CLOCK:
2450 *result = slot->host.ios.clock;
2451 break;
2452 case MMCBR_IVAR_F_MIN:
2453 *result = slot->host.f_min;
2454 break;
2455 case MMCBR_IVAR_F_MAX:
2456 *result = slot->host.f_max;
2457 break;
2458 case MMCBR_IVAR_HOST_OCR:
2459 *result = slot->host.host_ocr;
2460 break;
2461 case MMCBR_IVAR_MODE:
2462 *result = slot->host.mode;
2463 break;
2464 case MMCBR_IVAR_OCR:
2465 *result = slot->host.ocr;
2466 break;
2467 case MMCBR_IVAR_POWER_MODE:
2468 *result = slot->host.ios.power_mode;
2469 break;
2470 case MMCBR_IVAR_VDD:
2471 *result = slot->host.ios.vdd;
2472 break;
2473 case MMCBR_IVAR_RETUNE_REQ:
2474 if (slot->opt & SDHCI_TUNING_ENABLED) {
2475 if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) {
2476 *result = retune_req_reset;
2477 break;
2478 }
2479 if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) {
2480 *result = retune_req_normal;
2481 break;
2482 }
2483 }
2484 *result = retune_req_none;
2485 break;
2486 case MMCBR_IVAR_VCCQ:
2487 *result = slot->host.ios.vccq;
2488 break;
2489 case MMCBR_IVAR_CAPS:
2490 *result = slot->host.caps;
2491 break;
2492 case MMCBR_IVAR_TIMING:
2493 *result = slot->host.ios.timing;
2494 break;
2495 case MMCBR_IVAR_MAX_DATA:
2496 /*
2497 * Re-tuning modes 1 and 2 restrict the maximum data length
2498 * per read/write command to 4 MiB.
2499 */
2500 if (slot->opt & SDHCI_TUNING_ENABLED &&
2501 (slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
2502 slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
2503 *result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
2504 break;
2505 }
2506 *result = 65535;
2507 break;
2508 case MMCBR_IVAR_MAX_BUSY_TIMEOUT:
2509 /*
2510 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs.
2511 */
2512 *result = 1000000;
2513 break;
2514 }
2515 return (0);
2516 }
2517
2518 int
2519 sdhci_generic_write_ivar(device_t bus, device_t child, int which,
2520 uintptr_t value)
2521 {
2522 struct sdhci_slot *slot = device_get_ivars(child);
2523 uint32_t clock, max_clock;
2524 int i;
2525
2526 if (sdhci_debug > 1)
2527 slot_printf(slot, "%s: var=%d\n", __func__, which);
2528 switch (which) {
2529 default:
2530 return (EINVAL);
2531 case MMCBR_IVAR_BUS_MODE:
2532 slot->host.ios.bus_mode = value;
2533 break;
2534 case MMCBR_IVAR_BUS_WIDTH:
2535 slot->host.ios.bus_width = value;
2536 break;
2537 case MMCBR_IVAR_CHIP_SELECT:
2538 slot->host.ios.chip_select = value;
2539 break;
2540 case MMCBR_IVAR_CLOCK:
2541 if (value > 0) {
2542 max_clock = slot->max_clk;
2543 clock = max_clock;
2544
2545 if (slot->version < SDHCI_SPEC_300) {
2546 for (i = 0; i < SDHCI_200_MAX_DIVIDER;
2547 i <<= 1) {
2548 if (clock <= value)
2549 break;
2550 clock >>= 1;
2551 }
2552 } else {
2553 for (i = 0; i < SDHCI_300_MAX_DIVIDER;
2554 i += 2) {
2555 if (clock <= value)
2556 break;
2557 clock = max_clock / (i + 2);
2558 }
2559 }
2560
2561 slot->host.ios.clock = clock;
2562 } else
2563 slot->host.ios.clock = 0;
2564 break;
2565 case MMCBR_IVAR_MODE:
2566 slot->host.mode = value;
2567 break;
2568 case MMCBR_IVAR_OCR:
2569 slot->host.ocr = value;
2570 break;
2571 case MMCBR_IVAR_POWER_MODE:
2572 slot->host.ios.power_mode = value;
2573 break;
2574 case MMCBR_IVAR_VDD:
2575 slot->host.ios.vdd = value;
2576 break;
2577 case MMCBR_IVAR_VCCQ:
2578 slot->host.ios.vccq = value;
2579 break;
2580 case MMCBR_IVAR_TIMING:
2581 slot->host.ios.timing = value;
2582 break;
2583 case MMCBR_IVAR_CAPS:
2584 case MMCBR_IVAR_HOST_OCR:
2585 case MMCBR_IVAR_F_MIN:
2586 case MMCBR_IVAR_F_MAX:
2587 case MMCBR_IVAR_MAX_DATA:
2588 case MMCBR_IVAR_RETUNE_REQ:
2589 return (EINVAL);
2590 }
2591 return (0);
2592 }
2593
2594 #ifdef MMCCAM
2595 void
2596 sdhci_start_slot(struct sdhci_slot *slot)
2597 {
2598
2599 if ((slot->devq = cam_simq_alloc(1)) == NULL)
2600 goto fail;
2601
2602 mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF);
2603 slot->sim = cam_sim_alloc(sdhci_cam_action, sdhci_cam_poll,
2604 "sdhci_slot", slot, device_get_unit(slot->bus),
2605 &slot->sim_mtx, 1, 1, slot->devq);
2606
2607 if (slot->sim == NULL) {
2608 cam_simq_free(slot->devq);
2609 slot_printf(slot, "cannot allocate CAM SIM\n");
2610 goto fail;
2611 }
2612
2613 mtx_lock(&slot->sim_mtx);
2614 if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) {
2615 slot_printf(slot, "cannot register SCSI pass-through bus\n");
2616 cam_sim_free(slot->sim, FALSE);
2617 cam_simq_free(slot->devq);
2618 mtx_unlock(&slot->sim_mtx);
2619 goto fail;
2620 }
2621 mtx_unlock(&slot->sim_mtx);
2622
2623 /* End CAM-specific init */
2624 slot->card_present = 0;
2625 sdhci_card_task(slot, 0);
2626 return;
2627
2628 fail:
2629 if (slot->sim != NULL) {
2630 mtx_lock(&slot->sim_mtx);
2631 xpt_bus_deregister(cam_sim_path(slot->sim));
2632 cam_sim_free(slot->sim, FALSE);
2633 mtx_unlock(&slot->sim_mtx);
2634 }
2635
2636 if (slot->devq != NULL)
2637 cam_simq_free(slot->devq);
2638 }
2639
2640 void
2641 sdhci_cam_action(struct cam_sim *sim, union ccb *ccb)
2642 {
2643 struct sdhci_slot *slot;
2644
2645 slot = cam_sim_softc(sim);
2646 if (slot == NULL) {
2647 ccb->ccb_h.status = CAM_SEL_TIMEOUT;
2648 xpt_done(ccb);
2649 return;
2650 }
2651
2652 mtx_assert(&slot->sim_mtx, MA_OWNED);
2653
2654 switch (ccb->ccb_h.func_code) {
2655 case XPT_PATH_INQ:
2656 mmc_path_inq(&ccb->cpi, "Deglitch Networks", sim, maxphys);
2657 break;
2658
2659 case XPT_MMC_GET_TRAN_SETTINGS:
2660 case XPT_GET_TRAN_SETTINGS:
2661 {
2662 struct ccb_trans_settings *cts = &ccb->cts;
2663 uint32_t max_data;
2664
2665 if (sdhci_debug > 1)
2666 slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n");
2667
2668 cts->protocol = PROTO_MMCSD;
2669 cts->protocol_version = 1;
2670 cts->transport = XPORT_MMCSD;
2671 cts->transport_version = 1;
2672 cts->xport_specific.valid = 0;
2673 cts->proto_specific.mmc.host_ocr = slot->host.host_ocr;
2674 cts->proto_specific.mmc.host_f_min = slot->host.f_min;
2675 cts->proto_specific.mmc.host_f_max = slot->host.f_max;
2676 cts->proto_specific.mmc.host_caps = slot->host.caps;
2677 /*
2678 * Re-tuning modes 1 and 2 restrict the maximum data length
2679 * per read/write command to 4 MiB.
2680 */
2681 if (slot->opt & SDHCI_TUNING_ENABLED &&
2682 (slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
2683 slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
2684 max_data = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
2685 } else {
2686 max_data = 65535;
2687 }
2688 cts->proto_specific.mmc.host_max_data = max_data;
2689
2690 memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios));
2691 ccb->ccb_h.status = CAM_REQ_CMP;
2692 break;
2693 }
2694 case XPT_MMC_SET_TRAN_SETTINGS:
2695 case XPT_SET_TRAN_SETTINGS:
2696 if (sdhci_debug > 1)
2697 slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n");
2698 sdhci_cam_settran_settings(slot, ccb);
2699 ccb->ccb_h.status = CAM_REQ_CMP;
2700 break;
2701 case XPT_RESET_BUS:
2702 if (sdhci_debug > 1)
2703 slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n");
2704 ccb->ccb_h.status = CAM_REQ_CMP;
2705 break;
2706 case XPT_MMC_IO:
2707 /*
2708 * Here is the HW-dependent part of
2709 * sending the command to the underlying h/w
2710 * At some point in the future an interrupt comes.
2711 * Then the request will be marked as completed.
2712 */
2713 if (__predict_false(sdhci_debug > 1))
2714 slot_printf(slot, "Got XPT_MMC_IO\n");
2715 ccb->ccb_h.status = CAM_REQ_INPROG;
2716
2717 sdhci_cam_request(cam_sim_softc(sim), ccb);
2718 return;
2719 default:
2720 ccb->ccb_h.status = CAM_REQ_INVALID;
2721 break;
2722 }
2723 xpt_done(ccb);
2724 return;
2725 }
2726
2727 void
2728 sdhci_cam_poll(struct cam_sim *sim)
2729 {
2730 sdhci_generic_intr(cam_sim_softc(sim));
2731 }
2732
2733 static int
2734 sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
2735 int proposed_clock)
2736 {
2737 int max_clock, clock, i;
2738
2739 if (proposed_clock == 0)
2740 return 0;
2741 max_clock = slot->max_clk;
2742 clock = max_clock;
2743
2744 if (slot->version < SDHCI_SPEC_300) {
2745 for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) {
2746 if (clock <= proposed_clock)
2747 break;
2748 clock >>= 1;
2749 }
2750 } else {
2751 for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) {
2752 if (clock <= proposed_clock)
2753 break;
2754 clock = max_clock / (i + 2);
2755 }
2756 }
2757 return clock;
2758 }
2759
2760 static int
2761 sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb)
2762 {
2763 struct mmc_ios *ios;
2764 const struct mmc_ios *new_ios;
2765 const struct ccb_trans_settings_mmc *cts;
2766
2767 ios = &slot->host.ios;
2768 cts = &ccb->cts.proto_specific.mmc;
2769 new_ios = &cts->ios;
2770
2771 /* Update only requested fields */
2772 if (cts->ios_valid & MMC_CLK) {
2773 ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock);
2774 if (sdhci_debug > 1)
2775 slot_printf(slot, "Clock => %d\n", ios->clock);
2776 }
2777 if (cts->ios_valid & MMC_VDD) {
2778 ios->vdd = new_ios->vdd;
2779 if (sdhci_debug > 1)
2780 slot_printf(slot, "VDD => %d\n", ios->vdd);
2781 }
2782 if (cts->ios_valid & MMC_CS) {
2783 ios->chip_select = new_ios->chip_select;
2784 if (sdhci_debug > 1)
2785 slot_printf(slot, "CS => %d\n", ios->chip_select);
2786 }
2787 if (cts->ios_valid & MMC_BW) {
2788 ios->bus_width = new_ios->bus_width;
2789 if (sdhci_debug > 1)
2790 slot_printf(slot, "Bus width => %d\n", ios->bus_width);
2791 }
2792 if (cts->ios_valid & MMC_PM) {
2793 ios->power_mode = new_ios->power_mode;
2794 if (sdhci_debug > 1)
2795 slot_printf(slot, "Power mode => %d\n", ios->power_mode);
2796 }
2797 if (cts->ios_valid & MMC_BT) {
2798 ios->timing = new_ios->timing;
2799 if (sdhci_debug > 1)
2800 slot_printf(slot, "Timing => %d\n", ios->timing);
2801 }
2802 if (cts->ios_valid & MMC_BM) {
2803 ios->bus_mode = new_ios->bus_mode;
2804 if (sdhci_debug > 1)
2805 slot_printf(slot, "Bus mode => %d\n", ios->bus_mode);
2806 }
2807 if (cts->ios_valid & MMC_VCCQ) {
2808 ios->vccq = new_ios->vccq;
2809 if (sdhci_debug > 1)
2810 slot_printf(slot, "VCCQ => %d\n", ios->vccq);
2811 }
2812
2813 /* XXX Provide a way to call a chip-specific IOS update, required for TI */
2814 return (sdhci_cam_update_ios(slot));
2815 }
2816
2817 static int
2818 sdhci_cam_update_ios(struct sdhci_slot *slot)
2819 {
2820 struct mmc_ios *ios = &slot->host.ios;
2821
2822 if (sdhci_debug > 1)
2823 slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n",
2824 __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing);
2825 SDHCI_LOCK(slot);
2826 /* Do full reset on bus power down to clear from any state. */
2827 if (ios->power_mode == power_off) {
2828 WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
2829 sdhci_init(slot);
2830 }
2831 /* Configure the bus. */
2832 sdhci_set_clock(slot, ios->clock);
2833 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
2834 if (ios->bus_width == bus_width_8) {
2835 slot->hostctrl |= SDHCI_CTRL_8BITBUS;
2836 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
2837 } else if (ios->bus_width == bus_width_4) {
2838 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
2839 slot->hostctrl |= SDHCI_CTRL_4BITBUS;
2840 } else if (ios->bus_width == bus_width_1) {
2841 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
2842 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
2843 } else {
2844 panic("Invalid bus width: %d", ios->bus_width);
2845 }
2846 if (ios->timing == bus_timing_hs &&
2847 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
2848 slot->hostctrl |= SDHCI_CTRL_HISPD;
2849 else
2850 slot->hostctrl &= ~SDHCI_CTRL_HISPD;
2851 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
2852 /* Some controllers like reset after bus changes. */
2853 if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
2854 SDHCI_RESET(slot->bus, slot,
2855 SDHCI_RESET_CMD | SDHCI_RESET_DATA);
2856
2857 SDHCI_UNLOCK(slot);
2858 return (0);
2859 }
2860
2861 static int
2862 sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb)
2863 {
2864 const struct ccb_mmcio *mmcio;
2865
2866 mmcio = &ccb->mmcio;
2867
2868 SDHCI_LOCK(slot);
2869 /* if (slot->req != NULL) {
2870 SDHCI_UNLOCK(slot);
2871 return (EBUSY);
2872 }
2873 */
2874 if (__predict_false(sdhci_debug > 1)) {
2875 slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x "
2876 "blksz=%zu blkcnt=%zu\n",
2877 mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags,
2878 mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0,
2879 mmcio->cmd.data != NULL ? mmcio->cmd.data->flags : 0,
2880 mmcio->cmd.data != NULL ? mmcio->cmd.data->block_size : 0,
2881 mmcio->cmd.data != NULL ? mmcio->cmd.data->block_count : 0);
2882 }
2883 if (mmcio->cmd.data != NULL) {
2884 if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0)
2885 panic("data->len = %d, data->flags = %d -- something is b0rked",
2886 (int)mmcio->cmd.data->len, mmcio->cmd.data->flags);
2887 }
2888 slot->ccb = ccb;
2889 slot->flags = 0;
2890 sdhci_start(slot);
2891 SDHCI_UNLOCK(slot);
2892 return (0);
2893 }
2894 #endif /* MMCCAM */
2895
2896 MODULE_VERSION(sdhci, SDHCI_VERSION);
Cache object: 839fa446c52f316d7b1cd200a0b2f361
|