The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sf/if_sf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/7.3/sys/dev/sf/if_sf.c 178188 2008-04-14 06:21:34Z yongari $");
   35 
   36 /*
   37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
   38  * Programming manual is available from:
   39  * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
   40  *
   41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   42  * Department of Electical Engineering
   43  * Columbia University, New York City
   44  */
   45 /*
   46  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
   47  * controller designed with flexibility and reducing CPU load in mind.
   48  * The Starfire offers high and low priority buffer queues, a
   49  * producer/consumer index mechanism and several different buffer
   50  * queue and completion queue descriptor types. Any one of a number
   51  * of different driver designs can be used, depending on system and
   52  * OS requirements. This driver makes use of type2 transmit frame
   53  * descriptors to take full advantage of fragmented packets buffers
   54  * and two RX buffer queues prioritized on size (one queue for small
   55  * frames that will fit into a single mbuf, another with full size
   56  * mbuf clusters for everything else). The producer/consumer indexes
   57  * and completion queues are also used.
   58  *
   59  * One downside to the Starfire has to do with alignment: buffer
   60  * queues must be aligned on 256-byte boundaries, and receive buffers
   61  * must be aligned on longword boundaries. The receive buffer alignment
   62  * causes problems on the strict alignment architecture, where the
   63  * packet payload should be longword aligned. There is no simple way
   64  * around this.
   65  *
   66  * For receive filtering, the Starfire offers 16 perfect filter slots
   67  * and a 512-bit hash table.
   68  *
   69  * The Starfire has no internal transceiver, relying instead on an
   70  * external MII-based transceiver. Accessing registers on external
   71  * PHYs is done through a special register map rather than with the
   72  * usual bitbang MDIO method.
   73  *
   74  * Acesssing the registers on the Starfire is a little tricky. The
   75  * Starfire has a 512K internal register space. When programmed for
   76  * PCI memory mapped mode, the entire register space can be accessed
   77  * directly. However in I/O space mode, only 256 bytes are directly
   78  * mapped into PCI I/O space. The other registers can be accessed
   79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
   80  * registers inside the 256-byte I/O window.
   81  */
   82 
   83 #ifdef HAVE_KERNEL_OPTION_HEADERS
   84 #include "opt_device_polling.h"
   85 #endif
   86 
   87 #include <sys/param.h>
   88 #include <sys/systm.h>
   89 #include <sys/bus.h>
   90 #include <sys/endian.h>
   91 #include <sys/kernel.h>
   92 #include <sys/malloc.h>
   93 #include <sys/mbuf.h>
   94 #include <sys/rman.h>
   95 #include <sys/module.h>
   96 #include <sys/socket.h>
   97 #include <sys/sockio.h>
   98 #include <sys/sysctl.h>
   99 #include <sys/taskqueue.h>
  100 
  101 #include <net/bpf.h>
  102 #include <net/if.h>
  103 #include <net/if_arp.h>
  104 #include <net/ethernet.h>
  105 #include <net/if_dl.h>
  106 #include <net/if_media.h>
  107 #include <net/if_types.h>
  108 #include <net/if_vlan_var.h>
  109 
  110 #include <dev/mii/mii.h>
  111 #include <dev/mii/miivar.h>
  112 
  113 #include <dev/pci/pcireg.h>
  114 #include <dev/pci/pcivar.h>
  115 
  116 #include <machine/bus.h>
  117 
  118 #include <dev/sf/if_sfreg.h>
  119 #include <dev/sf/starfire_rx.h>
  120 #include <dev/sf/starfire_tx.h>
  121 
  122 /* "device miibus" required.  See GENERIC if you get errors here. */
  123 #include "miibus_if.h"
  124 
  125 MODULE_DEPEND(sf, pci, 1, 1, 1);
  126 MODULE_DEPEND(sf, ether, 1, 1, 1);
  127 MODULE_DEPEND(sf, miibus, 1, 1, 1);
  128 
  129 #undef  SF_GFP_DEBUG
  130 #define SF_CSUM_FEATURES        (CSUM_TCP | CSUM_UDP)
  131 /* Define this to activate partial TCP/UDP checksum offload. */
  132 #undef  SF_PARTIAL_CSUM_SUPPORT
  133 
  134 static struct sf_type sf_devs[] = {
  135         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  136             AD_SUBSYSID_62011_REV0, "Adaptec ANA-62011 (rev 0) 10/100BaseTX" },
  137         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  138             AD_SUBSYSID_62011_REV1, "Adaptec ANA-62011 (rev 1) 10/100BaseTX" },
  139         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  140             AD_SUBSYSID_62022, "Adaptec ANA-62022 10/100BaseTX" },
  141         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  142             AD_SUBSYSID_62044_REV0, "Adaptec ANA-62044 (rev 0) 10/100BaseTX" },
  143         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  144             AD_SUBSYSID_62044_REV1, "Adaptec ANA-62044 (rev 1) 10/100BaseTX" },
  145         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  146             AD_SUBSYSID_62020, "Adaptec ANA-62020 10/100BaseFX" },
  147         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  148             AD_SUBSYSID_69011, "Adaptec ANA-69011 10/100BaseTX" },
  149 };
  150 
  151 static int sf_probe(device_t);
  152 static int sf_attach(device_t);
  153 static int sf_detach(device_t);
  154 static int sf_shutdown(device_t);
  155 static int sf_suspend(device_t);
  156 static int sf_resume(device_t);
  157 static void sf_intr(void *);
  158 static void sf_tick(void *);
  159 static void sf_stats_update(struct sf_softc *);
  160 #ifndef __NO_STRICT_ALIGNMENT
  161 static __inline void sf_fixup_rx(struct mbuf *);
  162 #endif
  163 static void sf_rxeof(struct sf_softc *);
  164 static void sf_txeof(struct sf_softc *);
  165 static int sf_encap(struct sf_softc *, struct mbuf **);
  166 static void sf_start(struct ifnet *);
  167 static void sf_start_locked(struct ifnet *);
  168 static int sf_ioctl(struct ifnet *, u_long, caddr_t);
  169 static void sf_download_fw(struct sf_softc *);
  170 static void sf_init(void *);
  171 static void sf_init_locked(struct sf_softc *);
  172 static void sf_stop(struct sf_softc *);
  173 static void sf_watchdog(struct sf_softc *);
  174 static int sf_ifmedia_upd(struct ifnet *);
  175 static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  176 static void sf_reset(struct sf_softc *);
  177 static int sf_dma_alloc(struct sf_softc *);
  178 static void sf_dma_free(struct sf_softc *);
  179 static int sf_init_rx_ring(struct sf_softc *);
  180 static void sf_init_tx_ring(struct sf_softc *);
  181 static int sf_newbuf(struct sf_softc *, int);
  182 static void sf_rxfilter(struct sf_softc *);
  183 static int sf_setperf(struct sf_softc *, int, uint8_t *);
  184 static int sf_sethash(struct sf_softc *, caddr_t, int);
  185 #ifdef notdef
  186 static int sf_setvlan(struct sf_softc *, int, uint32_t);
  187 #endif
  188 
  189 static uint8_t sf_read_eeprom(struct sf_softc *, int);
  190 
  191 static int sf_miibus_readreg(device_t, int, int);
  192 static int sf_miibus_writereg(device_t, int, int, int);
  193 static void sf_miibus_statchg(device_t);
  194 static void sf_link_task(void *, int);
  195 #ifdef DEVICE_POLLING
  196 static void sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
  197 #endif
  198 
  199 static uint32_t csr_read_4(struct sf_softc *, int);
  200 static void csr_write_4(struct sf_softc *, int, uint32_t);
  201 static void sf_txthresh_adjust(struct sf_softc *);
  202 static int sf_sysctl_stats(SYSCTL_HANDLER_ARGS);
  203 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  204 static int sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS);
  205 
  206 static device_method_t sf_methods[] = {
  207         /* Device interface */
  208         DEVMETHOD(device_probe,         sf_probe),
  209         DEVMETHOD(device_attach,        sf_attach),
  210         DEVMETHOD(device_detach,        sf_detach),
  211         DEVMETHOD(device_shutdown,      sf_shutdown),
  212         DEVMETHOD(device_suspend,       sf_suspend),
  213         DEVMETHOD(device_resume,        sf_resume),
  214 
  215         /* bus interface */
  216         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  217         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  218 
  219         /* MII interface */
  220         DEVMETHOD(miibus_readreg,       sf_miibus_readreg),
  221         DEVMETHOD(miibus_writereg,      sf_miibus_writereg),
  222         DEVMETHOD(miibus_statchg,       sf_miibus_statchg),
  223 
  224         { NULL, NULL }
  225 };
  226 
  227 static driver_t sf_driver = {
  228         "sf",
  229         sf_methods,
  230         sizeof(struct sf_softc),
  231 };
  232 
  233 static devclass_t sf_devclass;
  234 
  235 DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
  236 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
  237 
  238 #define SF_SETBIT(sc, reg, x)   \
  239         csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
  240 
  241 #define SF_CLRBIT(sc, reg, x)                           \
  242         csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
  243 
  244 static uint32_t
  245 csr_read_4(struct sf_softc *sc, int reg)
  246 {
  247         uint32_t                val;
  248 
  249         if (sc->sf_restype == SYS_RES_MEMORY)
  250                 val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
  251         else {
  252                 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  253                 val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
  254         }
  255 
  256         return (val);
  257 }
  258 
  259 static uint8_t
  260 sf_read_eeprom(struct sf_softc *sc, int reg)
  261 {
  262         uint8_t         val;
  263 
  264         val = (csr_read_4(sc, SF_EEADDR_BASE +
  265             (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
  266 
  267         return (val);
  268 }
  269 
  270 static void
  271 csr_write_4(struct sf_softc *sc, int reg, uint32_t val)
  272 {
  273 
  274         if (sc->sf_restype == SYS_RES_MEMORY)
  275                 CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
  276         else {
  277                 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  278                 CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
  279         }
  280 }
  281 
  282 /*
  283  * Copy the address 'mac' into the perfect RX filter entry at
  284  * offset 'idx.' The perfect filter only has 16 entries so do
  285  * some sanity tests.
  286  */
  287 static int
  288 sf_setperf(struct sf_softc *sc, int idx, uint8_t *mac)
  289 {
  290 
  291         if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
  292                 return (EINVAL);
  293 
  294         if (mac == NULL)
  295                 return (EINVAL);
  296 
  297         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  298             (idx * SF_RXFILT_PERFECT_SKIP) + 0, mac[5] | (mac[4] << 8));
  299         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  300             (idx * SF_RXFILT_PERFECT_SKIP) + 4, mac[3] | (mac[2] << 8));
  301         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  302             (idx * SF_RXFILT_PERFECT_SKIP) + 8, mac[1] | (mac[0] << 8));
  303 
  304         return (0);
  305 }
  306 
  307 /*
  308  * Set the bit in the 512-bit hash table that corresponds to the
  309  * specified mac address 'mac.' If 'prio' is nonzero, update the
  310  * priority hash table instead of the filter hash table.
  311  */
  312 static int
  313 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
  314 {
  315         uint32_t                h;
  316 
  317         if (mac == NULL)
  318                 return (EINVAL);
  319 
  320         h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
  321 
  322         if (prio) {
  323                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
  324                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  325         } else {
  326                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
  327                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  328         }
  329 
  330         return (0);
  331 }
  332 
  333 #ifdef notdef
  334 /*
  335  * Set a VLAN tag in the receive filter.
  336  */
  337 static int
  338 sf_setvlan(struct sf_softc *sc, int idx, uint32_t vlan)
  339 {
  340 
  341         if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
  342                 return (EINVAL);
  343 
  344         csr_write_4(sc, SF_RXFILT_HASH_BASE +
  345             (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
  346 
  347         return (0);
  348 }
  349 #endif
  350 
  351 static int
  352 sf_miibus_readreg(device_t dev, int phy, int reg)
  353 {
  354         struct sf_softc         *sc;
  355         int                     i;
  356         uint32_t                val = 0;
  357 
  358         sc = device_get_softc(dev);
  359 
  360         for (i = 0; i < SF_TIMEOUT; i++) {
  361                 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
  362                 if ((val & SF_MII_DATAVALID) != 0)
  363                         break;
  364         }
  365 
  366         if (i == SF_TIMEOUT)
  367                 return (0);
  368 
  369         val &= SF_MII_DATAPORT;
  370         if (val == 0xffff)
  371                 return (0);
  372 
  373         return (val);
  374 }
  375 
  376 static int
  377 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
  378 {
  379         struct sf_softc         *sc;
  380         int                     i;
  381         int                     busy;
  382 
  383         sc = device_get_softc(dev);
  384 
  385         csr_write_4(sc, SF_PHY_REG(phy, reg), val);
  386 
  387         for (i = 0; i < SF_TIMEOUT; i++) {
  388                 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
  389                 if ((busy & SF_MII_BUSY) == 0)
  390                         break;
  391         }
  392 
  393         return (0);
  394 }
  395 
  396 static void
  397 sf_miibus_statchg(device_t dev)
  398 {
  399         struct sf_softc         *sc;
  400 
  401         sc = device_get_softc(dev);
  402         taskqueue_enqueue(taskqueue_swi, &sc->sf_link_task);
  403 }
  404 
  405 static void
  406 sf_link_task(void *arg, int pending)
  407 {
  408         struct sf_softc         *sc;
  409         struct mii_data         *mii;
  410         struct ifnet            *ifp;
  411         uint32_t                val;
  412 
  413         sc = (struct sf_softc *)arg;
  414 
  415         SF_LOCK(sc);
  416 
  417         mii = device_get_softc(sc->sf_miibus);
  418         ifp = sc->sf_ifp;
  419         if (mii == NULL || ifp == NULL ||
  420             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
  421                 SF_UNLOCK(sc);
  422                 return;
  423         }
  424 
  425         if (mii->mii_media_status & IFM_ACTIVE) {
  426                 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
  427                         sc->sf_link = 1;
  428         } else
  429                 sc->sf_link = 0;
  430 
  431         val = csr_read_4(sc, SF_MACCFG_1);
  432         val &= ~SF_MACCFG1_FULLDUPLEX;
  433         val &= ~(SF_MACCFG1_RX_FLOWENB | SF_MACCFG1_TX_FLOWENB);
  434         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  435                 val |= SF_MACCFG1_FULLDUPLEX;
  436                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
  437 #ifdef notyet
  438                 /* Configure flow-control bits. */
  439                 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
  440                     IFM_ETH_RXPAUSE) != 0)
  441                         val |= SF_MACCFG1_RX_FLOWENB;
  442                 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
  443                     IFM_ETH_TXPAUSE) != 0)
  444                         val |= SF_MACCFG1_TX_FLOWENB;
  445 #endif
  446         } else
  447                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
  448 
  449         /* Make sure to reset MAC to take changes effect. */
  450         csr_write_4(sc, SF_MACCFG_1, val | SF_MACCFG1_SOFTRESET);
  451         DELAY(1000);
  452         csr_write_4(sc, SF_MACCFG_1, val);
  453 
  454         val = csr_read_4(sc, SF_TIMER_CTL);
  455         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
  456                 val |= SF_TIMER_TIMES_TEN;
  457         else
  458                 val &= ~SF_TIMER_TIMES_TEN;
  459         csr_write_4(sc, SF_TIMER_CTL, val);
  460 
  461         SF_UNLOCK(sc);
  462 }
  463 
  464 static void
  465 sf_rxfilter(struct sf_softc *sc)
  466 {
  467         struct ifnet            *ifp;
  468         int                     i;
  469         struct ifmultiaddr      *ifma;
  470         uint8_t                 dummy[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
  471         uint32_t                rxfilt;
  472 
  473         ifp = sc->sf_ifp;
  474 
  475         /* First zot all the existing filters. */
  476         for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
  477                 sf_setperf(sc, i, dummy);
  478         for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1);
  479             i += sizeof(uint32_t))
  480                 csr_write_4(sc, i, 0);
  481 
  482         rxfilt = csr_read_4(sc, SF_RXFILT);
  483         rxfilt &= ~(SF_RXFILT_PROMISC | SF_RXFILT_ALLMULTI | SF_RXFILT_BROAD);
  484         if ((ifp->if_flags & IFF_BROADCAST) != 0)
  485                 rxfilt |= SF_RXFILT_BROAD;
  486         if ((ifp->if_flags & IFF_ALLMULTI) != 0 ||
  487             (ifp->if_flags & IFF_PROMISC) != 0) {
  488                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  489                         rxfilt |= SF_RXFILT_PROMISC;
  490                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
  491                         rxfilt |= SF_RXFILT_ALLMULTI;
  492                 goto done;
  493         }
  494 
  495         /* Now program new ones. */
  496         i = 1;
  497         IF_ADDR_LOCK(ifp);
  498         TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
  499             ifma_link) {
  500                 if (ifma->ifma_addr->sa_family != AF_LINK)
  501                         continue;
  502                 /*
  503                  * Program the first 15 multicast groups
  504                  * into the perfect filter. For all others,
  505                  * use the hash table.
  506                  */
  507                 if (i < SF_RXFILT_PERFECT_CNT) {
  508                         sf_setperf(sc, i,
  509                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  510                         i++;
  511                         continue;
  512                 }
  513 
  514                 sf_sethash(sc,
  515                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
  516         }
  517         IF_ADDR_UNLOCK(ifp);
  518 
  519 done:
  520         csr_write_4(sc, SF_RXFILT, rxfilt);
  521 }
  522 
  523 /*
  524  * Set media options.
  525  */
  526 static int
  527 sf_ifmedia_upd(struct ifnet *ifp)
  528 {
  529         struct sf_softc         *sc;
  530         struct mii_data         *mii;
  531         int                     error;
  532 
  533         sc = ifp->if_softc;
  534         SF_LOCK(sc);
  535 
  536         mii = device_get_softc(sc->sf_miibus);
  537         if (mii->mii_instance) {
  538                 struct mii_softc        *miisc;
  539                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  540                         mii_phy_reset(miisc);
  541         }
  542         error = mii_mediachg(mii);
  543         SF_UNLOCK(sc);
  544 
  545         return (error);
  546 }
  547 
  548 /*
  549  * Report current media status.
  550  */
  551 static void
  552 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
  553 {
  554         struct sf_softc         *sc;
  555         struct mii_data         *mii;
  556 
  557         sc = ifp->if_softc;
  558         SF_LOCK(sc);
  559         mii = device_get_softc(sc->sf_miibus);
  560 
  561         mii_pollstat(mii);
  562         ifmr->ifm_active = mii->mii_media_active;
  563         ifmr->ifm_status = mii->mii_media_status;
  564         SF_UNLOCK(sc);
  565 }
  566 
  567 static int
  568 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
  569 {
  570         struct sf_softc         *sc;
  571         struct ifreq            *ifr;
  572         struct mii_data         *mii;
  573         int                     error, mask;
  574 
  575         sc = ifp->if_softc;
  576         ifr = (struct ifreq *)data;
  577         error = 0;
  578 
  579         switch (command) {
  580         case SIOCSIFFLAGS:
  581                 SF_LOCK(sc);
  582                 if (ifp->if_flags & IFF_UP) {
  583                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
  584                                 if ((ifp->if_flags ^ sc->sf_if_flags) &
  585                                     (IFF_PROMISC | IFF_ALLMULTI))
  586                                         sf_rxfilter(sc);
  587                         } else {
  588                                 if (sc->sf_detach == 0)
  589                                         sf_init_locked(sc);
  590                         }
  591                 } else {
  592                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
  593                                 sf_stop(sc);
  594                 }
  595                 sc->sf_if_flags = ifp->if_flags;
  596                 SF_UNLOCK(sc);
  597                 break;
  598         case SIOCADDMULTI:
  599         case SIOCDELMULTI:
  600                 SF_LOCK(sc);
  601                 sf_rxfilter(sc);
  602                 SF_UNLOCK(sc);
  603                 break;
  604         case SIOCGIFMEDIA:
  605         case SIOCSIFMEDIA:
  606                 mii = device_get_softc(sc->sf_miibus);
  607                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
  608                 break;
  609         case SIOCSIFCAP:
  610                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
  611 #ifdef DEVICE_POLLING
  612                 if ((mask & IFCAP_POLLING) != 0) {
  613                         if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
  614                                 error = ether_poll_register(sf_poll, ifp);
  615                                 if (error != 0)
  616                                         break;
  617                                 SF_LOCK(sc);
  618                                 /* Disable interrupts. */
  619                                 csr_write_4(sc, SF_IMR, 0);
  620                                 ifp->if_capenable |= IFCAP_POLLING;
  621                                 SF_UNLOCK(sc);
  622                         } else {
  623                                 error = ether_poll_deregister(ifp);
  624                                 /* Enable interrupts. */
  625                                 SF_LOCK(sc);
  626                                 csr_write_4(sc, SF_IMR, SF_INTRS);
  627                                 ifp->if_capenable &= ~IFCAP_POLLING;
  628                                 SF_UNLOCK(sc);
  629                         }
  630                 }
  631 #endif /* DEVICE_POLLING */
  632                 if ((mask & IFCAP_TXCSUM) != 0) {
  633                         if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
  634                                 SF_LOCK(sc);
  635                                 ifp->if_capenable ^= IFCAP_TXCSUM;
  636                                 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) {
  637                                         ifp->if_hwassist |= SF_CSUM_FEATURES;
  638                                         SF_SETBIT(sc, SF_GEN_ETH_CTL,
  639                                             SF_ETHCTL_TXGFP_ENB);
  640                                 } else {
  641                                         ifp->if_hwassist &= ~SF_CSUM_FEATURES;
  642                                         SF_CLRBIT(sc, SF_GEN_ETH_CTL,
  643                                             SF_ETHCTL_TXGFP_ENB);
  644                                 }
  645                                 SF_UNLOCK(sc);
  646                         }
  647                 }
  648                 if ((mask & IFCAP_RXCSUM) != 0) {
  649                         if ((IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
  650                                 SF_LOCK(sc);
  651                                 ifp->if_capenable ^= IFCAP_RXCSUM;
  652                                 if ((IFCAP_RXCSUM & ifp->if_capenable) != 0)
  653                                         SF_SETBIT(sc, SF_GEN_ETH_CTL,
  654                                             SF_ETHCTL_RXGFP_ENB);
  655                                 else
  656                                         SF_CLRBIT(sc, SF_GEN_ETH_CTL,
  657                                             SF_ETHCTL_RXGFP_ENB);
  658                                 SF_UNLOCK(sc);
  659                         }
  660                 }
  661                 break;
  662         default:
  663                 error = ether_ioctl(ifp, command, data);
  664                 break;
  665         }
  666 
  667         return (error);
  668 }
  669 
  670 static void
  671 sf_reset(struct sf_softc *sc)
  672 {
  673         int             i;
  674 
  675         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
  676         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  677         DELAY(1000);
  678         SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  679 
  680         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
  681 
  682         for (i = 0; i < SF_TIMEOUT; i++) {
  683                 DELAY(10);
  684                 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
  685                         break;
  686         }
  687 
  688         if (i == SF_TIMEOUT)
  689                 device_printf(sc->sf_dev, "reset never completed!\n");
  690 
  691         /* Wait a little while for the chip to get its brains in order. */
  692         DELAY(1000);
  693 }
  694 
  695 /*
  696  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
  697  * IDs against our list and return a device name if we find a match.
  698  * We also check the subsystem ID so that we can identify exactly which
  699  * NIC has been found, if possible.
  700  */
  701 static int
  702 sf_probe(device_t dev)
  703 {
  704         struct sf_type          *t;
  705         uint16_t                vid;
  706         uint16_t                did;
  707         uint16_t                sdid;
  708         int                     i;
  709 
  710         vid = pci_get_vendor(dev);
  711         did = pci_get_device(dev);
  712         sdid = pci_get_subdevice(dev);
  713 
  714         t = sf_devs;
  715         for (i = 0; i < sizeof(sf_devs) / sizeof(sf_devs[0]); i++, t++) {
  716                 if (vid == t->sf_vid && did == t->sf_did) {
  717                         if (sdid == t->sf_sdid) {
  718                                 device_set_desc(dev, t->sf_sname);
  719                                 return (BUS_PROBE_DEFAULT);
  720                         }
  721                 }
  722         }
  723 
  724         if (vid == AD_VENDORID && did == AD_DEVICEID_STARFIRE) {
  725                 /* unkown subdevice */
  726                 device_set_desc(dev, sf_devs[0].sf_name);
  727                 return (BUS_PROBE_DEFAULT);
  728         }
  729 
  730         return (ENXIO);
  731 }
  732 
  733 /*
  734  * Attach the interface. Allocate softc structures, do ifmedia
  735  * setup and ethernet/BPF attach.
  736  */
  737 static int
  738 sf_attach(device_t dev)
  739 {
  740         int                     i;
  741         struct sf_softc         *sc;
  742         struct ifnet            *ifp;
  743         uint32_t                reg;
  744         int                     rid, error = 0;
  745         uint8_t                 eaddr[ETHER_ADDR_LEN];
  746 
  747         sc = device_get_softc(dev);
  748         sc->sf_dev = dev;
  749 
  750         mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  751             MTX_DEF);
  752         callout_init_mtx(&sc->sf_co, &sc->sf_mtx, 0);
  753         TASK_INIT(&sc->sf_link_task, 0, sf_link_task, sc);
  754 
  755         /*
  756          * Map control/status registers.
  757          */
  758         pci_enable_busmaster(dev);
  759 
  760         /*
  761          * Prefer memory space register mapping over I/O space as the
  762          * hardware requires lots of register access to get various
  763          * producer/consumer index during Tx/Rx operation. However this
  764          * requires large memory space(512K) to map the entire register
  765          * space.
  766          */
  767         sc->sf_rid = PCIR_BAR(0);
  768         sc->sf_restype = SYS_RES_MEMORY;
  769         sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype, &sc->sf_rid,
  770             RF_ACTIVE);
  771         if (sc->sf_res == NULL) {
  772                 reg = pci_read_config(dev, PCIR_BAR(0), 4);
  773                 if ((reg & PCIM_BAR_MEM_64) == PCIM_BAR_MEM_64)
  774                         sc->sf_rid = PCIR_BAR(2);
  775                 else
  776                         sc->sf_rid = PCIR_BAR(1);
  777                 sc->sf_restype = SYS_RES_IOPORT;
  778                 sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype,
  779                     &sc->sf_rid, RF_ACTIVE);
  780                 if (sc->sf_res == NULL) {
  781                         device_printf(dev, "couldn't allocate resources\n");
  782                         mtx_destroy(&sc->sf_mtx);
  783                         return (ENXIO);
  784                 }
  785         }
  786         if (bootverbose)
  787                 device_printf(dev, "using %s space register mapping\n",
  788                     sc->sf_restype == SYS_RES_MEMORY ? "memory" : "I/O");
  789 
  790         reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
  791         if (reg == 0) {
  792                 /*
  793                  * If cache line size is 0, MWI is not used at all, so set
  794                  * reasonable default. AIC-6915 supports 0, 4, 8, 16, 32
  795                  * and 64.
  796                  */
  797                 reg = 16;
  798                 device_printf(dev, "setting PCI cache line size to %u\n", reg);
  799                 pci_write_config(dev, PCIR_CACHELNSZ, reg, 1);
  800         } else {
  801                 if (bootverbose)
  802                         device_printf(dev, "PCI cache line size : %u\n", reg);
  803         }
  804         /* Enable MWI. */
  805         reg = pci_read_config(dev, PCIR_COMMAND, 2);
  806         reg |= PCIM_CMD_MWRICEN;
  807         pci_write_config(dev, PCIR_COMMAND, reg, 2);
  808 
  809         /* Allocate interrupt. */
  810         rid = 0;
  811         sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  812             RF_SHAREABLE | RF_ACTIVE);
  813 
  814         if (sc->sf_irq == NULL) {
  815                 device_printf(dev, "couldn't map interrupt\n");
  816                 error = ENXIO;
  817                 goto fail;
  818         }
  819 
  820         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
  821             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  822             OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
  823             sf_sysctl_stats, "I", "Statistics");
  824 
  825         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
  826                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  827                 OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW,
  828                 &sc->sf_int_mod, 0, sysctl_hw_sf_int_mod, "I",
  829                 "sf interrupt moderation");
  830         /* Pull in device tunables. */
  831         sc->sf_int_mod = SF_IM_DEFAULT;
  832         error = resource_int_value(device_get_name(dev), device_get_unit(dev),
  833             "int_mod", &sc->sf_int_mod);
  834         if (error == 0) {
  835                 if (sc->sf_int_mod < SF_IM_MIN ||
  836                     sc->sf_int_mod > SF_IM_MAX) {
  837                         device_printf(dev, "int_mod value out of range; "
  838                             "using default: %d\n", SF_IM_DEFAULT);
  839                         sc->sf_int_mod = SF_IM_DEFAULT;
  840                 }
  841         }
  842 
  843         /* Reset the adapter. */
  844         sf_reset(sc);
  845 
  846         /*
  847          * Get station address from the EEPROM.
  848          */
  849         for (i = 0; i < ETHER_ADDR_LEN; i++)
  850                 eaddr[i] =
  851                     sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
  852 
  853         /* Allocate DMA resources. */
  854         if (sf_dma_alloc(sc) != 0) {
  855                 error = ENOSPC;
  856                 goto fail;
  857         }
  858 
  859         sc->sf_txthresh = SF_MIN_TX_THRESHOLD;
  860 
  861         ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
  862         if (ifp == NULL) {
  863                 device_printf(dev, "can not allocate ifnet structure\n");
  864                 error = ENOSPC;
  865                 goto fail;
  866         }
  867 
  868         /* Do MII setup. */
  869         if (mii_phy_probe(dev, &sc->sf_miibus, sf_ifmedia_upd,
  870             sf_ifmedia_sts)) {
  871                 device_printf(dev, "MII without any phy!\n");
  872                 error = ENXIO;
  873                 goto fail;
  874         }
  875 
  876         ifp->if_softc = sc;
  877         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  878         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  879         ifp->if_ioctl = sf_ioctl;
  880         ifp->if_start = sf_start;
  881         ifp->if_init = sf_init;
  882         IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
  883         ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
  884         IFQ_SET_READY(&ifp->if_snd);
  885         /*
  886          * With the help of firmware, AIC-6915 supports
  887          * Tx/Rx TCP/UDP checksum offload.
  888          */
  889         ifp->if_hwassist = SF_CSUM_FEATURES;
  890         ifp->if_capabilities = IFCAP_HWCSUM;
  891 
  892         /*
  893          * Call MI attach routine.
  894          */
  895         ether_ifattach(ifp, eaddr);
  896 
  897         /* VLAN capability setup. */
  898         ifp->if_capabilities |= IFCAP_VLAN_MTU;
  899         ifp->if_capenable = ifp->if_capabilities;
  900 #ifdef DEVICE_POLLING
  901         ifp->if_capabilities |= IFCAP_POLLING;
  902 #endif
  903         /*
  904          * Tell the upper layer(s) we support long frames.
  905          * Must appear after the call to ether_ifattach() because
  906          * ether_ifattach() sets ifi_hdrlen to the default value.
  907          */
  908         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  909 
  910         /* Hook interrupt last to avoid having to lock softc */
  911         error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
  912             NULL, sf_intr, sc, &sc->sf_intrhand);
  913 
  914         if (error) {
  915                 device_printf(dev, "couldn't set up irq\n");
  916                 ether_ifdetach(ifp);
  917                 goto fail;
  918         }
  919 
  920 fail:
  921         if (error)
  922                 sf_detach(dev);
  923 
  924         return (error);
  925 }
  926 
  927 /*
  928  * Shutdown hardware and free up resources. This can be called any
  929  * time after the mutex has been initialized. It is called in both
  930  * the error case in attach and the normal detach case so it needs
  931  * to be careful about only freeing resources that have actually been
  932  * allocated.
  933  */
  934 static int
  935 sf_detach(device_t dev)
  936 {
  937         struct sf_softc         *sc;
  938         struct ifnet            *ifp;
  939 
  940         sc = device_get_softc(dev);
  941         ifp = sc->sf_ifp;
  942 
  943 #ifdef DEVICE_POLLING
  944         if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
  945                 ether_poll_deregister(ifp);
  946 #endif
  947 
  948         /* These should only be active if attach succeeded */
  949         if (device_is_attached(dev)) {
  950                 SF_LOCK(sc);
  951                 sc->sf_detach = 1;
  952                 sf_stop(sc);
  953                 SF_UNLOCK(sc);
  954                 callout_drain(&sc->sf_co);
  955                 taskqueue_drain(taskqueue_swi, &sc->sf_link_task);
  956                 if (ifp != NULL)
  957                         ether_ifdetach(ifp);
  958         }
  959         if (sc->sf_miibus) {
  960                 device_delete_child(dev, sc->sf_miibus);
  961                 sc->sf_miibus = NULL;
  962         }
  963         bus_generic_detach(dev);
  964 
  965         if (sc->sf_intrhand != NULL)
  966                 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
  967         if (sc->sf_irq != NULL)
  968                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
  969         if (sc->sf_res != NULL)
  970                 bus_release_resource(dev, sc->sf_restype, sc->sf_rid,
  971                     sc->sf_res);
  972 
  973         sf_dma_free(sc);
  974         if (ifp != NULL)
  975                 if_free(ifp);
  976 
  977         mtx_destroy(&sc->sf_mtx);
  978 
  979         return (0);
  980 }
  981 
  982 struct sf_dmamap_arg {
  983         bus_addr_t              sf_busaddr;
  984 };
  985 
  986 static void
  987 sf_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  988 {
  989         struct sf_dmamap_arg    *ctx;
  990 
  991         if (error != 0)
  992                 return;
  993         ctx = arg;
  994         ctx->sf_busaddr = segs[0].ds_addr;
  995 }
  996 
  997 static int
  998 sf_dma_alloc(struct sf_softc *sc)
  999 {
 1000         struct sf_dmamap_arg    ctx;
 1001         struct sf_txdesc        *txd;
 1002         struct sf_rxdesc        *rxd;
 1003         bus_addr_t              lowaddr;
 1004         bus_addr_t              rx_ring_end, rx_cring_end;
 1005         bus_addr_t              tx_ring_end, tx_cring_end;
 1006         int                     error, i;
 1007 
 1008         lowaddr = BUS_SPACE_MAXADDR;
 1009 
 1010 again:
 1011         /* Create parent DMA tag. */
 1012         error = bus_dma_tag_create(
 1013             bus_get_dma_tag(sc->sf_dev),        /* parent */
 1014             1, 0,                       /* alignment, boundary */
 1015             lowaddr,                    /* lowaddr */
 1016             BUS_SPACE_MAXADDR,          /* highaddr */
 1017             NULL, NULL,                 /* filter, filterarg */
 1018             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1019             0,                          /* nsegments */
 1020             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1021             0,                          /* flags */
 1022             NULL, NULL,                 /* lockfunc, lockarg */
 1023             &sc->sf_cdata.sf_parent_tag);
 1024         if (error != 0) {
 1025                 device_printf(sc->sf_dev, "failed to create parent DMA tag\n");
 1026                 goto fail;
 1027         }
 1028         /* Create tag for Tx ring. */
 1029         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1030             SF_RING_ALIGN, 0,           /* alignment, boundary */
 1031             BUS_SPACE_MAXADDR,          /* lowaddr */
 1032             BUS_SPACE_MAXADDR,          /* highaddr */
 1033             NULL, NULL,                 /* filter, filterarg */
 1034             SF_TX_DLIST_SIZE,           /* maxsize */
 1035             1,                          /* nsegments */
 1036             SF_TX_DLIST_SIZE,           /* maxsegsize */
 1037             0,                          /* flags */
 1038             NULL, NULL,                 /* lockfunc, lockarg */
 1039             &sc->sf_cdata.sf_tx_ring_tag);
 1040         if (error != 0) {
 1041                 device_printf(sc->sf_dev, "failed to create Tx ring DMA tag\n");
 1042                 goto fail;
 1043         }
 1044 
 1045         /* Create tag for Tx completion ring. */
 1046         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1047             SF_RING_ALIGN, 0,           /* alignment, boundary */
 1048             BUS_SPACE_MAXADDR,          /* lowaddr */
 1049             BUS_SPACE_MAXADDR,          /* highaddr */
 1050             NULL, NULL,                 /* filter, filterarg */
 1051             SF_TX_CLIST_SIZE,           /* maxsize */
 1052             1,                          /* nsegments */
 1053             SF_TX_CLIST_SIZE,           /* maxsegsize */
 1054             0,                          /* flags */
 1055             NULL, NULL,                 /* lockfunc, lockarg */
 1056             &sc->sf_cdata.sf_tx_cring_tag);
 1057         if (error != 0) {
 1058                 device_printf(sc->sf_dev,
 1059                     "failed to create Tx completion ring DMA tag\n");
 1060                 goto fail;
 1061         }
 1062 
 1063         /* Create tag for Rx ring. */
 1064         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1065             SF_RING_ALIGN, 0,           /* alignment, boundary */
 1066             BUS_SPACE_MAXADDR,          /* lowaddr */
 1067             BUS_SPACE_MAXADDR,          /* highaddr */
 1068             NULL, NULL,                 /* filter, filterarg */
 1069             SF_RX_DLIST_SIZE,           /* maxsize */
 1070             1,                          /* nsegments */
 1071             SF_RX_DLIST_SIZE,           /* maxsegsize */
 1072             0,                          /* flags */
 1073             NULL, NULL,                 /* lockfunc, lockarg */
 1074             &sc->sf_cdata.sf_rx_ring_tag);
 1075         if (error != 0) {
 1076                 device_printf(sc->sf_dev,
 1077                     "failed to create Rx ring DMA tag\n");
 1078                 goto fail;
 1079         }
 1080 
 1081         /* Create tag for Rx completion ring. */
 1082         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1083             SF_RING_ALIGN, 0,           /* alignment, boundary */
 1084             BUS_SPACE_MAXADDR,          /* lowaddr */
 1085             BUS_SPACE_MAXADDR,          /* highaddr */
 1086             NULL, NULL,                 /* filter, filterarg */
 1087             SF_RX_CLIST_SIZE,           /* maxsize */
 1088             1,                          /* nsegments */
 1089             SF_RX_CLIST_SIZE,           /* maxsegsize */
 1090             0,                          /* flags */
 1091             NULL, NULL,                 /* lockfunc, lockarg */
 1092             &sc->sf_cdata.sf_rx_cring_tag);
 1093         if (error != 0) {
 1094                 device_printf(sc->sf_dev,
 1095                     "failed to create Rx completion ring DMA tag\n");
 1096                 goto fail;
 1097         }
 1098 
 1099         /* Create tag for Tx buffers. */
 1100         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1101             1, 0,                       /* alignment, boundary */
 1102             BUS_SPACE_MAXADDR,          /* lowaddr */
 1103             BUS_SPACE_MAXADDR,          /* highaddr */
 1104             NULL, NULL,                 /* filter, filterarg */
 1105             MCLBYTES * SF_MAXTXSEGS,    /* maxsize */
 1106             SF_MAXTXSEGS,               /* nsegments */
 1107             MCLBYTES,                   /* maxsegsize */
 1108             0,                          /* flags */
 1109             NULL, NULL,                 /* lockfunc, lockarg */
 1110             &sc->sf_cdata.sf_tx_tag);
 1111         if (error != 0) {
 1112                 device_printf(sc->sf_dev, "failed to create Tx DMA tag\n");
 1113                 goto fail;
 1114         }
 1115 
 1116         /* Create tag for Rx buffers. */
 1117         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1118             SF_RX_ALIGN, 0,             /* alignment, boundary */
 1119             BUS_SPACE_MAXADDR,          /* lowaddr */
 1120             BUS_SPACE_MAXADDR,          /* highaddr */
 1121             NULL, NULL,                 /* filter, filterarg */
 1122             MCLBYTES,                   /* maxsize */
 1123             1,                          /* nsegments */
 1124             MCLBYTES,                   /* maxsegsize */
 1125             0,                          /* flags */
 1126             NULL, NULL,                 /* lockfunc, lockarg */
 1127             &sc->sf_cdata.sf_rx_tag);
 1128         if (error != 0) {
 1129                 device_printf(sc->sf_dev, "failed to create Rx DMA tag\n");
 1130                 goto fail;
 1131         }
 1132 
 1133         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
 1134         error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_ring_tag,
 1135             (void **)&sc->sf_rdata.sf_tx_ring, BUS_DMA_WAITOK |
 1136             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_ring_map);
 1137         if (error != 0) {
 1138                 device_printf(sc->sf_dev,
 1139                     "failed to allocate DMA'able memory for Tx ring\n");
 1140                 goto fail;
 1141         }
 1142 
 1143         ctx.sf_busaddr = 0;
 1144         error = bus_dmamap_load(sc->sf_cdata.sf_tx_ring_tag,
 1145             sc->sf_cdata.sf_tx_ring_map, sc->sf_rdata.sf_tx_ring,
 1146             SF_TX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
 1147         if (error != 0 || ctx.sf_busaddr == 0) {
 1148                 device_printf(sc->sf_dev,
 1149                     "failed to load DMA'able memory for Tx ring\n");
 1150                 goto fail;
 1151         }
 1152         sc->sf_rdata.sf_tx_ring_paddr = ctx.sf_busaddr;
 1153 
 1154         /*
 1155          * Allocate DMA'able memory and load the DMA map for Tx completion ring.
 1156          */
 1157         error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_cring_tag,
 1158             (void **)&sc->sf_rdata.sf_tx_cring, BUS_DMA_WAITOK |
 1159             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_cring_map);
 1160         if (error != 0) {
 1161                 device_printf(sc->sf_dev,
 1162                     "failed to allocate DMA'able memory for "
 1163                     "Tx completion ring\n");
 1164                 goto fail;
 1165         }
 1166 
 1167         ctx.sf_busaddr = 0;
 1168         error = bus_dmamap_load(sc->sf_cdata.sf_tx_cring_tag,
 1169             sc->sf_cdata.sf_tx_cring_map, sc->sf_rdata.sf_tx_cring,
 1170             SF_TX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
 1171         if (error != 0 || ctx.sf_busaddr == 0) {
 1172                 device_printf(sc->sf_dev,
 1173                     "failed to load DMA'able memory for Tx completion ring\n");
 1174                 goto fail;
 1175         }
 1176         sc->sf_rdata.sf_tx_cring_paddr = ctx.sf_busaddr;
 1177 
 1178         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
 1179         error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_ring_tag,
 1180             (void **)&sc->sf_rdata.sf_rx_ring, BUS_DMA_WAITOK |
 1181             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_ring_map);
 1182         if (error != 0) {
 1183                 device_printf(sc->sf_dev,
 1184                     "failed to allocate DMA'able memory for Rx ring\n");
 1185                 goto fail;
 1186         }
 1187 
 1188         ctx.sf_busaddr = 0;
 1189         error = bus_dmamap_load(sc->sf_cdata.sf_rx_ring_tag,
 1190             sc->sf_cdata.sf_rx_ring_map, sc->sf_rdata.sf_rx_ring,
 1191             SF_RX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
 1192         if (error != 0 || ctx.sf_busaddr == 0) {
 1193                 device_printf(sc->sf_dev,
 1194                     "failed to load DMA'able memory for Rx ring\n");
 1195                 goto fail;
 1196         }
 1197         sc->sf_rdata.sf_rx_ring_paddr = ctx.sf_busaddr;
 1198 
 1199         /*
 1200          * Allocate DMA'able memory and load the DMA map for Rx completion ring.
 1201          */
 1202         error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_cring_tag,
 1203             (void **)&sc->sf_rdata.sf_rx_cring, BUS_DMA_WAITOK |
 1204             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_cring_map);
 1205         if (error != 0) {
 1206                 device_printf(sc->sf_dev,
 1207                     "failed to allocate DMA'able memory for "
 1208                     "Rx completion ring\n");
 1209                 goto fail;
 1210         }
 1211 
 1212         ctx.sf_busaddr = 0;
 1213         error = bus_dmamap_load(sc->sf_cdata.sf_rx_cring_tag,
 1214             sc->sf_cdata.sf_rx_cring_map, sc->sf_rdata.sf_rx_cring,
 1215             SF_RX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
 1216         if (error != 0 || ctx.sf_busaddr == 0) {
 1217                 device_printf(sc->sf_dev,
 1218                     "failed to load DMA'able memory for Rx completion ring\n");
 1219                 goto fail;
 1220         }
 1221         sc->sf_rdata.sf_rx_cring_paddr = ctx.sf_busaddr;
 1222 
 1223         /*
 1224          * Tx desciptor ring and Tx completion ring should be addressed in
 1225          * the same 4GB space. The same rule applys to Rx ring and Rx
 1226          * completion ring. Unfortunately there is no way to specify this
 1227          * boundary restriction with bus_dma(9). So just try to allocate
 1228          * without the restriction and check the restriction was satisfied.
 1229          * If not, fall back to 32bit dma addressing mode which always
 1230          * guarantees the restriction.
 1231          */
 1232         tx_ring_end = sc->sf_rdata.sf_tx_ring_paddr + SF_TX_DLIST_SIZE;
 1233         tx_cring_end = sc->sf_rdata.sf_tx_cring_paddr + SF_TX_CLIST_SIZE;
 1234         rx_ring_end = sc->sf_rdata.sf_rx_ring_paddr + SF_RX_DLIST_SIZE;
 1235         rx_cring_end = sc->sf_rdata.sf_rx_cring_paddr + SF_RX_CLIST_SIZE;
 1236         if ((SF_ADDR_HI(sc->sf_rdata.sf_tx_ring_paddr) !=
 1237             SF_ADDR_HI(tx_cring_end)) ||
 1238             (SF_ADDR_HI(sc->sf_rdata.sf_tx_cring_paddr) !=
 1239             SF_ADDR_HI(tx_ring_end)) ||
 1240             (SF_ADDR_HI(sc->sf_rdata.sf_rx_ring_paddr) !=
 1241             SF_ADDR_HI(rx_cring_end)) ||
 1242             (SF_ADDR_HI(sc->sf_rdata.sf_rx_cring_paddr) !=
 1243             SF_ADDR_HI(rx_ring_end))) {
 1244                 device_printf(sc->sf_dev,
 1245                     "switching to 32bit DMA mode\n");
 1246                 sf_dma_free(sc);
 1247                 /* Limit DMA address space to 32bit and try again. */
 1248                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1249                 goto again;
 1250         }
 1251 
 1252         /* Create DMA maps for Tx buffers. */
 1253         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1254                 txd = &sc->sf_cdata.sf_txdesc[i];
 1255                 txd->tx_m = NULL;
 1256                 txd->ndesc = 0;
 1257                 txd->tx_dmamap = NULL;
 1258                 error = bus_dmamap_create(sc->sf_cdata.sf_tx_tag, 0,
 1259                     &txd->tx_dmamap);
 1260                 if (error != 0) {
 1261                         device_printf(sc->sf_dev,
 1262                             "failed to create Tx dmamap\n");
 1263                         goto fail;
 1264                 }
 1265         }
 1266         /* Create DMA maps for Rx buffers. */
 1267         if ((error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
 1268             &sc->sf_cdata.sf_rx_sparemap)) != 0) {
 1269                 device_printf(sc->sf_dev,
 1270                     "failed to create spare Rx dmamap\n");
 1271                 goto fail;
 1272         }
 1273         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1274                 rxd = &sc->sf_cdata.sf_rxdesc[i];
 1275                 rxd->rx_m = NULL;
 1276                 rxd->rx_dmamap = NULL;
 1277                 error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
 1278                     &rxd->rx_dmamap);
 1279                 if (error != 0) {
 1280                         device_printf(sc->sf_dev,
 1281                             "failed to create Rx dmamap\n");
 1282                         goto fail;
 1283                 }
 1284         }
 1285 
 1286 fail:
 1287         return (error);
 1288 }
 1289 
 1290 static void
 1291 sf_dma_free(struct sf_softc *sc)
 1292 {
 1293         struct sf_txdesc        *txd;
 1294         struct sf_rxdesc        *rxd;
 1295         int                     i;
 1296 
 1297         /* Tx ring. */
 1298         if (sc->sf_cdata.sf_tx_ring_tag) {
 1299                 if (sc->sf_cdata.sf_tx_ring_map)
 1300                         bus_dmamap_unload(sc->sf_cdata.sf_tx_ring_tag,
 1301                             sc->sf_cdata.sf_tx_ring_map);
 1302                 if (sc->sf_cdata.sf_tx_ring_map &&
 1303                     sc->sf_rdata.sf_tx_ring)
 1304                         bus_dmamem_free(sc->sf_cdata.sf_tx_ring_tag,
 1305                             sc->sf_rdata.sf_tx_ring,
 1306                             sc->sf_cdata.sf_tx_ring_map);
 1307                 sc->sf_rdata.sf_tx_ring = NULL;
 1308                 sc->sf_cdata.sf_tx_ring_map = NULL;
 1309                 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_ring_tag);
 1310                 sc->sf_cdata.sf_tx_ring_tag = NULL;
 1311         }
 1312         /* Tx completion ring. */
 1313         if (sc->sf_cdata.sf_tx_cring_tag) {
 1314                 if (sc->sf_cdata.sf_tx_cring_map)
 1315                         bus_dmamap_unload(sc->sf_cdata.sf_tx_cring_tag,
 1316                             sc->sf_cdata.sf_tx_cring_map);
 1317                 if (sc->sf_cdata.sf_tx_cring_map &&
 1318                     sc->sf_rdata.sf_tx_cring)
 1319                         bus_dmamem_free(sc->sf_cdata.sf_tx_cring_tag,
 1320                             sc->sf_rdata.sf_tx_cring,
 1321                             sc->sf_cdata.sf_tx_cring_map);
 1322                 sc->sf_rdata.sf_tx_cring = NULL;
 1323                 sc->sf_cdata.sf_tx_cring_map = NULL;
 1324                 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_cring_tag);
 1325                 sc->sf_cdata.sf_tx_cring_tag = NULL;
 1326         }
 1327         /* Rx ring. */
 1328         if (sc->sf_cdata.sf_rx_ring_tag) {
 1329                 if (sc->sf_cdata.sf_rx_ring_map)
 1330                         bus_dmamap_unload(sc->sf_cdata.sf_rx_ring_tag,
 1331                             sc->sf_cdata.sf_rx_ring_map);
 1332                 if (sc->sf_cdata.sf_rx_ring_map &&
 1333                     sc->sf_rdata.sf_rx_ring)
 1334                         bus_dmamem_free(sc->sf_cdata.sf_rx_ring_tag,
 1335                             sc->sf_rdata.sf_rx_ring,
 1336                             sc->sf_cdata.sf_rx_ring_map);
 1337                 sc->sf_rdata.sf_rx_ring = NULL;
 1338                 sc->sf_cdata.sf_rx_ring_map = NULL;
 1339                 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_ring_tag);
 1340                 sc->sf_cdata.sf_rx_ring_tag = NULL;
 1341         }
 1342         /* Rx completion ring. */
 1343         if (sc->sf_cdata.sf_rx_cring_tag) {
 1344                 if (sc->sf_cdata.sf_rx_cring_map)
 1345                         bus_dmamap_unload(sc->sf_cdata.sf_rx_cring_tag,
 1346                             sc->sf_cdata.sf_rx_cring_map);
 1347                 if (sc->sf_cdata.sf_rx_cring_map &&
 1348                     sc->sf_rdata.sf_rx_cring)
 1349                         bus_dmamem_free(sc->sf_cdata.sf_rx_cring_tag,
 1350                             sc->sf_rdata.sf_rx_cring,
 1351                             sc->sf_cdata.sf_rx_cring_map);
 1352                 sc->sf_rdata.sf_rx_cring = NULL;
 1353                 sc->sf_cdata.sf_rx_cring_map = NULL;
 1354                 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_cring_tag);
 1355                 sc->sf_cdata.sf_rx_cring_tag = NULL;
 1356         }
 1357         /* Tx buffers. */
 1358         if (sc->sf_cdata.sf_tx_tag) {
 1359                 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1360                         txd = &sc->sf_cdata.sf_txdesc[i];
 1361                         if (txd->tx_dmamap) {
 1362                                 bus_dmamap_destroy(sc->sf_cdata.sf_tx_tag,
 1363                                     txd->tx_dmamap);
 1364                                 txd->tx_dmamap = NULL;
 1365                         }
 1366                 }
 1367                 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_tag);
 1368                 sc->sf_cdata.sf_tx_tag = NULL;
 1369         }
 1370         /* Rx buffers. */
 1371         if (sc->sf_cdata.sf_rx_tag) {
 1372                 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1373                         rxd = &sc->sf_cdata.sf_rxdesc[i];
 1374                         if (rxd->rx_dmamap) {
 1375                                 bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
 1376                                     rxd->rx_dmamap);
 1377                                 rxd->rx_dmamap = NULL;
 1378                         }
 1379                 }
 1380                 if (sc->sf_cdata.sf_rx_sparemap) {
 1381                         bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
 1382                             sc->sf_cdata.sf_rx_sparemap);
 1383                         sc->sf_cdata.sf_rx_sparemap = 0;
 1384                 }
 1385                 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_tag);
 1386                 sc->sf_cdata.sf_rx_tag = NULL;
 1387         }
 1388 
 1389         if (sc->sf_cdata.sf_parent_tag) {
 1390                 bus_dma_tag_destroy(sc->sf_cdata.sf_parent_tag);
 1391                 sc->sf_cdata.sf_parent_tag = NULL;
 1392         }
 1393 }
 1394 
 1395 static int
 1396 sf_init_rx_ring(struct sf_softc *sc)
 1397 {
 1398         struct sf_ring_data     *rd;
 1399         int                     i;
 1400 
 1401         sc->sf_cdata.sf_rxc_cons = 0;
 1402 
 1403         rd = &sc->sf_rdata;
 1404         bzero(rd->sf_rx_ring, SF_RX_DLIST_SIZE);
 1405         bzero(rd->sf_rx_cring, SF_RX_CLIST_SIZE);
 1406 
 1407         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1408                 if (sf_newbuf(sc, i) != 0)
 1409                         return (ENOBUFS);
 1410         }
 1411 
 1412         bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
 1413             sc->sf_cdata.sf_rx_cring_map,
 1414             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1415         bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
 1416             sc->sf_cdata.sf_rx_ring_map,
 1417             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1418 
 1419         return (0);
 1420 }
 1421 
 1422 static void
 1423 sf_init_tx_ring(struct sf_softc *sc)
 1424 {
 1425         struct sf_ring_data     *rd;
 1426         int                     i;
 1427 
 1428         sc->sf_cdata.sf_tx_prod = 0;
 1429         sc->sf_cdata.sf_tx_cnt = 0;
 1430         sc->sf_cdata.sf_txc_cons = 0;
 1431 
 1432         rd = &sc->sf_rdata;
 1433         bzero(rd->sf_tx_ring, SF_TX_DLIST_SIZE);
 1434         bzero(rd->sf_tx_cring, SF_TX_CLIST_SIZE);
 1435         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1436                 rd->sf_tx_ring[i].sf_tx_ctrl = htole32(SF_TX_DESC_ID);
 1437                 sc->sf_cdata.sf_txdesc[i].tx_m = NULL;
 1438                 sc->sf_cdata.sf_txdesc[i].ndesc = 0;
 1439         }
 1440         rd->sf_tx_ring[i].sf_tx_ctrl |= htole32(SF_TX_DESC_END);
 1441 
 1442         bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
 1443             sc->sf_cdata.sf_tx_ring_map,
 1444             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1445         bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
 1446             sc->sf_cdata.sf_tx_cring_map,
 1447             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1448 }
 1449 
 1450 /*
 1451  * Initialize an RX descriptor and attach an MBUF cluster.
 1452  */
 1453 static int
 1454 sf_newbuf(struct sf_softc *sc, int idx)
 1455 {
 1456         struct sf_rx_rdesc      *desc;
 1457         struct sf_rxdesc        *rxd;
 1458         struct mbuf             *m;
 1459         bus_dma_segment_t       segs[1];
 1460         bus_dmamap_t            map;
 1461         int                     nsegs;
 1462 
 1463         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1464         if (m == NULL)
 1465                 return (ENOBUFS);
 1466         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1467         m_adj(m, sizeof(uint32_t));
 1468 
 1469         if (bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_rx_tag,
 1470             sc->sf_cdata.sf_rx_sparemap, m, segs, &nsegs, 0) != 0) {
 1471                 m_freem(m);
 1472                 return (ENOBUFS);
 1473         }
 1474         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1475 
 1476         rxd = &sc->sf_cdata.sf_rxdesc[idx];
 1477         if (rxd->rx_m != NULL) {
 1478                 bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
 1479                     BUS_DMASYNC_POSTREAD);
 1480                 bus_dmamap_unload(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap);
 1481         }
 1482         map = rxd->rx_dmamap;
 1483         rxd->rx_dmamap = sc->sf_cdata.sf_rx_sparemap;
 1484         sc->sf_cdata.sf_rx_sparemap = map;
 1485         bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
 1486             BUS_DMASYNC_PREREAD);
 1487         rxd->rx_m = m;
 1488         desc = &sc->sf_rdata.sf_rx_ring[idx];
 1489         desc->sf_addr = htole64(segs[0].ds_addr);
 1490 
 1491         return (0);
 1492 }
 1493 
 1494 #ifndef __NO_STRICT_ALIGNMENT
 1495 static __inline void
 1496 sf_fixup_rx(struct mbuf *m)
 1497 {
 1498         int                     i;
 1499         uint16_t                *src, *dst;
 1500 
 1501         src = mtod(m, uint16_t *);
 1502         dst = src - 1;
 1503 
 1504         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
 1505                 *dst++ = *src++;
 1506 
 1507         m->m_data -= ETHER_ALIGN;
 1508 }
 1509 #endif
 1510 
 1511 /*
 1512  * The starfire is programmed to use 'normal' mode for packet reception,
 1513  * which means we use the consumer/producer model for both the buffer
 1514  * descriptor queue and the completion descriptor queue. The only problem
 1515  * with this is that it involves a lot of register accesses: we have to
 1516  * read the RX completion consumer and producer indexes and the RX buffer
 1517  * producer index, plus the RX completion consumer and RX buffer producer
 1518  * indexes have to be updated. It would have been easier if Adaptec had
 1519  * put each index in a separate register, especially given that the damn
 1520  * NIC has a 512K register space.
 1521  *
 1522  * In spite of all the lovely features that Adaptec crammed into the 6915,
 1523  * it is marred by one truly stupid design flaw, which is that receive
 1524  * buffer addresses must be aligned on a longword boundary. This forces
 1525  * the packet payload to be unaligned, which is suboptimal on the x86 and
 1526  * completely unuseable on the Alpha. Our only recourse is to copy received
 1527  * packets into properly aligned buffers before handing them off.
 1528  */
 1529 static void
 1530 sf_rxeof(struct sf_softc *sc)
 1531 {
 1532         struct mbuf             *m;
 1533         struct ifnet            *ifp;
 1534         struct sf_rxdesc        *rxd;
 1535         struct sf_rx_rcdesc     *cur_cmp;
 1536         int                     cons, eidx, prog;
 1537         uint32_t                status, status2;
 1538 
 1539         SF_LOCK_ASSERT(sc);
 1540 
 1541         ifp = sc->sf_ifp;
 1542 
 1543         bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
 1544             sc->sf_cdata.sf_rx_ring_map,
 1545             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1546         bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
 1547             sc->sf_cdata.sf_rx_cring_map,
 1548             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1549 
 1550         /*
 1551          * To reduce register access, directly read Receive completion
 1552          * queue entry.
 1553          */
 1554         eidx = 0;
 1555         prog = 0;
 1556         for (cons = sc->sf_cdata.sf_rxc_cons; ; SF_INC(cons, SF_RX_CLIST_CNT)) {
 1557                 cur_cmp = &sc->sf_rdata.sf_rx_cring[cons];
 1558                 status = le32toh(cur_cmp->sf_rx_status1);
 1559                 if (status == 0)
 1560                         break;
 1561 #ifdef DEVICE_POLLING
 1562                 if ((ifp->if_capenable & IFCAP_POLLING) != 0) {
 1563                         if (sc->rxcycles <= 0)
 1564                                 break;
 1565                         sc->rxcycles--;
 1566                 }
 1567 #endif
 1568                 prog++;
 1569                 eidx = (status & SF_RX_CMPDESC_EIDX) >> 16;
 1570                 rxd = &sc->sf_cdata.sf_rxdesc[eidx];
 1571                 m = rxd->rx_m;
 1572 
 1573                 /*
 1574                  * Note, if_ipackets and if_ierrors counters
 1575                  * are handled in sf_stats_update().
 1576                  */
 1577                 if ((status & SF_RXSTAT1_OK) == 0) {
 1578                         cur_cmp->sf_rx_status1 = 0;
 1579                         continue;
 1580                 }
 1581 
 1582                 if (sf_newbuf(sc, eidx) != 0) {
 1583                         ifp->if_iqdrops++;
 1584                         cur_cmp->sf_rx_status1 = 0;
 1585                         continue;
 1586                 }
 1587 
 1588                 /* AIC-6915 supports TCP/UDP checksum offload. */
 1589                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
 1590                         status2 = le32toh(cur_cmp->sf_rx_status2);
 1591                         /*
 1592                          * Sometimes AIC-6915 generates an interrupt to
 1593                          * warn RxGFP stall with bad checksum bit set
 1594                          * in status word. I'm not sure what conditioan
 1595                          * triggers it but recevied packet's checksum
 1596                          * was correct even though AIC-6915 does not
 1597                          * agree on this. This may be an indication of
 1598                          * firmware bug. To fix the issue, do not rely
 1599                          * on bad checksum bit in status word and let
 1600                          * upper layer verify integrity of received
 1601                          * frame.
 1602                          * Another nice feature of AIC-6915 is hardware
 1603                          * assistance of checksum calculation by
 1604                          * providing partial checksum value for received
 1605                          * frame. The partial checksum value can be used
 1606                          * to accelerate checksum computation for
 1607                          * fragmented TCP/UDP packets. Upper network
 1608                          * stack already takes advantage of the partial
 1609                          * checksum value in IP reassembly stage. But
 1610                          * I'm not sure the correctness of the partial
 1611                          * hardware checksum assistance as frequent
 1612                          * RxGFP stalls are seen on non-fragmented
 1613                          * frames. Due to the nature of the complexity
 1614                          * of checksum computation code in firmware it's
 1615                          * possible to see another bug in RxGFP so
 1616                          * ignore checksum assistance for fragmented
 1617                          * frames. This can be changed in future.
 1618                          */
 1619                         if ((status2 & SF_RXSTAT2_FRAG) == 0) {
 1620                                 if ((status2 & (SF_RXSTAT2_TCP |
 1621                                     SF_RXSTAT2_UDP)) != 0) {
 1622                                         if ((status2 & SF_RXSTAT2_CSUM_OK)) {
 1623                                                 m->m_pkthdr.csum_flags =
 1624                                                     CSUM_DATA_VALID |
 1625                                                     CSUM_PSEUDO_HDR;
 1626                                                 m->m_pkthdr.csum_data = 0xffff;
 1627                                         }
 1628                                 }
 1629                         }
 1630 #ifdef SF_PARTIAL_CSUM_SUPPORT
 1631                         else if ((status2 & SF_RXSTAT2_FRAG) != 0) {
 1632                                 if ((status2 & (SF_RXSTAT2_TCP |
 1633                                     SF_RXSTAT2_UDP)) != 0) {
 1634                                         if ((status2 & SF_RXSTAT2_PCSUM_OK)) {
 1635                                                 m->m_pkthdr.csum_flags =
 1636                                                     CSUM_DATA_VALID;
 1637                                                 m->m_pkthdr.csum_data =
 1638                                                     (status &
 1639                                                     SF_RX_CMPDESC_CSUM2);
 1640                                         }
 1641                                 }
 1642                         }
 1643 #endif
 1644                 }
 1645 
 1646                 m->m_pkthdr.len = m->m_len = status & SF_RX_CMPDESC_LEN;
 1647 #ifndef __NO_STRICT_ALIGNMENT
 1648                 sf_fixup_rx(m);
 1649 #endif
 1650                 m->m_pkthdr.rcvif = ifp;
 1651 
 1652                 SF_UNLOCK(sc);
 1653                 (*ifp->if_input)(ifp, m);
 1654                 SF_LOCK(sc);
 1655 
 1656                 /* Clear completion status. */
 1657                 cur_cmp->sf_rx_status1 = 0;
 1658         }
 1659 
 1660         if (prog > 0) {
 1661                 sc->sf_cdata.sf_rxc_cons = cons;
 1662                 bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
 1663                     sc->sf_cdata.sf_rx_ring_map,
 1664                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1665                 bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
 1666                     sc->sf_cdata.sf_rx_cring_map,
 1667                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1668 
 1669                 /* Update Rx completion Q1 consumer index. */
 1670                 csr_write_4(sc, SF_CQ_CONSIDX,
 1671                     (csr_read_4(sc, SF_CQ_CONSIDX) & ~SF_CQ_CONSIDX_RXQ1) |
 1672                     (cons & SF_CQ_CONSIDX_RXQ1));
 1673                 /* Update Rx descriptor Q1 ptr. */
 1674                 csr_write_4(sc, SF_RXDQ_PTR_Q1,
 1675                     (csr_read_4(sc, SF_RXDQ_PTR_Q1) & ~SF_RXDQ_PRODIDX) |
 1676                     (eidx & SF_RXDQ_PRODIDX));
 1677         }
 1678 }
 1679 
 1680 /*
 1681  * Read the transmit status from the completion queue and release
 1682  * mbufs. Note that the buffer descriptor index in the completion
 1683  * descriptor is an offset from the start of the transmit buffer
 1684  * descriptor list in bytes. This is important because the manual
 1685  * gives the impression that it should match the producer/consumer
 1686  * index, which is the offset in 8 byte blocks.
 1687  */
 1688 static void
 1689 sf_txeof(struct sf_softc *sc)
 1690 {
 1691         struct sf_txdesc        *txd;
 1692         struct sf_tx_rcdesc     *cur_cmp;
 1693         struct ifnet            *ifp;
 1694         uint32_t                status;
 1695         int                     cons, idx, prod;
 1696 
 1697         SF_LOCK_ASSERT(sc);
 1698 
 1699         ifp = sc->sf_ifp;
 1700 
 1701         bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
 1702             sc->sf_cdata.sf_tx_cring_map,
 1703             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1704 
 1705         cons = sc->sf_cdata.sf_txc_cons;
 1706         prod = (csr_read_4(sc, SF_CQ_PRODIDX) & SF_TXDQ_PRODIDX_HIPRIO) >> 16;
 1707         if (prod == cons)
 1708                 return;
 1709 
 1710         for (; cons != prod; SF_INC(cons, SF_TX_CLIST_CNT)) {
 1711                 cur_cmp = &sc->sf_rdata.sf_tx_cring[cons];
 1712                 status = le32toh(cur_cmp->sf_tx_status1);
 1713                 if (status == 0)
 1714                         break;
 1715                 switch (status & SF_TX_CMPDESC_TYPE) {
 1716                 case SF_TXCMPTYPE_TX:
 1717                         /* Tx complete entry. */
 1718                         break;
 1719                 case SF_TXCMPTYPE_DMA:
 1720                         /* DMA complete entry. */
 1721                         idx = status & SF_TX_CMPDESC_IDX;
 1722                         idx = idx / sizeof(struct sf_tx_rdesc);
 1723                         /*
 1724                          * We don't need to check Tx status here.
 1725                          * SF_ISR_TX_LOFIFO intr would handle this.
 1726                          * Note, if_opackets, if_collisions and if_oerrors
 1727                          * counters are handled in sf_stats_update().
 1728                          */
 1729                         txd = &sc->sf_cdata.sf_txdesc[idx];
 1730                         if (txd->tx_m != NULL) {
 1731                                 bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
 1732                                     txd->tx_dmamap,
 1733                                     BUS_DMASYNC_POSTWRITE);
 1734                                 bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
 1735                                     txd->tx_dmamap);
 1736                                 m_freem(txd->tx_m);
 1737                                 txd->tx_m = NULL;
 1738                         }
 1739                         sc->sf_cdata.sf_tx_cnt -= txd->ndesc;
 1740                         KASSERT(sc->sf_cdata.sf_tx_cnt >= 0,
 1741                             ("%s: Active Tx desc counter was garbled\n",
 1742                             __func__));
 1743                         txd->ndesc = 0;
 1744                         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1745                         break;
 1746                 default:
 1747                         /* It should not happen. */
 1748                         device_printf(sc->sf_dev,
 1749                             "unknown Tx completion type : 0x%08x : %d : %d\n",
 1750                             status, cons, prod);
 1751                         break;
 1752                 }
 1753                 cur_cmp->sf_tx_status1 = 0;
 1754         }
 1755 
 1756         sc->sf_cdata.sf_txc_cons = cons;
 1757         bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
 1758             sc->sf_cdata.sf_tx_cring_map,
 1759             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1760 
 1761         if (sc->sf_cdata.sf_tx_cnt == 0)
 1762                 sc->sf_watchdog_timer = 0;
 1763 
 1764         /* Update Tx completion consumer index. */
 1765         csr_write_4(sc, SF_CQ_CONSIDX,
 1766             (csr_read_4(sc, SF_CQ_CONSIDX) & 0xffff) |
 1767             ((cons << 16) & 0xffff0000));
 1768 }
 1769 
 1770 static void
 1771 sf_txthresh_adjust(struct sf_softc *sc)
 1772 {
 1773         uint32_t                txfctl;
 1774 
 1775         device_printf(sc->sf_dev, "Tx underrun -- ");
 1776         if (sc->sf_txthresh < SF_MAX_TX_THRESHOLD) {
 1777                 txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
 1778                 /* Increase Tx threshold 256 bytes. */
 1779                 sc->sf_txthresh += 16;
 1780                 if (sc->sf_txthresh > SF_MAX_TX_THRESHOLD)
 1781                         sc->sf_txthresh = SF_MAX_TX_THRESHOLD;
 1782                 txfctl &= ~SF_TXFRMCTL_TXTHRESH;
 1783                 txfctl |= sc->sf_txthresh;
 1784                 printf("increasing Tx threshold to %d bytes\n",
 1785                     sc->sf_txthresh * SF_TX_THRESHOLD_UNIT);
 1786                 csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
 1787         } else
 1788                 printf("\n");
 1789 }
 1790 
 1791 #ifdef DEVICE_POLLING
 1792 static void
 1793 sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1794 {
 1795         struct sf_softc         *sc;
 1796         uint32_t                status;
 1797 
 1798         sc = ifp->if_softc;
 1799         SF_LOCK(sc);
 1800 
 1801         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1802                 SF_UNLOCK(sc);
 1803                 return;
 1804         }
 1805 
 1806         sc->rxcycles = count;
 1807         sf_rxeof(sc);
 1808         sf_txeof(sc);
 1809         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1810                 sf_start_locked(ifp);
 1811 
 1812         if (cmd == POLL_AND_CHECK_STATUS) {
 1813                 /* Reading the ISR register clears all interrrupts. */
 1814                 status = csr_read_4(sc, SF_ISR);
 1815 
 1816                 if ((status & SF_ISR_ABNORMALINTR) != 0) {
 1817                         if ((status & SF_ISR_STATSOFLOW) != 0)
 1818                                 sf_stats_update(sc);
 1819                         else if ((status & SF_ISR_TX_LOFIFO) != 0)
 1820                                 sf_txthresh_adjust(sc);
 1821                         else if ((status & SF_ISR_DMAERR) != 0) {
 1822                                 device_printf(sc->sf_dev,
 1823                                     "DMA error, resetting\n");
 1824                                 sf_init_locked(sc);
 1825                         } else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
 1826                                 sc->sf_statistics.sf_tx_gfp_stall++;
 1827 #ifdef  SF_GFP_DEBUG
 1828                                 device_printf(sc->sf_dev,
 1829                                     "TxGFP is not responding!\n");
 1830 #endif
 1831                         } else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
 1832                                 sc->sf_statistics.sf_rx_gfp_stall++;
 1833 #ifdef  SF_GFP_DEBUG
 1834                                 device_printf(sc->sf_dev,
 1835                                     "RxGFP is not responding!\n");
 1836 #endif
 1837                         }
 1838                 }
 1839         }
 1840 
 1841         SF_UNLOCK(sc);
 1842 }
 1843 #endif /* DEVICE_POLLING */
 1844 
 1845 static void
 1846 sf_intr(void *arg)
 1847 {
 1848         struct sf_softc         *sc;
 1849         struct ifnet            *ifp;
 1850         uint32_t                status;
 1851 
 1852         sc = (struct sf_softc *)arg;
 1853         SF_LOCK(sc);
 1854 
 1855         if (sc->sf_suspended != 0)
 1856                 goto done_locked;
 1857 
 1858         /* Reading the ISR register clears all interrrupts. */
 1859         status = csr_read_4(sc, SF_ISR);
 1860         if (status == 0 || status == 0xffffffff ||
 1861             (status & SF_ISR_PCIINT_ASSERTED) == 0)
 1862                 goto done_locked;
 1863 
 1864         ifp = sc->sf_ifp;
 1865 #ifdef DEVICE_POLLING
 1866         if ((ifp->if_capenable & IFCAP_POLLING) != 0)
 1867                 goto done_locked;
 1868 #endif
 1869         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1870                 goto done_locked;
 1871 
 1872         /* Disable interrupts. */
 1873         csr_write_4(sc, SF_IMR, 0x00000000);
 1874 
 1875         for (; (status & SF_INTRS) != 0;) {
 1876                 if ((status & SF_ISR_RXDQ1_DMADONE) != 0)
 1877                         sf_rxeof(sc);
 1878 
 1879                 if ((status & (SF_ISR_TX_TXDONE | SF_ISR_TX_DMADONE |
 1880                     SF_ISR_TX_QUEUEDONE)) != 0)
 1881                         sf_txeof(sc);
 1882 
 1883                 if ((status & SF_ISR_ABNORMALINTR) != 0) {
 1884                         if ((status & SF_ISR_STATSOFLOW) != 0)
 1885                                 sf_stats_update(sc);
 1886                         else if ((status & SF_ISR_TX_LOFIFO) != 0)
 1887                                 sf_txthresh_adjust(sc);
 1888                         else if ((status & SF_ISR_DMAERR) != 0) {
 1889                                 device_printf(sc->sf_dev,
 1890                                     "DMA error, resetting\n");
 1891                                 sf_init_locked(sc);
 1892                                 break;
 1893                         } else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
 1894                                 sc->sf_statistics.sf_tx_gfp_stall++;
 1895 #ifdef  SF_GFP_DEBUG
 1896                                 device_printf(sc->sf_dev,
 1897                                     "TxGFP is not responding!\n");
 1898 #endif
 1899                         }
 1900                         else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
 1901                                 sc->sf_statistics.sf_rx_gfp_stall++;
 1902 #ifdef  SF_GFP_DEBUG
 1903                                 device_printf(sc->sf_dev,
 1904                                     "RxGFP is not responding!\n");
 1905 #endif
 1906                         }
 1907                 }
 1908                 /* Reading the ISR register clears all interrrupts. */
 1909                 status = csr_read_4(sc, SF_ISR);
 1910         }
 1911 
 1912         /* Re-enable interrupts. */
 1913         csr_write_4(sc, SF_IMR, SF_INTRS);
 1914 
 1915         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1916                 sf_start_locked(ifp);
 1917 done_locked:
 1918         SF_UNLOCK(sc);
 1919 }
 1920 
 1921 static void
 1922 sf_download_fw(struct sf_softc *sc)
 1923 {
 1924         uint32_t gfpinst;
 1925         int i, ndx;
 1926         uint8_t *p;
 1927 
 1928         /*
 1929          * A FP instruction is composed of 48bits so we have to
 1930          * write it with two parts.
 1931          */
 1932         p = txfwdata;
 1933         ndx = 0;
 1934         for (i = 0; i < sizeof(txfwdata) / SF_GFP_INST_BYTES; i++) {
 1935                 gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
 1936                 csr_write_4(sc, SF_TXGFP_MEM_BASE + ndx * 4, gfpinst);
 1937                 gfpinst = p[0] << 8 | p[1];
 1938                 csr_write_4(sc, SF_TXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
 1939                 p += SF_GFP_INST_BYTES;
 1940                 ndx += 2;
 1941         }
 1942         if (bootverbose)
 1943                 device_printf(sc->sf_dev, "%d Tx instructions downloaded\n", i);
 1944 
 1945         p = rxfwdata;
 1946         ndx = 0;
 1947         for (i = 0; i < sizeof(rxfwdata) / SF_GFP_INST_BYTES; i++) {
 1948                 gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
 1949                 csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx * 4), gfpinst);
 1950                 gfpinst = p[0] << 8 | p[1];
 1951                 csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
 1952                 p += SF_GFP_INST_BYTES;
 1953                 ndx += 2;
 1954         }
 1955         if (bootverbose)
 1956                 device_printf(sc->sf_dev, "%d Rx instructions downloaded\n", i);
 1957 }
 1958 
 1959 static void
 1960 sf_init(void *xsc)
 1961 {
 1962         struct sf_softc         *sc;
 1963 
 1964         sc = (struct sf_softc *)xsc;
 1965         SF_LOCK(sc);
 1966         sf_init_locked(sc);
 1967         SF_UNLOCK(sc);
 1968 }
 1969 
 1970 static void
 1971 sf_init_locked(struct sf_softc *sc)
 1972 {
 1973         struct ifnet            *ifp;
 1974         struct mii_data         *mii;
 1975         uint8_t                 eaddr[ETHER_ADDR_LEN];
 1976         bus_addr_t              addr;
 1977         int                     i;
 1978 
 1979         SF_LOCK_ASSERT(sc);
 1980         ifp = sc->sf_ifp;
 1981         mii = device_get_softc(sc->sf_miibus);
 1982 
 1983         sf_stop(sc);
 1984         /* Reset the hardware to a known state. */
 1985         sf_reset(sc);
 1986 
 1987         /* Init all the receive filter registers */
 1988         for (i = SF_RXFILT_PERFECT_BASE;
 1989             i < (SF_RXFILT_HASH_MAX + 1); i += sizeof(uint32_t))
 1990                 csr_write_4(sc, i, 0);
 1991 
 1992         /* Empty stats counter registers. */
 1993         for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
 1994                 csr_write_4(sc, i, 0);
 1995 
 1996         /* Init our MAC address. */
 1997         bcopy(IF_LLADDR(sc->sf_ifp), eaddr, sizeof(eaddr));
 1998         csr_write_4(sc, SF_PAR0,
 1999             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2000         csr_write_4(sc, SF_PAR1, eaddr[0] << 8 | eaddr[1]);
 2001         sf_setperf(sc, 0, eaddr);
 2002 
 2003         if (sf_init_rx_ring(sc) == ENOBUFS) {
 2004                 device_printf(sc->sf_dev,
 2005                     "initialization failed: no memory for rx buffers\n");
 2006                 return;
 2007         }
 2008 
 2009         sf_init_tx_ring(sc);
 2010 
 2011         /*
 2012          * 16 perfect address filtering.
 2013          * Hash only multicast destination address, Accept matching
 2014          * frames regardless of VLAN ID.
 2015          */
 2016         csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL | SF_HASHMODE_ANYVLAN);
 2017 
 2018         /*
 2019          * Set Rx filter.
 2020          */
 2021         sf_rxfilter(sc);
 2022 
 2023         /* Init the completion queue indexes. */
 2024         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 2025         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 2026 
 2027         /* Init the RX completion queue. */
 2028         addr = sc->sf_rdata.sf_rx_cring_paddr;
 2029         csr_write_4(sc, SF_CQ_ADDR_HI, SF_ADDR_HI(addr));
 2030         csr_write_4(sc, SF_RXCQ_CTL_1, SF_ADDR_LO(addr) & SF_RXCQ_ADDR);
 2031         if (SF_ADDR_HI(addr) != 0)
 2032                 SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQ_USE_64BIT);
 2033         /* Set RX completion queue type 2. */
 2034         SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_2);
 2035         csr_write_4(sc, SF_RXCQ_CTL_2, 0);
 2036 
 2037         /*
 2038          * Init RX DMA control.
 2039          * default RxHighPriority Threshold,
 2040          * default RxBurstSize, 128bytes.
 2041          */
 2042         SF_SETBIT(sc, SF_RXDMA_CTL,
 2043             SF_RXDMA_REPORTBADPKTS |
 2044             (SF_RXDMA_HIGHPRIO_THRESH << 8) |
 2045             SF_RXDMA_BURST);
 2046 
 2047         /* Init the RX buffer descriptor queue. */
 2048         addr = sc->sf_rdata.sf_rx_ring_paddr;
 2049         csr_write_4(sc, SF_RXDQ_ADDR_HI, SF_ADDR_HI(addr));
 2050         csr_write_4(sc, SF_RXDQ_ADDR_Q1, SF_ADDR_LO(addr));
 2051 
 2052         /* Set RX queue buffer length. */
 2053         csr_write_4(sc, SF_RXDQ_CTL_1,
 2054             ((MCLBYTES  - sizeof(uint32_t)) << 16) |
 2055             SF_RXDQCTL_64BITBADDR | SF_RXDQCTL_VARIABLE);
 2056 
 2057         if (SF_ADDR_HI(addr) != 0)
 2058                 SF_SETBIT(sc, SF_RXDQ_CTL_1, SF_RXDQCTL_64BITDADDR);
 2059         csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
 2060         csr_write_4(sc, SF_RXDQ_CTL_2, 0);
 2061 
 2062         /* Init the TX completion queue */
 2063         addr = sc->sf_rdata.sf_tx_cring_paddr;
 2064         csr_write_4(sc, SF_TXCQ_CTL, SF_ADDR_LO(addr) & SF_TXCQ_ADDR);
 2065         if (SF_ADDR_HI(addr) != 0)
 2066                 SF_SETBIT(sc, SF_TXCQ_CTL, SF_TXCQ_USE_64BIT);
 2067 
 2068         /* Init the TX buffer descriptor queue. */
 2069         addr = sc->sf_rdata.sf_tx_ring_paddr;
 2070         csr_write_4(sc, SF_TXDQ_ADDR_HI, SF_ADDR_HI(addr));
 2071         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
 2072         csr_write_4(sc, SF_TXDQ_ADDR_LOPRIO, SF_ADDR_LO(addr));
 2073         csr_write_4(sc, SF_TX_FRAMCTL,
 2074             SF_TXFRMCTL_CPLAFTERTX | sc->sf_txthresh);
 2075         csr_write_4(sc, SF_TXDQ_CTL,
 2076             SF_TXDMA_HIPRIO_THRESH << 24 |
 2077             SF_TXSKIPLEN_0BYTES << 16 |
 2078             SF_TXDDMA_BURST << 8 |
 2079             SF_TXBUFDESC_TYPE2 | SF_TXMINSPACE_UNLIMIT);
 2080         if (SF_ADDR_HI(addr) != 0)
 2081                 SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_64BITADDR);
 2082 
 2083         /* Set VLAN Type register. */
 2084         csr_write_4(sc, SF_VLANTYPE, ETHERTYPE_VLAN);
 2085 
 2086         /* Set TxPause Timer. */
 2087         csr_write_4(sc, SF_TXPAUSETIMER, 0xffff);
 2088 
 2089         /* Enable autopadding of short TX frames. */
 2090         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
 2091         SF_SETBIT(sc, SF_MACCFG_2, SF_MACCFG2_AUTOVLANPAD);
 2092         /* Make sure to reset MAC to take changes effect. */
 2093         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
 2094         DELAY(1000);
 2095         SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
 2096 
 2097         /* Enable PCI bus master. */
 2098         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_PCIMEN);
 2099 
 2100         /* Load StarFire firmware. */
 2101         sf_download_fw(sc);
 2102 
 2103         /* Intialize interrupt moderation. */
 2104         csr_write_4(sc, SF_TIMER_CTL, SF_TIMER_IMASK_MODE | SF_TIMER_TIMES_TEN |
 2105             (sc->sf_int_mod & SF_TIMER_IMASK_INTERVAL));
 2106 
 2107 #ifdef DEVICE_POLLING
 2108         /* Disable interrupts if we are polling. */
 2109         if ((ifp->if_capenable & IFCAP_POLLING) != 0)
 2110                 csr_write_4(sc, SF_IMR, 0x00000000);
 2111         else
 2112 #endif
 2113         /* Enable interrupts. */
 2114         csr_write_4(sc, SF_IMR, SF_INTRS);
 2115         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
 2116 
 2117         /* Enable the RX and TX engines. */
 2118         csr_write_4(sc, SF_GEN_ETH_CTL,
 2119             SF_ETHCTL_RX_ENB | SF_ETHCTL_RXDMA_ENB |
 2120             SF_ETHCTL_TX_ENB | SF_ETHCTL_TXDMA_ENB);
 2121 
 2122         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 2123                 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
 2124         else
 2125                 SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
 2126         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 2127                 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
 2128         else
 2129                 SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
 2130 
 2131         sc->sf_link = 0;
 2132         mii_mediachg(mii);
 2133 
 2134         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2135         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2136 
 2137         callout_reset(&sc->sf_co, hz, sf_tick, sc);
 2138 }
 2139 
 2140 static int
 2141 sf_encap(struct sf_softc *sc, struct mbuf **m_head)
 2142 {
 2143         struct sf_txdesc        *txd;
 2144         struct sf_tx_rdesc      *desc;
 2145         struct mbuf             *m;
 2146         bus_dmamap_t            map;
 2147         bus_dma_segment_t       txsegs[SF_MAXTXSEGS];
 2148         int                     error, i, nsegs, prod, si;
 2149         int                     avail, nskip;
 2150 
 2151         SF_LOCK_ASSERT(sc);
 2152 
 2153         m = *m_head;
 2154         prod = sc->sf_cdata.sf_tx_prod;
 2155         txd = &sc->sf_cdata.sf_txdesc[prod];
 2156         map = txd->tx_dmamap;
 2157         error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag, map,
 2158             *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
 2159         if (error == EFBIG) {
 2160                 m = m_collapse(*m_head, M_DONTWAIT, SF_MAXTXSEGS);
 2161                 if (m == NULL) {
 2162                         m_freem(*m_head);
 2163                         *m_head = NULL;
 2164                         return (ENOBUFS);
 2165                 }
 2166                 *m_head = m;
 2167                 error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag,
 2168                     map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
 2169                 if (error != 0) {
 2170                         m_freem(*m_head);
 2171                         *m_head = NULL;
 2172                         return (error);
 2173                 }
 2174         } else if (error != 0)
 2175                 return (error);
 2176         if (nsegs == 0) {
 2177                 m_freem(*m_head);
 2178                 *m_head = NULL;
 2179                 return (EIO);
 2180         }
 2181 
 2182         /* Check number of available descriptors. */
 2183         avail = (SF_TX_DLIST_CNT - 1) - sc->sf_cdata.sf_tx_cnt;
 2184         if (avail < nsegs) {
 2185                 bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
 2186                 return (ENOBUFS);
 2187         }
 2188         nskip = 0;
 2189         if (prod + nsegs >= SF_TX_DLIST_CNT) {
 2190                 nskip = SF_TX_DLIST_CNT - prod - 1;
 2191                 if (avail < nsegs + nskip) {
 2192                         bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
 2193                         return (ENOBUFS);
 2194                 }
 2195         }
 2196 
 2197         bus_dmamap_sync(sc->sf_cdata.sf_tx_tag, map, BUS_DMASYNC_PREWRITE);
 2198 
 2199         si = prod;
 2200         for (i = 0; i < nsegs; i++) {
 2201                 desc = &sc->sf_rdata.sf_tx_ring[prod];
 2202                 desc->sf_tx_ctrl = htole32(SF_TX_DESC_ID |
 2203                     (txsegs[i].ds_len & SF_TX_DESC_FRAGLEN));
 2204                 desc->sf_tx_reserved = 0;
 2205                 desc->sf_addr = htole64(txsegs[i].ds_addr);
 2206                 if (i == 0 && prod + nsegs >= SF_TX_DLIST_CNT) {
 2207                         /* Queue wraps! */
 2208                         desc->sf_tx_ctrl |= htole32(SF_TX_DESC_END);
 2209                         prod = 0;
 2210                 } else
 2211                         SF_INC(prod, SF_TX_DLIST_CNT);
 2212         }
 2213         /* Update producer index. */
 2214         sc->sf_cdata.sf_tx_prod = prod;
 2215         sc->sf_cdata.sf_tx_cnt += nsegs + nskip;
 2216 
 2217         desc = &sc->sf_rdata.sf_tx_ring[si];
 2218         /* Check TDP/UDP checksum offload request. */
 2219         if ((m->m_pkthdr.csum_flags & SF_CSUM_FEATURES) != 0)
 2220                 desc->sf_tx_ctrl |= htole32(SF_TX_DESC_CALTCP);
 2221         desc->sf_tx_ctrl |=
 2222             htole32(SF_TX_DESC_CRCEN | SF_TX_DESC_INTR | (nsegs << 16));
 2223 
 2224         txd->tx_dmamap = map;
 2225         txd->tx_m = m;
 2226         txd->ndesc = nsegs + nskip;
 2227 
 2228         return (0);
 2229 }
 2230 
 2231 static void
 2232 sf_start(struct ifnet *ifp)
 2233 {
 2234         struct sf_softc         *sc;
 2235 
 2236         sc = ifp->if_softc;
 2237         SF_LOCK(sc);
 2238         sf_start_locked(ifp);
 2239         SF_UNLOCK(sc);
 2240 }
 2241 
 2242 static void
 2243 sf_start_locked(struct ifnet *ifp)
 2244 {
 2245         struct sf_softc         *sc;
 2246         struct mbuf             *m_head;
 2247         int                     enq;
 2248 
 2249         sc = ifp->if_softc;
 2250         SF_LOCK_ASSERT(sc);
 2251 
 2252         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 2253             IFF_DRV_RUNNING || sc->sf_link == 0)
 2254                 return;
 2255 
 2256         /*
 2257          * Since we don't know when descriptor wrap occurrs in advance
 2258          * limit available number of active Tx descriptor counter to be
 2259          * higher than maximum number of DMA segments allowed in driver.
 2260          */
 2261         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 2262             sc->sf_cdata.sf_tx_cnt < SF_TX_DLIST_CNT - SF_MAXTXSEGS; ) {
 2263                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 2264                 if (m_head == NULL)
 2265                         break;
 2266                 /*
 2267                  * Pack the data into the transmit ring. If we
 2268                  * don't have room, set the OACTIVE flag and wait
 2269                  * for the NIC to drain the ring.
 2270                  */
 2271                 if (sf_encap(sc, &m_head)) {
 2272                         if (m_head == NULL)
 2273                                 break;
 2274                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 2275                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2276                         break;
 2277                 }
 2278 
 2279                 enq++;
 2280                 /*
 2281                  * If there's a BPF listener, bounce a copy of this frame
 2282                  * to him.
 2283                  */
 2284                 ETHER_BPF_MTAP(ifp, m_head);
 2285         }
 2286 
 2287         if (enq > 0) {
 2288                 bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
 2289                     sc->sf_cdata.sf_tx_ring_map,
 2290                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2291                 /* Kick transmit. */
 2292                 csr_write_4(sc, SF_TXDQ_PRODIDX,
 2293                     sc->sf_cdata.sf_tx_prod * (sizeof(struct sf_tx_rdesc) / 8));
 2294 
 2295                 /* Set a timeout in case the chip goes out to lunch. */
 2296                 sc->sf_watchdog_timer = 5;
 2297         }
 2298 }
 2299 
 2300 static void
 2301 sf_stop(struct sf_softc *sc)
 2302 {
 2303         struct sf_txdesc        *txd;
 2304         struct sf_rxdesc        *rxd;
 2305         struct ifnet            *ifp;
 2306         int                     i;
 2307 
 2308         SF_LOCK_ASSERT(sc);
 2309 
 2310         ifp = sc->sf_ifp;
 2311 
 2312         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2313         sc->sf_link = 0;
 2314         callout_stop(&sc->sf_co);
 2315         sc->sf_watchdog_timer = 0;
 2316 
 2317         /* Reading the ISR register clears all interrrupts. */
 2318         csr_read_4(sc, SF_ISR);
 2319         /* Disable further interrupts. */
 2320         csr_write_4(sc, SF_IMR, 0);
 2321 
 2322         /* Disable Tx/Rx egine. */
 2323         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
 2324 
 2325         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 2326         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 2327         csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
 2328         csr_write_4(sc, SF_RXDQ_CTL_1, 0);
 2329         csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
 2330         csr_write_4(sc, SF_TXCQ_CTL, 0);
 2331         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
 2332         csr_write_4(sc, SF_TXDQ_CTL, 0);
 2333 
 2334         /*
 2335          * Free RX and TX mbufs still in the queues.
 2336          */
 2337         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 2338                 rxd = &sc->sf_cdata.sf_rxdesc[i];
 2339                 if (rxd->rx_m != NULL) {
 2340                         bus_dmamap_sync(sc->sf_cdata.sf_rx_tag,
 2341                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
 2342                         bus_dmamap_unload(sc->sf_cdata.sf_rx_tag,
 2343                             rxd->rx_dmamap);
 2344                         m_freem(rxd->rx_m);
 2345                         rxd->rx_m = NULL;
 2346                 }
 2347         }
 2348         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 2349                 txd = &sc->sf_cdata.sf_txdesc[i];
 2350                 if (txd->tx_m != NULL) {
 2351                         bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
 2352                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2353                         bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
 2354                             txd->tx_dmamap);
 2355                         m_freem(txd->tx_m);
 2356                         txd->tx_m = NULL;
 2357                         txd->ndesc = 0;
 2358                 }
 2359         }
 2360 }
 2361 
 2362 static void
 2363 sf_tick(void *xsc)
 2364 {
 2365         struct sf_softc         *sc;
 2366         struct mii_data         *mii;
 2367 
 2368         sc = xsc;
 2369         SF_LOCK_ASSERT(sc);
 2370         mii = device_get_softc(sc->sf_miibus);
 2371         mii_tick(mii);
 2372         sf_stats_update(sc);
 2373         sf_watchdog(sc);
 2374         callout_reset(&sc->sf_co, hz, sf_tick, sc);
 2375 }
 2376 
 2377 /*
 2378  * Note: it is important that this function not be interrupted. We
 2379  * use a two-stage register access scheme: if we are interrupted in
 2380  * between setting the indirect address register and reading from the
 2381  * indirect data register, the contents of the address register could
 2382  * be changed out from under us.
 2383  */
 2384 static void
 2385 sf_stats_update(struct sf_softc *sc)
 2386 {
 2387         struct ifnet            *ifp;
 2388         struct sf_stats         now, *stats, *nstats;
 2389         int                     i;
 2390 
 2391         SF_LOCK_ASSERT(sc);
 2392 
 2393         ifp = sc->sf_ifp;
 2394         stats = &now;
 2395 
 2396         stats->sf_tx_frames =
 2397             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAMES);
 2398         stats->sf_tx_single_colls =
 2399             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_SINGLE_COL);
 2400         stats->sf_tx_multi_colls =
 2401             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI_COL);
 2402         stats->sf_tx_crcerrs =
 2403             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CRC_ERRS);
 2404         stats->sf_tx_bytes =
 2405             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BYTES);
 2406         stats->sf_tx_deferred =
 2407             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_DEFERRED);
 2408         stats->sf_tx_late_colls =
 2409             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_LATE_COL);
 2410         stats->sf_tx_pause_frames =
 2411             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_PAUSE);
 2412         stats->sf_tx_control_frames =
 2413             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CTL_FRAME);
 2414         stats->sf_tx_excess_colls =
 2415             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_COL);
 2416         stats->sf_tx_excess_defer =
 2417             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_DEF);
 2418         stats->sf_tx_mcast_frames =
 2419             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI);
 2420         stats->sf_tx_bcast_frames =
 2421             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BCAST);
 2422         stats->sf_tx_frames_lost =
 2423             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAME_LOST);
 2424         stats->sf_rx_frames =
 2425             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAMES);
 2426         stats->sf_rx_crcerrs =
 2427             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CRC_ERRS);
 2428         stats->sf_rx_alignerrs =
 2429             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_ALIGN_ERRS);
 2430         stats->sf_rx_bytes =
 2431             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_BYTES);
 2432         stats->sf_rx_pause_frames =
 2433             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_PAUSE);
 2434         stats->sf_rx_control_frames =
 2435             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CTL_FRAME);
 2436         stats->sf_rx_unsup_control_frames =
 2437             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_UNSUP_FRAME);
 2438         stats->sf_rx_giants =
 2439             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_GIANTS);
 2440         stats->sf_rx_runts =
 2441             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_RUNTS);
 2442         stats->sf_rx_jabbererrs =
 2443             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_JABBER);
 2444         stats->sf_rx_fragments =
 2445             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAGMENTS);
 2446         stats->sf_rx_pkts_64 =
 2447             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_64);
 2448         stats->sf_rx_pkts_65_127 =
 2449             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_65_127);
 2450         stats->sf_rx_pkts_128_255 =
 2451             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_128_255);
 2452         stats->sf_rx_pkts_256_511 =
 2453             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_256_511);
 2454         stats->sf_rx_pkts_512_1023 =
 2455             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_512_1023);
 2456         stats->sf_rx_pkts_1024_1518 =
 2457             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_1024_1518);
 2458         stats->sf_rx_frames_lost =
 2459             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAME_LOST);
 2460         /* Lower 16bits are valid. */
 2461         stats->sf_tx_underruns =
 2462             (csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_UNDERRUN) & 0xffff);
 2463 
 2464         /* Empty stats counter registers. */
 2465         for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
 2466                 csr_write_4(sc, i, 0);
 2467 
 2468         ifp->if_opackets += (u_long)stats->sf_tx_frames;
 2469 
 2470         ifp->if_collisions += (u_long)stats->sf_tx_single_colls +
 2471             (u_long)stats->sf_tx_multi_colls;
 2472 
 2473         ifp->if_oerrors += (u_long)stats->sf_tx_excess_colls +
 2474             (u_long)stats->sf_tx_excess_defer +
 2475             (u_long)stats->sf_tx_frames_lost;
 2476 
 2477         ifp->if_ipackets += (u_long)stats->sf_rx_frames;
 2478 
 2479         ifp->if_ierrors += (u_long)stats->sf_rx_crcerrs +
 2480             (u_long)stats->sf_rx_alignerrs +
 2481             (u_long)stats->sf_rx_giants +
 2482             (u_long)stats->sf_rx_runts +
 2483             (u_long)stats->sf_rx_jabbererrs +
 2484             (u_long)stats->sf_rx_frames_lost;
 2485 
 2486         nstats = &sc->sf_statistics;
 2487 
 2488         nstats->sf_tx_frames += stats->sf_tx_frames;
 2489         nstats->sf_tx_single_colls += stats->sf_tx_single_colls;
 2490         nstats->sf_tx_multi_colls += stats->sf_tx_multi_colls;
 2491         nstats->sf_tx_crcerrs += stats->sf_tx_crcerrs;
 2492         nstats->sf_tx_bytes += stats->sf_tx_bytes;
 2493         nstats->sf_tx_deferred += stats->sf_tx_deferred;
 2494         nstats->sf_tx_late_colls += stats->sf_tx_late_colls;
 2495         nstats->sf_tx_pause_frames += stats->sf_tx_pause_frames;
 2496         nstats->sf_tx_control_frames += stats->sf_tx_control_frames;
 2497         nstats->sf_tx_excess_colls += stats->sf_tx_excess_colls;
 2498         nstats->sf_tx_excess_defer += stats->sf_tx_excess_defer;
 2499         nstats->sf_tx_mcast_frames += stats->sf_tx_mcast_frames;
 2500         nstats->sf_tx_bcast_frames += stats->sf_tx_bcast_frames;
 2501         nstats->sf_tx_frames_lost += stats->sf_tx_frames_lost;
 2502         nstats->sf_rx_frames += stats->sf_rx_frames;
 2503         nstats->sf_rx_crcerrs += stats->sf_rx_crcerrs;
 2504         nstats->sf_rx_alignerrs += stats->sf_rx_alignerrs;
 2505         nstats->sf_rx_bytes += stats->sf_rx_bytes;
 2506         nstats->sf_rx_pause_frames += stats->sf_rx_pause_frames;
 2507         nstats->sf_rx_control_frames += stats->sf_rx_control_frames;
 2508         nstats->sf_rx_unsup_control_frames += stats->sf_rx_unsup_control_frames;
 2509         nstats->sf_rx_giants += stats->sf_rx_giants;
 2510         nstats->sf_rx_runts += stats->sf_rx_runts;
 2511         nstats->sf_rx_jabbererrs += stats->sf_rx_jabbererrs;
 2512         nstats->sf_rx_fragments += stats->sf_rx_fragments;
 2513         nstats->sf_rx_pkts_64 += stats->sf_rx_pkts_64;
 2514         nstats->sf_rx_pkts_65_127 += stats->sf_rx_pkts_65_127;
 2515         nstats->sf_rx_pkts_128_255 += stats->sf_rx_pkts_128_255;
 2516         nstats->sf_rx_pkts_256_511 += stats->sf_rx_pkts_256_511;
 2517         nstats->sf_rx_pkts_512_1023 += stats->sf_rx_pkts_512_1023;
 2518         nstats->sf_rx_pkts_1024_1518 += stats->sf_rx_pkts_1024_1518;
 2519         nstats->sf_rx_frames_lost += stats->sf_rx_frames_lost;
 2520         nstats->sf_tx_underruns += stats->sf_tx_underruns;
 2521 }
 2522 
 2523 static void
 2524 sf_watchdog(struct sf_softc *sc)
 2525 {
 2526         struct ifnet            *ifp;
 2527 
 2528         SF_LOCK_ASSERT(sc);
 2529 
 2530         if (sc->sf_watchdog_timer == 0 || --sc->sf_watchdog_timer)
 2531                 return;
 2532 
 2533         ifp = sc->sf_ifp;
 2534 
 2535         ifp->if_oerrors++;
 2536         if (sc->sf_link == 0) {
 2537                 if (bootverbose)
 2538                         if_printf(sc->sf_ifp, "watchdog timeout "
 2539                            "(missed link)\n");
 2540         } else
 2541                 if_printf(ifp, "watchdog timeout, %d Tx descs are active\n",
 2542                     sc->sf_cdata.sf_tx_cnt);
 2543 
 2544         sf_init_locked(sc);
 2545 
 2546         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2547                 sf_start_locked(ifp);
 2548 }
 2549 
 2550 static int
 2551 sf_shutdown(device_t dev)
 2552 {
 2553         struct sf_softc         *sc;
 2554 
 2555         sc = device_get_softc(dev);
 2556 
 2557         SF_LOCK(sc);
 2558         sf_stop(sc);
 2559         SF_UNLOCK(sc);
 2560 
 2561         return (0);
 2562 }
 2563 
 2564 static int
 2565 sf_suspend(device_t dev)
 2566 {
 2567         struct sf_softc         *sc;
 2568 
 2569         sc = device_get_softc(dev);
 2570 
 2571         SF_LOCK(sc);
 2572         sf_stop(sc);
 2573         sc->sf_suspended = 1;
 2574         bus_generic_suspend(dev);
 2575         SF_UNLOCK(sc);
 2576 
 2577         return (0);
 2578 }
 2579 
 2580 static int
 2581 sf_resume(device_t dev)
 2582 {
 2583         struct sf_softc         *sc;
 2584         struct ifnet            *ifp;
 2585 
 2586         sc = device_get_softc(dev);
 2587 
 2588         SF_LOCK(sc);
 2589         bus_generic_resume(dev);
 2590         ifp = sc->sf_ifp;
 2591         if ((ifp->if_flags & IFF_UP) != 0)
 2592                 sf_init_locked(sc);
 2593 
 2594         sc->sf_suspended = 0;
 2595         SF_UNLOCK(sc);
 2596 
 2597         return (0);
 2598 }
 2599 
 2600 static int
 2601 sf_sysctl_stats(SYSCTL_HANDLER_ARGS)
 2602 {
 2603         struct sf_softc         *sc;
 2604         struct sf_stats         *stats;
 2605         int                     error;
 2606         int                     result;
 2607 
 2608         result = -1;
 2609         error = sysctl_handle_int(oidp, &result, 0, req);
 2610 
 2611         if (error != 0 || req->newptr == NULL)
 2612                 return (error);
 2613 
 2614         if (result != 1)
 2615                 return (error);
 2616 
 2617         sc = (struct sf_softc *)arg1;
 2618         stats = &sc->sf_statistics;
 2619 
 2620         printf("%s statistics:\n", device_get_nameunit(sc->sf_dev));
 2621         printf("Transmit good frames : %ju\n",
 2622             (uintmax_t)stats->sf_tx_frames);
 2623         printf("Transmit good octets : %ju\n",
 2624             (uintmax_t)stats->sf_tx_bytes);
 2625         printf("Transmit single collisions : %u\n",
 2626             stats->sf_tx_single_colls);
 2627         printf("Transmit multiple collisions : %u\n",
 2628             stats->sf_tx_multi_colls);
 2629         printf("Transmit late collisions : %u\n",
 2630             stats->sf_tx_late_colls);
 2631         printf("Transmit abort due to excessive collisions : %u\n",
 2632             stats->sf_tx_excess_colls);
 2633         printf("Transmit CRC errors : %u\n",
 2634             stats->sf_tx_crcerrs);
 2635         printf("Transmit deferrals : %u\n",
 2636             stats->sf_tx_deferred);
 2637         printf("Transmit abort due to excessive deferrals : %u\n",
 2638             stats->sf_tx_excess_defer);
 2639         printf("Transmit pause control frames : %u\n",
 2640             stats->sf_tx_pause_frames);
 2641         printf("Transmit control frames : %u\n",
 2642             stats->sf_tx_control_frames);
 2643         printf("Transmit good multicast frames : %u\n",
 2644             stats->sf_tx_mcast_frames);
 2645         printf("Transmit good broadcast frames : %u\n",
 2646             stats->sf_tx_bcast_frames);
 2647         printf("Transmit frames lost due to internal transmit errors : %u\n",
 2648             stats->sf_tx_frames_lost);
 2649         printf("Transmit FIFO underflows : %u\n",
 2650             stats->sf_tx_underruns);
 2651         printf("Transmit GFP stalls : %u\n", stats->sf_tx_gfp_stall);
 2652         printf("Receive good frames : %ju\n",
 2653             (uint64_t)stats->sf_rx_frames);
 2654         printf("Receive good octets : %ju\n",
 2655             (uint64_t)stats->sf_rx_bytes);
 2656         printf("Receive CRC errors : %u\n",
 2657             stats->sf_rx_crcerrs);
 2658         printf("Receive alignment errors : %u\n",
 2659             stats->sf_rx_alignerrs);
 2660         printf("Receive pause frames : %u\n",
 2661             stats->sf_rx_pause_frames);
 2662         printf("Receive control frames : %u\n",
 2663             stats->sf_rx_control_frames);
 2664         printf("Receive control frames with unsupported opcode : %u\n",
 2665             stats->sf_rx_unsup_control_frames);
 2666         printf("Receive frames too long : %u\n",
 2667             stats->sf_rx_giants);
 2668         printf("Receive frames too short : %u\n",
 2669             stats->sf_rx_runts);
 2670         printf("Receive frames jabber errors : %u\n",
 2671             stats->sf_rx_jabbererrs);
 2672         printf("Receive frames fragments : %u\n",
 2673             stats->sf_rx_fragments);
 2674         printf("Receive packets 64 bytes : %ju\n",
 2675             (uint64_t)stats->sf_rx_pkts_64);
 2676         printf("Receive packets 65 to 127 bytes : %ju\n",
 2677             (uint64_t)stats->sf_rx_pkts_65_127);
 2678         printf("Receive packets 128 to 255 bytes : %ju\n",
 2679             (uint64_t)stats->sf_rx_pkts_128_255);
 2680         printf("Receive packets 256 to 511 bytes : %ju\n",
 2681             (uint64_t)stats->sf_rx_pkts_256_511);
 2682         printf("Receive packets 512 to 1023 bytes : %ju\n",
 2683             (uint64_t)stats->sf_rx_pkts_512_1023);
 2684         printf("Receive packets 1024 to 1518 bytes : %ju\n",
 2685             (uint64_t)stats->sf_rx_pkts_1024_1518);
 2686         printf("Receive frames lost due to internal receive errors : %u\n",
 2687             stats->sf_rx_frames_lost);
 2688         printf("Receive GFP stalls : %u\n", stats->sf_rx_gfp_stall);
 2689 
 2690         return (error);
 2691 }
 2692 
 2693 static int
 2694 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 2695 {
 2696         int error, value;
 2697 
 2698         if (!arg1)
 2699                 return (EINVAL);
 2700         value = *(int *)arg1;
 2701         error = sysctl_handle_int(oidp, &value, 0, req);
 2702         if (error || !req->newptr)
 2703                 return (error);
 2704         if (value < low || value > high)
 2705                 return (EINVAL);
 2706         *(int *)arg1 = value;
 2707 
 2708         return (0);
 2709 }
 2710 
 2711 static int
 2712 sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS)
 2713 {
 2714 
 2715         return (sysctl_int_range(oidp, arg1, arg2, req, SF_IM_MIN, SF_IM_MAX));
 2716 }

Cache object: 915723d7889482d735deaf3e91124062


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.